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The identification of trends in ecosystem indicators has become a core component of ecosystem approaches to resource management, al-
though oftentimes assumptions of statistical models are not properly accounted for in the reporting process. To explore the limitations of
trend analysis of short times series, we applied three common methods of trend detection, including a generalized least squares model selec-
tion approach, the Mann—Kendall test, and Mann-Kendall test with trend-free pre-whitening to simulated time series of varying trend and
autocorrelation strengths. Our results suggest that the ability to detect trends in time series is hampered by the influence of autocorrelated
residuals in short series lengths. While it is known that tests designed to account for autocorrelation will approach nominal rejection rates as
series lengths increase, the results of this study indicate biased rejection rates in the presence of even weak autocorrelation for series lengths
often encountered in indicators developed for ecosystem-level reporting (N = 10, 20, 30). This work has broad implications for ecosystem-
level reporting, where indicator time series are often limited in length, maintain a variety of error structures, and are typically assessed using a

single statistical method applied uniformly across all time series.
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Introduction

The development and analysis of indicators plays a key strategic
role in implementing the Ecosystem Approach for a host of sci-
ence, management, and intergovernmental organizations (Garcia
et al., 2003; Secretariat of the Convention on Biological Diversity,
2004; NOAA, 2006; Levin et al., 2009; Perry et al., 2010; ICES,
2019). At least partially in support of this, substantial effort has
been invested in assessing indicator status and trends for the pur-
pose of ecosystem reporting, in all of its guises (Blanchard et al,
2010; Butchart et al., 2010; Garfield and Harvey, 2016; NEFSC,
2017a, b, 2018a, b; Wiebe et al., 2017).

Ecosystem-level indicators often vary greatly with respect to
the length of the series under investigation. The ultimate goal of
providing integrated advice often leads analysts to truncate lon-
ger data sets; generating a consistent series length across indica-
tors for comparison purposes (Blanchard et al., 2010; Shannon
et al, 2010; Shin and Shannon, 2010; Canales et al, 2015).

Further reinforcing this approach is the fact that managers tend
to focus on short-term issues (Secretariat of the Convention on
Biological Diversity, 2004; Wagner et al., 2013), which ulti-
mately necessitates the assessment of trajectories at relatively
short time scales.

These issues can lead to the use of short time series for the pur-
pose of ecosystem reporting; i.e. <20 data points per indicator
(Mackas et al., 2001; Nicholson and Jennings, 2004; Blanchard
et al, 2010; Shannon et al., 2010; Shin and Shannon, 2010;
Canales et al., 2015; Karnauskas et al., 2017). Statistical trend
analysis of indicator data is the gold standard for managers, stake-
holders, and analysts. However, in reality trend analysis in this
context can be extremely difficult. Evidence indicates that the sta-
tistical power to identify trends using short time series may be
limited in general (Bence, 1995; Nicholson and Jennings, 2004;
Wagner et al., 2013). The hydrological, climatological, and statis-
tical literature show that autocorrelation in time series can falsely
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inflate trend detection rates when models are incorrectly specified
assuming the independence of error terms (Kulkarni and Storch,
1992; Woodward et al, 1997; Hamed and Rao, 1998; Storch,
1999; Zhang et al., 2000; Nicholls, 2001; Wang and Swail, 2001;
Yue and Wang, 2002; Roy et al., 2004; Bayazit, 2015). The magni-
tude of assigned trends can also be inflated by the presence of au-
tocorrelation, and both of these problems are amplified by short
time series (Kulkarni and Storch, 1992; Yue and Wang, 2002).
Despite this, there has been no systematic investigation for the
performance of models in detecting trends across the full breadth
of indicators utilized in ecosystem reporting.

Assessments of ecosystem status and trend are important
pieces of the Ecosystem Approach, particularly with respect to
integrated ecosystem assessments (IEAs) (Zador et al, 2017),
and so it should be emphasized that the ability to detect trends
has implications for future management outcomes. For exam-
ple, in the Northeast United States indicators were used in a
risk assessment based on their capacity to capture the potential
threats to valuable ecosystem components (F/B status, food pro-
duction, habitat quality, etc.), and trend analysis was a compo-
nent of the developed risk rankings (Gaichas et al, 2018).
Mischaracterized indicator trends can therefore lead to biases in
the risks chosen to assess the performance of management strat-
egies against.

