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Dispersal and foodweb dynamics have long been studied in separate
models. However, over the past decades, it has become abundantly clear
that there are intricate interactions between local dynamics and spatial
patterns. Trophic meta-communities, i.e. meta-foodwebs, are very complex
systems that exhibit complex and often counterintuitive dynamics. Over
the past decade, a broad range of modelling approaches have been used
to study these systems. In this paper, we review these approaches and the
insights that they have revealed. We focus particularly on recent papers
that study trophic interactions in spatially extensive settings and highlight
the common themes that emerged in different models. There is overwhelm-
ing evidence that dispersal (and particularly intermediate levels of dispersal)
benefits the maintenance of biodiversity in several different ways. Moreover,
some insights have been gained into the effect of different habitat topologies,
but these results also show that the exact relationships are much more
complex than previously thought, highlighting the need for further research
in this area.

This article is part of the theme issue ‘Integrative research perspectives
on marine conservation’.
1. Introduction
Understanding the role of space in the dynamics of ecological communities is a
difficult challenge. Different species traverse space at significantly different
paces [1], in different dimensions [2] and across vastly different scales [3–5].
Even within a species, different types of movement exist that serve unique
purposes [6]: local ranging in search of food, annual migrations or rare long-
distance dispersal events in search of a home range, each of which follows
their own complex behavioural rules.
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Figure 1. Illustration of a meta-foodweb from Brechtel et al. [15]. Distinct habitat patches harbour foodwebs, which interact by dispersal of individuals. (Online
version in colour.)
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Because of the considerable difficulties, many classical
ecological models do not model space explicitly. By contrast,
spatially explicit models have mostly focused on one popu-
lation or a narrow set of similar populations. However, there
is now growing evidence that community-level processes and
spatial constraints influence macroecological patterns [7–10]
and that spatial structure shapes community dynamics even
when all patches of habitat are identical [11–15].

Today, the need to understand the effect of space on com-
plex ecological systems is more pressing than ever [16,17],
as human activity continues to alter the spatial context of
ecological interactions through habitat fragmentation and
destruction [18,19]. An increased understanding of the effects
of space and spatial connectedness on the dynamics of
diverse communities not only would allow us to understand
anthropogenic impacts better but could also inform mitiga-
tion efforts. Particularly, it may be useful in reserve siting
[20,21], to identify the most vital areas to protect and
inform decisions on how to best connect surviving patches
of habitat. In marine systems, it may lead to more holistic
resource management and conservation strategies that
mitigate effects of overexploitation [22–24].

While ecologists have considered meta-communities since
the mid-twentieth century [25,26], groundbreaking work
in the 1990s and 2000s sparked many new investigations
[21,27–38]. At the same time, advances in network science
have led to considerable conceptual progress that has made it
easier to formulate and analyse models of meta-communities.
Although there is no single modelling framework that comes
close to describing a meta-community in all its complexity,
over the past decade significant progress has been made with
a wide variety of models taking different approaches. Despite
the great diversity of ideas, there is now a strong confluence
of findings where repeated insights emerge robustly. These
findings have also led to new questions, highlighting a strong
need for more field observations and laboratory experiments.

In this review, we focus particularly on meta-foodwebs, i.e.
models that describe large communities of trophically interact-
ing populations in a spatially extensive setting (figure 1). We
provide an overview of the modelling approaches that have
been proposed, before reviewing some key insights and
open problems.
2. Modelling considerations
The predominant modelling approach for (non-spatial) food-
webs are ordinary differential equation systems (ODEs). In
these models, the state of a community is captured by a set of
variables such that each variable describes the abundance or bio-
mass density of a population. Assuming that the abundance is
sufficiently high to treat it as a continuous variable, the change
in time of this variable is then written in the form of an ODE,
which accounts for effects of inter- and intraspecific interactions
and constraints introduced by the abiotic environment.

Once an ODE system for a community has been formu-
lated, it can then be simulated (i.e. integrated numerically)
to produce time series. Alternatively, the model can be ana-
lysed with the mathematical tools of dynamical systems
theory [39]. A central object in this analysis is the Jacobian
matrix. This matrix captures the system’s response to pertur-
bations in the vicinity of stationary states. It thus contains
information about the system’s dynamical stability, the
dynamics that occur after stability is lost and the impact of
parameter changes (press perturbations) [40,41].

In the following, we provide an overview of different
approaches to extend foodweb modelling to spatial meta-food-
webs. A summary of these approaches is also shown in table 1.



