

Brief Communication

Relative Precision of the Sibship and LD Methods for Estimating Effective Population Size With Genomics-Scale Datasets

Robin S. Waples

From the Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA 98112, USA (Waples).

Address correspondence to Robin S. Waples, Northwest Fisheries Science Center, 2725 Montlake Blvd. East, Seattle, WA 98112, USA, or e-mail: robin.waples@noaa.gov.

Received May 17, 2021; Accepted July 19, 2021.

Corresponding Editor: William Murphy

Abstract

Computer simulations were used to compare relative precision of 2 widely used single-sample methods for estimating effective population size (N_e)—the sibship method and the linkage disequilibrium (LD) method. Emphasis is on performance when thousands of gene loci are used, which now can easily be achieved even for nonmodel species. Results show that unless N_e is very small, if at least 500–2000 diallelic loci are used, precision of the LD method is higher than the maximum possible precision for the sibship method, which occurs when all sibling relationships have been correctly identified. Results also show that when precision is high for both methods, their estimates of N_e are highly and positively correlated, which limits additional gains in precision that might be obtained by combining information from the 2 estimators.

Subject Area: Conservation genomics and biodiversity

Key words: computer simulations, effective population size, linkage disequilibrium, precision, siblings

Effective population size (N_e) is an important parameter in evolutionary biology, but direct calculation requires detailed demographic information that is difficult to obtain for natural populations. For this reason, genetic methods to estimate N_e have been used for the past half century. For most of this time period, the vast majority of genetically based N_e estimates used the temporal method, which quantifies the rate of genetic drift and requires at least 2 samples separated in time (Krimbas and Tsakas 1971; Nei and Tajima 1981; Waples 1989; Wang 2001; Wang and Whitlock 2003). This changed dramatically in the late 2000s following development of 2 methods that require only a single sample: the bias-adjusted method based on linkage disequilibrium (LD; Waples 2006; Waples and Do 2008) and the sibship method of Wang (2009). Within just a few years, new publications using these single-sample methods far exceeded those using various versions of the temporal method (Palstra and Fraser 2012).

Performance of the LD and sibship methods has been extensively evaluated with simulated and empirical data (e.g., Wang 2009, 2016; Waples and Do 2010; Waples et al. 2014; Gilbert and Whitlock 2015; Ackerman et al. 2017). However, most of these evaluations have used no more than a few dozen microsatellite markers or their equivalent in diallelic, single-nucleotide-polymorphism (SNP) loci. The study using the largest number of markers to directly compare the 2 methods was by Wang (2016), who simulated 1000 diallelic (“SNP”) loci and measured root-mean-squared-error (RMSE, which reflects both bias and precision) as a function of genome size, measured in Morgans. Wang found that RMSE was higher for the LD method with small genomes (likely reflecting bias due to physical linkage) but that RMSE was essentially the same for the 2 methods when genome size was larger than about 20 Morgans. For perspective, total genome size is estimated to be 36.1 Morgans in humans (Kong et al. 2002) and 32.5 in cattle (Arias et al. 2009).

Wang's (2016) simulations using 1000 SNPs considered only a single scenario—true $N_e = 50$, with estimates based on sampling 50 offspring—and therefore only scratch the surface of the vast parameter space potentially of interest to researchers. This is an important data gap, as recent technological advances now make it relatively easy to generate large genomics-scale datasets (10^3 – 10^6 or more SNPs), even for nonmodel species. Two factors have made such assessments challenging in the past and have contributed to this data gap. First, Wang's method for inferring sibling relationships (implemented in the software *Colony*; Jones and Wang 2010) is computationally demanding because it jointly considers groups of individuals in computing close-kin likelihoods, rather than treating each pair of individuals independently (as, e.g., is done by *ML-relate*, Kalinowski et al. 2006). This makes it difficult for other researchers to evaluate the sibship method with large samples of individuals or loci. The second challenging factor is that the large numbers of markers used in genomics-scale datasets all must be packaged into a relatively small number of chromosomes. Loci close together on the same chromosome do not assort independently and do not provide independent information about evolutionary processes, and this reduces precision in large datasets, but by an amount that is difficult to quantify. Furthermore, the LD method depends on averaging the LD signal across many pairs of loci, and in theory precision increases quickly for large-scale studies because the number of pairwise comparisons of L loci is $L(L - 1)/2 \approx L^2/2$. But the many locus pairs all share overlapping subsets of the same L loci, and this creates another type of pseudoreplication that reduces precision.

