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The identification of trends in ecosystem indicators has become a core component of ecosystem approaches to resource management, al-
though oftentimes assumptions of statistical models are not properly accounted for in the reporting process. To explore the limitations of
trend analysis of short times series, we applied three common methods of trend detection, including a generalized least squares model selec-
tion approach, the Mann–Kendall test, and Mann–Kendall test with trend-free pre-whitening to simulated time series of varying trend and
autocorrelation strengths. Our results suggest that the ability to detect trends in time series is hampered by the influence of autocorrelated
residuals in short series lengths. While it is known that tests designed to account for autocorrelation will approach nominal rejection rates as
series lengths increase, the results of this study indicate biased rejection rates in the presence of even weak autocorrelation for series lengths
often encountered in indicators developed for ecosystem-level reporting (N ¼ 10, 20, 30). This work has broad implications for ecosystem-
level reporting, where indicator time series are often limited in length, maintain a variety of error structures, and are typically assessed using a
single statistical method applied uniformly across all time series.
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Introduction
The development and analysis of indicators plays a key strategic

role in implementing the Ecosystem Approach for a host of sci-

ence, management, and intergovernmental organizations (Garcia

et al., 2003; Secretariat of the Convention on Biological Diversity,

2004; NOAA, 2006; Levin et al., 2009; Perry et al., 2010; ICES,

2019). At least partially in support of this, substantial effort has

been invested in assessing indicator status and trends for the pur-

pose of ecosystem reporting, in all of its guises (Blanchard et al.,

2010; Butchart et al., 2010; Garfield and Harvey, 2016; NEFSC,

2017a, b, 2018a, b; Wiebe et al., 2017).

Ecosystem-level indicators often vary greatly with respect to

the length of the series under investigation. The ultimate goal of

providing integrated advice often leads analysts to truncate lon-

ger data sets; generating a consistent series length across indica-

tors for comparison purposes (Blanchard et al., 2010; Shannon

et al., 2010; Shin and Shannon, 2010; Canales et al., 2015).

Further reinforcing this approach is the fact that managers tend

to focus on short-term issues (Secretariat of the Convention on

Biological Diversity, 2004; Wagner et al., 2013), which ulti-

mately necessitates the assessment of trajectories at relatively

short time scales.

These issues can lead to the use of short time series for the pur-

pose of ecosystem reporting; i.e. <20 data points per indicator

(Mackas et al., 2001; Nicholson and Jennings, 2004; Blanchard

et al., 2010; Shannon et al., 2010; Shin and Shannon, 2010;

Canales et al., 2015; Karnauskas et al., 2017). Statistical trend

analysis of indicator data is the gold standard for managers, stake-

holders, and analysts. However, in reality trend analysis in this

context can be extremely difficult. Evidence indicates that the sta-

tistical power to identify trends using short time series may be

limited in general (Bence, 1995; Nicholson and Jennings, 2004;

Wagner et al., 2013). The hydrological, climatological, and statis-

tical literature show that autocorrelation in time series can falsely
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inflate trend detection rates when models are incorrectly specified

assuming the independence of error terms (Kulkarni and Storch,

1992; Woodward et al., 1997; Hamed and Rao, 1998; Storch,

1999; Zhang et al., 2000; Nicholls, 2001; Wang and Swail, 2001;

Yue and Wang, 2002; Roy et al., 2004; Bayazit, 2015). The magni-

tude of assigned trends can also be inflated by the presence of au-

tocorrelation, and both of these problems are amplified by short

time series (Kulkarni and Storch, 1992; Yue and Wang, 2002).

Despite this, there has been no systematic investigation for the

performance of models in detecting trends across the full breadth

of indicators utilized in ecosystem reporting.

Assessments of ecosystem status and trend are important

pieces of the Ecosystem Approach, particularly with respect to

integrated ecosystem assessments (IEAs) (Zador et al., 2017),

and so it should be emphasized that the ability to detect trends

has implications for future management outcomes. For exam-

ple, in the Northeast United States indicators were used in a

risk assessment based on their capacity to capture the potential

threats to valuable ecosystem components (F/B status, food pro-

duction, habitat quality, etc.), and trend analysis was a compo-

nent of the developed risk rankings (Gaichas et al., 2018).