Table 1. Advantages and disadvantages of various modelling approaches. Ordinary differential equation, ODE; partial differential equation, PDE; generalized
model with master stability function, GM + MSF; colonization extinction models, C-E; individual-based model, IBM.

model type advantage(s) disadvantage(s) examples

PDE good representation of continuous space no long-range dispersal [42–44]

analytical approach to spatial pattern formation simulations are comparatively slow and difficult

multipatch

map

may be more accessible to non-specialists discrete time models are often less intuitive

and are prone to discretization artefacts

[26,45]

may be advantageous if periodic forcing is important (e.g. year

cycle)

multipatch ODE powerful framework for fragmented landscapes larger systems may require numerics [31,46–49]

analytical work on stability and responses to perturbations

feasible in small systems

modelling heterogeneous systems may require

large number of parameters

random matrix superior analytical tractability and numerical efficiency low interpretability of results [50,51]

only captures dynamics close to the steady

states

GM + MSF combines efficiency, tractability and interpretability only applicable to homogeneous steady states [15,52,53]

can reveal which aspects of patch topology impact stability

C-E allow deep insights into effects of topology high degree of abstraction makes is hard to

model a specific system

[14,54,55]

can be studied in highly efficient (event-driven) simulations and

a large variety of mathematical approaches

IBM highest degree of realism mathematically intractable [56–58]

complex dispersal behaviour is easy to incorporate difficult to scale to large trophic webs
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(a) Reaction–diffusion ( partial differential equation)
models

For a long time, it was felt that the simplest way to add physical
space to foodweb models was to consider uniform continuous
space (i.e. a vast featureless plain). Instead of one system of
ODEs, we now have a system of ODEs in every point in
space. This means that the variables are no longer numbers;
they become functions of space.

The systems at different points in space are then coupled by
some dispersal rule. In the simplest case, this coupling is
random diffusion in space, which makes the meta-foodweb
model a reaction–diffusion system. In such diffusion dynamics,
the immigration rate observed in a point in space is propor-
tional to the second derivative of the density of the respective
population, such that the model is mathematically a partial
differential equation system (PDE).

PDE simulation is numerically intensive and much care
must be taken to avoid numerical artefacts, particularly in
strongly nonlinear systems with multiple timescales. Further-
more, including non-local interactions in PDEs is hard, which
makes long-range dispersal events hard tomodel in this frame-
work. An advantage of PDEs is that they provide a very good
representation of continuous space and are thus very well
suited to modelling the marine environment. Furthermore, it
is straightforward to add advective flows to PDEs such that,
for instance, ocean currents can be represented easily.

Perhaps the most important advantage of PDE models is
that they are awell-established framework for studying the for-
mation of self-organized spatial patterns, such as stationary
spot and stripe patterns and travelling waves [42–44]. From
an ecological perspective, these pattern-forming instabilities
are interesting, as they may explain some of the heterogeneity
observed in the environment, and particularly in marine sys-
tems [59]. Such heterogeneity can increase the resilience of
the system [60,61] by enabling recovery via rescue effects.

In reaction–diffusion PDEs, the threshold parameter
values where self-organized pattern formation starts can be
computed using a method proposed by Turing [62]. This
approach requires additional assumptions, such as identical
values of environmental parameter across the space, but
can yield deep insights into the conditions for and effects of
spatial patterns.

(b) Multi-patch ordinary differential equation systems
Consider a fragmented landscape consisting of small habitat
patches, e.g. multiple reefs or small islands. In such a system,
it is intuitive to assume that dispersal within a patch is much
faster and more frequent than dispersal between patches.
Under these circumstances, we can use variables that denote
the population size of a given species in a given patch.
Hence, modelling a system with N species and P patches
leads to N × P variables.

The dynamics of such a patch-based system can be con-
veniently modelled by a system of ODEs (or even discrete-
timemaps [26,45]). Like PDEmodels theseODEswill generally
resemble the corresponding non-spatial ODEwith the addition
of an additional coupling term that connects variables in differ-
ent patches [31,46–49,63–65]. The multi-patch framework
allows the researcher to connect patches in the form of a com-
plex network. The resulting system is a so-called mutlilayer
network [66,67] (figure 1). Multilayer networks are currently
receiving considerable attention in network science and there-
fore new analysis tools for this class of system may become
available in the near future [67].



Table 2. Common dispersal strategies in meta-community models. The
‘form’ column describes emigration rates of populations of species Ni from
patch i to patch j. The constants δ, α and β represent different model
parameters (see citations); Hi is some measure of habitat quality in patch i
(e.g. primary productivity); Fi is the per capita fitness of species Ni; and Pi
is the density of a predator in patch i.

dispersal strategy form examples

diffusion δNi [13,15]

habitat-dependent dNie�aHi [73,74]

fitness-dependent dNiea(Fi�Fj ) [75]

dNiea(Fi�Fj )=(1þ ea(Fi�Fj )) [73,74]

density-dependent dN1þa
i [76,77]

dNieaNi=(1þ eaNi ) [73,74]

predator-avoidance δNi(αβPi/(1 + Ni) + (1− α)) [15,78]
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The specific pattern of nodes and links in a network is
called the network topology. Most papers consider only a
small set of topologies for the spatial network [13,68].
Perhaps the simplest option is the fully connected network,
where direct dispersal from every patch to every other
patch is possible. Another simple choice is to use a comple-
tely random network with a given number of links, the so-
called Erd}os–Rényi random graph. Both the fully connected
network and the random graph are small worlds: in these
networks any patch can be reached from any other patch in
a few steps. Small worlds form whenever long-distance
links exist in a network. They have far-reaching implications
(see below), which may be undesirable in models.

