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Abstract

1. Assessing the degree to which at-risk species are regulated by density dependent versus
density independent factors is often complicated by incomplete or biased information. If not
addressed in an appropriate manner, errors in the data can affect estimates of population
demographicss:which may obfuscate the anticipated response of the population to a specific
action.

2. We developeda Bayesian integrated population model that accounts explicitly for interannual
variability in the'number of reproducing adults and their age structure, harvest, and
environmental conditions. We apply the model to 41 years of data for a population of threatened
steelhead troutd@ucorhynchus mykiss using freshwater flows, ocean indices, and releases of
hatchery-born conspecifics as covariates.

3. We found compelling evidence that the population is under density-dependent regulation,
despite being well below its historical population size. In the freshwater portion of the lifecycle,
we found a negative relationship between productivity (offspring per parent) and peak winter
flows, and aspositive relationship with summer flows. We also found a negative relationship
between productivity and releases of hatchery conspecifics. In the marine portion of the
lifecycle, we.found a positive correlation between productivity and the North Pacific Gyre
Oscillations

4. Synthesis and applications. The evidence for density dependent population regulation,
combined with the substantial loss of juvenile rearing habitat in this river basin, suggests that
habitat restoration could benefit this population of at-risk steelhead. Our results also imply that
hatchery programs for steelhead need to be considered carefully with respect to habitat
availability'and recovery goals for wild steelhead. If releases of hatchery steelhead have indeed
limited the production potential of wild steelhead, there are likely significant tradeoffs between
providing harvest opportunities via hatchery steelhead production, and achieving wild steelhead
recovery goals..Furthermore, harvest rates on wild fish have been sufficiently low to ensure very

little risk of everfishing.
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Managing at-risk species requires an understanding of the degree to which population
dynamics are self-regulated versus driven by external factors. However, the data used to identify
potentially important density-dependent and population-environment relationships are rarely, if
ever, fully comprehensive or error free. Rather, imperfect detection, misidentification, and non-
exhaustive sampling all lead to a somewhat distorted view of the true state of nature. For
example, when not addressed in an appropriate manner, errors in population censuses may cause
underestimates of recruitment (Sanz-Aguilar ef al. 2016) or overestimates of the strength of
density dependence (Knape & de Valpine 2012). Similarly, imprecision in the estimated age
composition of the population also biases the estimated strength of density dependence (Zabel &
Levin 2002)a Ina conservation context, these erroneous conclusions may directly influence the
anticipated response of a population to a specific action. Therefore, proper consideration of all
sources of uncertainty in the data is necessary to design robust management strategies aimed at
protecting at-risk species.

The productivity and carrying capacity of a population may also vary over time and space
(Thorson et@l:2015), and explicit consideration of external drivers can improve estimates of
population dynamics under density dependent conditions (Lebreton & Gimenez 2013). For at-
risk speciespthese exogenous factors can be used to better understand drivers of historical
populationsdémographics and help identify possible recovery options. Incorporating covariates
into population models can also improve forecasts of future dynamics, especially over shorter
time horizons most relevant to natural resource management (Ward et al. 2014). Furthermore,
accelerated global change will likely create synergistic effects that complicate efforts to make
reliable long=term predictions (Schindler & Hilborn 2015). Thus, any reasonable assumptions
about future responses of populations should begin with an attempt to fully account for the
uncertainty in population-environment relationships based on all of the current information.

Many.populations of Pacific salmon (Oncorhynchus spp.) throughout the northwestern
United States.have declined markedly since the early 1900s due to a variety of causes such as
habitat alteration, hydropower development, and overharvest (Ruckelshaus et al. 2002). For
conservation‘purposes, Pacific salmon species are grouped into evolutionarily significant units
(ESU, Waples 1991); 28 of the 49 extant ESUs of Pacific salmon are currently listed as
“threatened” or “endangered” under the U.S. Endangered Species Act. As a result, a number of

life-cycle models have been developed to evaluate the possible future benefits of conservation
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actions such as habitat restoration (e.g., Scheuerell et al. 2006) and the potentially negative
consequences of climate change (e.g., Zabel ef al. 2006). However, these models were assembled
by first obtaining parameter values from the literature, or estimating them from disparate data
sources, and then putting all of the pieces together post hoc. Consequently, they do not reflect a
comprehensive.assessment of the total uncertainty in population demographics.