Mischaracterized indicator trends can therefore lead to biases in

the risks chosen to assess the performance of management strat-

egies against.

In this study, we abstract away from issues surrounding the

identification and vetting of appropriate indicators but note

that this can be a challenging undertaking for which Bundy

et al. (2017) present a survey of the literature. We focus, in-

stead, on the ability to statistically identify trends for the broad

array of indicators used in marine ecosystem reporting; ranging

from large-scale climatological and oceanographic drivers

through the benefits derived by human society (e.g. commu-

nity well-being and stability). Given the known biases intro-

duced by common structural aspects of time series in trend

assessment, our goal here is to assess the feasibility of provid-

ing rigorous insights to managers in data limited situations.

We use Monte Carlo simulations to assess the performance of

the most commonly applied statistical models under a range of

time series lengths, trend strengths, and autocorrelation

regimes. The simulations are parameterized using the proper-

ties of indicators currently presented in the Mid-Atlantic and

New England State of the Ecosystem Reports, which are annual

ecosystem status reports tailored for the US Mid-Atlantic and

New England Fishery Management Councils, respectively

(NEFSC, 2017a, b).

Results indicate that correctly identifying trends is problematic

using <30 data points, with both Type I and Type II error com-

mon. Even under the strongest signal-to-noise ratio (i.e. strong

trends and no autocorrelation) tests perform poorly when series

lengths are <30. The simulations highlight problems associated

with standardizing approaches across indicators, and suggest that

further thought is warranted on status and trend analysis in the

context of ecosystem reporting.

Methods
Data
Parameters used in simulations were chosen based on preliminary

analyses characterizing the distribution of trend and autocorrela-

tion strengths across 124 normalized time series that were candi-

dates for inclusion in the 2017 State of the Ecosystem (SOE)

reports (NEFSC, 2017a, b) (Figure 1). Trends in these candidate

time series were characterized by linear regression, with the mean

and upper 95th percentile for the absolute value of slopes chosen

for representation in simulations. We chose not to account for

autocorrelated error structure when estimating slopes in this

analysis, as our goal was simply to generate reasonable values to

simulate from.

The first- and second-order autoregressive parameters

q1; q2ð Þ of SOE time series were estimated by fitting a second-

order autoregressive [AR(2)] model via maximum likelihood

estimation (MLE). The mean and 95th percentile of all estimated

q1values were chosen as our “medium” and “strong” autocorrela-

tion parameters for series simulated with AR(1) error. Analysis of

SOE time series to derive the average q2 condition yielded a value

close to 0, and so we chose to simulate from q2 ¼ 0:2 to better

represent the influence of ARð2Þ error. To reasonably parameter-

ize simulation series residual variance, we fitted all residual series

with an AR(1) model estimating variance using MLE, and then

calculated the mean, first quartile, and third quartile of the result-

ing distribution of variances. Data and R code for this work are

available at https://github.com/seanhardison1/soe_simulations/.
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Figure 1. Frequency of estimated slopes (absolute values) (a), autocorrelation strengths (b), and time series residual variances (c) in 124 time
series considered for inclusion in the 2017 SOE report. The solid lines (a–c) represent distribution means. The dashed lines in a and b show
the 95th percentile for estimated trend slope and AR(1) error strengths, and the dashed lines in c show the lower and upper quartiles for
series residual variance.
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Simulations
Simulated time series were generated through the addition of

ARð1Þ and ARð2Þ autoregressive processes to first-order linear

models:

Yt ¼ a0 þ a1Xt þ �t

�t ¼ q1�t�1 þ q2�t�2 þ xt

xt � Nð0; r2Þ
; (1)

where Yt is the simulated series at time t , a1 is the slope compo-

nent, and �t is the ARðkÞ process of order k. The error component

xt was assumed to be derived from Gaussian white noise. Setting

q2 to 0 yielded the ARð1Þ error process. Through the preliminary

analysis detailed above, the levels of a1 were 0.026, 0.051, and

0.147, which we combined with three levels of q1: 0, 0.43, and

0.9. Autoregressive parameters used to simulate from the AR(2)

model were q1 ¼ 0:43 and q2 ¼ 0:2, which we crossed with all

levels of trend. 10,000 simulated time series were assessed for

each component of our study.