In this study, we abstract away from issues surrounding the
identification and vetting of appropriate indicators but note
that this can be a challenging undertaking for which Bundy
et al. (2017) present a survey of the literature. We focus, in-
stead, on the ability to statistically identify trends for the broad
array of indicators used in marine ecosystem reporting; ranging
from large-scale climatological and oceanographic drivers
through the benefits derived by human society (e.g. commu-
nity well-being and stability). Given the known biases intro-
duced by common structural aspects of time series in trend
assessment, our goal here is to assess the feasibility of provid-
ing rigorous insights to managers in data limited situations.
We use Monte Carlo simulations to assess the performance of
the most commonly applied statistical models under a range of
time series lengths, trend strengths, and autocorrelation
regimes. The simulations are parameterized using the proper-
ties of indicators currently presented in the Mid-Atlantic and
New England State of the Ecosystem Reports, which are annual
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ecosystem status reports tailored for the US Mid-Atlantic and
New England Fishery Management Councils, respectively
(NEFSC, 2017a, b).

Results indicate that correctly identifying trends is problematic
using <30 data points, with both Type I and Type II error com-
mon. Even under the strongest signal-to-noise ratio (i.e. strong
trends and no autocorrelation) tests perform poorly when series
lengths are <30. The simulations highlight problems associated
with standardizing approaches across indicators, and suggest that
further thought is warranted on status and trend analysis in the
context of ecosystem reporting.

Methods

Data

Parameters used in simulations were chosen based on preliminary
analyses characterizing the distribution of trend and autocorrela-
tion strengths across 124 normalized time series that were candi-
dates for inclusion in the 2017 State of the Ecosystem (SOE)
reports (NEFSC, 2017a, b) (Figure 1). Trends in these candidate
time series were characterized by linear regression, with the mean
and upper 95th percentile for the absolute value of slopes chosen
for representation in simulations. We chose not to account for
autocorrelated error structure when estimating slopes in this
analysis, as our goal was simply to generate reasonable values to
simulate from.

The first- and second-order autoregressive parameters
(P1, p2) of SOE time series were estimated by fitting a second-
order autoregressive [AR(2)] model via maximum likelihood
estimation (MLE). The mean and 95th percentile of all estimated
p,values were chosen as our “medium” and “strong” autocorrela-
tion parameters for series simulated with AR(1) error. Analysis of
SOE time series to derive the average p, condition yielded a value
close to 0, and so we chose to simulate from p, = 0.2 to better
represent the influence of AR(2) error. To reasonably parameter-
ize simulation series residual variance, we fitted all residual series
with an AR(1) model estimating variance using MLE, and then
calculated the mean, first quartile, and third quartile of the result-
ing distribution of variances. Data and R code for this work are
available at https://github.com/seanhardison1/soe_simulations/.
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Figure 1. Frequency of estimated slopes (absolute values) (a), autocorrelation strengths (b), and time series residual variances (c) in 124 time
series considered for inclusion in the 2017 SOE report. The solid lines (a—c) represent distribution means. The dashed lines in a and b show
the 95th percentile for estimated trend slope and AR(1) error strengths, and the dashed lines in ¢ show the lower and upper quartiles for

series residual variance.
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Simulations

Simulated time series were generated through the addition of
AR(1) and AR(2) autoregressive processes to first-order linear
models:

Yt = oy + 061Xt+ €
€ = Pr1€—1 + Pr€r2 + @y, (1)
®; ~ N(0, d?)

where Y; is the simulated series at time t, o is the slope compo-
nent, and ¢, is the AR(k) process of order k. The error component
o, was assumed to be derived from Gaussian white noise. Setting
0, to 0 yielded the AR(1) error process. Through the preliminary
analysis detailed above, the levels of o; were 0.026, 0.051, and
0.147, which we combined with three levels of p;: 0, 0.43, and
0.9. Autoregressive parameters used to simulate from the AR(2)
model were p; = 0.43 and p, = 0.2, which we crossed with all
levels of trend. 10,000 simulated time series were assessed for
each component of our study.