In general, short-range dispersal in real space will lead to
large-world geometries, where distances between randomly
chosen patches are on average significantly longer than in com-
parable small worlds. The simplest models of large worlds are
lattices, for example, patches arranged in a one-dimensional
line or in a two-dimensional grid. Better models (which
avoid some artefacts from lattice geometry) are spatial
random graphs, such as the random geometric graph. In this
model, patches are assigned random coordinates (say, on a
two-dimensional plane). We then connect any pair of patches
that are less than a given threshold distance apart bya dispersal
route. This leads to a network with a realistic degree of
randomness, while retaining a large world character.

In studies that consider only a small number of
geographical networks it would be ideal if topologies of
real-world systems could be used, but dispersal data are
still currently only available for a few species in a few sys-
tems. Determining the complete set of dispersal routes in a
meta-community between patches is a challenging task.
However, in some cases likely routes can be inferred from
topography and landscape features [69,70]. Here, marine sys-
tems may offer interesting opportunities as for instance larval
dispersal is relatively well understood [71] and can (in some
cases) be inferred from ocean currents [72]. The results of net-
work inference are typically weighted networks, which
include some rare long-distance dispersal events as well as
much more frequent short-distance dispersal. Moreover, we
can expect the topology of the network to be species-
dependent. Owing to the different body sizes and modes of
locomotion, some species may be capable of traversing
links that are insurmountable to others.

When the local dynamics of the foodweb and the spatial
topology have been determined, we still need to decide on a
functional form of the coupling terms. In practice, a broad var-
iety of different functional forms is used (table 2).Moreover, we
can distinguish two broad classes of couplings. First, in patch-
wise dispersal, individuals in a patch make the decision to dis-
perse and then randomly choose one of the available dispersal
routes. Second, in link-wise dispersal, we assume that individ-
uals randomly encounter opportunities for dispersal and then
use them with a given probability. In the first case, patches of
high degree, i.e. those with many dispersal routes, will have
a proportionately higher immigration rate, but the same
emigration rate as a low-degree patch with the same popu-
lation size. As a result, patches of high degree will tend to be
more crowded. In the second case, patches of high degree
have a higher immigration rate, but this is balanced by a
correspondingly higher emigration rate.

Whether patch-wise or link-wise dispersal is the better
model depends on the species under consideration. From a
mathematical perspective, link-wise dispersal is particularly
attractive. Models with identical patches and link-wise
dispersal permit homogeneous solutions where we find the
identical community with the same population densities in
every patch. In analogy to the PDE systems, we can then ask
when instabilities exist that lead to spontaneous pattern
formation. Following [52,79], we can extend the theory of
pattern-forming instabilities in PDEs to multi-patch ODE
systems. As Brechtel et al. [15] point out, the result ismathemat-
ically equivalent to master stability function theory in coupled
oscillator systems [80]. In effect, this approach allows the
researcher to consider a given foodweb and coupling functions
and compute a mathematical criterion that governs in which
spatial topologies this foodweb exhibits spontaneous pattern
formation. This is very attractive because it is one of the few
approaches that enable us to determine which properties of
the spatial topology matter, without basing our reasoning on
a limited set of examples.

Another feature that makes multi-patch ODE systems
attractive is that ODE systems can be simulated relatively
efficiently. Although much care has to be taken with the simu-
lation of nonlinear multiple-timescale systems to ensure valid
solutions, the simulation of multi-patch ODEs provides a ver-
satile and robust approach to exploring the dynamics of
trophic meta-communities. In particular, this can be used to
study the effect of patch heterogeneity, where some patches
have different size or environmental conditions. For instance,
it is known that such spatial heterogeneity can lead to mass
effects that alter the outcomes of competition or predation on
landscapes [73,81].

(c) Spectral and generalized models
Despite their complexity, the multi-patch models from the
previous section are still ODE systems. Hence, they can in prin-
ciple be studied with the standard tools of nonlinear dynamics
that arewidely used to analyse smallermodels: write the differ-
ential equations, compute the steady states, then compute the
Jacobian matrix and its eigenvalues to determine the stability
of the steady states. However, if we try to apply this approach
to very large systems then difficulties are typically encountered
in the second step. Using symbolic mathematics, the steady
states can only be computed for small systems with up to
approximately four variables. In meta-foodweb models with
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hundreds or thousands of variables even numerical algorithms
frequently fail.

