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Abstract

Computer simulations were used to compare relative precision of 2 widely used single-sample
methods for estimating effective population size (N )—the sibship method and the linkage
disequilibrium (LD) method. Emphasis is on performance when thousands of gene loci are used,
which now can easily be achieved even for nonmodel species. Results show that unless N _is very
small, if at least 500-2000 diallelic loci are used, precision of the LD method is higher than the
maximum possible precision for the sibship method, which occurs when all sibling relationships
have been correctly identified. Results also show that when precision is high for both methods,
their estimates of N_are highly and positively correlated, which limits additional gains in precision

that might be obtained by combining information from the 2 estimators.
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Effective population size (N,) is an important parameter in evolu-
tionary biology, but direct calculation requires detailed demographic
information that is difficult to obtain for natural populations. For
this reason, genetic methods to estimate N, have been used for the
past half century. For most of this time period, the vast majority
of genetically based N, estimates used the temporal method, which
quantifies the rate of genetic drift and requires at least 2 samples
separated in time (Krimbas and Tsakas 1971; Nei and Tajima 1981;
Waples 1989; Wang 2001; Wang and Whitlock 2003). This changed
dramatically in the late 2000s following development of 2 methods
that require only a single sample: the bias-adjusted method based
on linkage disequilibrium (LD; Waples 2006; Waples and Do 2008)
and the sibship method of Wang (2009). Within just a few years,
new publications using these single-sample methods far exceeded
those using various versions of the temporal method (Palstra and
Fraser 2012).

Published by Oxford University Press on behalf of The American Genetic Association 2021.

Performance of the LD and sipship methods has been extensively
evaluated with simulated and empirical data (e.g., Wang 2009, 2016;
Waples and Do 2010; Waples et al. 2014; Gilbert and Whitlock
2015; Ackerman et al. 2017). However, most of these evaluations
have used no more than a few dozen microsatellite markers or their
equivalent in diallelic, single-nucleotide-polymorphism (SNP) loci.
The study using the largest number of markers to directly compare
the 2 methods was by Wang (2016), who simulated 1000 diallelic
(“SNP”) loci and measured root-mean-squared-error (RMSE, which
reflects both bias and precision) as a function of genome size, meas-
ured in Morgans. Wang found that RMSE was higher for the LD
method with small genomes (likely reflecting bias due to physical
linkage) but that RMSE was essentially the same for the 2 methods
when genome size was larger than about 20 Morgans. For perspec-
tive, total genome size is estimated to be 36.1 Morgans in humans
(Kong et al. 2002) and 32.5 in cattle (Arias et al. 2009).
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Wang’s (2016) simulations using 1000 SNPs considered only a
single scenario—true N, = 50, with estimates based on sampling 50
offspring—and therefore only scratch the surface of the vast par-
ameter space potentially of interest to researchers. This is an im-
portant data gap, as recent technological advances now make it
relatively easy to generate large genomics-scale datasets (10°-10°
or more SNPs), even for nonmodel species. Two factors have made
such assessments challenging in the past and have contributed to
this data gap. First, Wang’s method for inferring sibling relation-
ships (implemented in the software Colony; Jones and Wang 2010)
is computationally demanding because it jointly considers groups of
individuals in computing close-kin likelihoods, rather than treating
each pair of individuals independently (as, e.g., is done by ML-relate,
Kalinowski et al. 2006). This makes it difficult for other researchers
to evaluate the sibship method with large samples of individuals
or loci. The second challenging factor is that the large numbers of
markers used in genomics-scale datasets all must be packaged into a
relatively small number of chromosomes. Loci close together on the
same chromosome do not assort independently and do not provide
independent information about evolutionary processes, and this re-
duces precision in large datasets, but by an amount that is difficult
to quantify. Furthermore, the LD method depends on averaging the
LD signal across many pairs of loci, and in theory precision increases
quickly for large-scale studies because the number of pairwise com-
parisons of L loci is L(L - 1)/2 ~ L*2. But the many locus pairs all
share overlapping subsets of the same L loci, and this creates another
type of pseudoreplication that reduces precision.

Fortunately, it is possible to overcome both of these limitations to
allow a comparison of performance of the sibship and LD methods
with large genomics datasets. A recent study (Waples et al. 2021)
has shown that precision of the LD method can be accurately pre-
dicted based on 4 covariates: N, sample size, number of loci, and
number of chromosomes (a measure of genome size). Somewhat
surprisingly, this study found that the major factor limiting preci-
sion of the LD method in large genomics datasets is not physical
linkage itself but rather the lack of independence caused by aver-
aging the LD signal across many overlapping pairs of loci. Waples
et al. (2021) found that smaller genomes do reduce precision more;
however, this effect attenuates rapidly, such that precision for species
with 16 chromosomes was only slightly reduced compared to those
with 64 chromosomes, and that results for 64 chromosomes were
largely indistinguishable from results for scenarios that simulated
unlinked loci. This means that unlinked loci can be used to model
precision of the LD method, with a minor adjustment to account for
effects of genome size.