To test for trend in simulated time series, we used a generalized

least squares (GLS) model selection process, Mann–Kendall

(MK) test, and Mann–Kendall test with trend-free pre-whitening

(MK-TFPW), which we describe in greater detail below. Both

similar nested GLS approaches and MK tests have been used

rather extensively in ecosystem-level reporting (Blanchard et al.,

2010; Butchart et al., 2010; Shannon et al., 2010; Canales et al.,

2015; NEFSC, 2017a, b, 2018a, b; Wiebe et al., 2017). The MK-

TFPW was included as an obvious extension for autocorrelated

time series, given the test attempts to overcome the failed inde-

pendent error assumption of the original MK specification.

We focused our analyses on rejection rates of the null hypothe-

sis of no trend, as this methodology is a common framework for

assessing the flexibility of trend models to deviations from

assumptions (Yue, Pilon, and Cavadias, 2002; Yue, Pilon,

Phinney, et al., 2002; Yue and Wang, 2002). Furthermore, null

hypothesis testing is often applied in ecosystem indicator report-

ing for assessing trend (NEFSC, 2017a, b, 2018a, b). Our first

analysis tested for trend in simulations crossed with all levels of

AR(1) error, trend strength, and series length. We then extended

this analysis for the scenario of no trend and strong autocorrela-

tion to larger sample sizes (N ¼ 50–650) to highlight the short-

comings of small sample sizes when autocorrelated residuals are

present. To address the role of time series variance in trend detec-

tion, we also simulated the fully crossed autocorrelation and

trend strength scenario under low and high levels of series vari-

ance. Next, we simulated time series with an AR(2) error compo-

nent at all levels of trend. Our final analysis compared the efficacy

of the nonparametric Sen’s slope to the GLS estimator for assess-

ing trend effect size (i.e. slope) where trend was found to be sig-

nificant (p < 0.05).

Generalized least squares
GLS models (with or without modified error structures) have in

the past been a common approach to testing for trend in ecosys-

tem indicator assessments (Blanchard et al., 2010; Shannon et al.,

2010; Karnauskas et al. 2017; NEFSC, 2018a, b), and so a GLS

model selection procedure was chosen for simulation testing. If

simulations were generated with Gaussian or AR(1) error pro-

cesses, we fit two first-order linear models to each simulated se-

ries: one with uncorrelated residuals (i.e. linear regression) and

one with correlated residuals [Equation (2)]. The best model fit

was then chosen using AIC corrected for small sample size

(AICc). When simulating from a model with AR(2) error, we in-

cluded a third linear model in the selection process with second-

order correlated residuals. The above model follows the same no-

tation as our simulated series. Setting q1 and q2 ¼ 0 gave mod-

els with uncorrelated residuals. The model selection procedure

was implemented in R using the packages nlme and AICcmodavg

(Mazerolle, 2017; Pinheiro et al., 2018; R Core Team, 2018).

MK test
Further tests for trend in simulated time series were performed

using the MK test (Mann, 1945; Kendall, 1955) and the more ro-

bust MK-TFPW (Yue, Pilon, and Cavadias, 2002; Yue, Pilon,

Phinney, et al., 2002). The MK test, which has been used previ-

ously in ecosystem indicator reporting (NEFSC, 2017a, b; Gaichas

et al., 2018), is a nonparametric approach that assumes sample

data are independent and identically distributed. Serial correla-

tion within sample data has been found to lead to inflated rejec-

tion rates of the null hypothesis of no trend if no correction steps

are applied to the MK test (Kulkarni and Storch, 1992). Residual

pre-whitening is a common correction to address autocorrelation

within MK tests, although pre-whitening is known to reduce the

magnitude of existing trend (Yue and Wang, 2002). The MK-

TFPW is a step-wise procedure developed by Yue, Pilon, and

Cavadias (2002) and Yue, Pilon, Phinney, et al. (2002) to address

issues introduced by pre-whitening, and is further detailed below.

