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Abstract

Notothenioids are a clade of ~120 species of mdishes distributed in extreme
southern hemisphere temperate near-shore hahiiis ¢he Southern Ocean
surrounding Antarctica. Over the past 25 yearsemgdar and morphological approaches
have redefined hypotheses of relationships amotmhenioid lineages as well as their
relationships among major lineages of percomorfg@osts. These phylogenies provide a
basis for investigation of mechanisms of evolutrgrdiversification within the clade,
and have enhanced our understanding of the notoileadaptive radiation. Despite
extensive efforts, there remain several questionserning the phylogeny of
notothenioids. In this study we deploy DNA sequanafe~100,000 loci obtained using
RADseq to investigate the phylogenetic relationslapnotothenioids and to assess the
utility of RADseq loci for lineages that exhibitvéirgence times ranging from the
Paleogene to the Quaternary. The notothenioid jgieyles inferred from the RADseq
loci provide unparalleled resolution and node supfow several long standing problems
including, 1) relationships among specieJi@matomus, 2) resolution ofndonotothenia
cyanobrancha as the sister lineage ®fematomus, 3) the deep paraphyly of
Nototheniidae, 4) the paraphyly bépidonotothen s.I., 5) paraphyly ofrtedidraco, and

6) the monophyly of the Bathydraconidae. Assessmoksite rates demonstrates that
RADseq loci are similar to mtDNA protein coding gsrand exhibit peak phylogenetic
informativeness at the time interval during whible major Antarctic notothenioid
lineages originated and diversified. In additiorptoviding a well-resolved phylogenetic
hypothesis for notothenioids, our analyses quatiiéypredicted utility of RADseq loci

for Cenozoic phylogenetic inferences.
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1. Introduction

Antarctic notothenioids (Cryonotothenioidea) are ohthe most well studied
groups of marine fishes and one of few examplesarine teleost adaptive radiation
(Eastman, 1993; Clarke and Johnston, 1996; Ingradrivahler, 2011; Matschiner et al.,
2011; Near et al., 2012; Colombo et al., 2015; Darg et al., 2017a). In addition to
exhibiting an interesting evolutionary history, otbtenioids are vital to Antarctic marine
ecosystems, as they comprise a substantial compoh#re biomass, abundance, and
species diversity of near shore fishes (Eastma®3,12005). Correspondingly, these
species are critical in linking lower level consumand higher level predators in the
Antarctic marine food web (La Mesa et al., 2004¢Juding species of high economic
importance for international fisheries interestsr{€table et al., 2000; Abrams, 2013).
Despite a long history of research, a well-resolsgecies level phylogeny of
notothenioids is not available and several key @ighetic questions remain unanswered.

Over the past quarter century efforts to investighe phylogenetics of
notothenioids have resulted in important discowetiat dramatically altered subsequent
taxonomic classifications. For example, early motpbical and molecular inferred
phylogenies resolve Bovichtidae, historically deted to includeBovichtus, Cottoperca,
andPseudaphritis (Eastman, 1993; Nelson, 1994), as paraphyletié&heyinops
maclovinus as the sister lineage of Cryonotothenioidea instédoeing closely related to
the nototheniid lineagBissostichus (Balushkin, 1992; Lecointre et al., 1997; Bargeilo
and Lecointre, 1998). The most recent phylogeratatyses of notothenioids use DNA
sequences sampled from multiple mitochondrial andear genes with a taxon sampling

that includes most of the recognized species ictldae (Near et al., 2012; Dornburg et
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al., 2017a). While these studies provide importasights into the relationships of
notothenioids and serve as the basis for comparatalyses investigating the history
and mechanisms of notothenioid diversification (N&teal., 2012; Dornburg et al.,
2017a), there are several unresolved issues iphylegenetics of notothenioids: the lack
of phylogenetic resolution among the ~14 specighefapidly diversifyinglrematomus
(Kuhn and Near, 2009; Janko et al., 2011; Lautrextal., 2012; Near et al., 2012); the
resolution of the neutrally buoyaRteuragramma antarctica among the major lineages
of Cryonotothenioidea (Near and Cheng, 2008; Dettal., 2012; Near et al., 2012); and
the lack of support for monophyly of the Antardiicagonfishes (Bathydraconidae) in
molecular analyses (Bargelloni et al., 2000; Deretal., 2002; Dettai et al., 2012; Near
et al., 2012). These remaining challenges to theludon of notothenioid phylogeny
inhibit the investigation of important questionscls as the origin of neutral buoyancy
(Near et al., 2007; Near et al., 2012), speciediogiships within rapidly diversifying
lineages (e.gTrematomus & Artedidraconidae; Lecointre et al., 2011; Ladwa et al.,
2012), and patterns of hemoglobin evolution in Bdthconidae that led to the loss of
this protein in the Crocodile Icefishes (Channigidhae) (Bargelloni et al., 1998; Near et
al., 2006; Lau et al., 2012).

