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Transdisciplinary research that crosses disciplinary boundaries and includes stakeholder collaboration is increasingly being used to address pressing
and complex socio-ecological challenges in the Anthropocene. In fisheries, we see transdisciplinary approaches being employed to address a range
of challenges, including bycatch where fine-scale data are collected by fishers to help advance spatial approaches in which fishing effort is shifted
away from bycatch hotspots. However, the spatio-temporal overlap of morphologically undistinguishable fish stocks, some of which are depleted, is
a major concern for some fisheries, including the Pacific Northwest troll Chinook salmon (Oncorhynchus tshawytscha) fishery. In this study, we
develop and evaluate a transdisciplinary approach to avoid bycatch in the commercial Chinook salmon troll fishery off northern and central
Oregon. Based on a unique genetic dataset collected by fishers, fine-scale patterns of stock distribution and spatial stock overlap were assessed.
Two hotspots of weak Klamath stock in the study region were identified and related to bathymetry. Results were then fed into a simple bioeconomic
model to evaluate costs and benefits of reallocating effort under two scenarios of allowable catch of a weak stock (Klamath). The scenarios dem-
onstrate that effort reallocation could lead to a reduction in Klamath catch as well as to increases in net profit, but outcomes depend on the distance
from the fleets’ home port to the new fishing area. The output of the model at its current stage should be regarded strategically, providing a quali-
tative understanding of the types of best fleet strategies. Despite some challenges in transdisciplinarity discussed in this study and the present limita-
tions to incorporate fine-scale changes of Chinook salmon stock distributions in management regulations, we contend that this approach to
research has the potential to lead to improved management outcomes.

Keywords: bioeconomic model, Chinook salmon (Oncorhynchus tshawytscha), fine-scale spatio-temporal distribution, weak Klamath stock.

Introduction
Many of the problems the world faces, including those related to
climate change, food security, and overfishing, are complex and
interact across various scientific disciplines and scales (Young
et al., 2007; Jerneck et al., 2010). The pressing challenge of science
in the Anthropocene is to span disciplinary boundaries and draw
on multiple methods. Complex socio-ecological problems, however,
cannot be solved purely by academic endeavour. They require the
collaboration and engagement of multiple actors including govern-
mental management units, non-governmental organizations, and

the private sector and their different interests, needs, and values
(Krohn, 2008). Particularly in sustainability science and marine re-
source management, the push for more integrated collaborative or
so-called transdisciplinary research (TD) has been increasingly
acknowledged in recent years (Hirsch Hadorn et al., 2006;
Ciannelli et al., 2014). The TD approach, in contrast to multi- or
interdisciplinarity, is the most integrated form of research
(Stember, 1991) with the aim to not only create new knowledge
based on the collaborative integration of social and natural disci-
plines but also to develop a new framework that transcends
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disciplines by including non-academic participants in the process
(Stock and Burton, 2011).

The participatory TD approach has contributed to advances in
the effectiveness of many aspects of fisheries management, including
bycatch mitigation. Bycatch poses a chronic problem in fisheries
worldwide due to the spatio-temporal overlap of target and non-
target species. As a consequence, fishery managers are regularly
forced to restrict or close entire fisheries, resulting in major financial
losses and socio-economic hardship (NMFS, 2015a). Such closures
have been triggered as a result of bycatch of a range of overfished,
endangered, and protected species or stocks (Sylvia and Enriquez,
1994; Murray et al., 2001; Donoso and Dutton, 2010; Beare et al.,
2013). A very general problem is the case where a weak or depleted
stock (often called a “choke species”) is caught together with a
strong or abundant stock and the “choke quota” is reached faster
than the target quota, resulting in lower revenues for fishers. The
economic and ecological costs of bycatch have spurred research
and development with a strong focus on gear modifications to
reduce unwanted catch. Key examples of such technical measures
are sea turtle and fish excluder devices in trawls, pingers and glow
sticks for gillnets, float ropes on lobster traps, and circle hooks on
longlines (Gilman, 2011; Little et al., 2014; Roe et al., 2014).
However, gear improvements are often poorly suited to address
more complex bycatch problems such as in the North Sea mixed
fishery (Nielsen et al., 2013) or in the Pacific salmon fishery, the
latter targeting multiple stocks that are visually indistinguishable
(Utter et al., 1992). As an alternative, spatial approaches have been
developed where fishing effort is shifted away from vulnerable
stocks altogether, using fine-scale and near-real time information
on potential bycatch “hotspots” (Haynie et al., 2009; Eliasen,
2014; Little et al., 2014; O’Keefe et al., 2014; Oliveira et al., 2014;
Roe et al., 2014). Hotspot mapping capitalizes on advances in geo-
spatial information systems by using fishers’ own catch data to iden-
tify areas of high bycatch then communicating this information
back to the fleet to avoid these areas. Thus, working together and
sharing the information of bycatch, hotspots can help them fish
more efficiently. The Pacific whiting (Merluccius productus) fleet
used this approach successfully, where salmon bycatch was prevent-
ing them from fully exploiting its whiting quota (Gilman et al.,
2006). Similar approaches are now being implemented in many fish-
eries, including the Atlantic sea scallop (Placopecten magellanicus)
fishery where yellowtail flounder (Pleuronectes ferruginea) is a
choke species (O’Keefe and DeCelles, 2013).

Spatial approaches to bycatch management would also be useful
is the USA and Canadian commercial ocean troll fishery for
Chinook salmon (Onchorhynchus tshawytscha). Here, bycatch
does not consist of another species, but rather of weak, threatened,
or endangered stocks of the same species. This is problematic
because fishers cannot easily distinguish between healthy and
depleted stocks by sight, making gear modifications or selective
release of bycatch stocks difficult. Many of the North American
West coast Chinook salmon stocks have declined substantially in
recent decades to only a fraction of their historical abundance.
Seventeen Pacific salmon stocks are now listed as threatened or
endangered. The dilemma has forced fisheries managers to restrict
and, at times, close ocean fisheries off the coasts of California,
Oregon, and Washington in the last three decades. Enormous
costs to the fishing industry and coastal communities have resulted
from these closings, and since 1992, the US government has declared
nine disasters related to the salmon fisheries on the West coast
(excluding Alaska), paying out US$276.1 million (NMFS, 2015a).

The major constraint in this fishery is the inability to identify indi-
vidual stocks and their local distributions. Average stock distribu-
tions at a coarse scale (1 month, 100 km) are known from
coded-wire tag (CWT) data collected over the past 40 years (e.g.
Weitkamp, 2010). These data are based on hatchery-origin fish
with the assumption that these tagged and often more abundant
stocks can be used as proxy for untagged stocks, which can be
made up of natural-origin fish with or without additional hatchery
supplementation. For all but the most abundant and heavily marked
stocks, CWT recoveries are too few to resolve distributions at scales
finer than month and area (Flaherty, 2015). Tissue samples for
genetic stock identification (GSI) have been collected from
salmon landings for many years (Winans et al., 2001), but only re-
cently have fine-scale data on all Chinook salmon stocks become
available through the use of at-sea sampling by fishers and GSI
(Satterthwaite et al., 2014; Bellinger et al., 2015). This now allows
the identification of hotspots based on stock-specific distributions
in the open ocean including weak, untagged stocks. Ideally, from
knowledge of the fine-scale distribution of weak stocks and their
potential environmental drivers, alternative management strategies
can be developed that are both ecologically and economically
sustainable.