More.recently however, researchers have turned toward integrated population models
(IPMs) as a"means to convey the combined uncertainty in all of the data sources, which is
particularly‘important in a conservation context (Buhle ez al. 2018; Zipkin & Saunders 2018).
IPMs are similar to state-space models in that they have specific sub-models for 1) describing the
stochastic and gnobservable population dynamics; and 2) addressing the noisy, incomplete data
(Schaub & Abadi 2011; Yen et al. 2019). Although IPMs have been widely developed and
applied to mammals (e.g., Regehr ef al. 2018) and birds (e.g., Saunders, Cuthbert & Zipkin
2018), there are very few examples for Pacific salmon (cf., Buhle ef al. 2018).

Here.we combine incomplete data on adult abundance, age composition, and harvest into
a Bayesian IPMt0 answer important questions relevant to management of a threatened
population of anadromous steelhead trout Oncorhynchus mykiss Walbaum 1792 from the Skagit
River basingwhich drains ~6900 km? in southwestern Canada and northwestern United States.
Specificallyywe used 39 years of age structured abundance data (1978-2018) to quantify the
degree of density dependence and the effects of a specific suite of environmental drivers on
intrinsic productivity (ie., recruits per spawner in the absence of density-dependence). We found
that although'reéeent population censuses are well below historical estimates, the population still
operates underrélatively strong density dependence. We also found that streamflow during
winter and teleases of hatchery-reared juvenile steelhead were negatively related to wild
steelhead productivity, but that productivity was positively related to streamflow during summers
as juveniles.and sea-surface temperatures experienced as adults in the North Pacific. In light of
remaining uncertainty in the factors governing the population dynamics of Skagit River
steelhead, thisimodelling framework is an effective tool for setting near term recovery goals and

evaluating population level response recovery actions.

MATERIALS AND METHODS
Study species and data
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The Skagit River system is predominantly a glacially fed system that consists of a
combination of rain, snow-transitional, and snow-dominated tributaries providing approximately
48 km? of potential habitat suitable for spawning and rearing by wild steelhead (Hard et al.
2015). We use the term “wild” to describe steelhead produced by naturally spawning adults
descended from.the native population inhabiting the watershed. For this study, wild fish captured
in commercial fisheries that were either allocated to harvest or sampled for age composition were
identified'bythe presence of an intact adipose fin. Wild adult steelhead in the Skagit River
generally enter fréshwater in November through April and typically spawn in March through
June. Based on 4,686 aged scale samples collected from returning wild adult steelhead captured
in commercial met fisheries, an average of 70% of returning adults comprising a given brood year
spent 2 years'rearing in freshwater prior to migrating to sea as smolts (see Appendix S4 for more
details on scale aging). Following freshwater rearing, individuals spend two to six years feeding
and growing before returning to freshwater as sexually mature adults to initiate spawning (i.e.,
they reach sexual maturity at age three through eight; ~82% mature at age four or five). These
fish then spefid"a year at sea before returning to freshwater to spawn.

Due to ascombination of logistical constraints, only a fraction of the known spawning
area was surveyed for wild spawners. Specifically, standardized index reach surveys were
conducted.annually in only two of five major sub-basins and 13 of 63 tributaries known to
support wild steelhead production. A basin-wide estimate of wild spawners was generated
annually by expanding each survey to account for estimated available habitat not surveyed.
Redds or spawning nests constructed before approximately mid-March were not counted to avoid
inclusion of‘anynaturally spawning hatchery-origin steelhead, which were purposely bred for
earlier spawn timing, or coho salmon in the abundance estimates (cf. Courter et al. 2019).
Fisheries biologists in the Skagit River basin generally consider the escapement estimates to be
conservative;.it.is,more likely that escapement is underestimated than overestimated because
unobserved.spawning sites would serve to increase abundance. Our analyses begin with surveys
in 1978 and.eontinue through 2018.