Fortunately, it is possible to overcome both of these limitations to allow a comparison of performance of the sibship and LD methods with large genomics datasets. A recent study (Waples et al. 2021) has shown that precision of the LD method can be accurately predicted based on 4 covariates: N_e , sample size, number of loci, and number of chromosomes (a measure of genome size). Somewhat surprisingly, this study found that the major factor limiting precision of the LD method in large genomics datasets is not physical linkage itself but rather the lack of independence caused by averaging the LD signal across many overlapping pairs of loci. Waples et al. (2021) found that smaller genomes do reduce precision more; however, this effect attenuates rapidly, such that precision for species with 16 chromosomes was only slightly reduced compared to those with 64 chromosomes, and that results for 64 chromosomes were largely indistinguishable from results for scenarios that simulated unlinked loci. This means that unlinked loci can be used to model precision of the LD method, with a minor adjustment to account for effects of genome size.

Implementing Wang's sibship method in an ambitious simulation study that uses large numbers of loci remains very challenging. However, there is a simple workaround that takes advantage of the fact that precision in the sibship method depends on the number of sibling matches that are found, just as precision in traditional mark-recapture methods for estimating abundance depends on the number of tag recoveries in the second sample (Otis et al. 1978). Wang's method is categorical in the sense that each pair of offspring either produce a sibling match or not, so the number of matches is always an integer. This means that once the number of genetic markers used is sufficient to reliably identify the true pedigree of sampled individuals, precision cannot be increased by addition of more loci. Thus, while it is still difficult to accurately measure absolute precision of the sibship method, it is relatively easy to identify an upper limit to precision, which can be measured by keeping track of the true pedigree and assuming that all kin inferences are made without error.

In contrast, the LD method depends on mean r^2 (the squared correlation of alleles at different gene loci) averaged across many pairs of loci, which is a continuous variable whose variance declines as more loci are used, but at an increasingly slower rate in large genetic datasets (as recently quantified by Waples et al. 2021).

Here, simulations are used to quantify precision of the LD estimator for a number of realistic scenarios (ranges of N_e , sample size, and number of loci) and compare that with the maximum possible precision for the sibship method. In addition, the correlation structure of the 2 estimators was evaluated to help understand the relative benefits of developing a combined estimator using information from both methods.

Methods

Simulations were conducted in R (R Core Team 2021) using code provided in *Supporting Information*. Modeled populations followed the original Wright–Fisher model: monoecious diploids with random mating (including random selfing), discrete-generations, and a constant size of N ideal individuals. Under these conditions, $N_e = N$ (on average). To minimize extra variance caused by random variation in realized N_e each generation (which has variance $\approx N/2$; Waples and Faulkner 2009), vectors of offspring number per parent were randomly cycled through and only those that produced realized N_e within 0.5% of the target value were used.

In each replicate, the population was initialized with random allele frequencies drawn evenly from the range 0.2–0.5. Ten generations of burn-in were run to allow mean r^2 to reach a dynamic equilibrium, and then data were collected for the next 20 generations. Fifty replicates were run for each scenario, which produced a total of 1000 replicate N_e estimates for each of the methods. Four different effective sizes were simulated [$N_e = 50, 200, 1000, 5000$], and for each effective size 3 different sample sizes of individuals were analyzed, chosen to produce roughly equivalent ranges of precision (see Figure 1). Each generation in each replicate, genetic data for 5000 diallelic (SNP) loci were generated, and mean r^2 was calculated for the full complement of loci, as well as subsets of 100–2500 loci. Calculation of r^2 and the bias adjustment for estimating N_e followed Waples (2006), so the resulting estimates were the same as produced in the program LDNe (Waples and Do 2008). The initial simulations included >5000 loci but loci with minor allele frequency <0.05 were removed, and those remaining were randomly trimmed to 5000 to ensure consistent numbers for analysis.

