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Abstract: Riparian forests attenuate solar radiation, thereby mediating an important 18 

component of the thermal budget of streams. Here, we investigate the relationship between 19 

riparian degradation, stream temperature and channel width in the Chehalis River basin, WA 20 

State, USA. We used lidar data to measure canopy opening angle, the angle formed between 21 

the channel center and trees on both banks; we assumed historical tree heights and calculated 22 

the change in canopy angle relative to historical conditions. Next, we developed an empirical 23 

relationship between canopy angle and water temperature using existing data, and simulated 24 

temperatures between 2002 and 2080 by combining a tree growth model with climate change 25 
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scenarios from the NorWeST regional prediction. The greatest change between historical and 26 

current conditions (~7 ˚C) occurred in developed portions of the river network, with the highest 27 

values of change predicted at channel widths <~40 m. Tree growth lessened climate change 28 

increases in maximum temperature and the length of river exceeding biologically-critical 29 

thresholds by ~50-60 %. Moreover, the maximum temperature of channels with bankfull widths 30 

<~50 m remained similar to current conditions despite climate change increases. Our findings 31 

are consistent with a possible role for the riparian landscape in explaining the low sensitivity of 32 

stream temperatures to air temperatures observed in some small mountain streams.  33 

 34 

(Key Terms: Riparian; stream water temperature modeling; lidar; salmon; Chehalis River; river 35 

restoration.) 36 

 37 

Introduction 38 

Riparian forest structure controls the amount and quality of light reaching stream 39 

surfaces, in turn influencing habitat suitability and connectivity, primary production, and water 40 

quality (Brosofske, Chen et al. 1997; Kiffney, Richardson et al. 2003; Kaylor, Warren et al. 2017). 41 

Incoming solar radiation is one of the most important factors controlling stream temperature 42 

(Brown and Krygier 1970; Beschta 1997; Poole and Berman 2001), a master variable in aquatic 43 

ecosystems affecting rates of decomposition, nutrient cycling, and individual growth of aquatic 44 

organisms. Solar input is therefore a critical parameter influencing habitat in cold water 45 

systems that support ecologically and economically important species such as salmon, trout 46 

and charr (Beschta, Bilby et al. 1987; Hicks, Hall et al. 1991). Despite their critical function, 47 

riparian forests have been altered extensively in many temperate river basins (e.g. Macfarlane, 48 

Gilbert et al. 2016), fueling the need for watershed-scale analyses that identify locations where 49 

restoration efforts have the highest potential for affecting change. 50 

The need to understand spatial patterns of stream temperature is especially important 51 

in watersheds containing Pacific salmon (Oncorhynchus spp.), which are listed under the 52 

Endangered Species Act and have upper lethal temperature limits ranging from 23.8 to 25.1 ˚C 53 

(Brett 1952; McCullough, Spalding et al. 2001).  Stream water temperatures to which salmon 54 
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and other cold water species have locally adapted are controlled by a complicated set of 55 

physical interactions between the air-water and the channel bed-water interfaces (Brown 1972; 56 

Beschta 1997; Poole and Berman 2001; Moore, Spittlehouse et al. 2005), as well as 57 

physiographical (slope, discharge, elevation) climatological (precipitation), and hydrological 58 

(rain-dominated vs. snow-dominated hydrograph) effects. The physical processes controlling 59 

water temperature are further complicated in streams due to turbulence, tributary confluence 60 

inputs, and systematically-varying longitudinal effects such as increasing flow volume with 61 

distance from the source of overland flow (Vannote, Minshall et al. 1980; Kiffney, Greene et al. 62 

2006; Fullerton, Torgersen et al. 2015). An additional complication is that the relationship 63 

between temperature and biological processes is non-linear—for example, effects on salmonid 64 

growth and survival may be negative above threshold water temperatures because metabolic 65 

costs exceed gains (Armour 1991; McCullough, Spalding et al. 2001). 66 

Despite the complications posed by the myriad influences on stream temperature, it has 67 

been well-documented in the literature that reduction or removal of riparian shade results in 68 

significant warming. Amongst 18 studies that employed a rigorous before-after effect size study 69 

design, Moore, Spittlehouse et al. (2005) found a median after-treatment warming of 2.5 ˚C, 70 

while the maximum warming was 11.6 ˚C. The large range likely reflects different discharges 71 

and water depths at which the measurements were taken, differences in the hydrology of the 72 

study basins, differences in air temperature and elevation between basins and between years, 73 

varying basin aspects, and varying degrees of canopy removal. However, the overall pattern is 74 

clear: reduction in riparian shade leads to quantifiable, if highly variable, increases in 75 

summertime maximum stream temperatures that may render portions of the stream network 76 

energetically unprofitable or even uninhabitable to salmonids.  77 

Because high water temperature is a critical management concern for a variety of 78 

species, a number of empirical and process-based models exist for predicting stream 79 

temperature at the scale of reaches (e.g. Brown 1972; Beschta and Weatherred 1984), river 80 

basins or regions (e.g. Chen, Carsel et al. 1998; Boyd and Kasper 2003; Allen, Dietrich et al. 81 

2007; Isaak, Wenger et al. 2011) and continents (Hill, Hawkins et al. 2013). However, the reach-82 

scale models require data that may be difficult or impossible to collect across an entire 83 
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watershed; conversely, basin-, regional-, and continental-scale models may miss critical spatial 84 

variation in individual watersheds due to the coarseness of input data. Moreover, empirical 85 

models typically relate stream temperature to basin and climatological data aggregated from 86 

point locations across many basins (Isaak, Wenger et al. 2011; Hill, Hawkins et al. 2013); this 87 

approach has the benefit of capturing physical variables known to influence stream 88 

temperature, yet fails to directly measure riparian condition variability within individual basins. 89 

Consequently, it has been difficult to quantify potential benefits of shade restoration across a 90 

large watershed and to accurately identify sites with the greatest potential for reducing stream 91 

temperatures. 92 

Because natural channels widen with increasing drainage area (Leopold and Maddock 93 

1953; Montgomery and Gran 2001), the impact of shade reduction on stream temperature is 94 

expected to vary spatially throughout watersheds. For example, high-order, wide channels are 95 

exposed to high levels of solar radiation under natural conditions (Davies-Colley and Quinn 96 