In our study, we further develop a TD approach to avoid bycatch
in the commercial Chinook salmon troll fishery off northern and
central Oregon. We demonstrate how at-sea data collected by
fishers, combined with GSI, can be used to create statistical tools
to identify (i) fine-scale effort and stock distributions over time,
(ii) potential drivers of stock distributions, and (iii) spatial overlaps
of weak and strong stocks. Combined with economic data provided
by fishers and managing agencies, we fed our statistical results into a
generalized and simplified bioeconomic model used to explore mul-
tiple management options that potentially maximize net profits of
fleets. Outcomes of the statistical and bioeconomic modelling
approaches are evaluated in the context of their potential applica-
tion in management, communication challenges, and implications
for the development and application of TD research programmes.

Material and methods
Case study description
The TD dimension of this study is in the integration of natural and
human sciences, combining genetics, ecology, oceanography, and
economics within a statistical and numerical modelling framework.
This approach allows new insights into stock-specific distributions,
spatial stock overlaps, oceanographic drivers, and how this informa-
tion could result in harvest and management strategies that align
conservation and reduce fishery restrictions. Statistical and bioeco-
nomic models were developed by a team of economic, social, and
ecological scientists. Stakeholder participation was provided in the
sampling scheme and during the study when contributing input
about fleet behaviour and economics. The intent of this project is
to provide analysis back to fishers and managers with the expect-
ation that their behaviour could be altered in a way that benefits
both the stocks and the industry. The discrete analyses and model-
ling steps are described in more depth in the following subsections
and supplements. Methods, Results, and Discussion sections are
organized by the study progression: identifying (i) the stock distri-
bution, (ii) potential drivers, (iii) stock overlaps, and (iv) alternative
management or fisher behaviour strategies.

Our study builds on an existing project that applies genetics,
oceanography, and information technology to commercial ocean
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salmon fisheries. Due to the great challenge for fishers to avoid
weak stocks that are morphologically indistinguishable from other
target stocks, many partners came together in 2005 to form
the Collaborative Research on Oregon Ocean Salmon project and
the Washington/Oregon/California West Coast Salmon Genetic
Stock Identification collaboration. The aim was to develop more
adaptive strategies for salmon management through the use of
fine-scale sampling at sea, combined with GSI. These efforts were
motivated by projected fishery restrictions due to low abundance
of Klamath fall Chinook and represented a unique research effort in-
volving fishers, scientists, managers, and policy-makers. The
salmon troll fishers were heavily involved in the project and pro-
vided geo-referenced catch and fishing effort data and conducted
at-sea sampling for the GSI analysis carried out later by university
or National Oceanic and Atmospheric Administration (NOAA)
Fisheries labs. For a detailed description of the at-sea sampling
design, see Bellinger et al. (2015). Based on this research, descrip-
tions of the ocean distribution of Chinook salmon stocks across
the Oregon and Californian coasts during 1–2 years have recently

been made using monthly time-steps and nine open areas in
California and Oregon as spatial resolution (Satterthwaite et al.,
2014; Bellinger et al., 2015), which is roughly comparable with pre-
existing management models and analyses based on CTW or other
GSI data (e.g. Satterthwaite et al., 2013, 2015).

Our study, in contrast, uses a finer spatial resolution and focuses
on the northern Oregon (NO) and central Oregon (CO) coast
regions and on fishing fleets from four ports along the coast:
Garibaldi, Newport, Winchester Bay, and Coos Bay (Figure 1).
New analysis of data for 2010–2013 allowed testing for both season-
al and interannual patterns. Similar to the previous studies, we used
a monthly time-scale, which was most feasible for the bioeconomic
model. The focus was set on Klamath River fall-run Chinook salmon,
which is the harvest indicator for the threatened California coastal
Chinook stock (Klamath River fall Chinook are CWT’d while
California coastal Chinook are not) and which has been one of the
constraining stocks in Oregon and California fisheries. The GSI ana-
lyses cannot differentiate between autumn- and spring-run, but as the
latter represents not .10% of the Klamath stock (NMFS, 2014) it will

Figure 1. Location of study area. Spatial distribution of mean annual fishing effort individually for the fleet of Garibaldi (a), Newport (b),
Winchester Bay (c), and Coos Bay (d). Spatial annual pattern of total catch (e) and Klamath catch (f), both standardized by fishing effort (i.e. unit
hour). Each grid cell has a size of 0.1 degree latitude/longitude. This figure is available in black and white in print and in colour at ICES Journal of
Marine Science online.
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not change the conclusions of this demonstration. Additional infor-
mation on fleet behaviour and economics was derived in meetings
with fishers.

Spatio-temporal aggregation of effort, catch, and
environmental data
The track log and catch data collected by fishers represents about
15% of the entire Chinook salmon ocean troll fishery in the NO
and CO areas. The data used in this study summarize a total of
850 fishing trips of the four fleets and cover the main fishing
season from May to September in 2010–2013 (except September
2011). The Garibaldi fleet, in general, is less active fishing and is
also inconsistently sampled leading to sample data that are an in-
complete representation of its fishery.

To estimate levels of effort and catch at a fine spatial scale for our
spatio-temporal analysis and bioeconomic modelling, data were
aggregated to a regular grid of 0.1 decimal degree latitude/longitude
(�11 × 8 km or 7 × 5 miles), which gave us a total of 167 grid cells
with recorded effort and 126 grid cells with at least one recorded
Chinook salmon catch. This grid size represented a compromise
between fine spatial scale, computationally feasible number of
cells for the bioeconomic model, and the avoidance of binary data
for rare species such as Klamath (97% of all cells had catches ,10
at the current resolution). Monthly fishing effort per grid cell and
fleet was calculated by first assigning each track record to a grid
cell based on its coordinates, then adding up the fishing time of
each of these track records and converting the time to unit day.
The time-intervals between each record of an individual boat were
usually 5 min during active fishing. If time-intervals were much
.5 min, this indicated steaming time. Vessels need to steam to
the fishing area to catch the fish, which needs to be considered in
the fuel costs. To estimate the total monthly effort for each fleet
and grid cell spent on fishing and steaming, a proxy for steaming
effort was added to the calculated monthly fishing effort. The dis-
tance from the fleets’ home port to the centre of each grid cell was
converted into time in days by assuming an average vessel speed
of seven knots. Individual salmon catch was similarly assigned to
each grid cell then aggregated, depending on the analysis, by
month, year, fleet, or identified stock. Catch data for all statistical
analyses were converted into catch per unit effort (CPUE) or into
biomass.

For the analysis of the Klamath stock distribution, bathymetric
and geospatial parameters were used including mean bottom
depth per grid cell, the depth range within each cell (as an indicator
for slope), the distance from the grid cells’ centre to the nearest
shoreline, and distance to the mouth of the Klamath River. Sea
surface temperature (SST) was used as an indicator for hydrological
conditions. Data were downloaded from the NOAA ERDAP data
server (Multi-scale Ultra-high Resolution SST analysis fv04,
Global, 0.011 Degree, Daily) and aggregated to monthly means
per grid cell.

