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Abstract

1.°%The ability to move between habitats has important implications for fitness in many
species. In-stream barriers such as culverts can impede movements of riverine fishes and thus
reduce connectivity between habitats. The ability of fish to overcome barriers is related to the

features of the environment and the barrier itself, but also to physiological, morphological, and
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behavioural traits of the fish. Among these, body shape varies among and within species, and
influences swimming ability, a key component of passage performance through culverts.

2. We conducted an experimental study on wild brook trout (Salvelinus fontinalis) to assess
the effects of individual body shape on attempt rate and passage success through culverts on six
streams.

3. "A more streamlined body shape was associated with an increased motivation to enter
and ascend:the culverts, and, to a lesser extent, with probability of successful passage once an
attempt wassstaged. Motivation and successful passage were also influenced by the density of
conspecifics below the culvert, time of day, fish body size, and water velocity.

4. Policy implications. While fish body shape is expected to influence swimming
performance,.our research shows the most important effect of body shape to be on an
individual’s'motivation to stage passage attempts at culverts. This study points to an important
connection'between behaviour and morphological traits that influence passage success and
suggests that in-stream barriers may be an important agent of selection on behavior and

morphology inwild fish populations.

Introduction

Ingriverine habitats, fish movements are often impeded by physical barriers or
challenging hydraulic conditions (Goerig et al., 2016, Gibson et al., 2005, Gallagher, 1999).
These barriers can occur naturally and may be persistent (such as those caused by geologic
features such as waterfalls) or ephemeral (as may be caused by beaver dams). Both persistent
and ephemeral barriers hold the potential to fragment habitat, and can lead to evolution of
body shapestand behaviours for overcoming them (Castro-Santos and Haro, 2006). Human
developmentin many watersheds has led to the creation of large numbers of persistent barriers
across the landscape in the form of culverts and other road crossings. These barriers reduce

ecological connhectivity and may impose selection on fish populations (Morita 2000, 2002).

Fish passage at culverts and fishways is a multi-step process, with fish sequentially
approaching;.entering, and eventually passing the barrier (Castro-Santos and Perry, 2012,
Castro-Santos, 2012). Failure at each of these steps may impede or delay fish movement.
Culverts at road crossings are highly unnatural structures that fish must be willing to approach

and enter, thee willingness to do so beingrelated to behavioural traits. Once the fish has entered
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the culvert, morphological and behavioural traits that influence swimming and leaping ability
become important determinants of successful passage (Haro et al., 2004, Gallagher, 1999). Fish
that attempt but fail to pass a culvert may re-enter repeatedly to make additional attempts. We
refer to the attempt rate as an index of motivation (Castro-Santos, 2004, Goerig and Castro-
Santos, 2017). Indeed, the behavioural and morphological traits that may facilitate high passage
performance may not be independent, but rather bundled together into what have been
termed dispersal syndromes (Comte and Olden, 2018). Variation in dispersal syndromes may
lead to different rates of passage success among populations and individuals, with important
ecological and evolutionary implications. Here we present results from a field experiment
testing whether culverts act as selective filters on the traits of wild brook trout, a widespread
species'inNorth America. We evaluate the degree to which trait variation determines entry and
successful'passage through the culverts. Our hypothesis is that successful passage is influenced
by motivation and body shape, and that these traits, along with culvert and environmental
characteristics, explain variability in passage success. Consistent with the idea of dispersal
syndromes, we predict that trait variation in motivation and morphology will be related such
that fish with streamlined bodies, a trait often associated with higher swimming ability, will
showshighermmotivation and therefore higher rates of passage success. If so, then culverts —
which have become ubiquitous features of modern river networks — may be imposing large-

scale'selection’on wild fish populations.

Materials and Methods

Study sites

Brook trout passage attempts were recorded during field experiments at six circular
culvertsilocated in the Saint-Louis and Bécancour River watersheds (Québec, Canada), two
systemssseparated by ~ 300 km. The Bécancour watershed is characterized by low gradient
streams,with:silty bottom, and occasional riffles flowing on sedimentary rocks. The two studied
streams.in‘this watershed are located far from each other and fish are not able to move
betweenthem. The Saint-Louis watershed is located in the Canadian Shield and houses high-
gradient gravel-bed streams, with presence of boulders and 'step-pools' reaches. It was possible
for fish to access the different studied streams via the main river, but this is unlikely because the

streams are separated by long distances and zones of high-velocity water.
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104 Culverts were 8 to 20 m in length and 1.5 to 2.7 m in diameter. Their slopes varied from
105 1.15 to 4.5 %, and their outlet drop was < 5 cm above the water level of the stream. They were
106  made of either corrugated metal or smooth concrete (Table S1). All culverts had quality feeding
107  and spawning habitat located upstream, although no previous knowledge of fish movement
108  patterns existed for these streams.