Instead of modelling the differential equations and
then computing the Jacobian matrix from their steady states,
we can directly formulate a model of the Jacobian matrix. Fol-
lowing in the steps of May’s 1972 paper [82], we can construct
an ensemble of random matrices, designed to represent the
Jacobians of plausible models. Gravel et al. [50] and Moughi
[51] extend the random matrix idea to meta-communities.
Each patch is modelled as a randomly generated block along
the diagonal of the matrix. These blocks are then linked in a
random geometry by sparsely placed couplings, representing
dispersal. Ecological insights are then gained by studying the
eigenvalues of the matrices in the ensemble.

The keyadvantage of randommatrixmodels is that they can
be studied bymethods of randommatrix theory and hence very
general results for the limit of infinite system size can be
obtained with pen and paper. The main drawback of random
matrix models in general stems from some assumptions that
need to be made to make the mathematical tools applicable.
A key assumption is that the diagonal entries of the Jacobian
can be set to −1. May [82] motivates this by species being self-
regulated and argues that any entry could be normalized to
−1 using timescale normalization. However, in ODE models,
positive diagonal entries are frequently encountered in inter-
mediate predators. Such positive entries cannot be normalized
to −1 without altering the system’s dynamics [39].

If positive diagonal elements are present then the frame-
work of random matrix theory can still be applied, but it
becomes difficult to extract ecological insight from the results.
This is ultimately due to the difficulties in interpreting a
given realization of the random matrix as a specific foodweb.

A middle way between random matrix and ODE-based
models is provided by so-called generalized models [83]. The
central idea of these models is that we can formally write the
Jacobian matrices for a broad class of foodwebs. This leads to
Jacobian matrices where the remaining unknown parameters
have clear interpretations. Moreover, generalized models can
be set up such that they incorporate several properties of
real-world systems, including plausible foodweb structure,
realistic prey-switching, allometric scaling of timescales, plaus-
ible nonlinearities of functional responses and biomass
turnover rates. In the study of meta-foodwebs generalized
models have been used to gain broad insights into the relation-
ships between spatial network topology, in particular dispersal
strategies, and the susceptibility of systems to pattern
formation [15,53,76,84].
(d) Colonization–extinction models
A radically different approach to meta-foodwebs was
proposed by Pillai et al. [14,85]. Following the spirit of
Levins’ model [86] and island biogeography [87], coloniza-
tion–extinction models do not track species’ abundances.
Instead, the model only accounts for the presence or absence
of a species in a patch. In time this patch occupation changes
as local populations go locally extinct or colonize neighbouring
patches of the spatial network.

The colonization–extinction models are attractive because
they describe some effects that are not captured by differential
equation-based models, such as stochastic extinction and the
persistence of different communities in different patches
[88]. Moreover, the simpler framework of colonization–
extinction models enables deep analysis. The models can be
studied in extremely fast event-driven simulations, allowing
the analysis of large systems and long simulation times
[14,54,89–92]. Furthermore, [55] pointed out that coloniza-
tion-extinction models are mathematically equivalent to co-
infection models from network science, and hence can be
investigated using the powerful analytical tools that have
been developed for thesemodels. Such approacheswere lever-
aged by [54,55], which explored the effect of different
topologies, and [93], where a formula for extinction thresholds
was derived. However, Barter & Gross [54] showed that some
approximation methods provide only rough estimates in
spatial networks, owing to their large-world properties.
Spatial separation leads to strongly correlated local clusters,
which violates widely made assumptions [94].

(e) Individual-based models
Perhaps the most direct approach to modelling interacting
populations in space is individual-based modelling [56–58].
In these models individuals are presented as distinct agents
in the model that follow a set of algorithmic rules. Like no
other modelling approach, individual-based modelling
allows us to directly incorporate observed real-world
behavioural patterns into the model.

The drawback of individual-based models is that they are
hard to study by methods other than direct simulation,
although some promising solutions to this problem are emer-
ging [95]. In individual-based simulations, the simulation
code has to keep track of all agents and their internal states.
This imposes strong limits on the size of trophic communities
that can be studied, because both the timescale of turnover
and the number of individuals scale allometricallywith trophic
level. Studying complex trophic communities thus requires
simulating very many small individuals for a long time. To
avoid these constraints, it is therefore useful to use individ-
ual-based simulations in conjunction with other approaches
that allow for the scaling-up of individual-based insights
[58]. For example [64] uses patch-based ODE simulations in
conjunction with an agent-based model for dispersal events.

( f ) Evolutionary models
Several recent works provided evidence for evolution taking
place on the same timescale as population dynamical
processes [96–102]. There is thus potential for a complex
interplay between evolution, dispersal and local population
dynamics [103,104]. For example, it has been predicted
that increased dispersal inhibits local adaptation [105]. By con-
trast, adaptation following colonization can generate eco-evo
feedbacks promoting priority effects and monopolization
[106,107]. Hence two contrary scenarios are conceivable,
adaptation suppressing dispersal or dispersal suppressing
adaptation, both of which can occur depending on the relative
timescales [108,109].