Spatio-temporal distribution modelling
To understand the fine-scale spatial dynamics of Klamath and other
Chinook salmon stocks in the NO and CO regions, the annual and
monthly distributional patterns of fleet-specific fishing effort and
Klamath and total catch, standardized by fishing effort, were first
identified. For each genetically identified stock, the distributional
centre of gravity (i.e. the midpoint of the distribution calculated

by weighting the mean coordinates of each grid cell with the stock-
specific CPUE) over the entire study period was computed. To iden-
tify potential oceanographic drivers for locally higher Klamath
catches (standardized as CPUE), we applied a two-step modelling
approach due to the large numbers of zeros in the data (.80%),
which can cause biased parameter estimates and standard errors
and excessive overdispersion (Zuur et al., 2009). In the first step,
only the zeros and non-zeros were considered and a binomial gen-
eralized additive model (GAM) on the full dataset applied (i.e. all
grid cell, month, and year combinations were sampled where
fishing took place) to model the probability that non-zero CPUE
is observed. In the second step, we modelled only the non-zeros
using a GAM on the ln-transformed CPUE data assuming a
normal distribution. This approach is similar to a hurdle model
or a zero-inflated Poisson model, although we did not differentiate
between different types of zeros as the latter does (Zeileis et al.,
2008). Explanatory variables in both modelling steps included the
time components year and month, SST, and geospatial and bathy-
metric variables distances to coast and Klamath River mouth,
mean bottom depth, and ln-transformed depth range. For a detailed
description of the 2-step model, see supplementary material.

Potential associations or co-occurrences of Klamath with other
stocks were studied by testing for significant overlaps in space and
time using a modified spatial overlap index (SOI) (Williamson
and Stoeckel, 1990):

SOImy

∑n
z=1 (Kgmy × Xgmy) × n

∑n
z=1 (Kgmy ×

∑n
z=1 Xgmy)

, (1)

where g represents the grid cell, m and y are month and year, respect-
ively, and n is the number of grid cells where fish were sampled in the
particular year and month combination. The variable K is the
Klamath CPUE in a given grid cell and X is the CPUE of another
stock in the same grid cell. Because fishing effort was not evenly dis-
tributed across the area, catch was standardized to CPUE. An
overlap index of ,1 indicates spatial separation between Klamath
and the other specific Chinook stock, an index ¼ 1 represents a
uniform or random distribution, while values .1 indicate an aggre-
gation of both stocks in certain grid cells. To evaluate whether the
observed overlap in each month could have been obtained by
chance, consistencies of SOI values between month and year were
assessed. A two-way multivariate analysis of variance (MANOVA)
(Cramer and Bock, 1966) was applied in which stock-specific SOI
values were treated as multivariate-dependent variables and
month and year as independent variables. The MANOVA approach
allowed testing for both the multivariate effect (the effect of year and
month on the spatial overlap of the combined stocks) as well as uni-
variate effects (whether stock-specific SOI values were consistent
between months and years). Since there were no replicates for
each year–month combination, interactions could not be tested.
The number of stocks included had to be limited to 10 because of
the small number of years and months; hence, only stocks with a
general high overlap (overall SOI mean ≥2.0) were included. The
univariate effects, which describe the effects of month and year
against each stock separately, were examined after the multivariate
analysis by applying a series of two-way ANOVAs on each of the
10 stocks. Three further stocks that had a similar higher overall
mean SOI (≥1.5) and that belonged to the most abundant stocks
were included in the individual ANOVAs where sample size was
not limiting their inclusion. For information on model diagnostics,
see Supplementary data.
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In addition to assessing the spatial overlap in geographical space,
the difference between capture depth of Klamath and other stocks
was tested using the original catch data. This information was
useful to assess if Klamath catch could be avoided by fishing at a dif-
ferent depth. First, a three-way ANOVA with capture depth as re-
sponse variable and the identified stocks, month, and year as
explanatory variables was performed, including a three-way inter-
action term between stock, month, and year and their respective
two-way interactions. After identifying significant (p , 0.05)
two- and three-way interactions, 19 individual ANOVAs for each
month and year were applied followed by a series of post hoc analyses
(Tukey’s “honest significant difference”). All data analyses and
spatial distribution maps were conducted using the free software en-
vironment for statistical computing and graphics R (version 3.2.0)
(R Core Team, 2015). To account for the inflated type I error rate
due to multiple testing in all individual ANOVAs and partial viola-
tions of the homogeneity assumption, p-values were adjusted using
Holm’s correction method (Holm, 1979).

Bioeconomic modelling
We developed a dynamic bioeconomic model that incorporates
results from the spatio-temporal modelling to evaluate how
changes in effort allocation could help reduce catches of weak
Klamath while keeping the fishers’ profit at a maximum. The
model reflects a fishery system in which the profit earned by
the fleets is the main driver (Figure 2). Effort allocation is deter-
mined both by the fish stock distribution and economic conditions
(e.g. revenues and fishing costs). Management regulations, imple-
mented in the model as constraints to catches of weak stocks, alter
the relative profitability and hence subsequent effort decisions by
fleets, which, in turn, impact the fish stocks. Our model builds
heavily on the models developed by Salz et al. (2011) and Simons
et al. (2014a), which unlike previous models (e.g. Naqib and
Stollery, 1982; Da Rocha et al., 2010), not only consider possible
effort redistributions but also include multiple interacting factors
and feedbacks (for a detailed description, see Salz et al., 2011;
Simons et al., 2014a). The presented model, however, is simplified
in the sense that we did not include age-structured population dy-
namics or stock–recruitment relationships. It is primarily a strategic
tool that provides a qualitative understanding of relative changes
under various management scenarios. The individual model com-
ponents are described in more detail in the following sections.

The economic component in the model computes gross revenues
for each of the four fleets based on the value of landings of target
stocks (the landings of not explicitly modelled stocks are included
as fixed percentages) (Figure 2). Net profit of a fleet is calculated
as the difference between gross revenue and the sum of economic
costs (fuel, other variable, crew, and fixed costs). Fixed costs are dir-
ectly proportional to the number of vessels, while variable costs are
dynamic and are associated with variations in total effort. Profit, fur-
thermore, depends on the interest rate for capital invested in
the fleet. Based on past patterns of effort and stock distribution,
the applied CONOPT solver (for a detailed description of the
CONOPT algorithm, see Drud, 1991) finds for the following year
the optimal effort pattern (number of fishing days and its spatio-
temporal distribution), within the observed minimum and maxi-
mum fishing effort, that maximized the total net profit of all four
fleets. If the solver finds more than one optimal effort, the lower
effort level is used.

The optimal effort pattern is used in a standard Cobb–Douglas
production function (see Salz et al., 2011; Simons et al., 2014a) to

calculate catch, which is then used to estimate stock size and revenue,
given the observed fish price (Figure 2). The Cobb–Douglas function
links the biological and economical model component and was chosen
as it assumes that fishing mortality is not directly proportional to effort
and yield is not proportional to stock size. Similar to Salz et al. (2011),
the fish population is described by a single variable, interpreted as catch
biomass, and modelled by a simple logistic growth function (see
Supplementary Table S2) accounting for seasonal changes in the
various stocks and changes in their spatial distribution (at the
level of selected grid cells). Population dynamics of salmon are a
function of spawner abundance, life history traits, and freshwater
and marine environmental conditions (Healey, 1983; Greene
et al., 2005) and must be modelled at the stock level. Rigorous mod-
elling of population dynamics was beyond the scope of this study.
The logistic growth model serves as a placeholder for the biological
component in the model.

The fishery system in the model is dynamic in a way that profit
from 2 years ago determines the level of investment or disinvestment
in the fleets (see Salz et al., 2011; Simons et al., 2014a), involving
changes in the number of vessels per fleet. Given that free access in
the fisheries is allowed, any fleet that is highly profitable will
become bigger, and hence the profit of the individual vessels
would dissipate in the long run. In reality, the investment/disinvest-
ment function (number of vessels) is based on future expectation,
but because of lack of information, the past profitability is used in
the model. Changes in fishing behaviour in terms of effort allocation
patterns or entry and exit of vessels consequently affect fleet eco-
nomics and the local total stock size in the next time-step.