109 Fish sampling

110 Fish were caught by electrofishing (Smith-Root backpack electrofisher, model 15-C, USA)
111 0 to500 m upstream of the culvert in which they will be tested. All individuals were from

112 resident freshwater populations, as the studied streams have no direct access to the ocean.

113 Voltage/and waveforms were adjusted to account for water conductivity and to minimize risks of
114  injury to the fish (DC, varying width pulses: frequency: 45 — 60 Hz; duty cycle: 0.9% - 72%;

115  voltage range:800-1100 V). They were anesthetized by immersion in a 1:9 solution of clove oil
116  and 95%.ethanol diluted in water (0.8 to 1.2 ml of solution for 1400 ml of water), measured (fork
117 length, mm),weighed (wet mass, gr) and surgically tagged with half-duplex passive integrated
118  transponders(PIT) tags (Texas Instruments, 23 or 12 mm in length). A standardized lateral body
119 photograph'was taken of each fish. Fish were then allowed to recover in holding pens in their

120 river of'origin, for an average of 22 h (SD =7 h).
121 Study design‘and instrumentation

122 Groups of fish were transferred from the holding pens to a large cage (2x2 x 1 m)

123 secured totthe downstream end of each culvert and allowed to volitionally stage passage

124  attemptsiin.trials of 48 h. Each cage was fitted with a top net to prevent avian predation and
125 contained rocks to provide cover and low-velocity resting areas. Water temperature was

126 recorded hourly by a data logger (Onset, HOBO 020-001-04) located 20 m upstream of the
127 culvert and averaged for the duration of each trial. Distributions of water velocity and depth in
128  the culverts were quantified before each trial using a propeller-type velocimeter (Swoffer,

129 model 3000)at lateral transects spaced 2 m along the culvert. Mean water velocity for the
130  culvertiduring each trial was computed by averaging the mean values for each transect.

131 The six tested culverts were instrumented with a telemetry system consisting of four
132 passive integrated transponder (PIT) antennas evenly spaced along the pipe and located above
133  the water surface, as described in Goerig et al. (2016). The first antenna was located at 0.5 m

134  inside the culvert while antenna 4 was located at the upstream end. The antennas interfaced
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with a half-duplex PIT reader (Technologie Aquartis, control module Quatro) recording tag
number, antenna number, and time to the nearest 1 s. This allowed the observation of passage

attempts and successes in the culverts.

Analysisiof body shape

We used geometric morphometric methods to quantify the lateral two-dimensional
body shape of the fish used in this study (Rohlf and Marcus, 1993, Adams et al., 2004). Separate
analyses.were performed on two nested datasets. In the first, we used all fish to compare body
shape amongst fish that entered the culvert (attempters) and those that did not (non-
attempters)in the second, we included only attempters and compared body shape of
attempters that successfully passed through the culvert with those that did not. From
photographs.ef each fish, the locations of 15 homologous landmarks were digitized (Figure 1),

using tpsDig2«ersion 2.18 (Rohlf, 2015).

A generalized Procrustes Analysis (GPA) removed the effects of translation, rotation, and
the isometrig,effects of size on body shape as well as described this body shape variation as a set
of residual landmark coordinates, or Procrustes residuals (Rohlf and Slice, 1990). A principle
components analysis of these residuals indicated that significant variation in body shape was
associatedwith some arching of the fish body while being photographed. To ‘unbend’ the
specimens, we fit a quadratic curve through the raw (pre-GPA) landmarks 1, 13, 14, 15, and 6,
and transformed the whole set of landmarks such that these were fit along a straight line for
each fish_using tpsUtil version 1.76 (Rohlf, 2015). All further analyses were carried out on unbent
landmarks 1-12 only. For each fish, we calculated centroid size, which is the sum of the squared
distances®fromi the landmarks to their centroid and is used as a measure of overall body size that

is approximately independent from the shape variables (Rohlf and Slice, 1990).