Adding evolutionary dynamics to trophic meta-
communities further increases the complexity in an already
complex class of models. To maintain feasibility of these
models, we have to make simplifying assumptions on either
the foodweb dynamics or the evolutionary process under
consideration. This can be achieved by building upon the inher-
ently fast and lean modelling framework of colonization–
extinction models [110], limiting the spatial scale or species
number [111], limiting changes in species composition to
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invasion from a fixed species pool in the spirit of island biogeo-
graphy [9,17,112], or focusing on a very specific system [102]
where the parameter range is constrained by observations.

Perhaps the most widely adopted approach for studying
the evolution of large trophic communities is that of adaptive
dynamics [113,114]. The key idea is to identify one or more
traits that undergo continuous change under the selective
pressures. Examples for such evolving traits are average
adult body masses [115–117], plant defences against herbi-
vores [118], preferred environmental conditions [108] or
dispersal abilities [70,119,120]. Adaptive dynamics is then
implemented by a series of ‘mutation’ events, by which a
new population is introduced to the system as a modification
of an existing one. The new population has somewhat differ-
ent trait values compared with its parent. Whether or not it is
able to survive, and if so, whether it is able to replace its
parent or whether both coexist (evolutionary branching)
depend on the biotic interactions within the foodweb.

The resulting evolutionarymeta-communities are typically
too complex to be analytically solvable, especially if multiple
traits are allowed to coevolve. They are hence often studied
using numerically intensive simulation. Considering trait evol-
ution in addition to spatial dynamics increases the required
simulation timevastly.Manymodels are, therefore, still limited
in terms of spatial scales and/or consider only few species.

A key trait that deserves special attention is dispersal itself,
as it shapes the way a spatial topology is perceived by the
species inhabiting it. Predictions concerning foodweb
responses to changing spatial environments derived from
eco-evolutionary models might therefore contradict earlier
results from purely ecological models. Many studies focus on
the evolution of dispersal strategies and dispersal syndromes
within single species in isolation, as for instance reviewed in
[121], whereas theoretical studies on dispersal evolution in
meta-communities are still rare.

3. Current insights
Although the modelling of large trophic meta-communities is
still challenging, the different approaches complement each
other nicely, revealing a breadth of perspective. Some of
the insights that have been gained draw upon the unique
strength of a specific modelling approach while many
others emerge in several different types of models.

(a) Dispersal stabilizes in multiple ways
Almost all models analysed so far identify dispersal between
patches as a stabilizing force, in accordance with ecological
expectation [25]. Notably, this finding emerges across a wide
variety of models including colonization–extinction models
[14], random matrix models [50], generalized models [84],
patch simulation [47,49,122] and even PDE models [44],
although Gramlich et al. [84] note that this stabilization is not
universal and is rarer in small systems than in large ones.

It is furthermore interesting to note that dispersal stabilizes
in different ways, relating to different notions of stability. Per-
haps the most intuitive idea is that patch heterogeneity can
aid species persistence against large environmental fluctu-
ations, as a species can persist in a favourable patch and later
recolonize the less favourable patches. This ‘rescue effect’ has
been studied since the 1970s [123]. More recent work suggests
that if such rescue effects enable low-population top predators
to persist in a given spatial environment, then this might
stabilize selective top-down pressures within the foodwebs
and hence increase diversity at every trophic level [117].

By contrast, many recent models focus on the simpler set-
ting of identical patches [64]. This choice is partly made to
simplify models, but more importantly facilitates the explora-
tion of the many phenomena that already appear in identical-
patch networks. In systems of identical patches, it has been
shown that dispersal increases the (local asymptotic) stability
of steady states and also the probability that a randomly gen-
erated network is stable [84], enables the persistence of more
diverse communities [14], and increases the resilience of com-
munities (i.e. their ability to recover from perturbations) [50].
In summary, these results highlight a powerful message for
conservation: dispersal in general, but particularly the disper-
sal of top predators, provides a strong stabilizing force. If this
ability is lost then deleterious dynamical instabilities become
more likely.

(b) Intermediate level of dispersal is optimal for
stability

Several authors have pointed out that the beneficial effects of
dispersal on diversity are maximal at intermediate dispersal
rates. Intermediate dispersal facilitates both horizontal and ver-
tical diversity, i.e. the diversity within a trophic level as well as
the length of food chains, e.g. [14,47,63]. Gravel et al. [50] and
Gramlich et al. [84] note that intermediate values of dispersal
yield optimal dynamical stability, and Plitzko & Drossel [49]
show that itmaximizes robustness, i.e. the percentage of species
that survive after undergoing population dynamics. Jansen
[124] shows that at intermediate dispersal coupled predator–
prey systems desynchronize, which benefits their resilience.