Next-generation sequencing through reduced reptasmm methods such as
restriction site associated DNA sequencing (RAD$&dgl the promise of resolving
species level relationships in notothenioids. Byusmcing DNA flanking restriction
sites, RADseq captures thousands of single nude@olymorphisms (SNPs) across any
target genome and have been used to resolve dhffibylogenetic problems in lineages

spanning beetles (Cruaud et al., 2014), plants ¢kttt al., 2016; Wang et al., 2017),



91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

corals (Herrera and Shank, 2016), and Lake Victwahlids (Wagner et al., 2013).
Empirical assessments of RADseq data suggest tfestige phylogenetic utility across
temporal scales spanning recent divergences te thating back tens of millions of years
(Eaton et al., 2017). However, these assessmentsaaed on post-hoc measure of
topological support such as bootstrap values thrate positively mislead by noise in the
dataset, or phylogenetic informativeness profile®xnsend, 2007), which make no
explicit prediction of phylogenetic noise or trepology (Townsend, 2007; Collins and
Hrbek, 2018).

It is important to consider that the length of aegi internode can fundamentally
alter expectations of phylogenetic utility (Whitleand Lockhart, 2007; Steel and
Leuenberger, 2017; Dornburg et al., 2018). A refethip exists between the timescale of
a phylogenetic questio), the time between branching evengy, @nd the rate of
character evolution, which allows direct quantifioca of the predictive utility of a given
marker (Townsend et al., 2012; Su et al., 2014p@Adly evolving marker will provide
phylogenetic information for deep divergences wivaiting times between branching
events are long, while the same marker has a hgloéability of being positively
misleading at a similar timescale when waiting srbetween branching events are
reduced (Townsend et al., 2012). Although previesearch has demonstrated that
RADseq successfully resolves phylogenetic relatiggssdating ~50 million years (Eaton
et al., 2017; Collins and Hrbek, 2018), no emplrassessments have analyzed the
conditions under which RADseq remains cost-effectigrsus potentially misleading for

phylogenetic inference.
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Here we assemble a RADseq dataset for the majfrltying notothenioid
species, providing the first detailed phylogenomigstigations of this radiation. To
evaluate the impact of internode length on theipte@ utility of sequenced RADseq
loci, we assess patterns of phylogenetic infornmationtent across tens of thousands of
RADseq loci using a combination of phylogenetiomfativeness (PI) that complement
those presented in Collins and Hrbek (2018), amulagzhes to quantifying phylogenetic
signal and noise (Townsend, 2007; Townsend e2@12). Our results provide a strongly
supported phylogenetic hypothesis of notothenipetges-level relationships, the ability
to reject several previous phylogenetic hypothesed refine our perspective on the

predicted utility and limits of RADseq data.
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2. Methods
2.1 Taxon Sampling, Sequencing, and Data Preparation

The taxon sampling included 80 notothenioid spe($epplementary Table 1),
which includes all of the recognized taxonomic fisesiand is very similar to previous
phylogenetic studies using Sanger sequenced legadsers (Near et al., 2012). For
example, the species included in Near et al. (2€idt)are not included in this study are
Gobionotothen acuta, G. marionensis, Paranotothenia angustata, Bathydraco scotiae,
Neopagetopsis ionah, andCryodraco antarcticus. Species included in this study not in
Near et al. (2012) amdototheniops cf. nudifrons, Pogonophryne fusca, andBathydraco
joannae. We are confident that the minor differences kotasampling do not have a
strong effect on the phylogenetic inferences.