In:each analysis, we performed a GPA on the unbent specimens which produced 24
procrustes:tesiduals that describe shape. In order to account for the allometric effects of body
size and.any differences in shape amongst the different stream populations, we performed
nonparametric Procrustes MANOVAs (np-MANOVAs) with shape as the dependent variable and
log centroid size, stream, and their interaction as predictors (Collyer et al. 2015). The residuals of
these regressions represent variation in shape that is independent of body size and population

of origin (Mitteroecker and Bookstein 2011) .
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We focused on two binary performance metrics: attempters vs. non-attempters, and
passage vs. failure to pass. In order to evaluate how body shapes differed between each of
these two metrics, we performed two-block partial-least-squares regression (PLS) with shape as
one block and a single variable (attempt/non-attempt or pass/fail) as the alternate block (Rohlf
and Corti 2000; Mitteroecker and Bookstein 2011). PLS describes the axis of shape variation that
most clasely covaries with each performance metric (Rohlf and Corti 2000; Mitteroecker and
Bookstein:2011). Each individual is assigned a PLS score. Since our second block of data is a
binary group;the PLS score represents that individual’s position along the vector that best
discriminates between the mean of the two groups and can be used to reliably reconstruct
predicted body shapes (Mitteroecker and Bookstein 2011). We resampled the data 10,000 times
to determine how shape was associated with attempt and passage (Adams and Collyer 2016).
These analyses were performed in R version 3.5.1 and package geomorph version 3.0.5 (Adams
and Otaroela=Castillo, 2013, Adams et al., 2017). The PLS scores were then used as continuous

shape variables in the analysis of passage performance through culverts.
Analysis‘of passage performance in culverts

We:quantified brook trout passage performance through culverts using two metrics:
attempt rate.and probability of successful passage. Attempt rate refers to the proportion of
available'fish'staging an attempt per unit of time and can be used as an index of the fish’s
motivation to enter and ascend culverts in this study (Goerig and Castro-Santos, 2017). Once a
fish has'entered the culvert, the probability of successful passage ranges from 0 (failure) to 1

(success).
Attempt rate

We,used time-to-event analysis (Allison, 2014, Castro-Santos, 2004, Hosmer et al., 1999)
to quantify attempt rate of fish present in the cages downstream of culverts. Each attempt
constitutesa’single event and has an associated instantaneous event rate (or hazard). An
attempt'was defined as an exposure to antenna 1, meaning that the fish has entered the culvert.
Cox regression estimates the relative effect of covariates on the event rate (Castro-Santos and
Haro, 2003, Allison, 2014). We used the package Coxme in R 3.2.0 (R Core Team, 2015,
Therneau, 2015) to fit Cox mixed models including fixed effects and nested random effects for

stream of origin and individual fish. These random effects accounted for unexplained variability
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in attempt rate related to the stream of origin and statistical dependence among repeated
attempts from the same fish (Therneau et al., 2003). Fixed effects included fish log centroid size,
body shape (fish scores from the PLS discriminating between attempters and non-attempters),
fish condition factor (Fulton’s Ky = 10°*weight/length3), diel period (dawn, day, dusk or night),
mean velocity, depth of the pool downstream of the culvert, ratio of openness of the culvert
(cross-sectional area / length), water temperature, and number of conspecifics in the cage. The
numbemoffishiin the cage was set to a starting value corresponding to the number of fish
introducedsatsthe beginning of a trial. It was then allowed to vary according to individuals
staging @ttempts, and then either passing upstream of the culvert or returning downstream
after an attempt. We used a correlation matrix (Figure S1) to detect collinearity in the fixed
effect variables. Any pair of variables with a correlation coefficient Pearson’s r > 0.35 or <-0.35

would not'betsed together in a model.

Asset.of biologically meaningful candidate models was developed using the following
criteria to;minimize the number of models : (i) maximum of seven main effects; (ii) depth of
downstreampool was not used in a model with water velocity (r=0.54, p=< 0.0001) or number
of conspecifies in the cage (r = 0.63, p= < 0.0001) due to their correlation), as well as water
temperature and velocity (r =-0.69, p < 0.0001), and condition factor (K ) and shape (r = 0.55,
p=< 0.0001); and (iii) no interactions. Selection of the best model was performed by minimizing

the Akaike Information Criteria (AIC).