Although very low dispersal rates can sometimes synchro-
nize the dynamics of patches, it is intuitive that very low
dispersal rates generally only have a small impact on the
ecological dynamics. By contrast, very high dispersal rates
are likely to homogenize the system, causing it to behave as a
single patch. Thus it is not surprising that the effect of spatial
structure is strongest at intermediate dispersal rates.

While the effect of spatial structure on population
dynamics is overwhelmingly positive, the effect on evolution
is more subtle. In a system of heterogeneous patches, disper-
sal from a large population in one patch can undermine the
ability of smaller populations to adapt to the respective con-
ditions in their patch, owing to genetic swamping. This can
occur in systems where the population size in the patches is
initially similar. In this case, a spontaneous breaking of the
symmetry of population sizes can occur: a small fluctuation
leading to an initial disparity in population size can launch
the smaller population into a cycle of decline, where smaller
population leads to decreasing adaptation, which further
reduces population size [102,125]. This phenomenon has
been described as a ‘migrational meltdown’.

Although the migrational meltdown seems detrimental to
a species it could promote diversity in a multispecies system.
It leads to a population that is very well adapted to a particu-
lar patch, improving its local resilience, while its low
adaption in other patches opens up niches for competitors.

Despite the overwhelming evidence for the beneficial
effects of intermediate levels of dispersal, it is still unclear
what this means in practice, e.g. in a conservation context.
How should we decide whether dispersal is in an intermediate
range in a given real-world system [54]?
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(c) Sparse regions provide refuges for generalists
Meta-community dynamics in spatial networks such as random
geometric graphs or real-world patch networks behave differ-
ently from the more commonly studied models for network
topology (Erd}os–Rényi random graph, configuration model,
Barabasi–Albert model etc.). Barter & Gross [54] show that the
difference is due to the existence of long-range connections.
The non-spatial models are small worlds, and hence two ran-
domly picked nodes tend to be only a few dispersal steps
apart. This means that a species that is established in at least
one patch can rapidly recolonize thewhole network if conditions
are favourable. It also means that the patches behave very simi-
larly, providing few refuges for weaker competitors.

Spatial networks are large worlds. In these networks, it is
easy to find pairs of nodes that are separated by significant
physical distance and hence a population spreading from one
to the othermay needmany intermediate steps. In random geo-
metric graphs, this leads to the appearance of clusters of nodes
(valleys) separated by sparse network regions (ridges). In colo-
nization–extinction models, this leads to higher persistence
thresholds, but increases horizontal diversity by providing
refuges for generalists [14,54] (figure 2). Similar refuges can be
expected in all large-world networks, including even uniform
lattices, where lattice edges provide regions of lower effective
connectivity [14,89]. In summary, we can say that the large-
worldnature of spatial networks is important for thepersistence
of generalists and hence horizontal diversity. From a conserva-
tion perspective, this means that we need to bewary of creating
long-range connections or artificially dense connectivity (for
example by anthropogenic transport along shipping lanes). In
addition to the widely recognized risk of bioinvations [126],
there is an additional less-recognized risk that increased connec-
tivity turns the system into a smallworld, triggering a reduction
of horizontal diversity.
(d) Effects of spatial topology are more complex
than thought

A central question in many recent studies is which patch
structures are most beneficial for the persistence of diverse
communities. If a satisfactory answer could be found it
would certainly be valuable for conservation as the spatial
structure of many systems results from decisions by humans
(e.g. which patches of habitat to conserve, where to place wild-
life corridors, where to reduce anthropogenic introduction of
species etc.).

There is a wide consensus that spatial structure impacts
properties such as robustness [49,122,127], stability [15] and
diversity [14,50,117]. Moreover, there is widespread evidence
that network structure and connectivity impact species on
higher trophic levels more strongly [14,55,65,92], which
may lead to counterintuitive situations where prey species
profit from habitat fragmentation as they experience a release
of top-down control [91].

Richhardt et al. [122] use principal component analysis of
various network metrics to identify metrics that impact the
robustness of meta-foodwebs. Their main result is that connec-
tivity increases robustness, which is consistent with widely
held beliefs. However, more detailed analysis shows that con-
nectivity, like many network properties, is a double-edged
sword. For example, a detrimental effect of high connectivity
is that it reduces the network diameter, the typical distance
between randomly chosen nodes. This benefits specialists,
but may threaten generalists who depend on less-accessible
corners of the network to persist [14,54]. Networks with high
connectivity thus favour long food chains of specialists,
whereas low connectivity networks favour high horizontal
diversity of generalists (cf. table 3).