Modelling input data
For the bioeconomic model, the following data were compiled:
effort, landings weight and value, fuel consumption and costs, vari-
able (e.g. ice, crew, food supplies) and fixed (e.g. insurance, boat
maintenance, moorage fees) costs, number of vessels, sea-days,
and revenues for the years 2010–2013. As input for the model, the
average of these years was used (see Supplementary Table S1). The
landings weights were based on the Oregon monthly troll
Chinook average dressed weights taken from the latest ocean
salmon fisheries report (PFMC, 2015). Landing values were based
on the average monthly ex-vessel troll salmon price (in US$) per
dressed pound for Oregon taken from each of the annual ocean
salmon fisheries reviews (PFMC, 2012, 2013, 2014, 2015). Effort
data were made up of steaming and fishing effort per grid cell/
month. Biological data were the total catch number and biomass
per grid cell/month as well as the proportion of Klamath from the
total catch per grid cell/month.

Scenarios
Model calibration was based on average economic, effort, and catch
data for 2010–2013. After the calibration, we ran the model simula-
tion for the next year under the following two scenarios:

1. Optimal harvest scenario (ScenOpt): A harvest strategy where the
optimal allowed catch of Klamath and other modelled salmon
stocks is calculated via a Baranov catch function.

2. Constrained harvest scenario (ScenConst): A harvest strategy
where the optimal allowed catch of Klamath (the constraining
stock) is reduced by 50% (hence the allowed Klamath catch repre-
sents half of the Klamath catch from ScenOpt). The allowed catch
of other stocks is simulated in the same way as in ScenOpt.
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Based on these two scenarios, an optimal fishing effort distribution
was modelled on a monthly time-step, while profit maximization,
calculation of costs, and the fleet size adjustment were modelled
on an annual scale. Any potential changes in the Chinook salmon
distribution due to environmental changes during the predicted
year cannot yet be taken into account by the model.

Results
Distributional patterns at fine spatial scales
The annual distribution of sampled fishing effort of all four fleets
within the NO and CO regions shows a clear pattern of home port
attachment (Figure 1a–d). All fleets fished most intensively near
their home port then decreased effort with increasing distance
from port. The Garibaldi fleet showed the strongest localized
pattern with the lowest sampled fishing effort per year (27+ 22
boat-days) (Table 1). Newport had the highest annual sampling

effort with 267+ 115 boat-days, mainly concentrated right at the
coast and offshore of Newport, but stretching north to Garibaldi
and south to Winchester Bay. Consequently, the Newport fleet
caught the highest number of Chinook salmon per year (Table 1).
The two fleets of the closely located ports Coos Bay and
Winchester Bay fished at similar intermediate levels, although
Coos Bay spanned its fishing range much farther north and
sampled on average 50% more Chinook salmon than Winchester
Bay. This effort pattern, though, was not consistent over time.
First, all fleets showed great differences in sampled fishing effort
between months (Table 1) but also between years of the same
month as indicated by the high standard errors. Second, the
sampled fishing effort varied spatially between months, as indicated
in Figure 3, and between years. Much of this variability reflects
the distribution of sampling effort rather than differences in fleet
behaviours.

Figure 2. Conceptual model design with arrows that explain the interaction between effort allocation and economic and biological submodules. In
the maximization procedure, the effort allocation pattern is changed until profit of the entire fleet is maximized. When profit is maximized, the last
effort allocation pattern is used in the Cobb–Douglas function to calculate catch, which in turn is used to calculate stock size, costs, and fleet size
adjustment for the next step. This figure is available in black and white in print and in colour at ICES Journal of Marine Science online.

Table 1. Port-specific sampled fishing effort per year and each month of the fishing season, averaged across the period 2010–2013 (mean and
s.e. is provided).

Port

Fishing effort in boat days (i.e. 8 h) Annual catches in number

Annual May June July August September Total Klamath

Garibaldi 27+ 22 2+ 1 11+ 7 3+ 3 11+ 10 0+ 0 58+ 48 1+ 1
Newport 267+ 115 62+ 31 96+ 34 35+ 13 57+ 27 17+ 9 1463+ 710 38+ 18
Winchester Bay 141+ 52 25+ 13 49+ 15 16+ 4 40+ 16 12+ 6 687+ 338 28+ 12
Coos Bay 147+ 49 33+ 14 49+ 20 14+ 4 33+ 12 18+ 11 1034+ 336 50+ 19

Annual Chinook salmon catch is presented for all stocks and Klamath in specific.
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The mean annual distribution of sampled catch standardized by
fishing effort shows two core regions where salmon were mainly
caught, one near Coos Bay and one offshore of Newport
(Figure 1e). Particularly near Coos Bay, catch rates were up to six
individuals per boat-hour or more, while in many grid cells catch
rates were ,2 per boat-hour. High catch rates, in combination
with the fishing effort, explained the high catch numbers by the
Newport and Coos Bay fleets. The Klamath stock showed a similar
distribution as the overall stock pattern with high aggregations
near Coos Bay and offshore Newport (Figure 1f). However,
Klamath aggregated more strongly near Coos Bay, with up to 10%
of the total sampled catch in various grid cells. This coarse-scale ag-
gregation was also consistent across months, whereas at a fine scale,
i.e. at the grid cell level, the proportional distribution varied slightly.
Because of the strong aggregation near Coos Bay, highest numbers of
Klamath were caught by the Coos Bay fleet with on average 5% of the
total catch (Table 1).

Drivers of spatial Klamath distribution
The two-step GAM analysis of potential oceanographic drivers for
Klamath occurrences based on binomial and presence-only data
(CPUE .0) demonstrated the importance of geospatial and bathy-
metric features. Catches of Klamath (i.e. non-zero CPUE values)
were best explained by a positive linear slope effect (represented
by the ln-transformed depth difference within each grid cell) as
well as by non-linear effects of distance to coast and mean depth

(Figure 4a–c). Here, catch probabilities generally declined with in-
creasing distance to the nearest coast. Beyond a distance 40 km,
however, probabilities started to increase again. In contrast,
mean depth had a strong positive effect, which reversed at depth
levels .150 m. The overall probability of Klamath catches differed
slightly between the various months and years (interaction term
month × year: p ¼ 0.013). Despite the strong significant effects,
the tested variables could only explain 16% of the variability in
Klamath catches, indicating other environmental drivers being
more important.

Higher CPUE of Klamath (ln-transformed) can generally be
found at greater depth and a distance of 300 km to the river mouth
entrance (Figure 4d and e). The depth effect, in contrast to the bino-
mial GAM, is hereby constantly positive, also beyond 150 m. While
the slope had strong positive effect on catch probabilities, higher
CPUE were instead related to lower slope levels (Figure 4f). These
static variables, after all, only explain 21% of the CPUE variance.
The best model also included month, year, and their interaction
term, which increased the explanatory power to 41%.

No significant relationship was found for SST, which indicates
that monthly mean SST is not a suitable proxy for oceanic condi-
tions affecting Klamath catch distribution at this scale.