Once a best model was selected, the baseline hazard, as well as the fixed and random
effects coefficients, were extracted and used to plot mean response curves adjusted for
representative levels of the predictive variables.. Random effect coefficients also served as an
index ofithe individual level of motivation for further analyses, a high coefficient indicating a
high level.ef.motivation. In this context, motivated fish were those attempting to pass the

culvert at'a high rate (early in the trial) or staging repeated attempts.
Passage success

Once an attempt was initiated, a successful passage was defined as a detection at antenna 4,
regardless of whether the fish returned downstream or moved upstream. For each attempting
fish, the probability of successful passage through the culvert was quantified with a generalized

linear model with a logistic link. A set of candidate models was developed by considering
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independent fixed effects such as culvert length, mean water velocity and depth in the culvert,
water temperature, fish log centroid size, and body shape (scores from the PLS discriminating
between successful and unsuccessful attempters). The individual level of motivation, previously
extracted from the attempt rate analysis, was also included in some candidate models. Culvert
material (i.e: smooth concrete or corrugated metal) was not considered as a covariate because
mean velocity'and depth were not distributed evenly among the two types of culverts. Mean
watenvelocitysand depth were not used together in a model since they were correlated (r = -

0.38, p <0:0001). Model selection was done by minimizing AIC.

Results

Attotal of 362 brook trout (FL from 58 to 215 mm, mean =133.5 mm) was tested in
nineteen trialsiconducted in six culverts. Sample sizes were not evenly distributed among
studied culverts, however (Table S1). Trials were conducted from June to August, at mean water
temperatures between 10 and 17.5°C. Mean water velocity within trials ranged from 0.5 to 2.0
m s1, andsmean depth from 0.03 to 0.46 m. Overall detection efficiency by the PIT system was ~

97% in this'study, as reported in Goerig (2016).
Body Shape

Shape varied as a function of size, and across streams (Table S1). The residuals of the np-
MANOVA represent shape independent of these predictors. According to the PLS analysis, the
residual shapes were significantly correlated with the fact to attempt or not to pass the culvert
(Table 1), 23% of the variation in shape being explained by the attempt status (attempter / non-
attempter)mAttempters were relatively shallower-bodied and had slightly shortened caudal-
pedunclesswhen compared to non-attempters (Figure 2). Successful fish were also shallower-
bodied, especially in the anterior half of the body, and had slightly shortened caudal-peduncles
when compared to unsuccessful fish (Figure 3). Howeverthe difference was not statistically
significant (Table 1). The individual scores from the PLS analysis were used as continuous shape
variables in the attempt rate and passage success analyses, along with environmental covariates

and culvert characteristics.
Passage performance in culverts

Attempt rate
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Among the 187 models estimated, two models had a similar AIC and an optimal fit to the
data (A AIC from null model = 81.5 & 81.2, A AIC from closest competing model = 3.4 & 3.7, total
Akaike weight = 0.63). These models included diel periods, mean water velocity, centroid size,
body shape and number of conspecifics in the cage as predictors of attempt rate, which is used
as an index.of the fish motivation to pass the culverts (Table 3A), a higher attempt rate implying
greater'motivation. The second best model included the culvert openness ratio as an additional

predictormWesselected the most parsimonious model minimizing AIC.

The number of conspecifics in the cage below the culvert was negatively correlated with
the fish'maotivation, the individual attempt rate being higher when fewer fish were present in
the cages. Fish\.were more motivated to pass the culverts at dawn and under higher water
velocity conditions (Table 2): an increase of 1 m s in water velocity had the effect of nearly
doubling the attempt rate (Table 3 A, HR = 1.870). Attempt rate was reduced during the day, at
dusk andsduring the night, by comparison to dawn (Table 3 A, HR = 0.67, 0.87 and 0.77). Larger
trout hadha:higher attempt rate. Finally, body shape had an influence on motivation; fish with
low PLS/scores staged attempts at a higher rate (Figure 4, A). This confirmed the differences in
body shape observed between attempters and non-attempters and means that fish with
shallowembodies and shortened caudal peduncles entered and ascended the culverts at a

greaterwrate.