To test for trend in simulated time series, we used a generalized
least squares (GLS) model selection process, Mann—Kendall
(MK) test, and Mann—Kendall test with trend-free pre-whitening
(MK-TFPW), which we describe in greater detail below. Both
similar nested GLS approaches and MK tests have been used
rather extensively in ecosystem-level reporting (Blanchard et al.,
2010; Butchart et al., 2010; Shannon et al., 2010; Canales et al.,
2015; NEFSC, 2017a, b, 2018a, b; Wiebe et al., 2017). The MK-
TFPW was included as an obvious extension for autocorrelated
time series, given the test attempts to overcome the failed inde-
pendent error assumption of the original MK specification.

We focused our analyses on rejection rates of the null hypothe-
sis of no trend, as this methodology is a common framework for
assessing the flexibility of trend models to deviations from
assumptions (Yue, Pilon, and Cavadias, 2002; Yue, Pilon,
Phinney, et al., 2002; Yue and Wang, 2002). Furthermore, null
hypothesis testing is often applied in ecosystem indicator report-
ing for assessing trend (NEFSC, 2017a, b, 2018a, b). Our first
analysis tested for trend in simulations crossed with all levels of
AR(1) error, trend strength, and series length. We then extended
this analysis for the scenario of no trend and strong autocorrela-
tion to larger sample sizes (N = 50-650) to highlight the short-
comings of small sample sizes when autocorrelated residuals are
present. To address the role of time series variance in trend detec-
tion, we also simulated the fully crossed autocorrelation and
trend strength scenario under low and high levels of series vari-
ance. Next, we simulated time series with an AR(2) error compo-
nent at all levels of trend. Our final analysis compared the efficacy
of the nonparametric Sen’s slope to the GLS estimator for assess-
ing trend effect size (i.e. slope) where trend was found to be sig-
nificant (p < 0.05).

Generalized least squares

GLS models (with or without modified error structures) have in
the past been a common approach to testing for trend in ecosys-
tem indicator assessments (Blanchard et al., 2010; Shannon et al.,
2010; Karnauskas et al. 2017; NEFSC, 2018a, b), and so a GLS
model selection procedure was chosen for simulation testing. If
simulations were generated with Gaussian or AR(1) error pro-
cesses, we fit two first-order linear models to each simulated se-
ries: one with uncorrelated residuals (i.e. linear regression) and
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one with correlated residuals [Equation (2)]. The best model fit
was then chosen using AIC corrected for small sample size
(AICc). When simulating from a model with AR(2) error, we in-
cluded a third linear model in the selection process with second-
order correlated residuals. The above model follows the same no-
tation as our simulated series. Setting p, and p, = 0 gave mod-
els with uncorrelated residuals. The model selection procedure
was implemented in R using the packages nlme and AICcmodavg
(Mazerolle, 2017; Pinheiro et al., 2018; R Core Team, 2018).

MK test

Further tests for trend in simulated time series were performed
using the MK test (Mann, 1945; Kendall, 1955) and the more ro-
bust MK-TFPW (Yue, Pilon, and Cavadias, 2002; Yue, Pilon,
Phinney, et al., 2002). The MK test, which has been used previ-
ously in ecosystem indicator reporting (NEFSC, 2017a, b; Gaichas
et al., 2018), is a nonparametric approach that assumes sample
data are independent and identically distributed. Serial correla-
tion within sample data has been found to lead to inflated rejec-
tion rates of the null hypothesis of no trend if no correction steps
are applied to the MK test (Kulkarni and Storch, 1992). Residual
pre-whitening is a common correction to address autocorrelation
within MK tests, although pre-whitening is known to reduce the
magnitude of existing trend (Yue and Wang, 2002). The MK-
TFPW is a step-wise procedure developed by Yue, Pilon, and
Cavadias (2002) and Yue, Pilon, Phinney, et al. (2002) to address
issues introduced by pre-whitening, and is further detailed below.
Under both MK and MK-TFPW frameworks, Kendall’s tau statis-
tic is given by:

S = Z:: Z;l:iﬂ gn(¥i = ¥i), (2)

where y is the response vector, # is the length of the series, and

lif x>0
sghn(x) = 0 iff x=0 ». (3)
—-l1if x<0

When there are no ties in the data, the variance of S is given by

V(s) = n(n— lfé(BZn—l— 5)7 @

and the distribution of S is approximately normal and symmetric
about a mean of 0 and variance V(S) as n — oo. The standardized
test statistic,