DNA was isolated from tissue samples using the éndgNeasy tissue extraction
protocols (DNeasy, Qiagen, Valencia, CA). Extratsiovere gel-quantified in agarose
using New England Biolabs 100bp ladder (NEB, Ip$wiA) to ensure successful
extractions and DNA concentrations were determirsdg a Qubit v. 3.0 fluorometer
(ThermoFisher Scientific, Philadelphia, PA). All BNextractions were standardized to
contain between 17 and 23 ng DNA/uL.

The RADseq protocol was not optimized for nototbets, but rather is a single
enzyme protocol that has been used in lineagdsweéfing plants (Eaton et al., 2017).
Floragenex Inc. (Portland, OR) prepared the RADbegries using th&bfl restriction
enzyme, a six base pair cutter (5-CCTGCA-3’) aathple-specific barcodes. The
samples were combined into two 95-sample multigldiearies. Floragenex created

two replicates of each library in order to minimthe influence of PCR duplication bias
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and other technical errors. We sequenced eachyibséce on an lllumina HiSeq 2000
using single-end 100 base pair sequencing at tinvetsity of Oregon GC3F facility
(https://gc3f.uoregon.edu/). We ugagtad v.3.0.61 to assemble and align the RADseq
datasets (Eaton, 2014). Individual reads that aeatlimore than four sites with Phred
scores < 20 were excluded. Reads were clusterad vssiarch and an 88% similarity
threshold, allowing for approximately 11 base d#éfeces between reads within a cluster.
Analyses did not include clusters with a sequendegth of less than six reads. We also
discarded consensus sequences for each cludteyitbntained more than five
heterozygous or ambiguous bases. Consensus seguwegreeclustered as homologous
loci across samples with an 88% similarity thredhekcluding loci that were shared by
fewer than four of the sampled specimens. Accessimmbers for the raw sequence reads

deposited in the NCBI BioSample database are giv&upplementary Table 1.

2.2 Phylogenomic Inference and Testing Alter native Phylogenetic Hypotheses

The RADseq alignment was analyzed using 1Q-TRE#&etermine the optimal
molecular evolutionary model and infer a maximukelihood phylogeny of
notothenioids (Nguyen et al., 2015; Kalyaanamooetihgl., 2017). Node support was
assessed using an ultrafast bootstrap analysisivdl@0 replicates (Hoang et al., 2018).
Based on previous analyses (e.g., Near et al.,)2@E2rooted our phylogenetic
inferences using the species of Bovichtidae sampl#us study.

In order to accommodate incomplete lineage sortiegused the species tree
approachetrad v.0.7.19, an implementation of SVDquartets in tbivgare package

iPyrad (Chifman and Kubatko, 2014; http://githulm¢dereneaton/ipyrad). We résirad
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using one randomly selected SNP per locus, forZB2SNPs. We inferred all 2,024,785
possible quartets for the 85 sampled specimenssepting 80 speciesetrad uses the
algorithm implemented by qQMC to join the individlg@artet trees into a supertree
(Avni et al., 2015). We constructed a 50% majoritle consensus tree from 100
nonparametric bootstrap replicates.

Alternative phylogenetic hypotheses were compavdgtié maximum likelihood
tree inferred from the 1Q-TREE analysis using thpraximately unbiased (AU) test
based on the resampling of estimated log-likelilso@ELL) method (Kishino et al.,
1990; Shimodaira, 2002). The alternative phylogeretpotheses tested include (1) the
monophyly of Nototheniidae as delimited in standa&férences for fish and notothenioid
taxonomy (DeWitt et al., 1990; Eastman and Eakid®® Nelson et al., 2016: 465-466),
(2) the monophyly of Pleuragrammatinae, contairfitheyiragramma antarctica,

Aethotaxis mitopteryx, andDissostichus eleginoides andD. mawsoni (Balushkin, 2000;
Near et al., 2007; Near and Cheng, 2008), (3) theaphyly ofLepidonotothen s.1.
(DeWitt et al., 1990), (4) the monophyly Aftedidraco (Lecointre et al., 2011), (5) the
monophyly oflndonotothenia cyanobrancha and sampled species btothenia (DeWitt
et al., 1990; Balushkin, 2000), (Bagothenia borchgrevinki as not phylogenetically
nested infrematomus, (7) Trematomus newnesi andT. borchgrevinki are sister taxa and
all other species offrematomus form a monophyletic group (Balushkin, 2000: Fig),1
which Balushkin classified iRseudotrematomus (Balushkin, 1982), and (8) the
phylogeny ofTrematomus presented in Lautrédou et al. (2012: Fig. 2). frees with the
highest likelihoods consistent with the alternafivgylogenies were estimated using the

constraint tree search option in IQ-TREE (Nguyealgt2015).
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2.3 Quantifying Predicted Phylogenetic Utility