Overlap of stock-specific distributions
The SOI analysis shows that Klamath overlapped spatially (overall
SOI mean ≥1.5) with 13 of the 22 stocks that have been genetically

Figure 3. Changes in catch proportion of Klamath vs. total catch between the different months of the main fishing season (averaged across the
study period 2010–2013): (a) May, (b) June, (c) July, (d) August, and (e) September. Each rectangle represents an area where actual fishing of all fleets
together took place. This figure is available in black and white in print and in colour at ICES Journal of Marine Science online.
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identified (Table 2). This general overlap pattern was consistent
across months and years as indicated by the statistically insignificant
MANOVA effects (month: Pillais’ Trace ¼ 2.5, F(4,11) ¼ 0.85,
p ¼ 0.67; year: Pillais’ Trace ¼ 2.3, F(3,11) ¼ 1.3, p ¼ 0.31). Also
the univariate analysis indicated that monthly SOI values did
not differ significantly over time for any of the 13 stocks (see
Supplementary Table S3). Comparing the overall centre of gravity
of Klamath with the co-occurring stocks showed that Rogue, weak
California coastal stock, and abundant Central Valley fall stock
had a more southerly distributional centre than Klamath, whereas
the others, including weak Snake fall and Lower Columbia fall
stocks, had a more northern centre of gravity (Table 2). This sug-
gests that higher catch of Klamath in the south is more likely to
be associated with catch of California stocks, particularly Central
Valley fall, whereas Klamath catch in the north is likely to go
with higher catch of the other ten stocks. The nine stocks that
showed little or no overlap with Klamath were centred in their dis-
tribution farther north than Klamath, except for Central Valley
winter and spring stock which were caught almost exclusively in
California.

Klamath overlapped similarly in its depth distribution with the
13 co-occurring stocks. Although some of these stocks had on
average a greater monthly mean capture depth, differences were
mostly not strong enough to be significant when conducting post
hoc comparisons after significant stock effects in individual
one-way ANOVAs were detected for certain month–year combina-
tions (Table 3). Snake fall and Lower Columbia spring and fall runs
in 1–3 months were the only exception with significant differences
in the mean capture depth compared with Klamath. Consequently,
in areas where Klamath is abundant, fishing outside the Klamath
depth range to target other co-occurring stocks might lead to
lower total catch.

Costs and benefits of potential options for bycatch
avoidance
Our bioeconomic modelling output shows that all three fleets to-
gether could reduce Klamath bycatch by 30% by changing effort
allocations under ScenConst. Results of the Garibaldi fleet are not
presented here as the inconsistent sampling produced unrealistic
model outcomes, i.e. no changes of any economic variable and
effort pattern under the two model scenarios. Under ScenConst,
the model predicts reduced Klamath catch for the year 2014 while
maintaining a high net profit. In this scenario, fishing effort gener-
ally decreased up to 80% or more around Coos Bay and offshore of
Newport where Klamath fish are mainly located (Figure 5). In con-
trast, effort can generally increase by .60% farther south of Coos
Bay, near-shore at the ports of Garibaldi and Winchester Bay, and
from Newport within 30 km of the coast (i.e. four grid cells). The
spatial pattern of effort reallocation under ScenConst, nonetheless,
varies slightly between fleets as past effort distributions also showed
a fleet-specific pattern. Since the Newport fleet fished mainly around
their home port, the model suggests that this fleet should reduce
effort offshore and increase effort within 30 km of the coast. The
same reallocation pattern is suggested for the segment of the Coos
Bay fleet that fish intensively near Newport, but this fleet fished
even more intensively in the south near its home port where
Klamath had its core aggregation area. Consequently, the Coos
Bay fleet would need to reduce effort levels by 60–80% or more.
For the Winchester Bay fleet, which caught the lowest number of
Klamath and other stocks, an effort allocation near and slightly
north of their home port as well as in an area south of Coos Bay
shows lower Klamath catch rates. On the other hand, effort just
south of their home port should decrease. The effort reallocation
pattern for individual fleets on an annual scale is not much different
from the monthly results (Supplementary Figure S1). The most pro-
nounced differences were found for the Newport fleet, which would
benefit by reducing fishing effort north of its home port later in the
year and maintaining low effort near port in July and August. The
suggested reductions in effort levels south of Winchester Bay are
most important for its fleet in June, August, and September
(Supplementary Figure S1).

The predicted reduction in Klamath bycatch based on the
described effort re-allocations under ScenConst has different eco-
nomic consequences for the three fleets. The small changes in
effort allocation suggested for the Winchester Bay fleet lead to
small decreases (,4%) in total catch but also reduced fishing
effort and thus cost, which in turn decreases revenue and net
profit at similar levels (Figure 6). On the other hand, shifting the
fishing effort just slightly north of the Klamath hotspot reduces
the Klamath catch by 33%. A similar reduction could be obtained
for the Newport fleet while increasing net profit by 10%. The shift

Figure 4. Partial effect plots from the two-step model approach, i.e.
from the final binomial GAM and the final GAM on non-zero CPUE
values of Klamath (assuming a Gaussian distribution) showing the
effect of the geospatial (a, d) and the bathymetry variables (b–f).
Values on the y-axis indicate the effect that the term on the x-axis has
on presence/absence or on the ln-transformed Klamath CPUE.
Numbers in parentheses on the y-axis indicate the estimated degrees of
freedom (e.d.f.). If the e.d.f. is 1, i.e. linear effect, the respective estimated
coefficient is presented. Solid lines indicate the smoothed (non-)
parametric trend, the dashed lines indicate the lower and upper 95% CI.
The points represent the partial residuals.
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in effort to a region less inhabited by Klamath allows a 19% increase
in effort, which increases fuel costs at similar levels, but at the same
time is predicted to lead to higher total catch of �11%, which ultim-
ately results in a net financial benefit. Reduction in Klamath catch
was greatest for the Coos Bay fleet with 67%, but because of their

proximity to the main Klamath area, this was only obtained in the
model by a great reduction in overall fishing effort (26%).
Although this would lead to lower fuel, crew, and variable costs,
total catch would decline by �14%, leading to net profits 21%
lower than under ScenOpt.

Table 2. Stock-specific summary of caught individuals, spatial overlap with Klamath, mean capture depth, and average location of the stock
averaged across the entire period, i.e. for the study period 2010–2013 and the months May–September.

Chinook salmon stock

Annual number of
sampled individuals
(mean+++++ s.e.)

Monthly SOI
(mean+++++ s.e.)

Monthly mean capture
depth (mean+++++ s.e. in m)

Centre of gravity of stock-specific
CPUE, averaged across entire period
(latitude/longitude in decimal degree)