S—1
z=¢ 0 S=0 Y, (5)
S+1
—— S 0
Vi) T

is normally distributed with mean of zero and variance of one.
The null hypothesis of no trend is rejected at significance level « if
the probability 1 — ®(|Z]) < o, where ®(x) is the standard nor-
mal cumulative distribution function (Wang and Swail, 2001).
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Figure 2. Test rejection rates of simulated time series (p < 0.05) among different combinations of AR(1) process strength (p; = 0, 0.43, 0.9)
and trend strength (o; = 0, 0.026, 0.051, 0.147). Bar colour indicates the test for trend that was applied.

Mann-Kendall trend-free pre-whitening
The MK-TFPW procedure as developed by Yue and Wang (2002)
is composed of four steps:

(1) Removal of trend—The Theil-Sen estimator (Sen, 1968;
Theil, 1992) is used to estimate the slope of trend b, which is

removed from sample data if different from zero. b is given
by

b:hkdmnG%}%>Vi<j, (6)

where y; and y; are paired series values. Trend b is removed from
the series by

o=y — bt 7)

where y, is the original series at time step t.

(2) Trend-free pre-whitening—A pre-whitening step is applied to
the detrended series to remove the AR(1) component. First,
the lag—1 autocorrelation coefficient p, is found using

_ 1/n—-130 [7e = E()] [yes1 — E(n1)]
P1 1/”2:;1 [}’t _ E()’t)]z ’ (8)

where E(y;) is the mean of the series and p, is the lag—1

autocorrelation coefficient. Serial correlation is then removed
from the detrended series y, by

Y, =y, — puy, 9)

(3) Blending trend and residual series—Trend b is added to the
independent residual series Y, by

Y, =Y, +bt. (10)

(4) MK test—Trend is assessed through the application of the
MK test as discussed above.

The MK test and MK-TFPW were implemented using the Kendall
and zyp packages (McLeod, 2011; Bronaugh and Werner, 2013).

Results

Throughout this study we adopt an alpha value of 0.05 to assess
statistical significance. Overall, no method performed consistently
well in all scenarios of simulated trend strength, time series
length, and autocorrelation strength. We find time series length
has a large effect on the sensitivity of each test (i.e. the true posi-
tive rate) (Figure 2), and performance was generally best across
autocorrelation and trend scenarios when N = 30. With trend
present and no autocorrelation, trends were only detected with
>90% sensitivity when trend was strong (o; = 0.147). Even with
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Figure 3. Test rejection rates (p < 0.05) when simulations were created under the parameters of no trend («; = 0), strong autocorrelation
(p; = 0.9), and series lengths between N = 50 to N = 650. The dashed line shows the nominal rejection rate of 0.05.

Mann-Kendall MK-TFPW
predicted yes 0.713 0.181 0.149
predicted no 0.287 0.819 0.851
actualno  actual yes actualno  actual yes actualno  actual yes

Figure 4. Confusion matrices showing aggregate results from testing for trend across all combinations of autocorrelation and trend strength
when N = 30. Shading represents the performance of individual cells across tests, where darker shaded cells indicate a poorer outcome. For
example, when N = 30, the GLS procedure falsely predicted a trend when there was none in 14.9% of cases (white), whereas this was true in

28.1% of MK simulations (shaded).

a strong trend and no autocorrelation, no test detected a trend in
>50% of the series when N = 10. Again under no autocorrela-
tion, the increased sensitivity associated with increasing series
length diminished with reductions in trend strength across all
tests. The GLS test showed the highest rejection rates compared
to other tests under no autocorrelation (Figure 2, first column),
although this effect was minimal (per cent increase in rejection
rates between GLS and MK-TFPW was ~8%). For N = 20, 30 all
tests returned rejection rates near the nominal significance level
of 0.05 under the no trend and no autocorrelation scenarios. For
N = 10, the MK-TFPW and GLS tests exceeded the expected
nominal levels (MK-TFPW g, = 0.095, GLS;, = 0.093).