Random effects account for variability in attempt rate that is associated with stream of
origin and the individual fish themselves, but that is not captured by the fixed effects in the
models. The variance of both random effects was substantial, suggesting that individuals varied
significantly in their motivation, and that fish within a stream were more similar to each other
than to the population as a whole. (Table 2, section A). Fish from Grégoire Stream staged
attemptsitespass the culvert at a much faster rate than average for all streams combined, while
fish from Femmes and Saumons Streams had the slowest attempt rates (Figure 4, B). Fish from
the Bécancour watershed were overall more motivated to enter the culverts than those from

the Saint-Louis watershed.
Passage success

Among the 84 models estimated in the analysis on culvert passage success, the model

with the lowest AIC (A AIC from null model = 50.8, A AIC from closest competing model = 0.85,
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Akaike weight = 0.22) included mean velocity, motivation and body shape as main predictors of
culvert passage success. There were no large differences in AIC values between the selected
model and the following competing models, meaning that there was no strong evidence for a
single model explaining passage success. However, mean velocity, motivation, and body shape
were included in all competing models, along with culvert length and water temperature in

some cases. Thus we selected the most parsimonious model minimizing AlC.

Mean velocity had the greatest effect on passage success, followed by motivation and
body shape (Table 3B, *B). The probability of successful passage decreased with increasing
velocity.\Motivated fish were more likely to successfully pass, as were fish with low PLS scores

(i.e: shallower bodies and shortened caudal peduncles).

Discussion

The overall goal of our study was to evaluate whether trait variation impacts motivation
and successful'passage through culverts for wild brook trout. We predicted that passage success
would be influenced by both motivation and body shape and we expected to find variation in

traits and passage success among populations and among individuals within populations.

Ourstudy reveals the existence of a clear link between body shape and brook trout
motivation to pass in-stream barriers. Propensity to move may result from a distinct body shape.
Fish with dorso-ventrally streamlined bodies and shortened caudal peduncles were more likely
to enter and.ascend the culverts. Body shape may correlate with distinct dispersal syndromes,
with some fish being more sedentary while others are active movers. Evidence for dispersal
syndromesthave been observed for several freshwater fish species (Comte and Olden, 2018,
Rodriguez;2002), including brook trout (Rodriguez, 2002). Fish with streamlined bodies and a
short ‘caudal peduncle may also exhibit higher swimming ability and a propensity to move over
long distancesiand diverse physical habitats. Thus, these fish may encounter in-stream barriers

and be more motivated to overcome them.

Fishymotivation was also influenced by their size, as well as by environmental variables
such as diel periods, water velocity and number of conspecifics in the cage below the barrier.
This result is consistent with previous findings (Goerig and Castro-Santos, 2017, Maynard et al.,

2017), and highlights the complexity of fish interactions with barriers. Even after those variables
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of importance have been taken into account, fish motivation to pass the culverts differed among
streams, with trout from the Bécancour watershed exhibiting an overall higher attempt rate.
This may be due to variables not considered in the analysis, for instance differences in
movements and habitat use patterns among the studied populations or water quality factors.
Habitat-based polymorphism has been observed in lakes and fluvial environments (Senay et al.,
2015, Samways et al., 2015, Walker, 1997), with fish body shape differing for individuals found
in rifflesprunssand pools, as well as with migratory range, predation or prey availability, and
other facterss(Schaffer and Elson, 1975, Quinn et al., 2001, Quinn and Buck, 2001). Abiotic
factors such as\water depth and velocity are known to shape morphology (Drinan et al., 2012,
Pease et al., 2012, Zastavniouk et al., 2017). However, stream fishes often move among habitats
within stream/reaches, and thus may exhibit high plasticity in morphological traits (Senay et al.,

2015).

Wesalso found evidence for individual variability in motivation, which may arise from
various sources. Brook trout, like many species of fish, can be sexually dimorphic, both with
respect o body shape and size, but also to behavior (Proulx and Magnan, 2004, Hutchings and
Gerber, 2002). Although we were not able to determine sex, it is likely that some of the
morphological diversity we observed is due to sex differences, and the same can be said for
motivation and performance. Sex may influence dispersal, and thus motivation to pass a barrier
to access upstream habitat (Hutchings and Gerber, 2002). Likewise, some trout may exhibit

differential response to stress or the presence of conspecifics below the culvert.