Another trade-off is observed when it comes to the net-
work’s degree distribution, i.e. how the links are distributed
among the nodes. Networks where most links connect to a
small number of big hubs are said to be heterogeneous,
whereas networks where links are evenly distributed
among the nodes are said to be homogeneous. Based on
the analogy between meta-population dynamics in coloniza-
tion–extinction models and the epidemiological susceptible–
infected–susceptible (SIS) model, we may suspect that hetero-
geneous networks are unconditionally advantageous.
However, the detailed analysis by Barter & Gross [55]
shows that this is not always the case. Very heterogeneous
structures promote the persistence of primary producers,
but may negatively impact their abundance. By focusing
many links on a particular patch we ensure that this patch



Table 3. Qualitative effect of structural network properties.

network property high low

connectivity longer food chains, beneficial to specialists beneficial for horizontal diversity, beneficial to generalists

degree heterogeneity high robustness particularly for basal species higher abundance, benefits apex predators

diameter good for generalists (horizontal diversity) longer food chains (vertical diversity)
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can be very rapidly recolonized if necessary. Such hub
patches thus become reliable bases for the recolonization of
the rest of the network. But by concentrating most of the
links on few hubs we create a large number of peripheral
patches with weak connectivity, which limits the potential
to attain high meta-population abundances.

In addition to this heterogeneity trade-off, which can
already be observed in a single basal species, Barter &
Gross [55] note that heterogeneity affects different species in
a food chain differently. The optimal distribution of links
thus depends on the trophic level. Generally, slightly more
homogeneous networks favour species at higher tropic
levels. However, even for top predators the optimal level of
heterogeneity is still comparatively high.

(e) Interplay of speciation, dispersal and extinction
produces known spatio-temporal patterns

In contrast to the other models mentioned so far, evolutionary
meta-community models include the birth and death of
species. Hence they can be used to evaluate macroecological
patterns such as species-lifetime distributions, species-
abundance distributions or species–area relationships [7].
Neutral meta-community models [128] and competitive
meta-community models [9] were shown to give rise to such
patterns, but each study focused only on two or three such pat-
terns. Introducing trophic structure gives additional insights,
as now species–area distributions and the temporal dynamics
of species range depend on trophic level. In a trophic model
that does not take into account population sizes [110], it was
found that species–area distributions and lifetime distributions
both become steeper with increasing trophic level. The most
extensive study of this type so far [129] is similar to the Web-
world foodweb model [130], and exhibits all of the patterns
mentioned above.
4. Open questions
In the preceding section, we have listed some areas in which
past theoretical work has provided at least tentative answers.
In other areas, theoretical progress has led to new questions
or highlighted open issues that have much higher system-level
relevance than previously thought.

(a) Quantifying the laws of dispersal
Several papers have pointed out the importance of functional
forms of dispersal [73,75]. However, there is still a surprising
lack of general laws and principles in this area.

For example, the seemingly small difference between
patch-wise and link-wise dispersal (see above) has major con-
sequences for the state of the entire system. Yet, we still know
very little about which populations disperse patch-wise or
link-wise respectively. Even for single species it is sometimes
not clear how individuals make the decision to disperse to a
different patch. The same is also true for the rate of dispersal.
In the past, authors have used a variety of functional forms
for dispersal and different functions have been shown to
have significantly different impacts [76,84].

A common assumption is that dispersal decisions can only
depend on properties of the source patch as the individual has
no information about the destination patch. However, at least
for some birds and mammals, it is very plausible that individ-
uals explore potential destination patches as part of their
ranging behaviour, before committing to dispersal. Other
species may pick up clues about potential destination patches
from conspecifics [131]. A very recent paper by Mougi [51]
shows that intelligently targeted dispersal may have a
significant impact on persistence, but besides this study and
a two-patch model by Abrams & Ruokolainen [75] the effect
of targeted dispersal in foodwebs remains largely unexplored.

For large meta-foodweb models, we should ideally have
allometric scaling relationships that hold across species, but
so far even very basic properties of such laws remain unclear
[58]. On the one hand, evidence suggests that dispersal rate
scales positively with body mass, owing to the superior loco-
motive capabilities of large-bodied species [1]. But there are
also examples of systems where predators have lesser disper-
sal ability than their prey [132]. More generally, in many
species, dispersal occurs owing to juveniles dispersing to
establish a home range which they then occupy for the rest
of their life [133], leading to negative scaling relationships
with lifespan and hence body size.

A promising route to understanding dispersal across
species is to explore the evolutionary mechanisms that have
shaped it, but general laws have not yet emerged. For
example, using an individual-based modelling approach,
Chaianunporn & Hovestadt found that parasitism promotes
dispersal of hosts and parasites, while mutualism tends to
reduce dispersal in both partners [134]. Along similar lines,
but using an adaptive dynamics approach, Pillai et al. [120]
showed that the evolutionary response of dispersal rates to
patch extinctions differed between predators and their prey,
and Wickman et al. [135] derived equations for the strength
of selection in meta-communities.

Because of the importance of dispersal rates for meta-com-
munity dynamics, we feel there is a great need for future
experiments and field observations in this area. In the past, pro-
gress was hampered by the difficulty associated with
measuring the dispersal across species. But recent studies
such as thework by Sivakoff et al. [136] suggest that molecular
methods may alleviate some of this difficulty in field studies.