Under both MK and MK-TFPW frameworks, Kendall’s tau statis-

tic is given by:

S ¼
Xn�1

i¼1

Xn

j¼iþ1
sgn yj � yið Þ; (2)

where y is the response vector, n is the length of the series, and

sgn xð Þ ¼
1 if x > 0

0 if x ¼ 0

�1 if x < 0

8<
:

9=
;: (3)

When there are no ties in the data, the variance of S is given by

V Sð Þ ¼ nðn� 1Þð2nþ 5Þ
18

; (4)

and the distribution of S is approximately normal and symmetric

about a mean of 0 and variance V(S) as n!1. The standardized

test statistic,

Z ¼

S � 1

V ðSÞ S > 0

0 S ¼ 0
S þ 1

V ðSÞ S < 0

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
; (5)

is normally distributed with mean of zero and variance of one.

The null hypothesis of no trend is rejected at significance level a if

the probability 1� UðjZ jÞ < a, where UðxÞ is the standard nor-

mal cumulative distribution function (Wang and Swail, 2001).
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Mann–Kendall trend-free pre-whitening
The MK-TFPW procedure as developed by Yue and Wang (2002)

is composed of four steps:

(1) Removal of trend—The Theil–Sen estimator (Sen, 1968;

Theil, 1992) is used to estimate the slope of trend b, which is

removed from sample data if different from zero. b is given

by

b ¼ Median
yj � yi

j � i

� �
8i < j; (6)

where yi and yj are paired series values. Trend b is removed from

the series by

y
0

t ¼ yt � bt ; (7)

where yt is the original series at time step t .

(2) Trend-free pre-whitening—A pre-whitening step is applied to

the detrended series to remove the AR(1) component. First,

the lag�1 autocorrelation coefficient q1 is found using

q1 ¼
1=n� 1

Pn�1
t¼1 yt � E ytð Þ
� �

ytþ1 � E ytð Þ
� �

1=n
Pn

t¼1 yt � E ytð Þ
� �2

; (8)

where E ytð Þ is the mean of the series and q1 is the lag�1

autocorrelation coefficient. Serial correlation is then removed

from the detrended series y
0
t by

Y
0

t ¼ y
0

t � q1y
0

t : (9)

(3) Blending trend and residual series—Trend b is added to the

independent residual series Y
0
t by

Yt�
¼ Y

0

t þ bt : (10)

(4) MK test—Trend is assessed through the application of the

MK test as discussed above.

The MK test and MK-TFPW were implemented using the Kendall

and zyp packages (McLeod, 2011; Bronaugh and Werner, 2013).

Results
Throughout this study we adopt an alpha value of 0.05 to assess

statistical significance. Overall, no method performed consistently

well in all scenarios of simulated trend strength, time series

length, and autocorrelation strength. We find time series length

has a large effect on the sensitivity of each test (i.e. the true posi-

tive rate) (Figure 2), and performance was generally best across

autocorrelation and trend scenarios when N ¼ 30. With trend

present and no autocorrelation, trends were only detected with

>90% sensitivity when trend was strong (a1 ¼ 0:147). Even with
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Figure 2. Test rejection rates of simulated time series (p < 0.05) among different combinations of AR(1) process strength (q1 ¼ 0, 0.43, 0.9)
and trend strength (a1 ¼ 0, 0.026, 0.051, 0.147). Bar colour indicates the test for trend that was applied.
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a strong trend and no autocorrelation, no test detected a trend in

>50% of the series when N ¼ 10. Again under no autocorrela-

tion, the increased sensitivity associated with increasing series

length diminished with reductions in trend strength across all

tests. The GLS test showed the highest rejection rates compared

to other tests under no autocorrelation (Figure 2, first column),

although this effect was minimal (per cent increase in rejection

rates between GLS and MK-TFPW was �8%). For N ¼ 20, 30 all

tests returned rejection rates near the nominal significance level

of 0.05 under the no trend and no autocorrelation scenarios. For

N ¼ 10, the MK-TFPW and GLS tests exceeded the expected

nominal levels (MK-TFPWsig ¼ 0.095, GLSsig ¼ 0.093).

Under the no trend simulations, introducing autocorrelation

was shown to lead to inflated rejection rates in the MK test, and

the same bias in rejection rates can be seen for both GLS and

MK-TFPW tests. The bottom row of Figure 2 shows that under

no trend and medium to strong autocorrelation (q ¼ 0:433 and

q ¼ 0:9), the rejection rate of the MK test increases with series

length, but other tests showed decreases in rejection rates.