Under the no trend simulations, introducing autocorrelation
was shown to lead to inflated rejection rates in the MK test, and
the same bias in rejection rates can be seen for both GLS and
MK-TFPW tests. The bottom row of Figure 2 shows that under
no trend and medium to strong autocorrelation (p = 0.433 and
p =0.9), the rejection rate of the MK test increases with series
length, but other tests showed decreases in rejection rates.
Extending this no trend and strong autocorrelation scenario out
to longer series lengths shows that the GLS test approaches nomi-
nal rejection rates of 0.05 only when N > 650 (Figure 3). The
MK-TFPW approach performed poorly in this analysis, and also
did not converge to nominal rejection rates for N > 650, al-
though this work did not seek to identify a precise value of N
where either test reached nominal levels. As expected, the MK test
saw no reduction in rejection rates as N increased.

The GLS procedure performed the best under the no trend and
strong autocorrelation scenario: when N = 30, the rejection rate for

the GLS was 0.26; 26 and 56% lower than the MK-TFPW and MK
tests, respectively. The performance of the GLS test was also more
strongly affected by sample size than the MK-TFPW test. When
there was strong autocorrelation and no trend, rejection rates of the
MK-TFPW test decreased only 3% between N = 10 and N = 30.
Under the same conditions and GLS approach, rejection rates
decreased by 48%. However, the GLS approach also performed the
worst under no trend and strong autocorrelation when N = 10.

Under strong autocorrelation (p =0.9) and strong trend
(o; = 0.147), the relationship between time series length and re-
jection rate was positive, highlighting the importance of the trend
signal strength and series length on test results (Figure 2). Under
these parameters, the GLS procedure was slightly more sensitive
than the MK-TFPW test. The largest increase in sensitivity
between the MK-TFPW and GLS tests in this scenario came when
N = 10, where the GLS correctly identified trend 39% more often.
Series length mattered least for the GLS in this scenario, as sensi-
tivity decreased 3% between N = 10 and N = 20, but increased
30% for between N = 10 and N = 20 for the MK-TFPW.

When trend was weak or “medium” and autocorrelation was
strong, neither the GLS nor MK-TFPW tests were able to detect
trend in >55% of simulations regardless of series length.
Interestingly, as series lengths increased when trend was weak
(ie. a3 =0.026) and autocorrelation was strong (p; = 0.9),
rejection rates tended to decrease for the GLS procedure, but
remained stable for the MK-TFPW. The relative success of each test
when N = 30 can be seen in Figure 4, which shows that the GLS ap-
proach was most effective in avoiding false positives, but performed
similarly to the MK-TFPW test in terms of false negatives.
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Figure 6. Barplots showing rejection rates of tests for trend under simulations generated with AR(2) error (p; = 0.43, p, = 0.2) and crossed

with four levels of trend strength (o; = 0, 0.026, 0.051, 0.147).

To demonstrate the effect of error variance on test sensitivity,
we repeated the entire analysis with for two alternative values of
residual variance (62= 0.3 and 2 = 0.8). We only provide a small
subset of the results to illustrate the findings. As one would have
expected (Figure 5), increasing error variance reduces the ability
to successfully identify a trend. In addition, increasing autocorre-
lation will result in converging behaviour regardless of the value
of sigma, the rate being dependent on the signal-to-noise ratio.

Testing for trend in simulations derived from an AR(2) process
showed similar patterns of bias in rejection rates to the tests pre-
sented with strong AR(1) error (Figure 6). Rejection rates for the
GLS approach, which included an AR(2) component in the
model selection step, remained largely above nominal levels.
Rejection rates also decreased slightly with series length when
trend was weak or absent. When trend strength was medium,
GLS rejection rates increased with series lengths. Under the MK-
TFPW test, rejection rates across series lengths with weak or no
trend remained largely the same, and rejection rates for the MK-
TFPW did not start increasing with series lengths under trend
strength was medium or strong. The MK test saw increasing re-
jection rates as both series length and trend strength increased,
similar to its performance under the AR(1) scenario.