1998); therefore, these channels may not experience much change in temperature when 97 

riparian forests are removed or altered. In contrast, mid-order tributaries should undergo larger 98 

changes in temperature if riparian shade is reduced, while low-order tributaries with widths 99 

less than 3.5 m may be relatively insensitive to reduction in riparian forest height because even 100 

small shrubs will shield much of the water surface for at least portions of the day (Fig. 1) 101 

(Davies-Colley and Quinn 1998). Because riparian zones in many temperate watersheds have 102 

been subject to management for many decades, the above relationships suggest the likelihood 103 

that there is a patchwork of temperature quality along the length of river networks that is 104 

dependent on position in the network and degree of riparian alteration.  105 

Moreover, climate change is expected to increase summertime maximum stream 106 

temperatures and to expand portions of river networks that exceed biologically-critical 107 

temperature thresholds (Isaak, Wollrab et al. 2012; Hill, Hawkins et al. 2014; Isaak, Young et al. 108 

2016). While the sensitivity of stream temperature to climate change is known to depend on 109 

geomorphology and hydrology (Luce, Staab et al. 2014; Lisi, Schindler et al. 2015), the role of 110 

riparian shade in moderating the effects of climate change on stream temperatures has not 111 

been addressed within a basin scale spatial context. Thus, one outstanding question is whether 112 
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restoring riparian shade in different positions of the river network will differentially mitigate 113 

climate change effects on stream temperature due to the hydraulic geometrical effects 114 

mentioned above. 115 

Figure 1. 116 

In this paper we investigate the hypothesis that maximum potential stream temperature 117 

increases due to riparian vegetation reduction—and therefore the greatest potential for shade 118 

restoration—occur at intermediate and small channel widths (Figs. 1, S1). An extension of this 119 

hypothesis is that geomorphic processes, through their control of hydraulic geometry, dictate 120 

the spatial locations on the landscape where riparian restoration will have the most impact on 121 

stream temperature. We used lidar data (a form of high-resolution remotely-sensed data that 122 

captures tree heights) to calculate the current canopy opening angle, which accounts for the 123 

tradeoff between tree height and channel width in dictating riparian shade, throughout the 124 

Chehalis River basin in southwestern Washington State, USA. Next, we developed an empirical 125 

water temperature model using existing data.  These techniques allowed us to combine the 126 

advantages of high-resolution remotely-sensed data and broad spatial coverage to model the 127 

relationship between stream shade and water temperature across a large river basin. We then 128 

used estimated mature tree heights from known species distributions to inform a reference 129 

condition of historical (pre-European-American settlement and widespread logging) stream 130 

temperatures and to calculate change in canopy opening angle and water temperature as two 131 

measures of riparian degradation. Finally, we modeled future stream temperature changes due 132 

to tree growth and climate change by applying an empirical tree growth model and the climate 133 

change increases from the NorWeST regional database (Isaak, Wenger et al. 2011) to our 134 

riparian inventory. The predictions of future water temperature allowed us to assess spatial and 135 

temporal patterns of stream temperature change between the current condition and 2080.  136 

Study Location 137 

The Chehalis River is located in southwestern Washington State, USA (Fig. 2). The river’s 138 

drainage area, which exceeds 5,500 km
2
 at its delta in Grays Harbor, is distributed across 139 

pristine upland regions in Olympic National Park, lowland urban and agriculture areas, and 140 
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active timber lands in the Olympic Mountains, Willapa Hills, and Cascade foothills. Maximum 141 

annual precipitation can exceed 6,000 mm in the Olympic mountains but more typical values 142 

are in the 1,000-2,000 mm range (PRISM Climate Group 2012). 143 

Figure 2.  144 

The basin lies within the Pacific Coastal Forest region extending from northern California 145 

to Alaska. Dominant deciduous broadleaf species include willow (Salix spp.), red alder (Alnus 146 

rubra), Black cottonwood (Populus trichocarpa), and big leaf maple (Acer macrophyllum), while 147 

dominant coniferous species include Douglas-fir (Pseudotsuga menziesii), Sitka spruce (Picea 148 

sitchensis), western hemlock (Tsuga heterophylla), and western red cedar (Thuja plicata) 149 

(Franklin and Dyrness 1973). The general successional pattern is from hardwood to conifer, 150 

with young patches occupied by colonizing species such as willow, alder and cottonwood, and 151 

old patches occupied by late successional species such as Douglas-fir, Sitka spruce, western 152 

hemlock, and western red cedar (Crocker and Major 1955; Fonda 1974). 153 

Seven species of anadromous salmonids use the Chehalis River and its tributaries: 154 

Chinook salmon (Oncorhynchus tshawytscha), coho salmon (O. kisutch), chum salmon (O. keta), 155 

pink salmon (O. gorbuscha), steelhead (O. mykiss), cutthroat trout (O. clarkii), and Bull trout 156 

(Salvelinus confluentus) (Sandell, Fletcher et al. 2014). Because Chinook, coho, and steelhead, 157 

along with non-migratory fishes, utilize freshwater habitats during the month of August when 158 

water temperatures typically reach their maximum, these species are the most affected by 159 

shade reduction. 160 

Methods 161 

Reference condition for riparian analysis 162 

To define riparian reference conditions (i.e. the natural potential tree height), we first 163 

stratified the basin into floodplain channels with varying rates of lateral channel migration and 164 

floodplain turnover, and non-floodplain channels with stable riparian landforms (small terraces 165 

or hillslopes). We used a threshold of 20 m bankfull width—defined as the width at water flows 166 

that fill the active channel but before spillage onto the floodplain (Leopold, Wolman et al. 167 

1964)—to distinguish between floodplain and non-floodplain channels. We used this threshold 168 
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because Beechie, Liermann et al. (2006) found that western Washington channels narrower 169 

than 20 m had a stable planform geometry and were able to develop stands of late-successional 170 

conifer trees. Channels wider than 20 m were subject to more frequent disturbance by lateral 171 

migration or avulsion and thus were characterized by a mix of early and late successional 172 

species of both deciduous and conifer trees (Naiman, Bechtold et al. 2010). We describe our 173 

process for calculating bankfull width below. 174 

Floodplain channels erode their floodplains with average return intervals ranging from 8 175 

to 89 years, depending on channel pattern (Beechie, Liermann et al. 2006). This creates many 176 

small stands of varying ages and species compositions dominated by early successional species 177 

such as willow, red alder, and Black cottonwood (Agee 1988; Van Pelt, O'Keefe et al. 2006) (Fig. 178 