We compared RADseq loci to a dataset of legacy erarésed in previous
investigations of notothenioid relationships witry similar taxon sampling (Near et al.,
2012; Dornburg et al., 2017a) that consisted of mwtmchondrial genesl6S andND2),
one intron §7), and five exonsRagl, tbr1, SH3PX3, glyt, andzicl; DOI.
10.5281/zen0do0.801836). We used the program HyPbgd et al., 2005) in the
PhyDesign web interface (Lopez-Girdldez and Towds2011) to quantify site-specific
rates of substitution for each legacy marker a$ agethe newly generated RADseq data
using a publicly available notothenioid chronogr@tear et al., 2012; Dornburg et al.,
2017a) downloaded from zenodo (DOI: 10.5281/zerRl836) that was pruned to
mirror the taxon sampling of our alignment. Thed&lgge vioplot was used to generate
violin plots of rate distributions (http://wsopuppeéste.wiso.uni-goettingen.de/~dadler).
By combining a rotated kernel density plot withax Iplot of data quantiles, violin plots
allow for simultaneous visualization of both theagies and the underlying probability
distribution of the site rates (Hintze and Nelsb®98). Using the equations presented in
Townsend (2007), phylogenetic informativeness @Wl$ quantified for each locus in the
R package PhyinformR (Dornburg et al., 2016). Vislegection of declines in P1 over
time have been considered a signature of homoglasynsend and Leuenberger, 2011)
and linked to phylogenetic estimation error (Domgpet al., 2017c). Given that a
RADseq dataset consists of thousands of loci, &filps were visualized using hexagon
binning to assess overall trends in Pl betweenusirig the hexbinplot function package

hexbin (http://github.com/edzer/hexbin). The hexbliots were compared with Pl
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215 profiles of the sampled legacy markers and mappeiet 95% highest probability

216 density interval of notothenioid divergence timssraated from previous relaxed

217 molecular clock analyses (Near et al., 2012; Dorglat al., 2017a).

218 Although the shape of the PI profiles providesratidation of overall trends of
219 phylogenetic information content, these visualmasi make no explicit quantification of
220 how convergence in character state not reflectuadugionary history (noise) will impact
221 topological resolution (Townsend and Leuenberg@t12 Dornburg et al., 2017c).

222 Townsend et al. (2012) proposed theory that alltnveutility of a locus to be quantified
223 by comparing the predicted phylogenetic signal sufpg a correct resolutiorR} versus
224  the amount of phylogenetic noise supporting resmiubased on homoplask) of a

225 hypothetical phylogenetic quartet. We quantifiee difference betweeR andH to

226  explicitly quantify and visualize trends of the gieed utility of RADseq data for

227 phylogenetic resolution. Specifically, we simultansly assessed the predicted impact of
228 alignment length and temporal depth on RADseq bagetences of short internodes.
229 We quantifiedR andH for resolving a short (0.25 million year) interrof in Townsend
230 etal., 2012) using increasing quartet depthsaf B0 million years beginning 5 million
231 years agoTin Townsend et al., 2012). For each hypotheticaltpt, we increasingly
232 added 500 bp of variable sites from the concatefaeDseq alignment to determine
233 changes iR andH as a function of alignment length. Given that R&DQ alignments are
234  often comprised of over one million variable sitibgs approach allows us to assess at
235 what point we would expect the contributionfofo mitigate any potential impacts ldf
236 All quantifications were conducted in the R pack&fgInformR (Dornburg et al., 2016)

237 and results were visualized as horizon plots inLitéiceExtra Package (Sarkar, 2008).
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3. Results
3.1 RADseq Data

We collected RAD data for 80 notothenioid spediepresenting all major
lineages (Supplementary Table 1). After initial legydiltering, we retained an average of
1.7 x 18 reads per sample, subsequently reduced to an avef&@,000 clusters per
sample. Each of these clusters has a minimum semgedepth of 6X, with an average
depth of 23X across all sampled specimens. Aftditiahal filtering to remove clusters
with excess heterozygosity, we retained an aver&§é,000 consensus sequences per
sample. The average estimated heterozygosity setblesters is 3.6 x TQwith an
average estimated base calling error rate of 0% After clustering consensus
sequences into homologous loci, excluding loci etidry fewer than four taxa, and
filtering identified paralogs, the final datasenhtains 104,709 loci. The average number
of loci per specimen is 25,881 (SD = 12110). Thapprtion of missing data in the final

concatenated alignment of all loci is 76.4%.