In each generation of data collection, parents for all sampled offspring were recorded, and these data were used to identify full and half siblings. Following Wang (2009), sibling frequencies across all pairwise comparisons of individuals are denoted by Q_{FSP} and Q_{HSP} , with the latter representing all half siblings (maternal and paternal combined). These frequencies can then be used to estimate effective size as (Wang 2009):

$$\hat{N}_e = \frac{4}{(1 + \alpha)[Q_{\text{HSP}} + 2Q_{\text{FSP}}]}. \quad (1)$$

In Equation 1, the term α accounts for effects of selfing, which in our model occurred with probability $1/N_e$. Following Wang (2016), α was calculated as $\alpha = (1/N_e)/(2 - 1/N_e)$, which is very close to $1/(2N_e)$. Our simulations used $N_e = [50, 200, 1000, 5000]$, for which α computes as [0.01, 0.005, 0.001, and 0.0005]—in all cases representing a small correction that had little effect on the results.

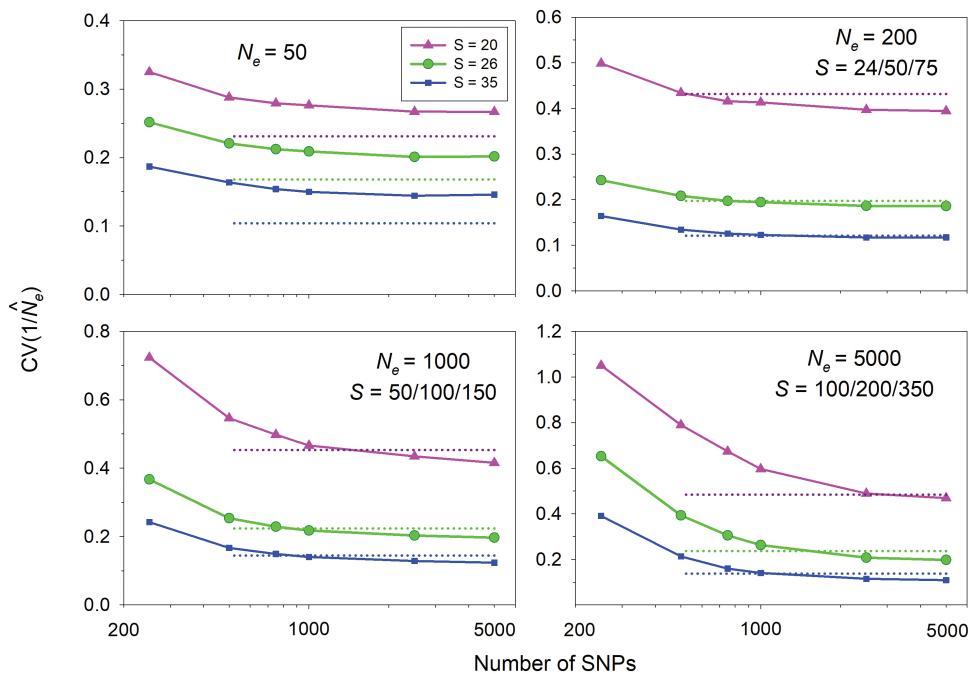


Figure 1. Comparison of CVs of $1/\hat{N}_e$ for the LD method and minimum possible CVs for the sibship method, under the assumption that all sibling relationships are identified without error. For each effective size, results are shown for 3 different sample sizes of offspring (S); in each case the pink lines and symbols depict results for the LD method for the smallest sample size, green lines and symbols depict results for intermediate sample sizes, and blue lines and symbols depict results for the largest sample sizes. Dotted lines, color coded to the respective sample sizes, show minimum CVs for the sibship method. Results for 100 SNPs are omitted to improve resolution of results for larger numbers of loci. Note the log scale on the x axes and the different linear scales on the y axes.