S2). Non-floodplain channels have floodplain widths commonly less than 4 times the active 179 

channel width and are typically dominated by conifers in western Washington (Beechie, Pess et 180 

al. 2000; Rot, Naiman et al. 2000; Beechie, Liermann et al. 2006) (Fig. S2). Non-floodplain 181 

riparian areas in the Chehalis River basin are in the western hemlock or Sitka spruce zone 182 

(Franklin and Dyrness 1973), which have fire return intervals between 180 and 230 years (Agee 183 

1993). The principle successional pathway is characterized by Douglas-fir colonization and 184 

dominance during the first 200-300 years after fire, followed by succession to western hemlock 185 

or Sitka spruce as the stand ages beyond 300 years (Munger 1940; Franklin and Dyrness 1973). 186 

Therefore, for the historical condition along non-floodplain channels we assumed 187 

mature dense conifer stands with a site potential tree height of 52 m. This height is based on 188 

growth trajectories in (McArdle, Meyer et al. 1930), descriptions found in Gannett (1899), and 189 

the average tree height at six present-day old-growth sites in the Stillaguamish River basin (48 190 

m; M. Pollock, unpublished data). For mixed forests along floodplain channels, we used a typical 191 

tree height for mature hardwoods of 30.5 m. The value is meant to represent an approximate 192 

weighted average of red alder (~30 m), Black cottonwood (~40 m), and willow (~6 m). For 193 

comparison, the weighted average height of species found on Stillaguamish River floodplains 194 

was 29 m and 34 m for the mainstem and North Fork, respectively (M. Pollock, unpublished 195 

data). 196 
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Data 197 

Our analysis relied primarily on airborne lidar data compiled by the Puget Sound lidar 198 

Consortium (Fig. 2). Light Detection and Ranging (lidar) data has been shown to be effective for 199 

forest ecological applications due to its ability to measure the elevation of the ground surface 200 

as well as tree heights over large regions at high resolution (e.g. Means, Acker et al. 2000; 201 

Seavy, Viers et al. 2009).  The lidar datasets curated by the PSLC come from multiple sources, 202 

yet most of the acquisitions used here had an original spatial resolution of approximately 3 203 

feet. During the processing steps (below) we sampled the DEMs to conform to exactly 1 m 204 

spatial resolution in our chosen UTM projection. Positional accuracy of the datasets, where 205 

reported on the PSLC website, varied from 0.084 ft to 0.21 ft (RMSE calculated using a network 206 

of real time kinematic GPS ground control points). We used a Python script and ArcGIS 207 

geoprocessing tools to pre-process the bare earth and ‘first-returns’ DEMs, including projection, 208 

pit filling, flow direction calculation, and creation of ASCII text files. Next, we read the text files 209 

into Matlab using the function ReadArcGrid.m (T. 210 

Perron, http://web.mit.edu/perron/www/downloads.html) and created maps of the forest 211 

canopy by subtracting the un-filled bare earth DEM from the first return data (Fig. 2). 212 

We modeled bankfull channel width for the entire channel network by multiple linear 213 

regression using contributing drainage area and upstream mean precipitation as predictor 214 

variables  (Sumioka, Kresch et al. 1998; Davies, Lagueux et al. 2007). We calculated contributing 215 

area using the D8 flow accumulation of a 10 m resolution DEM from the National Elevation 216 

Dataset. For the precipitation data, we used the most recent (1981-2010) 30 year normal 217 

PRISM precipitation grid (PRISM Climate Group 2012), subsampled to 10 m resolution to match 218 

the DEM. 219 

Starting with a GIS file of Chehalis River basin channel reaches from the National 220 

Hydrography dataset (U.S.G.S 2013), we extracted contributing area directly from the flow 221 

accumulation grid to the midpoint of each reach. Next, using ArcGIS geoprocessing tools and a 222 

Python script, we delineated the entire watershed upstream of each reach, clipped the 223 

precipitation data to the watershed, found the mean value of the clipped precipitation grid, and 224 

assigned that value to the reach. We measured bankfull channel width at 106 locations 225 
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throughout the basin by hand in ArcMap, using aerial photography and hillshade images of the 226 

lidar DEMs to distinguish channel banks. At each location, we extracted contributing area and 227 

upstream mean precipitation using the method described above. With these data we 228 

constructed a linear model that predicts channel width as a function of contributing area and 229 

upstream mean precipitation. We found that the model fit was aided by stratifying the data 230 

into two groupings, one group for tributaries draining the Olympic Mountains (R
2
 = 0.59) and 231 

one group for all other tributaries and the mainstem (R
2

Canopy opening angle change 235 

 = 0.74). The scatter represents error 232 

associated with PRISM data, the DEM used to calculate flow accumulation, and remote 233 

measurement of bankfull width, as well as natural variation. 234 

Canopy opening angle is the angle formed between the stream thalweg (i.e. line of 236 

highest accumulated flow along a stream system) at the water surface and the top of the first 237 

shade-providing tree on either bank (Fig. 1). Rutherford, Blackett et al. (1997) used a similar 238 

metric as input for a computer model that predicted water temperature from vegetative and 239 

topographic shading. We extend this concept by focusing on change to the canopy opening 240 

angle due to disturbance (i.e. removal of shade) and regrowth (Fig. S1). The reason for focusing 241 

on canopy opening angle change, and not current canopy opening angle, is that our goal is to 242 

help focus riparian restoration on areas that have undergone large canopy changes and that 243 

have the most potential for returning to natural conditions. 244 

Canopy opening angle, θ [˚], and canopy opening angle change, Δθ [˚], are calculated by 245 ��,ℎ = �90 − atan ��1�1�� + �90− atan ��2�2�� 
(1a) 

�� = �� − �ℎ (1b) 

where H1 and H2 are tree height plus bank height on each side of the channel, W1 and W2 are 246 

the horizontal distances from the thalweg to the first tree, θc is the current canopy opening 247 

angle and θh is the historical canopy opening angle. The inverse tangent functions are 248 

subtracted from 90˚ such that a channel with complete canopy closure will have θ = 0˚ and a 249 

channel with no vegetation or bank topography on either side will have θ = 180˚. In our 250 

analysis, the thalweg location is calculated directly from the flow direction raster, i.e. thalweg 251 
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pixels are those found to be along the path of highest flow accumulation by the bare earth lidar 252 