Implementing Wang’s sibship method in an ambitious simula-
tion study that uses large numbers of loci remains very challenging.
However, there is a simple workaround that takes advantage of the
fact that precision in the sibship method depends on the number of
sibling matches that are found, just as precision in traditional mark-
recapture methods for estimating abundance depends on the number
of tag recoveries in the second sample (Otis et al. 1978). Wang’s
method is categorical in the sense that each pair of offspring either
produce a sibling match or not, so the number of matches is always
an integer. This means that once the number of genetic markers used
is sufficient to reliably identify the true pedigree of sampled individ-
uals, precision cannot be increased by addition of more loci. Thus,
while it is still difficult to accurately measure absolute precision of
the sibship method, it is relatively easy to identify an upper limit to
precision, which can be measured by keeping track of the true pedi-
gree and assuming that all kin inferences are made without error.

In contrast, the LD method depends on mean 7* (the squared cor-
relation of alleles at different gene loci) averaged across many pairs
of loci, which is a continuous variable whose variance declines as
more loci are used, but at an increasingly slower rate in large genetic
datasets (as recently quantified by Waples et al. 2021).

Here, simulations are used to quantify precision of the LD esti-
mator for a number of realistic scenarios (ranges of N , sample size,
and number of loci) and compare that with the maximum possible
precision for the sibship method. In addition, the correlation struc-
ture of the 2 estimators was evaluated to help understand the relative
benefits of developing a combined estimator using information from

both methods.

Methods

Simulations were conducted in R (R Core Team 2021) using code
provided in Supporting Information. Modeled populations fol-
lowed the original Wright—Fisher model: monoecious diploids with
random mating (including random selfing), discrete-generations,
and a constant size of N ideal individuals. Under these conditions,
N, = N (on average). To minimize extra variance caused by random
variation in realized N, each generation (which has variance ~N/2;
Waples and Faulkner 2009), vectors of offspring number per parent
were randomly cycled through and only those that produced realized
N, within 0.5% of the target value were used.

In each replicate, the population was initialized with random
allele frequencies drawn evenly from the range 0.2-0.5. Ten gen-
erations of burn-in were run to allow mean 7 to reach a dynamic
equilibrium, and then data were collected for the next 20 gener-
ations. Fifty replicates were run for each scenario, which produced
a total of 1000 replicate N, estimates for each of the methods. Four
different effective sizes were simulated [N, = 50, 200, 1000, 5000],
and for each effective size 3 different sample sizes of individuals were
analyzed, chosen to produce roughly equivalent ranges of precision
(see Figure 1). Each generation in each replicate, genetic data for
5000 diallelic (SNP) loci were generated, and mean 7* was calculated
for the full complement of loci, as well as subsets of 100-2500 loci.
Calculation of 7* and the bias adjustment for estimating N, followed
Waples (2006), so the resulting estimates were the same as produced
in the program LDNe (Waples and Do 2008). The initial simulations
included >5000 loci but loci with minor allele frequency <0.05 were
removed, and those remaining were randomly trimmed to 5000 to
ensure consistent numbers for analysis.

In each generation of data collection, parents for all sampled off-
spring were recorded, and these data were used to identify full and
half siblings. Following Wang (2009), sibling frequencies across all
pairwise comparisons of individuals are denoted by O, and Q,,,
with the latter representing all half siblings (maternal and paternal
combined). These frequencies can then be used to estimate effective
size as (Wang 2009):

A 4

© (14 a)[Onsp + 20rsp]” (1)

In Equation 1, the term a accounts for effects of selfing, which in our
model occurred with probability 1/N,. Following Wang (2016), «
was calculated as a = (1/N,)/(2 - 1/N ), which is very close to 1/(2N,).
Our simulations used N, = [50, 200, 1000, 5000], for which a com-
putes as [0.01, 0.005, 0.001, and 0.0005]—in all cases representing
a small correction that had little effect on the results.
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Figure 1. Comparison of CVs 01‘1/Ne for the LD method and minimum possible CVs for the sibship method, under the assumption that all sibling relationships
are identified without error. For each effective size, results are shown for 3 different sample sizes of offspring (S); in each case the pink lines and symbols depict
results for the LD method for the smallest sample size, green lines and symbols depict results for intermediate sample sizes, and blue lines and symbols depict
results for the largest sample sizes. Dotted lines, color coded to the respective sample sizes, show minimum CVs for the sibship method. Results for 100 SNPs
are omitted to improve resolution of results for larger numbers of loci. Note the log scale on the x axes and the different linear scales on the y axes.