To quantify precision, the coefficient of variation (CV) was computed across replicate estimates of effective size for both methods. Because of the inverse relationship between \hat{N}_e and sibling frequencies (Equation 1), even if the observed number of sibling matches is approximately normally distributed (as will often be the case), \hat{N}_e will not be; instead, \hat{N}_e is skewed toward high values and is infinitely large if no siblings are found. The same issue applies to the LD method, which can even return a negative estimate if observed mean r^2 is less than the value expected to arise from sampling error alone. To deal with these issues, evaluations of precision of effective size estimators often focus on the distribution of $1/\hat{N}_e$ rather than \hat{N}_e (e.g., Waples 2001, 2009), and that approach is adopted here. Any infinite estimates for the sibship method or negative estimates for the LD method were converted to large positive numbers (999999) for computing the CVs and the harmonic mean \hat{N}_e .

Although Waples et al. (2021) found that most of the pseudoreplication in LD analyses arises from overlapping pairs of loci used to compute mean r^2 —and this effect is captured by simulating unlinked loci as in the present study—there is also a modest effect of physical linkage. This effect was accounted for using R code provided by Waples et al. (2021) that allows users to predict how much different covariates affect the variance of mean r^2 . First, we calculated an adjustment factor that was the ratio of the predicted CV of r^2 for a species with 20 chromosomes (a typical number for many organisms) to the predicted CV for unlinked loci. Predicted CVs are higher for smaller genomes, so these adjustment factors were ≥ 1 ; values ranged from 1 to 1.2 depending on the scenario, and were generally higher for smaller effective sizes and sample sizes (see Supplementary Table S1). Then, the raw CV values obtained in the simulations were multiplied by these adjustment factors to obtain adjusted CV values for mean r^2 , and these adjusted CVs were

used in all subsequent analyses. These adjusted empirical CVs for the LD method to what would be expected for an organism with 20 chromosomes and the specified N_e .

If more than 1 method is used on the same data to estimate effective size, a combined estimate can have better performance than either method does by itself. Whether this is the case or not depends on 2 factors: 1) relative biases associated with the methods, and 2) whether the methods provide independent or correlated information about N_e . A considerable body of data shows that the sibship and LD methods are largely unbiased when model assumptions are met, but the correlation structure of the 2 estimators has not been evaluated. To quantify this, for each combination of N_e , sample size, and number of loci, we computed the Pearson product-moment correlation between \hat{N}_e for the 2 methods, using the paired vectors of 1000 replicate estimates.

Results

Averaged across 1000 replicate samples for each scenario, both methods produced essentially unbiased estimates of effective population size (Supplementary Figure S1). Results comparing empirical CVs of $1/\hat{N}_e$ for the LD method with minimum CVs for the sibship method showed a qualitative difference between small and moderate to large N_e (Figure 1). As expected (and as found by Waples et al. 2021), the CV for the LD method dropped consistently as more loci were used, but at an increasingly slower rate. In contrast, the minimum possible CV for the sibship method is independent of the number of loci, because it assumes the genetic data are sufficient to correctly identify all siblings. For $N_e = 50$, the CV for the LD method never dropped as low as the minimum CV for the sibship method, even using 5000 loci, and Waples et al. (2021) found that