DEMs. In other words, the thalweg is a feature of the digital representation of the landscape; it 253 

is not imposed by some additional source of data. While lidar data are highly accurate, in 254 

reaches of very low slope and/or very wide water surfaces, the flow direction algorithm may 255 

produce thalwegs that deviate from the center of the channel. Wide, low slope channels are 256 

predicted to be locations where riparian condition has the least effect on stream temperature; 257 

therefore, we expect this source of error to not greatly affect the results. 258 

We manually selected coordinates to begin data collection in ArcMap by digitizing 259 

points within the main channels near their upstream termini (hereafter these points are 260 

referred to as channel heads). Next, we used an algorithm developed in Matlab to measure 261 

riparian condition at specified intervals along the channels flowing from each channel head (a 262 

version of the code is available on the lead author’s github page; see Data Availability 263 

statement). Briefly, the algorithm iterates through each channel head within each DEM tile and 264 

searches down the flow direction pathway finding all channel thalweg cells; next, the algorithm 265 

extracts thalweg cells at the transect spacing interval (10 m in this study), finds the angle 266 

perpendicular to the channel by bisecting the angles formed between the current channel cell 267 

and upstream and downstream points, and projects a channel-perpendicular transect 100 m to 268 

each side of the channel using the Bresenham line algorithm (Bresenham 1965). Then, the 269 

algorithm extracts H1, H2, W1 and W2 by finding the first cell along the transect (in both 270 

directions) that exceeds a height threshold and uses these values to calculate the current 271 

canopy opening angle (eq. 1).  Because we focus on stream temperatures during the month of 272 

August, when the sun is high in the sky for much of the day in the Pacific Northwest, we expect 273 

bank topography to play a larger role in shading stream surfaces than far field topographic 274 

features. Therefore topographic shading is incorporated at this step by differencing the bare 275 

earth elevation of the transect center point from that of the shade-forming vegetation cell, and 276 

adding this value to the total tree height. If no vegetation is found, the canopy opening angle is 277 

calculated using topography alone. We made no attempt to incorporate topographic shading by 278 

features farther from the channel than the transect length (100 m). 279 
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During troubleshooting we discovered that in some cases the transect cell closest to the 280 

thalweg that exceeded the tree height threshold was in fact a short tree, and a taller tree lay 281 

directly behind the cell that was chosen by the algorithm. In these cases, the first point chosen 282 

was ‘shielding’ the taller tree behind, causing an underestimation of shade at that point. To 283 

correct this, we used an iterative process in which the algorithm uses a range of height 284 

threshold values (we used thresholds of 5, 10, 20, 30, 40, 50, 60, 70, 80, 90 m to test a wide 285 

range), and extracts the W and H that minimize the canopy opening angle. The algorithm then 286 

extracts the modeled bankfull width at the transect from the nearest NHD stream reach 287 

segment. If the bankfull width is larger than 20 m, a reference height of 30.5 m is used, along 288 

with W1 and W2, to calculate the historical canopy opening angle (see reference condition 289 

section, above). If the bankfull width is narrower than 20 m, 52 m is used as the historical 290 

height. Canopy opening angle change (Δθ) is the current canopy opening angle θc minus the 291 

historical canopy opening angle (θH

Where there is no vegetation present, the canopy opening angle is equal to 180˚. 293 

However, the canopy opening width for the historical condition is undefined because the 294 

algorithm cannot recognize channel edges and thus W

) (eq. 1). 292 

1 and W2 are undefined. Thus, for 295 

transects in which no vegetation was found under the current conditions, we used the modeled 296 

bankfull width as a surrogate for W1 + W2

Empirical relationship between canopy angle and stream temperature 299 

 in equation 1 under the assumption that bankfull 297 

width is similar to the historical canopy opening width under natural conditions. 298 

Due to the complicated hydrological, physiographical, and climatological variables that 300 

control stream temperature, it is difficult to construct a rigorous model of water temperature 301 

that is accurate at the high spatial resolution of our riparian dataset. Our goal was to develop a 302 

conceptually-simple model that is able to predict current and future water temperature under a 303 

range of riparian restoration scenarios, while acknowledging the uncertainty introduced by the 304 

inherent variability in stream temperature data. To construct the model, we used the maximum 305 

weekly mean temperature (MWMT) for the month of August (typically the most critical time 306 

period for cold water fishes in this region) in the NorWeST stream temperature database (Isaak, 307 

Wenger et al. 2011) that lie within the Chehalis River basin. There are eleven unique data 308 
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locations in the mainstem Chehalis River and some of the major tributaries (Fig. 2A). At most 309 

locations, multiple years of data are represented. We treated each year at each location as a 310 

separate data point; there are a total of 57 unique year-location entries. The eleven unique 311 

locations are distributed throughout the basin with three sites in the mainstem, one site in the 312 

South Fork Chehalis River, one site in the East Fork Satsop River, one site in the West Fork 313 

Satsop River, two sites in the East Fork Humptulips River and two sites in the West Fork 314 

Humptulips River (Fig. 2A).  315 

The distance over which  flowing water equilibrates to its surroundings increases with 316 

increasing stream size (due to increased water volume and greater thermal inertia), and may 317 

also vary due to the riparian condition of the reaches through which it flows (Sullivan, Tooley et 318 

al. 1990; Moore, Spittlehouse et al. 2005; Caissie 2006). Values reported in the literature for the 319 

equilibration length scale are commonly in the range of 150 to 200 m for small streams 320 

(Zwieniecki and Newton 1999; Story, Moore et al. 2003). However, Rutherford, Blackett et al. 321 