We next assessed the ability of each statistical approach to esti-
mate the true trend slope (Figure 7). In the nonparametric case,
we used Sen’s slope [as derived in Equation (6)], which is a

common statistic estimated alongside the MK and MK-TFPW
significance tests. Sen’s slope and the GLS estimator performed
similarly across all scenarios. For both methods, the spread of es-
timated trends increased with autocorrelation strength, although
this effect was mediated by increasing series length. Furthermore,
trends falsely identified in the “no trend” scenarios tended to
have the largest spread. As shown by the black median lines in
Figure 7, both GLS and Sen’s slope methods consistently overesti-
mated trend slope when there was strong AR(1) error or series
lengths were short. For example, when trend and AR(1) were
strong, the median estimate of trend when N = 10 was 78.6%
higher than the true value (ote = 0.147; 0y = 0.262). When
N = 30 under strong trend and AR(1), the median trend estimate
was 21.4% higher than the true trend.

Discussion

Ecosystem reporting is vital to the development of IEAs, which
lay out the framework for moving towards ecosystem-based fish-
ery management (EBFM) (Levin et al., 2009). The key analytical
foundations to all IEA products revolve around the concept of in-
dicator change; with managers most interested in short-term
changes to indicator status (Wagner et al., 2013). Here, we
addressed the shortcomings of identifying significant trends in in-
dicator time series given the common problems of small sample
size and autocorrelation.
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Figure 7. Violin plots showing probability densities of significant (p < 0.05) estimated trends from GLS and Sen’s slope procedures under
varying autocorrelation scenarios (p; = 0, 0.43, 0.9), simulation lengths (N = 10, 20, 30), and trend strengths (a; = 0, 0.026, 0.051, 0.147). The
size of each density estimate corresponds to the number of tests rejecting the null hypothesis of no trend under each scenario. Narrow lines
represent the median slope estimate for each simulated scenario, and thicker background lines represent the true trend.

The key result from this study was that when no trend was pre-
sent, none of the tests we examined returned rejection rates at the
nominal 0.05 level under even weak amounts of autocorrelation,
regardless of a priori incorporation of known simulation error
structures (Figures 2 and 6). This held true for all lengths of time
series in the study. Given this outcome, we advise caution when
testing for trend in indicator time series using null hypothesis sig-
nificance testing, and suggest a thorough examination of error
structure and distribution family be accomplished prior to imple-
menting tests for trend.

If we consider only simulations where N = 30, the GLS proce-
dure we applied minimized false positives across AR(1) error
strengths, although at smaller series lengths error rates between
the MK-TFPW test and GLS were more similar. The GLS proce-
dure also approached nominal rejection rates under the extended
scenario of strong AR(1) error and no trend more rapidly than
the MK-TFPW (Figure 3); however, neither reached 0.05 while N
< 650. When no trend or autocorrelation were present, rejection
rates for the GLS and MK-TFPW hovered above the nominal 0.05
level. This result was likely due to the influence of small sample
size in both tests, as the GLS procedure relied upon a likelihood
ratio tests that is known to be biased at small sample sizes
(Bartlett, 1937). The breakdown of the MK-TFPW when N < 20
is not fully understood as references in the literature (Yue, Pilon,
and Cavadias, 2002; Yue, Pilon, Phinney, et al, 2002; Yue and
Wang, 2002) limit its use to N > 20.

In assessing magnitude of trend slope (Figure 7), the MK-
TFPW test and GLS performed similarly: both tended to over-
shoot estimates of trend strength when autocorrelation was pre-
sent or series lengths were small. That rejection rates and
parameter estimates are biased by autocorrelation in tests for
trend is not a new concept (Storch, 1999; Yue, Pilon, and
Cavadias, 2002; Yue, Pilon, Phinney, et al., 2002; Yue and Wang,
2002; Beale et al., 2010). However, by framing these results in the
context of IEA, we hope to identify where current methodologies
to assessing trend in time series may be improved for improving
management outcomes. While we understand ecological data
exists in many forms (for example continuous data, count data,
data of proportions), in this study we focused our attention ex-
clusively on continuous data to allow the comparison of GLS to
the nonparametric methods described above. Using GLS on other
types of data would not be appropriate. The natural model choice
for these other data types would be a generalized linear model, al-
though this was out of scope for this study.