In the'model described below, we evaluate several environmental indicators of
productivity. Specifically, flow conditions experienced by juveniles during freshwater rearing
can have strong effects on their survival to adulthood via the following mechanisms: (1) spatial

contraction of habitat as a result of low summer flows and high water temperatures that coincide
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with the period of highest metabolic demand (e.g., Crozier ef al. 2010), and (2) habitat
displacement or direct mortality resulting from peak winter flows (e.g., Irvine 1986). Therefore,
we utilized long-term flow records from a gauge (#12178000) located in the mainstem Skagit
River (48.66 N, 121.246 W), and maintained by the United States Geological Survey (see
Appendix S L)=Specifically, we obtained the observed maximum of daily peak flows occurring
from October, through May of the first freshwater rearing year, and the minimum of low summer
flows oceurting from June through September of the first summer of freshwater rearing.

Becauseconditions experienced by salmon and steelhead during their first year at sea are
thought to be critical to overall survival and growth of a given year class (Beamish & Mahnken
2001), we choserthe average North Pacific Gyre Oscillation index (NPGO) from January through
December as‘ansindex of conditions experienced by juvenile steelhead during their first year in
the ocean. Variability in the NPGO reflects annual changes in coastal upwelling and ocean
circulation patterns that correlate strongly with primary and secondary production in coastal
ecosystems (D1 Lorenzo et al. 2008). Furthermore, the NPGO has been recently identified as an
important indicator of early marine survival in other Pacific salmon species (Kilduff e al. 2015).
Because most juvenile steelhead from the Skagit River migrate to sea during the spring of their
second yearpwe lagged the NPGO indicator by two years beyond the birth year to reflect
conditions.experienced during the first year at sea.

From a management standpoint, we were interested in the possible effect of hatchery-
reared juvenile steelhead on the productivity of wild steelhead. The Washington Department of
Fish and Wildlife operates a “segregated” steelhead hatchery program that uses broodstock from
a non-local seurce intentionally bred for early spawning, with the goal of minimizing temporal
reproductive overlap with wild fish and hence minimizing gene flow into the wild population.
Over the time series, hatchery fish were typically reared to age-1 and released in the spring
(April or May) from multiple locations in the Skagit Basin. We hypothesized that hatchery fish
would have.the greatest potential for conspecific ecological interactions during the time juvenile
steelhead aresmigrating to sea because observations at a juvenile fish trap (river km 27) indicate
they overlap‘in time and space. Therefore, we assumed that a cohort born in year # would interact
with hatchery fish released in year 7 + 2. We used the total number of juveniles released from the
hatchery within a given year as our covariate.

Integrated population model
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The number of offspring born in year ¢ that survive to adulthood (R;) equals the product
of a nonlinear function of the number of spawning adults (S;) and a time-varying stochastic error
&

Rt=f(5t|e) e, (1)
Here we consider three general forms for f: a density independent model where f(S,) = a.S;, and
two density=dependent models (Ricker and Beverton-Holt model; Fig. 1).

Theyprocess errors (&) are often assumed to be independent draws from a Gaussian
distribution with.a mean of zero and an unknown variance. However, the stochastic
environmental drivers that the & are meant to represent typically show relatively strong
autocorrelation oyer time. Thus, we compared two different distributional forms for & with non-
zero, autocorrelated means. In the first, we assumed that

g~ Normal(pe; 1, 0,), (2a)
&~ Normal(O, 1%&) (2b)

Secondywe considered models where the non-zero means were also a function of the
various environmental drivers important to salmon productivity as discussed above. In those
models,

& ~ Normal(u; + Ppe;_1, 05) (3a)

He= i YiXicn (3b)
Here, 5 is theseffect of covariate X; measured at time ¢ and shifted by an appropriate lag /; based
on the life stage that the covariate would affect most strongly. We standardized all covariates to
have zero-mean and unit-variance to facilitate direct comparison of effect sizes.