(1997) presented modeling results suggesting that first order streams could equilibrate ~85 % 322 

faster than third order streams to a downstream 50 % reduction in riparian cover. Given this 323 

uncertainty, we chose to use the mean value of canopy opening angle within 300 m upstream 324 

of each NorWeST data point. This 300 m length encompasses the commonly-published values 325 

but also reflects the longer recovery distance in larger channels.  326 

Water temperature is also a function of drainage area, slope, and elevation, among 327 

other factors, which do not change over the timescale of riparian degradation or restoration. To 328 

capture these effects, we appended contributing drainage area to each NorWeST temperature 329 

location and used the logarithm of area as a predictor in the model. Because drainage area and 330 

canopy opening angle are correlated in most drainage basins due to channel widening, we 331 

conducted two model runs, one using drainage area as the lone predictor and one with 332 

drainage area along with canopy opening angle.  333 

Most NorWeST site locations within the Chehalis River basin contain data for multiple 334 

years (there are 18 unique years represented in the dataset, 1993-1998, 2001-2012). To test for 335 

possible bias by year we ran a cross validation test in which we systematically removed each 336 

year represented in the data and ran a multiple linear regression on the remaining data before 337 
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reinstating the selected year and re-running the analysis. The goal was to assess whether 338 

individual years biased the mean result. 339 

The minimum drainage area in the NorWeST database is 14.8 km
2
, while the minimum 340 

drainage area in the riparian database is 0.0012 km
2
. The model tended to underestimate 341 

temperature at drainage areas lower than ~15 km
2

Future predictions of stream temperature with climate change and tree growth 345 

 due to lack of predictor data at these low 342 

drainage areas; therefore, we truncated the temperature model results at the minimum 343 

temperature predicted by the model at the NorWeST data locations (13.4˚C). 344 

Our prediction of future water temperature combined the effects of a tree growth 346 

model and climate change. We used data in McArdle, Meyer et al. (1930) and Harrington and 347 

Curtis (1986)  to find tree growth functions (height as a function of age) for Douglas-fir and red 348 

alder, which we fit with models of the form ax/(b+x) using an iterative least squares estimation 349 

technique. We used the Douglas-fir model to represent conifer growth along non-floodplain 350 

channels. Western hemlock and Sitka spruce, the other dominant conifer species in the field 351 

area, have similar growth trajectories to Douglas fir (Farr 1984; Beechie, Pess et al. 2000). We 352 

used the red alder model to represent growth of predominantly deciduous forests along 353 

floodplain channels. Red alder attains maximum heights that are between willow and Black 354 

cottonwood, and therefore best approximates the growth rate and mean height of floodplain 355 

forests (see reference condition section above). We inverted these models to compute the 356 

current age of the trees on both banks at each riparian transect location based on current 357 

height.  358 

To incorporate the effects of climate change, we applied predicted water temperature 359 

increases from the NorWeST stream temperature model to our riparian dataset locations. The 360 

NorWeST model includes predictions based on global average changes to air temperature and 361 

stream flow in the 2040’s and 2080’s following the A1B climate change scenario (Isaak, Wenger 362 

et al. 2011; Isaak, Wenger et al. 2017). For each transect in the riparian inventory, we appended 363 

values from three predicted scenarios from the closest NorWeST model data location. The 364 

modeled scenarios were a ‘current condition’ composite average MWMT between 1993 and 365 

2011 (hereafter referred to as 2002, the midpoint of the modeled years), the predicted MWMT 366 
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for 2040, and the predicted MWMT for 2080 (the 2040 and 2080 scenarios include the effect of 367 

lower climate change increases in smaller, colder streams (Luce, Staab et al. 2014). We next 368 

calculated the yearly water temperature change between 2002 and 2040, and the yearly 369 

change between 2040 and 2080 at each riparian inventory location. 370 

We modeled water temperature into the future in one year increments. At each time 371 

step, we calculated tree height (current height plus modeled annual growth) and canopy 372 

opening angle, and then computed pre-climate change water temperature using the empirical 373 

stream temperature equation. We then added the climate change increase for that time step to 374 

compute future stream temperature. If the time step was before 2040 we added the yearly 375 

climate change increase for 2002-2040; if the time step was after 2040, we added the 2040-376 

2080 climate change increase. To visualize the effect of tree growth on future water 377 

temperature using our model, we present the results of the climate change contribution to 378 

water temperature alone and in combination with the tree growth model. 379 

Juvenile salmonid growth is diminished or eliminated when water temperature exceeds 380 

~19.1 ˚C (the sub-lethal growth stress limit for juvenile Chinook, defined as 20 % lower growth 381 

than under optimal conditions; Armour 1991; McCullough, Spalding et al. 2001), and the upper 382 

lethal threshold for juvenile salmonids is ~23 ˚C (Brett 1952). To assess the length of river 383 

predicted to exceed these temperature thresholds, we appended mean modeled temperatures 384 

(current, historical, and future 2040 and 2080) from within a 50 m search radius to each reach 385 

within the National Hydrography Dataset for reaches covered by the riparian inventory. We 386 

then calculated the total length of stream exceeding each temperature threshold for each time 387 

period. 388 

Additionally, we examined patterns of stream temperature with respect to channel 389 

width in the current and future scenarios. Because stream temperature varies widely at any 390 

given channel width, we lumped the temperature data into 10 channel width bins. Because 391 

there are many more transect locations in narrow channels than wider channels, we chose to 392 

enforce equal numbers of transects within each bin while allowing the channel width range 393 

encompassed by each bin to vary. 394 
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Results 395 

Remote measurement of canopy opening angle 396 

Current canopy opening angles ranged between 0˚ (canopy completely closed) and 180˚ 397 

(both banks bare) in the portions of the Chehalis River basin covered by the lidar topographic 398 

datasets (Fig. 3A). Historical canopy opening angles ranged from 0˚ to 145˚ (Fig. 3B), and change 399 

in canopy opening angle ranged from -19.4˚ to 180˚ (Fig. 3C). The negative numbers represent 400 

sites expected to have deciduous species based on bankfull width but which in reality have 401 

taller-than-expected deciduous or conifer trees (~1.2 % of all sites). For transects with a tree 402 

height greater than zero, canopy opening angle change was greatest at channel widths 403 

between ~5 m and ~40 m (Fig. 3D). The exact location of the maximum was dependent on 404 

current tree height. For canopy opening widths larger than ~100 m, canopy angle change was 405 

always less than 50˚. Spatially, developed and agricultural areas in the south-eastern portion of 406 

the basin exhibited the highest values of canopy opening angle change; the mainstem Chehalis 407 

River has experienced intermediate canopy angle change; and upland forested tributaries have 408 

experienced the least change, at least in regions for which we have lidar data.   409 

Figure 3.  410 

Modeling stream water temperature 411 

We accepted the mean value of each model coefficient from the cross validation tests 412 