While body shape is clearly related to brook trout motivation to enter and ascend
culverts, it also had an effect on passage success once attempts were initiated. Successful
attempters were characterized by shallower bodies, and shortened caudal peduncles, traits that
minimize.drag'and enhance steady swimming (Langerhans and Reznick, 2010). Small heads,
short fins, deeper caudal region and a streamlined body have also been linked to high swimming
and acceleration performance in salmonids (Rouleau et al., 2010, Hawkins and Quinn, 1996,
Ojanguren A.F., 2003). Similar traits were found in two fish species (Prochilodus lineatus and
Leporinus elongatus) ascending a fishway in Brazil (Assumpcao et al., 2012). In the current study,
highly motivated trout had an increased probability of passing the culvert. These fish shared
traits typical of a strong ability to accelerate and reach high swimming speeds, such as a

streamlined body and a short caudal peduncle (Webb, 1994). However, four of the six studied
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culverts were made of corrugated metal, which creates low velocity areas inside the pipes and
allows fish to rest during ascents (Goerig et al., 2016, Goerig et al., 2017). This factor may have
partially offset the negative effect of water velocity on passage success and may explain why
morphological traits associated with higher swimming ability did not have even greater impact
on passage success. This result highlights that culverts are more than just simple challenges to
swimming performance. They are complex barriers that demand a combination of behavioral

and morphological traits to enable successful passage.

We deliberately used caged fish in this study so it was possible to know at any moment
how many fish ' were present and attempting to pass, as well as the environmental conditions to
which they/were being exposed. By allowing 48 h for passage, we were able to observe diel
effects, while giving fish ample time to recover from handling. Although free-ranging fish may
have greater opportunity to pass a barrier than we provided here, our design provides an
appropriate.and meaningful approximation to natural conditions. Future work, however, should
considerusing,unconstrained fish. Telemetry studies using PIT or active techniques have great

power to'characterize behaviors for free-ranging fish (Castro-Santos et al., 1996).

Thescurrent findings provide evidence that, in addition to reducing connectivity between
riverine habitats, culverts may be exerting selective pressures on the behavioural and
morphological‘traits of wild fish populations. We found that body shape and size are related to
the willingness of trout to enter the culverts, as well as their passage success. Culverts have
become ubiquitous riverine features, but the effects of such barriers are usually regarded as
minimal as long as the barrier is deemed permeable to fish movement under some hydraulic
conditions. However, passable barriers have been shown to drive landscape-scale patterns in
the frequency of migration-associated alleles in steelhead trout (Oncorhynchus mykiss) (Apgar et

al., 2017)=

Our results show that passable culverts may be imposing large-scale selection on wild
brook trout.populations that move throughout river networks. These findings likely apply to
otherfish species and types of in-stream barriers such as fishways, tide gates, and small dams.
Selection depends on the features of the barriers, the environment, and the standing trait
variation in the population. Depending on the situation, selection may favor highly dispersive
phenotypes that can overcome barriers and move between stream fragments, or conversely

non-dispersive phenotypes that remain isolated within fragments. Such factors deserve greater

This article is protected by copyright. All rights reserved



375
376

377
378
379
380

381
382
383
384
385
386
387
388
389
390

391
392
393

394
395
396

397

398

consideration as potentially widespread impacts of river fragmentation on the ecology and

evolution of fish populations.
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399 Tables and figures

400 Table 1. Correlation Coefficient (rPLS), p-value of PLS from resampling, effect size (Z), for
401 each PLS model, and p-value of the difference between the two models, after Adams & Collyer

402 (2016).

p-value
Model rPLS -value z
P (z difference)
1. Attempt™70.2296 0.0171 -1.6802 0.0036
403 2. Success...0.1502 0.9619 2.2665
404
405
406 Table 2: Model describing effects of covariates on attempt rate (A; Cox regression) and

407 passage success (B; Logistic regression).
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408

A
ATTEMPT RATE

Parameter B * SE HR p-value
Number of fish in the cage -0.090 £ 0.017 0.914 <0.0001
Diel period
Dawn — — —
Day -0.401 £ 0.166 0.669 0.016
Dusk -0.139 £ 0.194 0.870 0.470
Night -0.258 £ 0.169 0.772 0.130
Mean velocity (m s '1) 0.626 + 0.286 1.870 0.029
Log centroid size 0.005 £ 0.002 1.005 0.017
Body shape (PLS scores) -30.046 + 6.622 0,00 <0.0001
Random effects SD Variance
Stream of origin | ID 0,777 0.605
ID 0,765 0.585
No of available fish 362
No.of events 1071
B
PASSAGE SUCCESS
Parameter B+ SE *B p-value
Intercept 3.330£0.712 < 0.0001
Mean velocity (m s™) -3.356 + 0.660 251 <0.0001
Motivation 1.696 + 0.451 1.478 0.0002
Body.shape (PLS score) -26.309 £ 13.790 -0.71 0.0564