The estimated numbers of fish of age a returning in year ¢ (N,,) is the product of the total
number of broodfyear recruits in year # — a from Equation (1) and the proportion of mature fish
from that brood year that returned to spawn at age a (7,,,), such that

Na,t =Ry Tl t-a- (4)
Thus, in atable of the frue numbers-at-age (columns) by calendar year (rows), 7, ., has the effect
of apportioning the total recruits (R,.,) into their appropriate age classes of future returns (i.e.,
values along a diagonal of the table). Adult steelhead from the Skagit River return as 3-8 year-
olds, and therefore the vector of age-specific return rates for brood year ¢ is w, = [ 73, 1, 75, 7,

m, 73], which we modeled as a hierarchical random effect whereby mt, ~ Dirichlet(n 7). The mean
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vector M is also distributed as a Dirichlet; the precision parameter 7 affects each of the elements
in M such that large values of rresult in 7, very close to  and small values of 7lead to much
more diffuse =,.

Therspawner-recruit models above describe a process based on the true number of
spawners, but'our estimates of the numbers of spawning adults necessarily contain some
sampling errorssduesto incomplete censuses, pre-spawn mortality, etc. Therefore, we assumed
that our estimates of escapement, the number of adult fish that “escape the fishery” and
ultimately spawn (E;), are log-normally distributed about the true number of spawners (S)):

ln(E,) ~ Normal(In(S)), o). %)

We cannot simultaneously estimate observation error for both escapement and harvest.
Therefore, because catches of wild steelhead are closely recorded by state and tribal biologists,
we assume the harvest is recorded without error. We then calculate S, as the difference between
the estimatedstotal run size (N,) and harvest (H,), where

Sp= N, - H, (6)
and M, is the sum of N,, from Equation (3) over all age classes.

We obtained observations of the number of fish in each age class a in year ¢ (O,,) from
scale analyses'of 10 — 408 adults per year; no scale samples were taken in 1978-1982, 1984, and
2000. These,data,were assumed to arise from a multinomial process with order Y, and proportion
vector d,, such that

Oy~ Multinomial(Y,, d,). (7
The order of the multinomial is simply the sum of the observed numbers of fish across all ages
returning in year #:

%=X 0. ®)
Thus, if we'have a table of the observed numbers-at-age (columns) by calendar year (rows),

summing across éach row gives Y,. In contrast, the proportion vector d, for the multinomial is

based on the age-specific, model-derived estimates of adult returns in year ¢ (N,,), such that
P

8 .
Za = 3Na,t

da,t = (9)

That is, if we consider the table of the frue numbers-at-age (columns) by calendar year (rows)
generated via Eqn (4) above, the numerator of Eqn (9) comes from each of the individual

columns within a row, and the denominator is the sum across all columns.
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We used Bayesian inference to estimate all model parameters and the unobserved true
numbers of spawners and offspring over time. We used the freely available R software (v3.6, R
Development Core Team 2019) combined with the JAGS software (v4.2.0, Plummer 2003) to
perform Gibbs sampling with 4 parallel chains of 5x10° iterations. Following a burn-in period of
2.5x10° iterations, we thinned each chain by keeping every 400" sample to eliminate any
possible autocorrelation, which resulted in 5000 samples from the posterior distributions. We
assessed convergence and diagnostic statistics via the ‘CODA’ package in R (Plummer et al.
2006). Specifically, we used visual inspection of trace plots and density plots, and verified that
Gelman and Rubin’s (2017) potential scale reduction factor was less than 1.1, to ensure adequate
chain mixing afid\parameter convergence. Data support for each model was evaluated using
leave-one-out cross-validation (LOO) based upon Pareto-smoothed importance sampling as
implemented in the ‘loo’ package (Vehtari ef al. 2019). All of the code and data files necessary
to replicate our,analyses are available in the online supporting material and at

https://github.com/mdscheuerell/steelhead IPM.