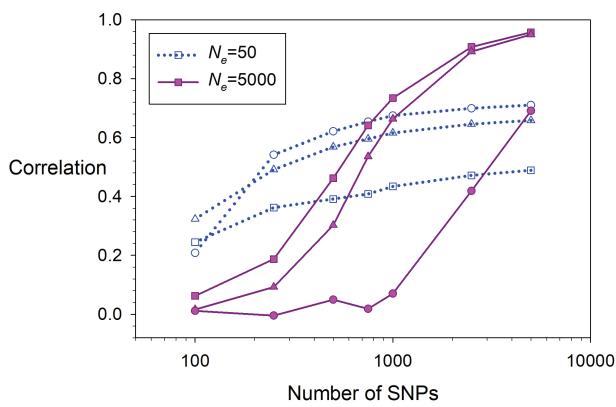


Figure 2. Correlations between \hat{N}_e for the LD and sibship methods for scenarios with true $N_e = 50$ (dotted blue lines and open symbols) and $N_e = 5000$ (solid pink lines and filled symbols). Each correlation is computed across 1000 paired datapoints. For each effective size, square symbols represent the largest sample size, triangles intermediate sample size, and circles the smallest sample size (see Figure 1 for actual sample sizes).

increasing the number of loci beyond that number did little to further reduce the variance of mean r^2 when N_e was only 50. In contrast, for all larger N_e values that were evaluated, the CV for the LD method dropped below the minimum CV for the sibship method by the time 500–2000 loci were used, and the gap between the 2 methods continued to widen as more loci were added. With 5000 loci, the CV for the LD method was 3–21% lower (depending on sample size) than the minimum CV for the sibship method when N_e was 5000, and reductions for $N_e = 1000$ and 200 were 8–14% and 3–9%, respectively.

Correlations between estimated N_e for the 2 methods are affected in a complex way by true N_e and sample sizes of loci and individuals (Figure 2). Most correlations were positive, some very strongly so ($r > 0.9$), and in general the strength of the correlation increased with N_e , sample size, and number of loci. However, for $N_e = 200$ the strongest correlations were found for the intermediate sample size, and for $N_e = 50$ the strongest correlations were found for the smallest sample size.

Discussion

This study produced 2 new results that are of direct relevance to practical applications. First, using only relatively modest numbers of loci (~500–2000) that now can be easily generated even for nonmodel species, precision of the LD method for estimating effective population size can equal or exceed the maximum possible precision for the sibship method. The differences in precision are greatest for large effective sizes, which is a useful result because the drift signal for large N_e is so small that it can be difficult to distinguish from sampling error (Waples 2016a; Marandel et al. 2019). Furthermore, as demonstrated by Waples et al. (2021), when N_e is large, precision of the LD method continues to increase well beyond the 5000 maximum loci simulated in this study, which means that in large genomics datasets, CVs for the LD method can be reduced below those reported here.

An exception to this pattern of relative precision occurs with very small N_e . Results presented here show that a transition occurs somewhere in the N_e range of 50–200, below which point precision of the LD method no longer can reach the maximum possible level of precision for the sibship method. Two factors presumably contribute

to this result. First, the rate of decay of LD as a function of distance in base pairs between a pair of SNPs is inversely related to N_e (Sved and Feldman 1973; Weir and Hill 1980), which means that for the same genome size the effects of physical linkage are stronger when effective size is small. Second, small effective size also magnifies the overlapping-pairs-of-loci effect, which is the factor mainly responsible for reducing precision of the LD method in large datasets (Waples et al. 2021).

Whether this means that, when large numbers of loci are available but N_e is small, precision of the sibship method will be higher than that of the LD method cannot be determined from this study. Tightly linked loci produce redundant information for pedigree reconstruction just as they do for the LD method (Thompson 2013), and reliably distinguishing half siblings from unrelated or more distantly related pairs can be very challenging, even with large amounts of data. Therefore, a more robust comparison of the 2 methods for small N_e and large numbers of loci will have to await future evaluations that explicitly model uncertainty in the identification of siblings, as well as effects of physical linkage. These evaluations could use one of the modifications of Colony's full-likelihood method that compute likelihoods independently for each pair of individuals and hence are much faster (e.g., Wang 2012).