Extending this no trend and strong autocorrelation scenario out

to longer series lengths shows that the GLS test approaches nomi-

nal rejection rates of 0.05 only when N > 650 (Figure 3). The

MK-TFPW approach performed poorly in this analysis, and also

did not converge to nominal rejection rates for N > 650, al-

though this work did not seek to identify a precise value of N

where either test reached nominal levels. As expected, the MK test

saw no reduction in rejection rates as N increased.

The GLS procedure performed the best under the no trend and

strong autocorrelation scenario: when N ¼ 30, the rejection rate for

the GLS was 0.26; 26 and 56% lower than the MK-TFPW and MK

tests, respectively. The performance of the GLS test was also more

strongly affected by sample size than the MK-TFPW test. When

there was strong autocorrelation and no trend, rejection rates of the

MK-TFPW test decreased only 3% between N ¼ 10 and N ¼ 30.

Under the same conditions and GLS approach, rejection rates

decreased by 48%. However, the GLS approach also performed the

worst under no trend and strong autocorrelation when N ¼ 10.

Under strong autocorrelation (q ¼ 0:9) and strong trend

(a1 ¼ 0:147), the relationship between time series length and re-

jection rate was positive, highlighting the importance of the trend

signal strength and series length on test results (Figure 2). Under

these parameters, the GLS procedure was slightly more sensitive

than the MK-TFPW test. The largest increase in sensitivity

between the MK-TFPW and GLS tests in this scenario came when

N ¼ 10, where the GLS correctly identified trend 39% more often.

Series length mattered least for the GLS in this scenario, as sensi-

tivity decreased 3% between N ¼ 10 and N ¼ 20, but increased

30% for between N ¼ 10 and N ¼ 20 for the MK-TFPW.

When trend was weak or “medium” and autocorrelation was

strong, neither the GLS nor MK-TFPW tests were able to detect

trend in >55% of simulations regardless of series length.

Interestingly, as series lengths increased when trend was weak

(i.e. a1 ¼ 0:026) and autocorrelation was strong ðq1 ¼ 0:9Þ,
rejection rates tended to decrease for the GLS procedure, but

remained stable for the MK-TFPW. The relative success of each test

when N ¼ 30 can be seen in Figure 4, which shows that the GLS ap-

proach was most effective in avoiding false positives, but performed

similarly to the MK-TFPW test in terms of false negatives.
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Figure 3. Test rejection rates (p < 0.05) when simulations were created under the parameters of no trend (a1 ¼ 0), strong autocorrelation
(q1 ¼ 0.9), and series lengths between N ¼ 50 to N ¼ 650. The dashed line shows the nominal rejection rate of 0.05.
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To demonstrate the effect of error variance on test sensitivity,

we repeated the entire analysis with for two alternative values of

residual variance (r2¼ 0.3 and r2 ¼ 0.8). We only provide a small

subset of the results to illustrate the findings. As one would have

expected (Figure 5), increasing error variance reduces the ability

to successfully identify a trend. In addition, increasing autocorre-

lation will result in converging behaviour regardless of the value

of sigma, the rate being dependent on the signal-to-noise ratio.

Testing for trend in simulations derived from an AR(2) process

showed similar patterns of bias in rejection rates to the tests pre-

sented with strong AR(1) error (Figure 6). Rejection rates for the

GLS approach, which included an AR(2) component in the

model selection step, remained largely above nominal levels.

Rejection rates also decreased slightly with series length when

trend was weak or absent. When trend strength was medium,

GLS rejection rates increased with series lengths. Under the MK-

TFPW test, rejection rates across series lengths with weak or no

trend remained largely the same, and rejection rates for the MK-

TFPW did not start increasing with series lengths under trend

strength was medium or strong. The MK test saw increasing re-

jection rates as both series length and trend strength increased,

similar to its performance under the AR(1) scenario.