RESULTS

Wefound'the most data support for the Beverton-Holt form of process model, so all of
the following results are based upon it (see Appendix S2 for full model selection results). Our
estimates of the total population size reflect the uncertainty in the estimated numbers of adults
over time, but the median values agreed quite well with the observed data (Fig. 2). As expected,
the 95% credible intervals were widest in 1996 and 1997 when there were no direct estimates of
spawning adults.

Thepopulation dynamics of steelhead in the Skagit River are currently under density-
dependentregulation, despite their numbers being well below historical censuses, and there is
considerable uncertainty in the relationship between spawning adults and their surviving
offspring (Fig. 3). The median of a (i.e., the slope of the relationship at the origin) was 4.8
offspring per spawner, but a lack of data at low spawner abundance led to considerable
uncertaintysin the estimate (Fig. 3b). The lower 95% credible interval was about 1.4 offspring per
spawner, which is still above replacement, while the upper 95% credible interval was 41

offspring per parent. On the other hand, our estimates of carrying capacity (K) were much more
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precise, with a median of about 7700 adults and 95% credible interval of approximately 5900 to
12 800 adults (Fig. 3c¢).

There were varying effects of the three environmental covariates on population
productivity (Fig.4). Peak winter flows were negatively related to productivity, suggesting high
discharge events may transport juveniles downstream to lower quality habitats, or lead to direct
mortality from channel avulsion or movement of sediment, wood, and other debris. The median
of the posterior-distribution was -0.13 (Fig. 4e), which means that a 1 SD increase in flow above
the mean (i'e;;from ~41 m? s*! to ~68 m? s!) would translate into a 12% decrease in offspring
per parent. On the other hand, the effect of low summer flows was essentially zero (Fig. 4f); the
median estimateswas 0.08 with a 95% credible interval of -0.18 to 0.14. The NPGO had a largely
positive effeet (Fig. 4g), suggesting warmer waters in the North Pacific are better for steelhead
productivity (median equals 0.12 with a 95% credible interval of -0.05 to 0.31.

We also _found that the number of hatchery juveniles released into the river during the
time that wild juveniles were migrating to sea was negatively related to productivity (Fig. 4h).
The medianseffect size was -0.16, which means that a 1 SD increase in the number of hatchery
juveniles released (i.e., from 328 000 to 452 000 fish) would, on average, result in an 15%
decrease mproductivity. Notably, hatchery production experienced three distinct phases over
time (Fig.4d): a low period between brood year 1978 and 1990 (range = 125 000 to 340 000
smolts), an increasing and high period between 1991 and 2005 (range = 314 000 to 584 000), and
a decreasing period beginning in 2006 (range = 0 to 240 000 smolts).

The #€maining, unexplained environmental variance was highly autocorrelated over time
(Fig. 5). Thewprocess residuals were generally positive during the late 1970s and early 1980s
when the population was growing (Fig. 2), they were near zero during the stable period of the
1990s, and then largely negative as the population primarily declined through the 2000s.

Based.on.our estimates of biological reference points, Skagit River steelhead appear to be
managed rather.eonservatively from a harvest management perspective. The optimal yield
profiles suggest it would take approximately 2000 to 3000 spawning adults to produce the
maximum sustainable yield (Fig. 6a), but very few years have ever fallen below that throughout
the time period presented here (i.e., the average number of spawning adults has been two to three
times greater). In other words, the realized harvest rates have been kept low enough to insure

very little risk of overfishing (Fig. 6b).
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DISCUSSION