(Fig. 4A) to construct the Chehalis Stream Temperature Model (CSTM) based on several pieces 413 

of evidence. First, histograms of the coefficients from each test were approximately normally 414 

distributed (not shown), suggesting that the mean coefficient best represented the central 415 

tendency. Second, the adjusted R
2
 values fell in a narrow range between 0.59 and 0.62, with 416 

one exception (when data for the year 2010 were removed the adjusted R
2

� = −9.15 + 0.035��,� + 3.00log (�) 

 was 0.70 due to the 417 

removal of one outlier). Third, the maximum range in modeled temperatures across all cross 418 

validation tests was limited to +/- 0.98 ˚C at high canopy opening angles and low drainage areas 419 

(Fig. 4B); the minimum range (+/- 0.13 ˚C) occurs in the diagonal of the parameter space where 420 

the data are concentrated. The final model was  421 

(2) 
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where T is water temperature, θC,H is canopy opening angle, and A is drainage area. For the 11 422 

NorWeST sites, the maximum modeled water temperature was 23.4 ˚C and the minimum 423 

temperature was 13.4 ˚C (Fig. 4C). The mean adjusted R
2
 from the cross validation tests was 424 

0.61 (when we ran the same cross-validation test using drainage area as the lone predictor, the 425 

mean adjusted R
2
 was 0.59). The mean model predicted the measured temperatures with an R

2

Figure 4.  428 

 426 

of 0.63 (Fig. 4D). The root mean squared error was 2.29 ˚C.  427 

When the final model was applied to the riparian dataset, modeled August MWMT in 429 

the Chehalis Basin ranged up to 26.2 ˚C under current conditions, with 53.2 km of river 430 

exceeding 23 ˚C (Fig. 5A). Approximately 254 river kilometers exceeded 19.1 ˚C. Historical 431 

modeled temperatures ranged up to 24.9 ˚C, with 167.1 km exceeding 19.1 ˚C (~52 % increase 432 

in the current condition) and only 15.8 km exceeding 23 ˚C (~237 % increase in the current 433 

condition; Fig. 5B). Temperature change ranged between -0.68 ˚C and 6.32 ˚C, with the highest 434 

levels of change concentrated in the urban and agricultural southeast part of the basin (Fig. S3). 435 

Figure 5.  436 

Table 1. 437 

Future stream temperature: tree growth and climate change 438 

The CSTM predicted increases in temperature due to climate change and a cooling 439 

effect in many reaches due to tree growth (table 1). The model predicted an increase to the 440 

maximum basin-wide MWMT due to climate change alone of 1.8 ˚C by 2040 and 3.0 ˚C by 2080 441 

(these numbers follow directly from the NorWeST prediction). When tree growth was included, 442 

the predicted increase to the maximum temperature above current conditions was 0.6 ˚C in 443 

2040 and 1.7 ˚C in 2080 (roughly 50-67 % less than the predicted increase without tree growth). 444 

By 2040, the length of river predicted to exceed 19.1 ˚C was 528.9 km in the climate change-445 

only model (108 % increase over current conditions) and 398.7 km when tree growth was 446 

included (57 % increase over current conditions). For the same time period, the length of river 447 

predicted to exceed 23 ˚C was 129.6 km in the climate change-only model (144 % increase 448 

above current conditions) and 96.2 when tree growth was included (81 % increase above 449 
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current conditions). By 2080, the climate change-only model predicted that 693.4 km will 450 

exceed 19.1 ˚C (173 % increase above current conditions); 536.6 km was predicted to exceed 451 

19.1 ˚C when tree growth was included (111 % increase above current). The length of river 452 

predicted to exceed 23 ˚C by 2080 in the climate change-only model was 204.5 km (284 % 453 

increase above current conditions) and 141.5 km when tree growth was included (167 % 454 

increase above current conditions). 455 

Maximum stream temperature within channel width bins increased with increasing 456 

channel width, consistent with the hypothesis (Fig. 6A). At channel widths greater than ~90 m, 457 

maximum temperatures did not change between 2002 and 2020 but then rose steadily 458 

between 2020 and 2080 (Fig. 6A). For channel widths less than ~90 m, stream temperatures 459 

decreased dramatically in the first 20 years of the simulation followed by a gradual increase 460 

through 2080. For channel widths less than ~50 m, the final 2080 maximum temperature was 461 

equivalent to or less than the current temperature (Fig. 6A). In contrast, when tree growth was 462 

neglected from the model temperatures steadily rose throughout the simulation (Fig. 6B).  463 

Figure 6.  464 

Discussion 465 

Our results indicate that canopy opening angle and drainage area alone explain up to 466 

~63 % of the variation in measured water temperatures in the Chehalis River basin (Fig. 4D). 467 

Combined with our canopy opening analysis, the CSTM illustrates the spatial distribution of 468 

riparian degradation and temperature change (Figs. 3C, S3), with lowland urban and agricultural 469 

areas experiencing the highest level of change and forested areas experiencing lower levels of 470 

change relative to historical conditions.  471 

Stream temperature models may be broadly classified into empirical and process-based 472 

(physical) models. Process-based models use physical principles to track heat input, output and 473 

movement within a reach of study (Brown 1972; Beschta and Weatherred 1984; Boyd and 474 

Kasper 2003; Caissie, Satish et al. 2007). Such models can provide highly accurate predictions of 475 

stream temperature but they generally require detailed calibration data relating to channel 476 

geometry, basin hydrology, climatology, and meteorology that may be difficult to apply or even 477 

collect over large river basins or throughout regions (Benyahya, Caissie et al. 2007). In contrast, 478 
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empirical (statistical) models predict stream temperature from basin, land use and 479 

climatological variables that may be readily available as GIS datasets (Isaak, Wenger et al. 2011; 480 

Hill, Hawkins et al. 2013; Hill, Hawkins et al. 2014). These models commonly rely on point 481 

measurements of temperature made throughout many river basins, and have been shown to 482 

reliably and accurately reproduce river water temperatures at a range of scales using 483 

conventional and more complex spatial statistical methods (e.g.Ahmadi-Nedushan, St-Hilaire et 484 

al. 2007; Benyahya, Caissie et al. 2007; Isaak, Wenger et al. 2011; Hill, Hawkins et al. 2013; Hill, 485 