We next assessed the ability of each statistical approach to esti-

mate the true trend slope (Figure 7). In the nonparametric case,

we used Sen’s slope [as derived in Equation (6)], which is a

common statistic estimated alongside the MK and MK-TFPW

significance tests. Sen’s slope and the GLS estimator performed

similarly across all scenarios. For both methods, the spread of es-

timated trends increased with autocorrelation strength, although

this effect was mediated by increasing series length. Furthermore,

trends falsely identified in the “no trend” scenarios tended to

have the largest spread. As shown by the black median lines in

Figure 7, both GLS and Sen’s slope methods consistently overesti-

mated trend slope when there was strong AR(1) error or series

lengths were short. For example, when trend and AR(1) were

strong, the median estimate of trend when N ¼ 10 was 78.6%

higher than the true value ðatrue ¼ 0:147; aest ¼ 0:262Þ. When

N ¼ 30 under strong trend and AR(1), the median trend estimate

was 21.4% higher than the true trend.

Discussion
Ecosystem reporting is vital to the development of IEAs, which

lay out the framework for moving towards ecosystem-based fish-

ery management (EBFM) (Levin et al., 2009). The key analytical

foundations to all IEA products revolve around the concept of in-

dicator change; with managers most interested in short-term

changes to indicator status (Wagner et al., 2013). Here, we

addressed the shortcomings of identifying significant trends in in-

dicator time series given the common problems of small sample

size and autocorrelation.
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weak trend across AR(1) error strengths when N ¼ 30. The test rejection rates from the low variance simulations are shown by the circle, and
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The key result from this study was that when no trend was pre-

sent, none of the tests we examined returned rejection rates at the

nominal 0.05 level under even weak amounts of autocorrelation,

regardless of a priori incorporation of known simulation error

structures (Figures 2 and 6). This held true for all lengths of time

series in the study. Given this outcome, we advise caution when

testing for trend in indicator time series using null hypothesis sig-

nificance testing, and suggest a thorough examination of error

structure and distribution family be accomplished prior to imple-

menting tests for trend.

If we consider only simulations where N ¼ 30, the GLS proce-

dure we applied minimized false positives across AR(1) error

strengths, although at smaller series lengths error rates between

the MK-TFPW test and GLS were more similar. The GLS proce-

dure also approached nominal rejection rates under the extended

scenario of strong AR(1) error and no trend more rapidly than

the MK-TFPW (Figure 3); however, neither reached 0.05 while N

� 650. When no trend or autocorrelation were present, rejection

rates for the GLS and MK-TFPW hovered above the nominal 0.05

level. This result was likely due to the influence of small sample

size in both tests, as the GLS procedure relied upon a likelihood

ratio tests that is known to be biased at small sample sizes

(Bartlett, 1937). The breakdown of the MK-TFPW when N < 20

is not fully understood as references in the literature (Yue, Pilon,

and Cavadias, 2002; Yue, Pilon, Phinney, et al., 2002; Yue and

Wang, 2002) limit its use to N > 20.

In assessing magnitude of trend slope (Figure 7), the MK-

TFPW test and GLS performed similarly: both tended to over-

shoot estimates of trend strength when autocorrelation was pre-

sent or series lengths were small. That rejection rates and

parameter estimates are biased by autocorrelation in tests for

trend is not a new concept (Storch, 1999; Yue, Pilon, and

Cavadias, 2002; Yue, Pilon, Phinney, et al., 2002; Yue and Wang,

2002; Beale et al., 2010). However, by framing these results in the

context of IEA, we hope to identify where current methodologies

to assessing trend in time series may be improved for improving

management outcomes. While we understand ecological data

exists in many forms (for example continuous data, count data,

data of proportions), in this study we focused our attention ex-

clusively on continuous data to allow the comparison of GLS to

the nonparametric methods described above. Using GLS on other

types of data would not be appropriate. The natural model choice

for these other data types would be a generalized linear model, al-

though this was out of scope for this study.

In the context of hydrological literature, the upper limit of

time series lengths seen in our ecosystem indicator data sets in

the Northeast United States would be considered short (Bayazit,

2015). As discussed above, testing for trend in such short time se-

ries may result in an increased rate of false positives, but the fail-

ure to identify trend when it exists due to the presence of

autocorrelation may also occur. We found that this was especially

true when simulating from models with weak trend and
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Figure 7. Violin plots showing probability densities of significant (p < 0.05) estimated trends from GLS and Sen’s slope procedures under
varying autocorrelation scenarios (q1 ¼ 0, 0.43, 0.9), simulation lengths (N ¼ 10, 20, 30), and trend strengths (a1 ¼ 0, 0.026, 0.051, 0.147). The
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autocorrelated residuals. This effect was mediated by simulation

variance, as simulations with lower variance had higher rejection

rates than simulations with higher variance, although the effect of

variance on rejection rate diminished as autocorrelation in-

creased. This suggests that even when time series variance was rel-

atively low (i.e. the 25th percentile of variance in empirical data),

the presence of autocorrelation effectively masked the detection

of trends by both GLS and MK-TFPW tests.