In territorial species such as steelhead trout, competition for limited resources commonly
results in density dependent growth and survival amongst juveniles (Imre, Grant & Keeley
2004). Our analysis suggests that such effects have scaled up to the entire population level to
govern patterns,of steelhead productivity in the Skagit River basin. Importantly, we found strong
evidence for.density dependent interactions despite the fact that contemporary population
censuses‘are well'below historical estimates (Gayeski, McMillan & Trotter 2011). Similar results
have been observed in populations of coho salmon Oncorhynchus kisutch Walbaum 1792 in
Oregon (Buhle ef al. 2009) and in populations of Chinook salmon Oncorhynchus tshawytscha
Walbaum 1792sin Idaho (Thorson ef al. 2013). Although we cannot be certain of the exact life-
stage at which density dependent processes occurred, the freshwater juvenile stage seems likely
given the extended duration of freshwater rearing typical for this species. When steelhead
populations reach low numbers, the spatial contraction of spawners may exacerbate the effects of
density dependence because their newly emerged offspring do not have the mobility to access
other vacant'habitats (Atlas ef al. 2015). The evidence for density dependence presented here,
combined with'the substantial loss of juvenile rearing habitat in the Skagit River basin (Beechie,
Beamer & Wasserman 1994), suggests that habitat restoration efforts, such as reconnecting
floodplainshabitats and improving riparian functioning (Beechie, Pess & Roni 2008), may benefit
this population of steelhead.

Fluctuating environments can also affect population dynamics through density
independentmeehanisms, and anadromous salmon must contend with many different and
unpredictableshabitats over their lifespan. Our results are consistent with the notion that in the
freshwater environment, large flow events during winter negatively affect steelhead productivity.
Unfortunately, this may portend an uncertain future for these fish. In a recent study, Lee et al.
(2015) estimated.that future climate change in the Skagit River basin would create increased
winter flows.. These changes in hydrology will likely result in much greater exposure of
steelhead to.extreme high flow events due to their duration, intensity, and timing (Wade et al.
2013). Otherevidence already exists that freshwater discharge from Puget Sound rivers has
become much more variable, with notable negative effects on Chinook salmon Oncorhynchus
tshawytscha Walbaum 1792 (Ward et al. 2015). Furthermore, although we found a weak

relationship between low summer flow and productivity, extreme low-flow events are projected
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to occur at a higher frequency in the future (Lee ef al. 2015). That said, we also acknowledge
that modeling the effects of flow conditions from a single site within the Skagit River basin is
not representative of the complexity of flow conditions experienced by juvenile steelhead during
their first year of freshwater rearing.

We found evidence of positive effects of NPGO on productivity, which comports with
previous studies.that have made rather compelling cases for a strong positive relationship
between the NPGO and salmon productivity (Kilduff ez al. 2015). The NPGO is a synoptic
measure of’ocean conditions over a large region of the North Pacific Ocean (Kilduff ez al. 2015),
so we cannot say where and when, exactly, the effects of the ocean environment most manifest
themselves..Recent evidence also indicates that steelhead smolts suffer high mortality during
their relatively brief migration through Puget Sound (Moore et al. 2015), possibly due to
predation by marine mammals (Berejikian, Moore & Jeffries 2016). Notably, too, the residual
process errors not captured by our covariates (w, in Equation 1) were correlated with the
estimated marine survival of Skagit River hatchery steelhead (median Pearson's correlation
coefficient #0:29; 95% credible interval = [0.03, 0.50]), suggesting marine processes not
captured by ourcovariates likely influenced productivity.