No of attempters

179

409 Note: Estimates * standard error (8 + SE) and hazard ratios (HR) of parameters for the best-fitting model. HR are

410 computed foreach parameter by exponentiating the estimates. For the passage success model, standardized
411 coefficients (*8) are obtained by converting ordinary coefficients (8) to standard deviation units. They measure the
412 relative importance of the explanatory variables, regardless of the metrics in which the variables have been measured.
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413

414
415 Figure 1. Landmark placement, modified from Varian & Nichol 2010. (1) Anterior tip of

416  the snout, posterior edge of the cranium, (3) anterior dorsal fin insertion, (4) anterior adipose fin
417  insertion, (5) dorsal caudal fin insertion, (6) medial dorsal fin insertion, (7) ventral dorsal fin

418  insertion, (8) posterior anal fin insertion, (9) anterior anal fin insertion, (10) anterior pelvic fin
419  insertion, (11)anterior pectoral fin insertion, (12) posterior extent of maxillary, (13-15) semi-

420  landmarks.along the medial axis of the fish
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Figure 2oHistograms of PLS scores associated with attempt status, vertical black bars represent
the grouprmeans. Underneath we use thin-plate-splines and transformation to represent the
predicted shape of individuals with the most extreme PLS scores: most extreme attempter (C),
and most extreme non-attempter (D) shapes. These shapes are then superimposed (E), with
gray representing the shape of attempter and black of non-attempter. Note that differences in
the outlines are based on extrapolation of the differences in landmarks and is meant as a visual
aid only. Areas which are outside of the landmark coverage, such as the caudal fin, are based

entirely on extrapolation and as such are not included in our interpretation.
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Figurtrams of PLS scores associated with success, vertical black bars represent the

grou nderneath we use thin-plate-splines and transformation to represent the

i

predi e of individuals with the most extreme PLS scores: most extreme successful (C),

and most ext5me unsuccessful (D) shapes. These shapes are then superimposed (E), with gray

representinf fe shape of successful fish and black of unsuccessful one

This article is protected by copyright. All rights reserved



A - Body shape

o 1.00°
c
s ]
2 0.75
[+}]
=2
= 0.50-
e
£
Q) 0.25-
o
4
8~ .00

Time (days)

436

437

This article is protected by copyright. All rights reserved



438

B - Stream of origin

o 1.00

£

g 0.75] o

E .

5

c  0.50-

o)

5

S 0.25

o

% 0.00{ ° | | | |
0.0 05 1.0 15 20

Time (days)

439

This article is protected by copyright. All rights reserved



440
441

442
443
444

445
446
447
448
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451

Figure 4: Proportion of fish attempting to pass the culvert as a function of A) body shape and B) stream of origin, modeled from the

estimated Cox*model.

In"A-attempt rate increases with a decrease in PLS scores. Dotted line represents the attempt rate for a fish with a maximal PLS score
(0.03), solid.line for a mean PLS score (-0.0003) and dashed line for a minimal PLS score (-0.03). The proportion of released fish having staged

attempt after 12h (vertical dashed line) was 25% for fish with the highest PLS scores, while 75% for fish with the lowest PLS scores.

In'B/the curves represent the mean attempt rate for all fish in the study (solid blue line), attempt rate from fish from Grégoire Stream
(dotted grey line), Tardif (two-dashed grey line), Adolphe (dotted black line), Raquette (dot dashed black line), Femmes (dashed black line), and
Saumons (solid*black line). The Adolphe curve is however superposed to the curve for the mean attempt rate. Other parameters of the model
are set to their mean values. The hazard of staging an attempt is highest at stream Grégoire and lowest at stream Saumons. The proportion of
released fishthaving staged attempts after 12 h (vertical dashed line) was 85% at Grégoire, ~ 45-55% at Adolphe, Raquette and Tardif, but only
30-35% at'Saumons and Femmes Streams. Except for the fish from Adolphe Stream, fish from the Bécancour watershed (grey curves) had a

higher attemptsrate than those from the Saint-Louis watershed (black curves).
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