We have shown that there is no solution in small sample sizes

(Figure 3), but refrain from suggesting there is no value in test-

ing for trends in time series. Instead, we advise that a “shotgun”

approach to assessing trends in many indicator time series with-

out consideration of error structures and series lengths will likely

lead to both Type I and Type II error. Furthermore, the implica-

tions of trade-offs in Type I and Type II error must be con-

fronted prior to applying tests for trend, as detection of “false”

trend does not imply an absence of biological meaning to the ob-

served phenomena. As discussed in Vogel et al. (2013) and

Bayazit et al. (2015), the management and societal impacts of an

inflation in rates of mischaracterized trend must also be consid-

ered. Specifically, practitioners must weigh the consequences of

over-preparation if a false trend is acted upon against under-

preparation if a true trend is missed. From the perspective of

IEA, the mischaracterization of trends in ecosystem reporting

has the potential to propagate into risk assessments, ecosystem

models, and potentially management decisions, leading to mis-

management of resources and eroded stakeholder trust in the

scientific process.

Null hypothesis significance testing for trend is fraught with

pitfalls related to interpretation of p-values showing “statistical

significance” (see Wasserstein and Lazar, 2016 for the ASA state-

ment on p-values). A more intuitive and flexible approach to

trend assessment would be to simply present more information

with each assessed time series. Nicholls (2001) suggested that

the arbitrary (i.e. “p < 0.05”) null hypothesis testing framework

be replaced by the presentation of confidence intervals for trend

effect size. This approach has the potential to provide more con-

textual information to managers, but as we show above, is lim-

ited by the reality that trends (and therefore confidence

intervals for effect size) are often misrepresented when series

length is small and autocorrelation exists. Supplementing eco-

system reporting documents with methodological summaries

could be useful to highlight these limitations and provide realis-

tic expectations for managers (Wagner et al., 2013). Smoothing

techniques, such as those implemented by the OSPAR

Coordinated Monitoring Program for environmental contami-

nants (OSPAR Commission, 2014), have been used to assess sta-

tus and trend in a more limited setting, and the impact of

autocorrelation on performance of these models should be in-

vestigated further.

A different approach to trend assessment departs from null hy-

pothesis testing altogether in favour of a Bayesian framework.

Wagner et al. (2013) suggests Dynamic Linear Models (DLMs)

for indicators of small sample size. Bayesian DLMs allow for

model coefficients (e.g. slope) to change with time while provid-

ing probabilities of rate changes. This approach introduces

greater complexity into the common “up or down” model sub-

scribed to by current ecosystem status reports, and could there-

fore provide greater insight to managers. In an example of

Bayesian regression, Wade (2000) showed how a series with larger

residual variance but a biologically significant trend would be

considered non-significant by a frequentist approach, but was

properly assessed by Bayesian methods. This framework could be

adopted by analysts to answer specific questions that resource

managers are interested in addressing; e.g. how likely is it that an

undesirable trend exists in a time series? While Bayesian methods

cannot side-step the reality of small sample sizes, their use pro-

vides managers with a probabilistic framework for decision-

making that can be more intuitive than the frequentist approach

(Wade, 2000; Wagner et al., 2013).

Deriving trends from disparate ecosystem indicators is chal-

lenging in part due to the goal of applying a single statistical ap-

proach to time series with a wide range of series lengths and error

structures. The complexity of the chosen method must be bal-

anced with its applicability to a wide range of indicators and the

interpretability of its results. Our work shows that blindly imple-

menting this approach will likely result in assigning spurious

trends or missing important patterns. A subtler approach for

trend analyses in ecosystem reporting would provide better out-

comes for economic, ecological, and social systems in the context

of EBFM decision-making.
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