Among the various mitigation measures to address salmon declines, artificial propagation
of salmon.has been used widely for more than a century. Nevertheless, research in other river
systems points to negative ecological effects of hatchery fish on wild Pacific salmon, including
populations coho salmon (Buhle ez al. 2009), and Chinook salmon (Levin, Zabel & Williams
2001). Our results provide further evidence that large releases of hatchery-reared juvenile
steelhead haveshad a negative effect on productivity of wild steelhead, although we note some
researchers have used an approach similar to ours and found no hatchery effect on productivity
(Courter et @l. 2019; Nelson et al. 2019). Although we provide evidence for a correlation
between hatchery.releases and wild steelhead productivity, we did not demonstrate causation nor
identify a causalanechanism. In fact, very few empirical studies have been conducted at the
appropriate spatial and temporal scales necessary to directly quantify the hypothesized
mechanisms'by,which negative ecological interactions between hatchery and wild fish may occur
(Weber & Fausch 2003). That said, competition for limiting freshwater food and habitat
resources (Berejikian ez al. 2000) is a plausible mechanism, either during the relatively brief

period of overlap during downstream migration (ca. 2 — 4 weeks), or a more prolonged effect of
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any hatchery fish that do not migrate to sea, but instead “residualize” within freshwater.
Additionally, predators are known to respond numerically to their prey, and it is possible that
large numbers of hatchery fish attracted additional predators (Kostow 2009). Although breeding
by hatchery individuals that stray onto natural spawning grounds may reduce the fitness of a wild
population via.gene flow from the hatchery stock into the wild population (Araki, Cooper &
Blouin 2009), our study only considered within-cohort effects. Thus, it seems unlikely that a
trans-generational genetic effect was the mechanism for the observed negative association
between hatcheéry releases and wild productivity.

Throughout the Puget Sound region, steelhead have been exposed to varying degrees of
influence byshatehery fish over the past 100 years, but they share the marine rearing
environment;‘and thus have experienced relatively similar ocean conditions during the same time
period. The marked decreases in abundance observed in many of these populations from the late
1980s to the late 2000’s, including the Skagit, mirrors observations of a general declining trend
in marine survival of hatchery conspecifics across the same time period, suggesting some larger,
unmeasuredforees have been at work (Kendall, Marstrom & Klungle 2017). It is often difficult
to separate hatechery management from ocean conditions because both are autocorrelated and
slow to change over time. Indeed, the period of greatest Skagit River hatchery releases (brood
years 1991=2005) generally coincided with declining steelhead abundance in the Skagit River
and other nearby rivers. Furthermore, in response to the declining abundance of wild Skagit
River steelhead coupled with declining marine survival of hatchery steelhead, fisheries managers
increased hat€hery production to replace lost fishing opportunities. Thus, it is plausible that
declining wildsproductivity was simply coincident with higher hatchery production, rather than a
consequence of it. It is also possible that multicollinearity among measured and unmeasured
covariates increased the estimated effect sizes.

The life history complexity of steelhead may not lend well to the use of traditional
spawner rectruitinodels such as the forms used in this study. Steelhead exhibit significant
phenotypic plasticity with respect to adopting partial migration strategies, with unknown
proportions 6f a given cohort adopting a non-anadromous resident life history type (Kendall et
al. 2015). Given that only anadromous individuals are included in the annual derivation of age
structured abundance, there may be a large component of each cohort that is missed which likely

resulted in substantial observation error not captured in our models. We also may have
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overestimated the biological reference points by not fully accounting for repeat spawners.
Furthermore, the adult abundance estimates are subject to a variety of spawning survey
assumptions; any tendency toward conservative, underestimates would be reflected in the
management reference points accordingly. Future research to increase the accuracy and precision
of abundance.estimates, including quantifying the contribution of resident and repeat spawning
life history types; would improve reference point estimation. Without these estimates, accurate
assessment§ of the status of steelhead populations may not be possible, and we urge caution
when interpreting the spawner recruit relationships and resulting management reference points
presented here.