1 Alaska 2 + 1.2 0.4 + 0.18 92 + 3 44.5418N 124.3738W
2 BC Mainland/Vanc. Is. 12 +++++ 6.5 2.8 +++++ 1.20 74 +++++ 6 44.21888888N 124.35788888W
3 Fraser and Thompson 43 +++++ 17.7 2.6 +++++ 0.69 72 +++++ 4 44.52188888N 124.36888888W
4 Puget Sound 94 + 43.3 1.2 + 0.28 68 + 5 44.4528N 124.3458W
5 Washington Coast 10 +++++ 3.7 3.0 +++++ 0.95 71 +++++ 7 44.43488888N 124.36788888W
6 Lower Columbia Spring 14 +++++ 7 2.0 +++++ 0.84 68 +++++ 5 44.46688888N 124.34988888W
7 Lower Columbia Fall 357 +++++ 175.7 2.2 +++++ 0.66 65 +++++ 4 44.24588888N 124.35988888W
8 Mid Columbia Tule 306 + 126.7 0.9 + 0.25 63 + 4 44.3798N 124.2988W
9 Mid-Upper Columbia Spr 2 + 2.2 0.3 + 0.17 62 + 5 43.9768N 124.3878W
10 Upper Columbia Su/Fall 377 +++++ 150.4 1.9 +++++ 0.28 68 +++++ 3 44.20288888N 124.37188888W
11 Snake Spring/Summer 1 + 0.5 0.1 + 0.04 93 + 8 44.3838N 124.258W
12 Snake Fall 128 +++++ 38.4 1.5 +++++ 0.40 73 +++++ 6 44.32488888N 124.35588888W
13 Willamette 12 + 5 0.8 + 0.64 57 + 3 44.2388N 124.3478W
14 Deschutes Fall 54 + 21.5 1.4 + 0.36 66 + 6 44.3188N 124.3558W
15 North Oregon Coast 33 +++++ 12.7 3.4 +++++ 1.21 74 +++++ 6 44.47688888N 124.37488888W
16 Mid Oregon Coast 383 +++++ 89.9 2.2 +++++ 0.36 74 +++++ 5 44.02688888N 124.41988888W
17 Rogue 123 +++++ 28.7 2.6 +++++ 0.53 80 +++++ 5 43.8988888N 124.43888888W
18 N. CA/S. OR Coast 16 + 4.4 4.1 + 1.72 93 + 6 44.1058N 124.4168W
19 Klamath 116 + 38.7 / 72 + 6 43.9768N 124.4298W
20 California Coast 14 +++++ 4 2.4 +++++ 0.75 91 +++++ 5 43.94188888N 124.50988888W
21 Central Valley Spring 18 + 11.7 1.1 + 0.46 65 + 6 43.8198N 124.3948W
22 Central Valley Fall 1128 +++++ 559.7 1.8 +++++ 0.3 66 +++++ 4 43.89688888N 124.35988888W
23 Central Valley Winter 0.5 + 0.3 0.3 + 0.19 52 + 6 43.78N 124.258W

Stocks are ranked based on their origin from north to south. Bold typing indicates stocks that show a high overlap with Klamath (i.e. SOI ≥ 2) and were further
used in the statistical analysis of SOI and capture depth overlap through time.

Table 3. One-way ANOVA of capture depth between Klamath and the 13 stocks that had a high spatial overlap with Klamath (i.e. SOI ≥ 1.5).

Y M

Individual one-way ANOVA Tukey’s HSD

F Adj. p Pairwise comparison Klamath vs. Mean diff. Adj. p

2010 5 F(13,274) ¼ 2.93 0.01
2010 6 F(13,650) ¼ 4.69 <0.001 L. Columbia Fall 23.8 0.02
2010 7 F(11, 237) ¼ 0.83 1.00
2010 8 F(11, 443)¼ 4.90 <0.001 Snake Fall 230.18 0.03
2010 9 F(10, 108) ¼ 1.26 1.00
2011 5 F(10, 214) ¼ 2.29 0.13
2011 6 F(13, 1186) ¼ 5.13 <0.001 L. Columbia Fall 27.1 ,0.001

L. Columbia Spring 50.3 0.04
2011 7 F(11,139) ¼ 3.21 0.01
2011 8 F(13,307) ¼ 1.68 0.45
2012 5 F(12,1829) ¼ 5.95 <0.001 L. Columbia Fall 17.0 ,0.001
2012 6 F(11,1175) ¼ 3.96 <0.001
2012 7 F(12,590) ¼ 1.31 1.00
2012 8 F(13,1530) ¼ 2.44 0.03
2012 9 F(13,589) ¼ 2.03 0.13
2013 5 F(7,126) ¼ 1.85 0.50
2013 6 F(11,323) ¼ 0.60 1.00
2013 7 F(10,320) ¼ 3.16 0.01
2013 8 F(9,215) ¼ 4.28 <0.001
2013 9 F(13,526) ¼ 1.31 1.00

ANOVAs were performed individually for each month and year. When stock differences were significant (,0.05, marked in bold; p-value adjusted by the Holm
method), pairwise comparison between Klamath and all other stocks were performed a posteriori. Only significant results from Tukey’s “honest significant
difference” test are presented.

S. A. Otto et al.2388

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/article/73/9/2380/2198334 by Ani Au user on 27 August 2024



Discussion
Distribution of Klamath and potential drivers
When focusing on the NO and CO coastal regions, it becomes ap-

parent that the Klamath distribution at a finer-scale is not homoge-

neous or gradually decreasing with the distance to the natal river.

Instead, it shows two hotspots within this less inhabited area. Few

studies have looked explicitly at the ocean distribution of Klamath

in the California Current System. However, at a broader spatial

scale, studies show that fall-run or ocean-type Chinook tend to

remain closer to their natal river than stocks with spring-run life

histories (Healey, 1983; Weitkamp, 2010) and that southern stocks

(i.e. south of the Columbia River) migrate less to the northern

regions like the Gulf of Alaska or Bering Sea (Weitkamp, 2010).

Two more recent studies (Satterthwaite et al., 2014; Bellinger

et al., 2015), based on different analyses of the same GSI dataset,

show that Klamath occurs all along the coast with its core region

between the northern California Klamath zone and Fort Bragg

near the Klamath River mouth. The fact that Klamath aggregated

in two areas within this local region indicates that factors other

than purely distance to the natal river could be driving the distribu-

tion patterns.
The consistency of the presence of these two hotspots is consist-

ent with other studies that show migration and distribution patterns

being stable in time either for entire groups of Chinook salmon

stocks (Larson et al., 2013), for single stocks (Tucker et al., 2012),

single runs (Weitkamp, 2010), or for different groups of the same

run (Norris et al., 2000), although none of these studies documents

stable distributions at the local scale. Findings of Satterthwaite et al.
(2013) show, in contrast, a different picture when looking at individ-
ual runs and age groups of Central Valley. They found particularly
for the Sacramento River fall-run age 3 distribution not only season-
al but also interannual variation, which they relate to changes in SST.
The fixed migration pattern we found suggests a strong genetic com-
ponent not only at broad (Kallio-Nyber and Ikonen, 1992; Quinn
and Chamberlin, 2011) but also at intermediate spatial scales.
However, when looking at very fine spatial scales, i.e. at the scale
of our grid cells of �90 km2, slight changes over time can be
observed indicating dynamic external factors being similarly at
play as suggested by Satterthwaite et al. (2013). Distributional pat-
terns of Pacific Chinook salmon can be driven by various other com-
ponents, such as geospatial variables (Yu et al., 2012; Burke et al.,
2013), local and regional oceanic environmental conditions (Hare
and Francis, 1995; Greene et al., 2005; Wells et al., 2006; Bi et al.,
2007; Fisher et al., 2007; Pool et al., 2012; Sharma et al., 2013),
and foraging (Peterson et al., 2010; Bi et al., 2011; Yu et al., 2012).
Also, the commercial salmon troll fishers from this region use tem-
perature and ocean current edges to help them locate fish concentra-
tions (pers. comm. with fishers) indicating that fine-scale ocean
features influence distribution.