To quantify precision, the coefficient of variation (CV) was com-
puted across replicate estimates of effective size for both methods.
Because of the inverse relationship between N, and sibling frequen-
cies (Equation 1), even if the observed number of sibling matches is
approximately normally distributed (as will often be the case), N,
will not be; instead, N, is skewed toward high values and is infin-
itely large if no siblings are found. The same issue applies to the LD
method, which can even return a negative estimate if observed mean
7* is less than the value expected to arise from sampling error alone.
To deal with these issues, evaluations of precision of effective size
estimators often focus on the distribution of 1/ N, rather than N,
(e.g., Wang 2001, 2009), and that approach is adopted here. Any
infinite estimates for the sibship method or negative estimates for the
LD method were converted to large positive numbers (999999) for
computing the CVs and the harmonic mean N,.

Although Waples et al. (2021) found that most of the
pseudoreplication in LD analyses arises from overlapping pairs of
loci used to compute mean r*—and this effect is captured by simu-
lating unlinked loci as in the present study—there is also a modest
effect of physical linkage. This effect was accounted for using R code
provided by Waples et al. (2021) that allows users to predict how
much different covariates affect the variance of mean 7%. First, we
calculated an adjustment factor that was the ratio of the predicted
CV of #* for a species with 20 chromosomes (a typical number for
many organisms) to the predicted CV for unlinked loci. Predicted
CVs are higher for smaller genomes, so these adjustment factors
were >1; values ranged from 1 to 1.2 depending on the scenario,
and were generally higher for smaller effective sizes and sample sizes
(see Supplementary Table S1). Then, the raw CV values obtained in
the simulations were multiplied by these adjustment factors to ob-
tain adjusted CV values for mean 7%, and these adjusted CVs were

used in all subsequent analyses. These adjusted empirical CVs for
the LD method to what would be expected for an organism with 20
chromosomes and the specified N..

If more than 1 method is used on the same data to estimate ef-
fective size, a combined estimate can have better performance than
either method does by itself. Whether this is the case or not depends
on 2 factors: 1) relative biases associated with the methods, and
2) whether the methods provide independent or correlated informa-
tion about N . A considerable body of data shows that the sibship
and LD methods are largely unbiased when model assumptions are
met, but the correlation structure of the 2 estimators has not been
evaluated. To quantify this, for each combination of N , sample size,
and number of loci, we computed the Pearson product-moment cor-
relation between N, for the 2 methods, using the paired vectors of
1000 replicate estimates.

Results

Averaged across 1000 replicate samples for each scenario, both
methods produced essentially unbiased estimates of effective popu-
lation size (Supplementary Figure S1). Results comparing empirical
CVs of 1/N, for the LD method with minimum CVs for the sibship
method showed a qualitative difference between small and moderate
to large N, (Figure 1). As expected (and as found by Waples et al.
2021), the CV for the LD method dropped consistently as more
loci were used, but at an increasingly slower rate. In contrast, the
minimum possible CV for the sibship method is independent of the
number of loci, because it assumes the genetic data are sufficient
to correctly identify all siblings. For N, = 50, the CV for the LD
method never dropped as low as the minimum CV for the sibship
method, even using 5000 loci, and Waples et al. (2021) found that
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Figure 2. Correlations between Ne for the LD and sibship methods for
scenarios with true N, = 50 (dotted blue lines and open symbols) and
N, =5000 (solid pink lines and filled symbols). Each correlation is computed
across 1000 paired datapoints. For each effective size, square symbols
represent the largest sample size, triangles intermediate sample size, and
circles the smallest sample size (see Figure 1 for actual sample sizes).

increasing the number of loci beyond that number did little to fur-
ther reduce the variance of mean 7> when N, was only 50. In con-
trast, for all larger N, values that were evaluated, the CV for the LD
method dropped below the minimum CV for the sibship method
by the time 500-2000 loci were used, and the gap between the 2
methods continued to widen as more loci were added. With 5000
loci, the CV for the LD method was 3-21% lower (depending on
sample size) than the minimum CV for the sibship method when N,
was 5000, and reductions for N, = 1000 and 200 were 8-14% and
3-9%, respectively.

Correlations between estimated N, for the 2 methods are affected
in a complex way by true N, and sample sizes of loci and individ-
uals (Figure 2). Most correlations were positive, some very strongly
so (r > 0.9), and in general the strength of the correlation increased
with N, sample size, and number of loci. However, for N, = 200
the strongest correlations were found for the intermediate sample
size, and for N, = 50 the strongest correlations were found for the
smallest sample size.