OurdPMualso allowed us to assess the degree to which hatchery management actions are
likely to affeet the long-term viability of the population. Our results suggest that hatchery
program goals for steelhead need to be considered carefully with respect to recovery goals and
the quantity and quality of steelhead habitat. If releases of non-local origin hatchery steelhead
have indeed limited the production potential of wild steelhead, there are likely significant
tradeoffs between providing harvest opportunities via hatchery steelhead production and
achieving wild steelhead recovery goals. IPMs have been used elsewhere to inform the adaptive
harvest management decision framework for American waterfowl (Arnold et al. 2018), and our
IPM provides a formal means for estimating the probability of fishing in a sustainable manner.
We found compelling evidence that harvest rates for wild steelhead in the Skagit River basin
over the time period considered here have been well below those that would drive the population
toward extin€tion. This result, combined with the strong indication of density dependence, lends
further support:to the notion that habitat improvements may benefit this population most.

Tw@ advantages of [IPMs are 1) their ability to accommodate multiple data types of
varying quality, which reduces otherwise inherent biases when using a single data set; and 2)
more precise.estimates of demographic rates than one would with a single data set (Zipkin,
Inouye & Beissinger 2019). IPMs can also be used to evaluate the effect of various management
actions, and provide decision-relevant information for conservation of at-risk populations, such
as coastal turtles in the eastern U.S. (Crawford et al. 2018). Here we used incomplete
information about the abundance and age structure of an at-risk fish population to estimate
density dependent population dynamics in light of natural and human-induced variability in the

environment. IPMs can also be used to identify data collection priorities that could reduce
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uncertainty in parameter estimates (Saunders, Cuthbert & Zipkin 2018), and future research
could focus on the costs and benefits of different data types used in formal status evaluations of

at-risk Pacific salmon.
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FIGURE CAPTIONS

Figure 1. Deterministic forms of the (a) Ricker and (b) Beverton-Holt models used in the
analyses (thick lines), including equations for carrying capacity (K) and the number of recruits
corresponding to the maximum sustained yield (Ryisy). The parameter o defines the slope at the
origin, the censtant e is Euler’s number, and W(+) is the Lambert function (see Scheuerell 2016

for details) *The"gray line is where R, = S,.

Figure 2. Time series of the estimated total population size (catch plus the adults that escaped to
spawn). The observed data are the points; the solid line is the median estimate and the shaded

region indicates the 95% credible interval.

Figure 3. Relationship between the number of spawning adults and their subsequent surviving
offspring (recruits), assuming mean values for all covariates (a); and the estimated posterior
distributions for the intrinsic productivity (b) and carrying capacity (c). Points in (a) are medians
of the posterior estimates; error bars indicate the 95% credible intervals. Blue points are for
estimatesiwith'eomplete broods; purple points are for the most recent years with incomplete
broods. Gray lines show the median relationship for each of the 41 years in the time series based
on annual model estimates of productivity. Note that for plotting purposes only in (b) and (c), the
density in the largest bin for each parameter contains counts for all values greater than or equal

to it. Vertical arrows under the x-axes in (b) and (c) indicate the 2.5%, 50, and 97.5% percentiles.

Figure 4. Time:series of the environmental covariates used in the model (a-d), and their
standardizedweffects on population productivity (e-g). Small arrows under histograms denote the

2.5t 50! 7and97.5™ percentiles of the posterior distribution.

Figure 5. Time series of the estimated process errors, which represent the population’s
productivity after accounting for the effects of density dependence and environmental covariates.

The solid line 1s the median estimate and the shaded region indicates the 95% credible interval.

Figure 6. Plots of (a) the probability that a given number of spawners produces average yields

achieving 95%, 85%, or 75% of the estimated maximum sustainable yield (MSY); and (b) the
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cumulative probability of overfishing the population, based on harvest rates equal to those at
75% of MSY, at MSY, and at the maximum per recruit. The histograms above (a) and (b) are
distributions of the posterior estimates for the number of spawners and harvest rates,
respectively; the histogram in (a) has been truncated at 10,

SUPPORTING INFORMATION

Additional Supperting Information may be found in the online version of this article:
Appendix Sk=Instructions for retrieving and archiving the environmental covariates.
Appendix S2. Model definitions, model fitting, and model evaluation.

Appendix S3. Steps to recreate the manuscript figures.

Appendix S4. Background information on the age composition.
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