Hawkins et al. 2014; Isaak, Peterson et al. 2014).  486 

The CSTM compliments previous stream temperature modeling efforts by employing 487 

airborne lidar data to measure riparian condition at very high resolution. To assess the CSTM 488 

output in relation to another regional stream temperature model, we compared our results to 489 

the NorWeST predictive model for western Washington (Isaak, Wenger et al. 2011). In its 490 

calibration, the NorWeST predictive model uses data from hundreds of sites distributed 491 

throughout western Washington, including the same sites we used to train our model. The 492 

composite historical MWMT scenario for 1993-2011 (the same scenario we used as our 493 

baseline ‘current condition’ to calculate the climate change increases) comprises a similar range 494 

of years as the data available for the Chehalis River basin. We appended the NorWeST 495 

predictions to our riparian dataset locations using a spatial join in ArcGIS, and plotted the 496 

stream temperature difference (NorWeST temperature minus CSTM temperature) against 497 

channel width (Fig. 7A). At small channel widths, the NorWeST temperatures are on average 7.9 498 

˚C warmer than the CSTM predicts. The difference decays with increasing channel width (as 499 

riparian condition becomes less and less important); however, the mean difference does not 500 

decrease below 0.6 ˚C throughout the dataset. We also plotted the residual between the 501 

NorWeST raw data and the NorWeST predictive model and the CSTM (data minus model for 502 

each; Fig. 7B). We found that the NorWeST prediction overestimates temperatures at narrow 503 

channel widths (up to ~45 m) in the Chehalis River basin.  In contrast, the CSTM is better 504 

distributed about the zero line at small to intermediate channel widths (i.e. is more accurate in 505 

that range). This may reflect better model performance when riparian shade is quantified with 506 

high resolution, or simply that the NorWeST model is less accurate in small streams of the 507 
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Chehalis basin because it was constructed with a broad regional dataset that includes rivers 508 

from Puget Sound and the Olympic Peninsula. Regression of predicted vs observed temperature 509 

for the NorWeST Washington Coast model domain 510 

(https://www.fs.fed.us/rm/boise/AWAE/projects/NorWeST/ModeledStreamTemperatureScena511 

rioMaps.shtml) showed that the NorWeST model tended to slightly over-predict temperature 512 

when observed temperatures were low (intercept above zero), but overall the NorWeST model 513 

was very accurate and precise for the region. Notably, the CSTM predictions deviate from the 514 

regional NorWeST model in exactly the portion of the network expected to be most affected by 515 

riparian shade.  516 

Errors in water temperature models in small- to intermediate-sized channels that are 517 

based on regional calibration are consistent with a growing body of literature demonstrating 518 

complex patterns of stream temperature in small, cool mountain streams (Arismendi, Johnson 519 

et al. 2012; Luce, Staab et al. 2014; Lisi, Schindler et al. 2015; Isaak, Young et al. 2016). Air 520 

temperature, which drives much of the spatial variability in the NorWeST model, has been 521 

shown to be at least partially decoupled from stream temperature in the highest and coldest 522 

mountain streams (Luce, Staab et al. 2014; Lisi, Schindler et al. 2015). While previous work has 523 

attributed the lower sensitivity between stream and air temperature in small, cool streams to 524 

snowmelt and geomorphological effects, few streams in the Chehalis River basin are fed by 525 

snowmelt in August, suggesting this is not a significant source of the mismatch between air and 526 

stream temperatures in our study basin. Instead, our results are consistent with riparian 527 

vegetation also playing a role in some streams by providing shade and creating an insulated 528 

microclimate along the river corridor (Luce, Staab et al. 2014). The NorWeST model quantifies 529 

riparian condition using 30 m resolution canopy data, which is surely appropriate for larger 530 

rivers but may miss important details in channels that are narrower than 30 m. Therefore, it is 531 

possible that riparian vegetation can explain at least some of the residual between the 532 

NorWeST prediction and the data in small- to intermediate-sized channels. 533 

Figure 7.  534 

We attribute the error in the CSTM (RMSE = 2.29 ˚C) to sources of temperature 535 

variability not captured by our analysis, such as hyporheic exchange, as well as to between-year 536 
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variability. Additionally, our method does not account for tributary inputs, which may be better 537 

treated by process-based models or spatial-statistical models. Moreover, our method does not 538 

account for the width of the riparian forest, which plays a significant role in mitigating light flux 539 

to streams (Kiffney, Richardson et al. 2003). In much of the Chehalis River basin, buffers at least 540 

30 m wide have been left on active forest harvest lands. In other regions, such as near 541 

agricultural and urban areas, the riparian forest has been completely removed.  While our 542 

model accounts for the greatest proportion of change in solar radiation reaching the stream by 543 

incorporating canopy opening angle, it may overestimate the influence of riparian shade in 544 

reaches where narrow buffers remain.  545 

Additionally, removal of riparian vegetation may destabilize channel banks, leading to 546 

channel widening due to geomorphic processes (White, Justice et al. 2017). In reaches where 547 

channel widening has occurred, our assumption of no widening will lead us to over-predict 548 

canopy opening angle change. White et al. (2017) applied a channel narrowing restoration 549 

scenario to two degraded tributaries of the Columbia River, and found water temperature 550 

reductions of 2.2 ˚C and 0.6 ˚C in each tributary, respectively, resulting from restoration of 551 

historical channel width alone (i.e. without increased shade from revegetation). While 552 

insightful, the analysis relied on extensive and time-consuming mapping of historical channel 553 

conditions using notes from the General Land Office. Our method, in contrast, may miss the 554 

effect of channel widening due to land use change, yet benefits from rapid deployment over 555 

large regions of lidar coverage.  556 

Despite the above caveats, the range in modeled temperature change we observed 557 

overlaps with the range from a meta-analysis (Moore, Spittlehouse et al. 2005), lending 558 

confidence to our model predictions. However, we caution that despite the high resolution of 559 

the riparian dataset (10 m spaced transects), accuracy of the temperature model at any one site 560 

is limited by omission of variables for which we have no data. Moreover, the small sample size 561 

of unique NorWeST training data locations reduces confidence in the model, particularly 562 

extrapolating to sub-basins not represented in the NorWeST temperature database. As a result 563 

of the complex dynamics influencing local temperatures, and the limited number of Chehalis 564 

basin sites the NorWeST dataset, site specific estimates of water temperature are likely to be 565 
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somewhat uncertain. However, we expect errors in the temperature model to be consistent 566 

between scenarios, making comparisons between current, historical, and future conditions 567 

more reliable even where absolute temperatures are less accurate.  568 

Channel width in both alluvial and bedrock channels commonly increases in the 569 

downstream direction to maintain the balance between transport capacity of the river with 570 

sediment supply (Leopold and Maddock 1953; Hack 1957; Montgomery and Gran 2001; 571 