When linking Klamath catches and CPUE in this particular study
region with bathymetric, geospatial, and SST as an environmental
variable, we found a similar negative and saturating effect of the
shore distance as Burke et al. (2013) found for two Columbia
River stocks. Interestingly, shore distance only affects the probability
of catching Klamath, not its density, which stands in contrast to

Figure 5. Changes (in %) in total annual effort allocation under ScenConst relative to ScenOpt presented for Newport (left), Winchester Bay
(middle), and Coos Bay (right). The maps show the predicted changes for the year 2014. This figure is available in black and white in print and in
colour at ICES Journal of Marine Science online.
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findings of Burke et al. (2013). Only bathymetry affected both para-
meters. High slope and bottom depth are found at the continental
shelf, where fish tend to aggregate. These variables would be ex-
pected to have more explanatory power than shore distance since
the offshore distance to the shelf varies with latitude. Our model
results indicate further that Klamath seems to aggregate or favour
a depth of 120–150 m. Here, catch probabilities are highest with
similarly high CPUE. This finding stands in contrast to various
studies that found no depth effect on abundance (Bi et al., 2007,
2011; Peterson et al., 2010; Yu et al., 2012). The insignificance of
monthly mean SST at the scale of month and grid cell could
suggest that SST is less suited as an indicator of hydrological condi-
tions for Klamath than we initially assumed. Similarly, Sharma et al.
(2013) could not detect an SSTeffect on Klamath survival rates. This
could be because Klamath is generally found at greater depth and
therefore SST does not have a direct effect. Yet fishers use SST as a
cue to locate fish. This suggests that a finer-scale analysis (in both
space and time) is needed to identify the relationship between
surface ocean conditions and fish distributions. One component
not included in this analysis was prey availability as fine-resolution
data were unfortunately lacking. The relevance of bottom-up pro-
cesses have been demonstrated through positive chlorophyll a as
well as copepod effects on Chinook salmon in general (Peterson
et al., 2010) and it surely plays a crucial role for Klamath fish. This
shows the opportunity for further progress in disentangling the
key elements that drive stock-specific abundance and distribution
to foresee impacts of climate change and incorporate these dynam-
ics in bioeconomic modelling tools useful for stakeholders.

Does Klamath aggregate with other stocks in the ocean?
One study aim was to identify the stocks Klamath co-occurs with
and to tackle the questions whether there is potential for fishers to
avoid catch of Klamath and still catch other stocks. This is relevant

from a fishers’s economic perspective as well as from a management
perspective when protecting other weak stocks. The results show
that Klamath co-occurred strongly with several stocks. This spatial
overlap pattern was temporally consistent supporting findings
that stock-specific distributions do not vary greatly in time (e.g.
Tucker et al., 2012; Larson et al., 2013). The greatest overlap oc-
curred with northern California/southern Oregon coast, which
confirms Weitkamps’ study (2010) where she found similar broad-
scale recovery patterns of tagged Chinook salmon that originated
from the same freshwater region. In general, Klamath overlapped
to varying degrees with all stocks that originated south of the
Columbia River, except for Central Valley spring and winter run,
which have a much more southerly distributional centre (Bellinger
et al., 2015). The generally observed spatial overlap between
Klamath and California coast at broad scales (Satterthwaite et al.,
2014; Bellinger et al., 2015) also occurs at fine spatial scales as
shown in our analysis, which supports the use of Klamath as an in-
dicator of fishing pressure for the California coast stock. The finding
of Satterthwaite et al. (2014) that distributions of Klamath and
California coast Chinook were similar early in the year, but diverged
in late summer and fall, however, was only confirmed in Oregon for
some years. Our analysis did not include the areas in California
where late-season divergence was most pronounced.

Most of the stocks originating north of the Columbia River also
had high SOI values. Although the northern stocks are known to
migrate mainly farther north (Tucker et al., 2012), they also have a
much wider distributional range (Weitkamp, 2010), and some indi-
viduals seem to migrate for some period slightly south. The co-
occurrence values were in fact observed for stocks that originated
from the Columbia River basin. All these stocks had, within our
study region, a distributional centre that was farther northeast of
Klamath (except for mid-upper Columbia spring). These stocks
are known to undertake a rapid northward migration to Alaskan
waters (Trudel, 2009; Tucker et al., 2011), with large numbers
(93%) caught north of the Columbia River mouth (Wahle et al.,
1981). This suggests that fishing outside of the Klamath hotspots
seems to be a possible strategy and could lead, in the north, to poten-
tially higher catch of Columbia River stocks. Current fishery man-
agement practices take advantage of this distributional pattern,
although at a coarser scale. Here, it must be emphasized to note
that some of these stocks, i.e. Willamette, Snake fall, and lower
Columbia River, are also listed as threatened under the ESA
(Federal Register, 2015) with no recovering trend in the recent
past (NMFS, 2015b). Changes in fishing allocation might have
implications for these stocks, but as their overall catch in this
region is generally low, impacts may be minimal. However, NMFS
places strict constraints on fishing impacts on these stocks, and
actions to limit Klamath catch could increase Columbia and
Snake River stock impacts above conservation limits. Fishing
outside of the Klamath hotspot in the south might lead to higher
catch of the Central Valley fall stock, which has a more southern
distributional centre. The status of this stock has been highly vari-
able over the past decade, with record high and low abundance.
The other potential strategy of fishing outside the main Klamath
depth range at certain times to avoid its catch proved to be less
suitable since almost all overlapping stocks show a similar depth
distribution.

Possibilities of fishing adaptation to reduce bycatch
Statistical modelling indicated that catch of Klamath might be
reduced by shifting effort to other locations, outside the hotspots.

Figure 6. A radar chart illustrating the fleet-specific changes in total
annual catch, effort, and economic parameters when adapting fishing
allocations based on ScenConst (expressed in % change relative to
ScenOpt). This figure is available in black and white in print and in
colour at ICES Journal of Marine Science online.
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However, it still remains open to what extent catch could be reduced
and whether changes in fleet behaviour could be economically fa-
vourable. Incorporating these findings into a spatially explicit bioe-
conomic model demonstrated that effort allocation adaptations
could be a useful strategy to reduce overall Klamath catch, in our
ScenConst by up to 30%. At the same time, the model simulation,
when maximizing net profits for all fleets, showed the potential
for some fleets to maintain or even increase profits. But that
largely depends on distance from the home port to new fishing loca-
tions. Allocation of fishing effort is largely determined by distribu-
tion of the target fish species, to allow for high catch rates (Hilborn
and Ledbetter, 1979). However, it also reflects regulatory and eco-
nomic constraints (Botsford et al., 2009) with higher effort in
areas where fishing costs (e.g. fuel costs) are lower. This is the
reason effort allocation is often related to distance from home
ports (Sampson, 1991; Caddy and Carocci, 1999). In this model,
the Coos Bay fleet is an example where distances to the newly allo-
cated fishing grounds are greater and hence fishing can become
more cost-intensive, with fuel costs, which are also regarded as
main drivers by local fishers (pers. comm.), driving net profits
down. On the other hand, displacing effort closer to the harbour
compared with a more productive offshore region is a trade-off
between fuel savings and fishing efficiency in which savings in
fuel costs are sometimes adequate to compensate for the loss in
landing value (Simons et al., 2014b) and sometimes not
(Bastardie et al., 2010). For Newport, the trade-off between lower
fuel costs and higher fishing effort in the near-port area that is rela-
tively Klamath-free seems to be overall economically beneficial for
the fleet.