In the context of hydrological literature, the upper limit of
time series lengths seen in our ecosystem indicator data sets in
the Northeast United States would be considered short (Bayazit,
2015). As discussed above, testing for trend in such short time se-
ries may result in an increased rate of false positives, but the fail-
ure to identify trend when it exists due to the presence of
autocorrelation may also occur. We found that this was especially
true when simulating from models with weak trend and
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autocorrelated residuals. This effect was mediated by simulation
variance, as simulations with lower variance had higher rejection
rates than simulations with higher variance, although the effect of
variance on rejection rate diminished as autocorrelation in-
creased. This suggests that even when time series variance was rel-
atively low (i.e. the 25th percentile of variance in empirical data),
the presence of autocorrelation effectively masked the detection
of trends by both GLS and MK-TFPW tests.

We have shown that there is no solution in small sample sizes
(Figure 3), but refrain from suggesting there is no value in test-
ing for trends in time series. Instead, we advise that a “shotgun”
approach to assessing trends in many indicator time series with-
out consideration of error structures and series lengths will likely
lead to both Type I and Type II error. Furthermore, the implica-
tions of trade-offs in Type I and Type II error must be con-
fronted prior to applying tests for trend, as detection of “false”
trend does not imply an absence of biological meaning to the ob-
served phenomena. As discussed in Vogel et al. (2013) and
Bayazit et al. (2015), the management and societal impacts of an
inflation in rates of mischaracterized trend must also be consid-
ered. Specifically, practitioners must weigh the consequences of
over-preparation if a false trend is acted upon against under-
preparation if a true trend is missed. From the perspective of
IEA, the mischaracterization of trends in ecosystem reporting
has the potential to propagate into risk assessments, ecosystem
models, and potentially management decisions, leading to mis-
management of resources and eroded stakeholder trust in the
scientific process.

Null hypothesis significance testing for trend is fraught with
pitfalls related to interpretation of p-values showing “statistical
significance” (see Wasserstein and Lazar, 2016 for the ASA state-
ment on p-values). A more intuitive and flexible approach to
trend assessment would be to simply present more information
with each assessed time series. Nicholls (2001) suggested that
the arbitrary (i.e. “p < 0.05”) null hypothesis testing framework
be replaced by the presentation of confidence intervals for trend
effect size. This approach has the potential to provide more con-
textual information to managers, but as we show above, is lim-
ited by the reality that trends (and therefore confidence
intervals for effect size) are often misrepresented when series
length is small and autocorrelation exists. Supplementing eco-
system reporting documents with methodological summaries
could be useful to highlight these limitations and provide realis-
tic expectations for managers (Wagner et al., 2013). Smoothing
techniques, such as those implemented by the OSPAR
Coordinated Monitoring Program for environmental contami-
nants (OSPAR Commission, 2014), have been used to assess sta-
tus and trend in a more limited setting, and the impact of
autocorrelation on performance of these models should be in-
vestigated further.

A different approach to trend assessment departs from null hy-
pothesis testing altogether in favour of a Bayesian framework.
Wagner et al. (2013) suggests Dynamic Linear Models (DLMs)
for indicators of small sample size. Bayesian DLMs allow for
model coefficients (e.g. slope) to change with time while provid-
ing probabilities of rate changes. This approach introduces
greater complexity into the common “up or down” model sub-
scribed to by current ecosystem status reports, and could there-
fore provide greater insight to managers. In an example of
Bayesian regression, Wade (2000) showed how a series with larger
residual variance but a biologically significant trend would be
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considered non-significant by a frequentist approach, but was
properly assessed by Bayesian methods. This framework could be
adopted by analysts to answer specific questions that resource
managers are interested in addressing; e.g. how likely is it that an
undesirable trend exists in a time series? While Bayesian methods
cannot side-step the reality of small sample sizes, their use pro-
vides managers with a probabilistic framework for decision-
making that can be more intuitive than the frequentist approach
(Wade, 2000; Wagner et al., 2013).

Deriving trends from disparate ecosystem indicators is chal-
lenging in part due to the goal of applying a single statistical ap-
proach to time series with a wide range of series lengths and error
structures. The complexity of the chosen method must be bal-
anced with its applicability to a wide range of indicators and the
interpretability of its results. Our work shows that blindly imple-
menting this approach will likely result in assigning spurious
trends or missing important patterns. A subtler approach for
trend analyses in ecosystem reporting would provide better out-
comes for economic, ecological, and social systems in the context
of EBFM decision-making.
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