Discussion

This study produced 2 new results that are of direct relevance to
practical applications. First, using only relatively modest numbers
of loci (~500-2000) that now can be easily generated even for
nonmodel species, precision of the LD method for estimating ef-
fective population size can equal or exceed the maximum possible
precision for the sibship method. The differences in precision are
greatest for large effective sizes, which is a useful result because the
drift signal for large N, is so small that it can be difficult to distin-
guish from sampling error (Waples 2016a; Marandel et al. 2019).
Furthermore, as demonstrated by Waples et al. (2021), when N, is
large, precision of the LD method continues to increase well beyond
the 5000 maximum loci simulated in this study, which means that
in large genomics datasets, CVs for the LD method can be reduced
below those reported here.

An exception to this pattern of relative precision occurs with very
small N . Results presented here show that a transition occurs some-
where in the N, range of 50-200, below which point precision of
the LD method no longer can reach the maximum possible level of
precision for the sibship method. Two factors presumably contribute

to this result. First, the rate of decay of LD as a function of distance
in base pairs between a pair of SNPs is inversely related to N, (Sved
and Feldman 1973; Weir and Hill 1980), which means that for the
same genome size the effects of physical linkage are stronger when
effective size is small. Second, small effective size also magnifies
the overlapping-pairs-of-loci effect, which is the factor mainly re-
sponsible for reducing precision of the LD method in large datasets
(Waples et al. 2021).

Whether this means that, when large numbers of loci are avail-
able but N, is small, precision of the sibship method will be higher
than that of the LD method cannot be determined from this study.
Tightly linked loci produce redundant information for pedigree re-
construction just as they do for the LD method (Thompson 2013),
and reliably distinguishing half siblings from unrelated or more dis-
tantly related pairs can be very challenging, even with large amounts
of data. Therefore, a more robust comparison of the 2 methods for
small N, and large numbers of loci will have to await future evalu-
ations that explicitly model uncertainty in the identification of sib-
lings, as well as effects of physical linkage. These evaluations could
use one of the modifications of Colony’s full-likelihood method that
compute likelihoods independently for each pair of individuals and
hence are much faster (e.g., Wang 2012).

The second novel result reported here is that, when precision
of the sibship and LD methods are both high, their estimates of N,
are highly and positively correlated. Presumably this occurs because
both methods are sensitive to the same signal of inbreeding and
identity by descent that is generated by the inbreeding effective size.
This result is reassuring, as it shows that 2 very different methods
converge on the same answer as the amount of data increases. On
the other hand, these strong correlations are inconvenient because
they indicate that, for large genetic datasets, there is only limited
potential to further increase precision by computing a combined
estimate using results from both methods. A general approach to
combining results from 2 methods would be to calculate a weighted
harmonic mean of the 2 N, estimates, with weights being inversely
proportional to variances of the 2 estimators (Waples and Do
2010). Waples (2016b) showed that the LD and standard temporal
methods produce estimates that are largely uncorrelated, and that
when they have roughly equal precision a combined estimate has
substantially higher precision than either method alone. It is clear
from Figure 2 that estimates from the LD and sibship methods
are more strongly correlated than those of the LD and temporal
methods. Results presented here provide the information necessary
to produce a combined sibship-LD estimate, but only using the
“best-case,” most optimistic version of the variance associated with
N, for the sibship method. As shown in Figure 2, correlations be-
tween the 2 estimators decline with reductions in the number of loci
used, but the declines in correlations shown in Figure 2 are entirely
due to reductions in precision of the LD method. In reality, precision
of the sibship method also declines as fewer loci are used, so the
real correlations between estimates provided by the 2 methods must
drop off more sharply with reductions in the number of loci than is
shown in Figure 2. Refining these patterns of correlation between
the 2 methods is another topic for future research. To date, most
studies that have estimated N, with both of these methods have used
relatively few loci (<100), in which case the estimators are largely
uncorrelated and combining results can potentially produce a sub-
stantial increase in precision.

Evaluations here have focused on precision, but obtaining reli-
able N, estimates from the LD method with large genetic datasets
also requires one to deal with potential biases caused by physical

20z 1SNBny /2 U0 Jasn ny 1uy Aq 909%Z€9/SES/9/Z L L /B[ PaIaYjwoo"dno-ojwapese//:sdny Wwoly papeojumoq



Journal of Heredity, 2021, Vol. 112, No. 6

539

linkage. Two general options are available for dealing with this issue.
If one does not have detailed linkage information but can estimate
genome size or the number of chromosomes (e.g., using data for
a related species), the bias adjustment proposed by Waples et al.
(2016) can be used to obtain an essentially unbiased estimate of N,
Alternatively, if the loci can be assigned to chromosomes or linkage
groups, mean 72 can be computed using only pairs of loci on different
chromosomes (an option that is implemented in V2 of NeEstimator;
Do et al. 2014). Conveniently, the variance of mean 7> does not de-
pend on whether locus pairs on the same chromosome are used or
not (Waples et al. 2021), so choice of which option to use should not
affect conclusions about precision.

Supplementary Material

Supplementary data are available at Journal of Heredity online.
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