The idea of fishers responding to economic incentives with effort
allocation is supported by several studies (Bockstael and Opaluch,
1983; Dorn, 1998, Simons et al., 2014b). For example, Bockstael
and Opaluch (1983) provide empirical documentation showing
that fishers adjust their effort in response to changes. In our
model, fleets are assumed to respond to profits of the whole
fishery. Modelled species profitability, catch rates, Klamath limits,
and fishing costs consequently influence not only the spatio-
temporal distribution of fishing effort but also the overall effort
level and profit. In addition to fine-scale effort shifts, the model
output suggests an overall shift in effort from Coos Bay, closest to
the Klamath hotspots, to Newport, closer to an area where
Klamath was generally caught at lower rates in the four years
studied. Thus, predicted total catch and, consequently, net profit de-
crease for Coos Bay and increase for Newport. In summary, adapta-
tion in effort allocation can serve both species conservation and
economic interests. For the latter, however, single fishers or fleets
may be negatively affected, while a group of fishers or fleets generally
benefits. Therefore, in addition to stock-specific area quotas, tar-
geted closures, or other policy approaches, reallocating fishing
effort between fleets or temporally changing the landing port
could be a new management strategy to consider.

Model improvements and application to management
The model built in this study represents a simplified version of the
more complex recent models (Salz et al., 2011; Simons et al.,
2014a), as the main interest here was to develop a tool that is easy
to understand and can be used strategically to explore the general
potential of fishing adaptations and their implications to rebuild a
weak stock. The bioeconomic model at its present stage does not
allow for quantitative conclusions, as it does not include biological
processes (e.g. stock–recruitment or demographic processes),

stochasticity to reflect natural variability, or economic components
such as risk factors for “search” effort, behaviour switching between
fisheries, and fleet communication. The assumption of simple logis-
tic growth further does not reflect the biology of Chinook salmon
and, hence, might have led to over- or underestimation of calculated
stock size, but it was the best solution at this stage. The assumption
of 25 vessels for each fleet is a realistic approximation of the number
of vessels sampled in three of the four ports. It was a great overesti-
mation for Garibaldi as the annual sea-days were just �27. This
might explain why model results showed no differences under the
two model scenarios vs. the observed pattern during our study
period. Indeed, model performance would benefit from more real-
istic vessel numbers, as this will affect the estimation of the fleet’s net
profit, which is the main driver for the effort allocation CONOPT
algorithm. On the other hand, this model result could have been
caused by the undersampled fishing effort of the fleet. It is likely
that fishers from Garibaldi sometimes fish farther south, where
densities of Chinook salmon and Klamath are higher. If so, this
would likely have caused an effort allocation change under the
profit-optimization and the constrained Klamath harvest scenario.
However, we believe that the model outcomes of the other three
fleets are not greatly impacted by the overestimation of vessels for
the Garibaldi fleet.

The data on which the bioeconomic model and statistical ana-
lysis are built is a comprehensive and unique collection with high
spatio-temporal resolution allowing for such fine-scale study. But,
it still represents only a 15% sample of the entire fishery, and the
sample distribution was influenced by the sampling design. In
general, commercial fishing data, which are influenced by fishing
fleet efficiency and behaviour, are often regarded as less suitable
for estimating stock abundance. Although Bellinger et al. (2015)
have recently tested for potential biases of individual fishers on
CPUE-based abundance estimates in this fishery and found
limited effects, additional survey data could shed more light on in-
dividual stock distributions. Fishers stated that they might miss tem-
porary hotspots and consequently identified stock distribution
might not fully reflect the real pattern. To be able to identify
trends and periodic patterns in stock distribution with more confi-
dence, a longer time-series is needed, along with a sampling pro-
gramme designed to more uniformly represent the fishery.

In addition, the modelling reported here was based on aggre-
gated monthly fish distributions over 4 years of sampling. Fish dis-
tributions change from year-to-year, and a strategy based on
averages will not always be useful. For example, in the Newport
area, catch rates were sometimes high nearshore and at other
times high offshore, so a nearshore fishing strategy would not be
cost-effective at all times. One possible solution would be to assess
stock distributions in near real time and identify areas with both
high catch rates and lower Klamath contribution rates, then encour-
age the fleet to fish those areas. Using an Internet-based fishery in-
formation system, spatial and electronic data entry at sea, catch, and
effort data can be available as soon as a fishers returns to port and
gains an Internet connection. Stock identifications can be attached
to individual fish within 2 days of samples arriving at the genetics
lab. Realistically, stock-specific distributions can be available to
fishers in a format suitable for decision-making within a week of
fish being caught. Particularly as changes in fishing allocations
could lead to increased catch of other weak stocks, as suggested in
our analysis, it must be emphasized to incorporate ad hoc adapta-
tions of management strategies if other weak stocks show strong
declines. Such model simulations could be then made available
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for stakeholders through a multi-user website, such as the Internet
platform FishTrax (www.pacificfishtrax.org). This platform aims
to bridge the gap between academia, fishery management agencies,
and the industry and provides access to various portals and data-
bases. An improved version of the presented bioeconomic model
could be integrated in such a web portal to allow fishers to adapt
their economic parameters and create scenarios to predict suitable
changes in individual and fleet behaviour. The feasibility of collect-
ing such fine-scale data to support FishTrax and other similar
systems certainly represents a persistent challenge, but with contin-
ual advancements in technological capabilities, the cost of gathering
and processing these data make it ever more realistic.

Transdisciplinary challenges and chances
In this study, human and natural science disciplines were combined
to provide new insights into potential future strategies both benefi-
cial for the fishing sector and Chinook salmon conservation. The
patterns and strategies that emerged from this research were not
only the result of combining multiple disciplines but also the par-
ticipation of the fishing sector. Collaboration with stakeholders
from the start is a crucial step in advancing sustainable fishery
research and one of the key points that makes a TD approach
more holistic than other disciplinary strategies (Stock and Burton,
2011). While collaborations among researchers and between
researchers and practitioners is pivotal when finding solutions for
real-world problems, they also bear great challenges. For example,
the heterogeneous nature of collaborators often leads to access to
a wider range of knowledge. This can be beneficial, but at the
same time, it can also create opportunities for disagreement and
conflicts (Hoffmann-Riem et al., 2008). Another major issue is
communication that requires translatability since the TD project
team consists of researchers trained in different scientific fields
with their own philosophies and terminologies. Similarly, non-
academic stakeholders have their own language. Finding a common
baseline vocabulary is consequently key to construct an integrated
framework, but not easy to achieve (Holbrook, 2013). One way to fa-
cilitate TD is thus to establish a communication framework across
disparate disciplines and stakeholders. Here, modern information
systems become increasingly important as they enable commu-
nication and knowledge sharing across broad social and cultural
boundaries.

Conclusion
Bringing together disciplines from the human and natural sciences
and stakeholder participation enabled us to analyse a complex and
multidimensional socio-ecological system in ways that provided
real-world insights that are not attainable with lower-dimension
analysis. By using this transdisciplinary approach, we showed a
potential strategy of bycatch avoidance in the Chinook salmon
ocean fishery. First, we identified the fine-scale distribution and
hotspots of the indicator stock Klamath and the role of bathymetry.
We then identified Klamath associations with other stocks and eval-
uated the potential implications for non-overlapping, weak stocks if
the fishing effort shifts away from these Klamath hot zones.
Scenarios from a simplified bioeconomic model demonstrate that
such effort reallocation could lead to reduction in Klamath catch,
but also to increases in net profit depending on the distance of the
fleets’ home port. The output of the model at its current stage
should be regarded rather strategically, providing a qualitative
understanding of how individual fleets can be affected differently
and of the types of best fleet strategies. While enforcement of

regulations can be costly at times, incentive structures for self-
regulation could be an alternative to consider for management
plans. Despite some challenges in TD research and despite the
present limitations to incorporating fine-scale changes in
Chinook salmon stock distributions in management regulations,
this direction will become increasingly attractive for use in fishery
management.

Supplementary data
Supplementary material is available at the ICESJMS online version
of the manuscript.
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