In marine systems certain forms of dispersal, such as pas-
sive larval dispersal, offer a particularly good opportunity to
understand the dispersal network of at least a fraction of a
foodweb with very good accuracy [71,72].
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(b) Modelling multilayer networks: what is a patch?
A present bottleneck in the study of meta-foodwebs is that it
is still difficult to relate theoretical results to real-world sys-
tems. This difficulty arises partly owing to simplifications
that are commonly made in models to make progress in the
face of considerable complexity.

One such assumption that is widely made is that different
species perceive essentially the same network of patches
(although they may traverse it at different rates). In many
real-world systems, this assumption is violated, a single
bush in a forest may be perceived as a patch by an insect
living in it, but is just a feature within a patch to a fox walking
by, while the whole forest appears as a single patch to an
eagle flying overhead. It is tempting to just assign higher
dispersal rates to the larger more mobile species. However,
this ignores the fundamentally different biology of the differ-
ent types of movement—the eagle’s circling is part of ranging
behaviour in search of prey, not dispersing to new patches
where an independent subpopulation of eagles are estab-
lished. So far, we are only aware of one model [53] that
takes this distinction into account.

Unsurprisingly, the models that have revealed the most
general insights into the stabilizing effects of dispersal and its
dependence on network topology are the strongly stylized
colonization–extinction models in the spirit of Pillai et al. [14].
The strong simplifications made in these models make them
also some of the hardest models to relate back to the real
world (although Lafferty & Dunne [88] illustrate how they
can be made relevant to concrete systems). Also, some other
fairly abstract approaches to the problem have started to
emerge [137,138]. At this stage, a crucial step forward could
be made by a large project to quantify the foodweb and disper-
sal of all relevant populations in a specific example system.
While the effort for such a project would be considerable, it
could provide modelling with a much-needed benchmark.

(c) What are the precise impacts of spatial network
structure?

While the studies reviewed above have revealed some useful
general insights into the effect of spatial structure, the results
have also made clear that our current understanding barely
scratches the surface.

Many phenomena observed in meta-foodwebs are still
very counterintuitive. Koelle & Vandermeer [48] show, for
example, that increasing the dispersal between two patches
can induce asynchrony in their dynamics. This particular
result can be understood using the master stability function
approach developed in [15]. Moreover, this approach can
even yield a general criterion regarding all possible spatial
structures in which a given foodweb will behave asynchro-
nously. However, for all but the simplest foodwebs these
conditions rapidly become so complex that they have so far
defied easy classification or intuitive understanding.

The same is even true for colonization–extinction and
random matrix models. While conceptually simple and efficient
to analyse, the complexity of the results is such that it is hard to
systematize; while it is easy to understand the dynamics of a
given model, the progress in extracting general laws, rules or
intuitions that hold across different systems is slow [54].
In this area, there is reasonable hope that future advances
in theory will lead to significant ecological insights in the
future. Particularly, the study of multilayer networks [66,67]
and epidemic processes on networks [139] could establish
much needed tools for the modelling of meta-foodwebs.
5. Conclusion
In this review, we have discussed some recent models of meta-
foodwebs, trophic meta-communities that combine spatial dis-
persal with complex trophic interactions. Understanding the
dynamics of these systems is interesting, because it has a
strong effect on macroecological patterns, and pressing,
because it concerns the maintenance of diverse communities
in the face of habitat loss, fragmentation and global change.

Owing to the complexity of meta-foodwebs, strong sim-
plifications are necessary to make theoretical progress, and
these simplifications in turn make it difficult to relate insights
back to the real world. However, meta-foodwebs are now
studied with a broad variety of different modelling frame-
works. This has led to a confluence of insights where
models reveal complementary perspectives and a set of
general principles has just started to emerge.

The results that have been obtained have confirmed some
basic intuitions but they have also revealed a wide range of
counter-examples and counterintuitive effects. While signifi-
cant progress has been made, this progress seems to have
revealedmerely the tip of the iceberg. For example, connectivity
and network heterogeneity generally promote diversity but
they are not beneficial in all cases or to all species in a system.

Seen collectively, the past results make it clear why models
of trophic meta-communities are necessary. By studying non-
spatial models of foodwebs, we neglect the important impacts
of spatial structure on population dynamics, and forgo the
opportunity to understand the effect of population dynamics
on macroecological patterns. Conversely, by considering only
single meta-populations we run a risk of confusing effects
that are beneficial to a single species with effects that are ben-
eficial for diversity. Current results suggest that systemic
benefit is often gained at the expense of some species that are
strong competitors.

While the complexity of meta-foodweb models poses
tough challenges, there is good reason for hope that significant
future progress can be made in this area. This progress will
most likely emerge from a combination of refinement of theor-
etical methods, extensive numerical studies, laboratory
experiments and large-scale field observations that leverage
molecular methods and/or remote sensing technologies.
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