The second novel result reported here is that, when precision of the sibship and LD methods are both high, their estimates of N_e are highly and positively correlated. Presumably this occurs because both methods are sensitive to the same signal of inbreeding and identity by descent that is generated by the inbreeding effective size. This result is reassuring, as it shows that 2 very different methods converge on the same answer as the amount of data increases. On the other hand, these strong correlations are inconvenient because they indicate that, for large genetic datasets, there is only limited potential to further increase precision by computing a combined estimate using results from both methods. A general approach to combining results from 2 methods would be to calculate a weighted harmonic mean of the 2 \hat{N}_e estimates, with weights being inversely proportional to variances of the 2 estimators (Waples and Do 2010). Waples (2016b) showed that the LD and standard temporal methods produce estimates that are largely uncorrelated, and that when they have roughly equal precision a combined estimate has substantially higher precision than either method alone. It is clear from Figure 2 that estimates from the LD and sibship methods are more strongly correlated than those of the LD and temporal methods. Results presented here provide the information necessary to produce a combined sibship–LD estimate, but only using the “best-case,” most optimistic version of the variance associated with \hat{N}_e for the sibship method. As shown in Figure 2, correlations between the 2 estimators decline with reductions in the number of loci used, but the declines in correlations shown in Figure 2 are entirely due to reductions in precision of the LD method. In reality, precision of the sibship method also declines as fewer loci are used, so the real correlations between estimates provided by the 2 methods must drop off more sharply with reductions in the number of loci than is shown in Figure 2. Refining these patterns of correlation between the 2 methods is another topic for future research. To date, most studies that have estimated N_e with both of these methods have used relatively few loci (<100), in which case the estimators are largely uncorrelated and combining results can potentially produce a substantial increase in precision.

Evaluations here have focused on precision, but obtaining reliable N_e estimates from the LD method with large genetic datasets also requires one to deal with potential biases caused by physical

linkage. Two general options are available for dealing with this issue. If one does not have detailed linkage information but can estimate genome size or the number of chromosomes (e.g., using data for a related species), the bias adjustment proposed by Waples et al. (2016) can be used to obtain an essentially unbiased estimate of N_e . Alternatively, if the loci can be assigned to chromosomes or linkage groups, mean r^2 can be computed using only pairs of loci on different chromosomes (an option that is implemented in V2 of NeEstimator; Do et al. 2014). Conveniently, the variance of mean r^2 does not depend on whether locus pairs on the same chromosome are used or not (Waples et al. 2021), so choice of which option to use should not affect conclusions about precision.

Supplementary Material

Supplementary data are available at *Journal of Heredity* online.

Acknowledgments

Jinliang Wang and 2 anonymous reviewers provided comments that improved the manuscript. This study did not generate any new empirical data except by computer simulation. Code to conduct the simulations is available in [Supporting Information](#).

References

Ackerman MW, Hand BK, Waples RK, Luikart G, Waples RS, Steele CA, Garner BA, McCane J, Campbell MR. 2017. Effective number of breeders from sibship reconstruction: empirical evaluations using hatchery steelhead. *Evol Appl.* 10:146–160.

Arias JA, Keehan M, Fisher P, Coppieters W, Spelman R. 2009. A high density linkage map of the bovine genome. *BMC Genet.* 10:18.

Do C, Waples RS, Peel D, Macbeth GM, Tillett BJ, Ovenden JR. 2014. NeEstimator v2: re-implementation of software for the estimation of contemporary effective population size (N_e) from genetic data. *Mol Ecol Resour.* 14:209–214.

Gilbert KJ, Whitlock MC. 2015. Evaluating methods for estimating local effective population size with and without migration. *Evolution.* 69:2154–2166.

Jones OR, Wang J. 2010. COLONY: a program for parentage and sibship inference from multilocus genotype data. *Mol Ecol Resour.* 10:551–555.

Kalinowski ST, Wagner AP, Taper ML. 2006. ML-RELATE: a computer program for maximum likelihood estimation of relatedness and relationship. *Mol Ecol Notes.* 6:576–579.