Finnegan, Roe et al. 2005). Despite local variations due to land use changes or lithologic 572 

contacts (Montgomery and Gran 2001), it is this physical reality in most drainage basins that 573 

leads to one of the main effects we have documented in this study: expected riparian shade 574 

under natural conditions is inversely related to drainage area and channel width. Further, as we 575 

have hypothesized based on the geometry of the canopy opening angle, change in shade after 576 

disturbance is also a function of channel width. These results may help guide limited restoration 577 

dollars to the areas of river basins that are most in need of restoration, and that have the 578 

highest potential for reducing summer stream temperatures in the future.  579 

Conclusion 580 

Based on the simple geometrical relationship formed by the channel width and current, 581 

historical and future tree heights, we have shown that riparian shade reduction or increase is a 582 

function of channel width as well as tree height. Because stream temperature is correlated with 583 

the canopy opening angle, temperature change due to shade reduction varies depending on 584 

position within the river basin as a function of downstream changes in hydraulic geometry. 585 

Moreover, because riparian restoration may be more effective for managing and restoring 586 

stream temperatures at small to intermediate channel widths, the CSTM predicts similar 587 

maximum temperatures in 2080 as the current condition in the upper portions of the river 588 

network whereas overall maximum temperatures may rise by as much as 3.0 ˚C.  River 589 

restoration is a multi-million dollar endeavor (e.g. Malakoff 2004), and managers commonly 590 

desire quantitative criteria by which to guide restoration money and effort. Our results suggest 591 

that a physical and riparian forest context of river basins may be used to guide restoration of 592 

riparian shade to maximum effect. Because restoration efforts should be executed with the 593 

goal of enhancing natural processes, not fighting them (Beechie, Sear et al. 2010), it is vital that 594 
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potential for restoration due to channel width and tree height be considered when planning 595 

riparian interventions. 596 

Supporting Information 597 

Additional supporting information may be found online under the Supporting 598 

Information tab for this article: Figures which provide additional context for our riparian 599 

prediction, historical reference condition analysis, and temperature modeling results. 600 

Data Availability 601 

All lidar DEM products are publically available after registration from the Puget Sound 602 

lidar Consortium (pugetsoundlidar.ess.washington.edu). The Matlab codes used to generate 603 

the riparian dataset are available at https://github.com/gseixas/Seixas-et-al-Influence-of-604 

channel-width-on-stream-shade-and-temperature-change
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 808 

Tables 809 

Table 1. Temperature modeling results. 810 

Scenario Max. MWMT (˚C) River km > 19.1 ˚C (km) River km > 23 ˚C (km) 

Current 26.2 254.0 53.2 

Historical 24.9 167.1 15.8 

2040 climate change 28.0 528.9 129.6 

2040 climate + growth 26.8 398.7 96.2 

2080 climate change 29.2 693.4 204.5 
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2080 climate + growth 27.9 536.6 141.5 

 811 

 812 

 813 

Figure captions 814 

Figure 1: Illustration of the canopy opening angle concept. Left column: riparian forest in the historical 815 

condition. Right column: riparian forest after clear cut and regrowth (current condition). A) 816 

Narrow, low-order channel. θH—historical (mature forest) canopy opening angle. θC

Figure 2. A) Map of the Chehalis River basin including rivers flowing into Grays Harbor. The stream 821 

network used in this study is shown in light blue, with the mainstem Chehalis River shown in 822 

dark blue. The spatial extents of all publically-available lidar datasets are shown with grey 823 

cross-hatching. Red dots show NorWeST temperature data locations. B) lidar difference map 824 

(first returns minus ground surface) of a typical stream corridor, overlain by transects 825 

calculated by the Matlab algorithm. Black box shows cross section line in C. C) Cross section 826 

through the lidar data. θ is schematically drawn. 827 

 —current 817 

canopy opening angle. B) Intermediate width, mid-order channel. Variables in equation 1 818 

shown: H—tree height; W—channel half width; the subscripts 1 and 2 refer to the left and right 819 

channel sides, respectively; C) Wide width, high-order channel. 820 

Figure 3. Patterns of canopy opening angle change in the Chehalis River basin. A) Current canopy 828 

opening angle for the regions of the Chehalis River basin covered by lidar datasets. B) Historical 829 

canopy opening angle. C) Change in canopy opening angle (calculated by subtracting the data in 830 

B from the data in A). D) Canopy opening angle change plotted in the parameter space of figure 831 

S1.  832 

Figure 4. Temperature model results. A) Each cross validation test plotted as a surface. Black dots are 833 

August MWMT (mean weekly maximum temperature) from the NorWeST database. B) Surface 834 

of maximum minus minimum predicted temperature from each cross validation test at each 835 

cell in the parameter space. C) Model surface calculated using the mean coefficient from the 836 

cross validation tests. D) Measured August MWMT vs. predicted temperature using the model 837 
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in C. Three-dimensional animated versions of A, B and C exist in the github repository (see Data 838 

Availability statement).   839 

Figure 5. Basin-wide patterns of August MWMT predicted using the model in figure 4C. A) Current 840 

temperature. B) Historical temperature. C) Predicted temperature in 2040 with climate change 841 

but without tree growth. D) Predicted temperature in 2040 with climate change and tree 842 

growth. E) Predicted temperature in 2080 with climate change but without tree growth. F) 843 

Predicted temperature in 2080 with climate change and tree growth.  844 

Figure 6. A) Maximum stream temperature within channel width bins as a function of channel width. 845 

Snapshots throughout the simulation are shown (2002, 2020, 2040, 2060, and 2080). B) The 846 

same as in A but with tree growth neglected from the water temperature model. The locations 847 

of the channel width bins are shown as vertical lines. 848 

Figure 7. A) Difference in temperatures predicted by our model and the NorWeST predictive model 849 

(NorWeST minus our model) vs. canopy opening width for all riparian inventory locations (grey 850 

dots). The mean values within ten bins are shown as a black line. B) Comparison of model 851 

residuals (data minus model). 852 
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