Kong A, Gudbjartsson DF, Sainz J, Jónsdóttir GM, Gudjonsson SA, Richardsson B, Sigurdardóttir S, Barnard J, Hallbeck B, Masson G, et al. 2002. A high resolution recombination map of the human genome. *Nat Genet.* 31:241–247.

Krimbas CB, Tsakas S. 1971. The genetics of *Dacus oleae*. V. Changes of esterase polymorphism in a natural population following insecticide control—selection or drift? *Evolution.* 25:454–460.

Marandell F, Lorance P, Berthelé O, Trenkel VM, Waples RS, Lamy JB. 2019. Estimating effective population size of large fish populations, is it feasible? *Fish Fish.* 20:189–198.

Nei M, Tajima F. 1981. Genetic drift and estimation of effective population size. *Genetics.* 98:625–640.

Otis DL, Burnham KP, White GC, Anderson DR. 1978. Statistical inference from capture data on closed animal populations. *Wildl Monogr.* 62:3–135.

Palstra FP, Fraser DJ. 2012. Effective/census population size ratio estimation: a compendium and appraisal. *Ecol Evol.* 2:2357–2365.

R Core Team. 2021. *R: a language and environment for statistical computing*. Vienna (Austria): R Foundation for Statistical Computing. Available from: URL <https://www.R-project.org/>

Sved JA, Feldman MW. 1973. Correlation and probability methods for one and two loci. *Theor Popul Biol.* 4:129–132.

Thompson EA. 2013. Identity by descent: variation in meiosis, across genomes, and in populations. *Genetics.* 194:301–326.

Wang J. 2001. A pseudo-likelihood method for estimating effective population size from temporally spaced samples. *Genet Res.* 78:243–257.

Wang J. 2009. A new method for estimating effective population sizes from a single sample of multilocus genotypes. *Mol Ecol.* 18:2148–2164.

Wang J. 2012. Computationally efficient sibship and parentage assignment from multilocus marker data. *Genetics.* 191:183–194.

Wang J. 2016. A comparison of single-sample estimators of effective population sizes from genetic marker data. *Mol Ecol.* 25:4692–4711.

Wang J, Whitlock MC. 2003. Estimating effective population size and migration rates from genetic samples over space and time. *Genetics.* 163:429–446.

Waples RS. 1989. A generalized approach for estimating effective population size from temporal changes in allele frequency. *Genetics.* 121:379–391.

Waples RS. 2006. A bias correction for estimates of effective population size based on linkage disequilibrium at unlinked gene loci. *Conserv Genet.* 7:167–184.

Waples RS. 2016a. Tiny estimates of the N_e/N ratio in marine fishes: are they real? *J Fish Biol.* 89:2479–2504.

Waples RS. 2016b. Making sense of genetic estimates of effective population size. *Mol Ecol.* 25:4689–4691.

Waples RS, Do C. 2008. ldne: a program for estimating effective population size from data on linkage disequilibrium. *Mol Ecol Resour.* 8:753–756.

Waples RS, Do C. 2010. Linkage disequilibrium estimates of contemporary N_e using highly variable genetic markers: a largely untapped resource for applied conservation and evolution. *Evol Appl.* 3:244–262.

Waples RS, Faulkner JR. 2009. Modelling evolutionary processes in small populations: not as ideal as you think. *Mol Ecol.* 18:1834–1847.

Waples RS, Antao T, Luikart G. 2014. Effects of overlapping generations on linkage disequilibrium estimates of effective population size. *Genetics.* 197:769–780.

Waples RK, Larson WA, Waples RS. 2016. Estimating contemporary effective population size in non-model species using linkage disequilibrium across thousands of loci. *Heredity (Edinb).* 117:233–240.

Waples RS, Waples RK, Ward EJ. 2021. Pseudoreplication in genomics-scale datasets. *Mol Ecol Resour.* doi:10.1111/1755-0998.13482.

Weir BS, Hill WG. 1980. Effect of mating structure on variation in linkage disequilibrium. *Genetics.* 95:477–488.