3.2 Phylogenomic Inference

Maximum likelihood IQ-TREE (MLIiq) and SVDquartetaalyses of the RADseq
dataset result in phylogenies that are highly coegr with one another (Figs. 1 and 2)
and very similar to previous inferences using Sasggquenced legacy markers (Near et
al., 2012; Dornburg et al., 2017a). The phylogemiese rooted with the three sampled
species of Bovichtidae and relationships amongtreAntarctic lineageBseudaphritis
urvillii andEleginops maclovinus are identical to previous analyses (Near et atl22
Near et al., 2015). These lineages are prunedfdbedrees shown in Figures 1 and 2 to

allow focus on the relationships among the CryothaiioideaThe MLiq and



262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

13

SVDquartets phylogenies differ at five nodes: #eotution ofPleuragramma
antarctica, and in four additional apical relationships thet not strongly supported in
either analysis (Figs. 1 and 2).

The MLiq phylogeny resolves two major cryonototlwediclades, (1) a clade
containingTrematomus, Indonotothenia cyanobrancha, Dissostichus, Aethotaxis
mitopteryx, Pleuragramma antarctica, Lepidonotothen squamifrons, Nototheniops, and
Patagonotothen and (2) a clade containirggpbionotothen, Notothenia, Harpagifer,
ArtedidraconidaeBathydraconidaeand Channichthyidae. The Pleuragrammatinae,
composed oP. antarctica, A. mitopteryx, and the two species Dissostichus, is resolved
as paraphyletic in both analyses; however, theladbacontainingd. mitopteryx and
Dissostichus is strongly supported (Fig. 1). The Trematomircaenprising
Patagonotothen, Nototheniops, L. squamifrons, I. cyanobrancha, andTrematomus, form
a cladelndonotothenia cyanobrancha is resolved as the sister lineageloématomus
and there is strong node support for the relatigpssiimong species dfematomus (Fig.
1). Nototheniops, Patagonotothen, andLepidonotothen form a clade, buitepidonotothen
as traditionally delimited to contaln sqguamifrons and the species dfototheniops is
resolved as non-monophyleasL. squamifronsis the sister lineage #fatagonotothen
(Figs. 1 and 2).

Gobionotothen is strongly supported as the sister lineage ohdnusive clade
containingNotothenia, Harpagifer, Artedidraconidae, Bathydraconidae, and
Channichthyidae (Figs. 1 and 2). The 14 sampledisp®f Bathydraconidae are a
monophyletic group and are resolved as sisterdi@@d the Channichthyidae (Figs. 1

and 2). Relationships within the bathydraconids @mghnichthyids are well supported in



14

285 the MLiq phylogeny, but relationships of the Antaz®ragonfishedacovitzia glacialis,
286 Vomeridensinfuscipinnis, and species d@athydraco are only moderately supported (Fig.
287 1).Harpagifer and Artedidraconidae are strongly supported dadegcbut within

288 Artedidraconidaé\rtedidraco is paraphyletic withA. skottsbergi resolved as the sister
289 lineage of all other artedidraconids and all od@npled species dirtedidraco (A.

290 orianae, A. mirus, A. glareobarbatus, andA. shackletoni) form a clade that is the sister
291 lineage ofDolloidraco longedorsalis (Fig. 1).Histiodraco velifer and the sampled

292 species oPogonophryne are resolved as sister lineages (Figs. 1 and 2).

293 The AU test rejects seven of the eight alterndtiygotheses when compared to
294 the optimal tree inferred from the 1Q-TREE analyJiable 1). The only hypothesis that
295 is not rejected is the monophyly of Pleuragramnaai(lrable 1), which is sampled with
296 Pleuragramma antarctica, Aethotaxis mitopteryx, Dissostichus el eginoides, andD.

297 mawsoni (Figs. 1 and 2).

298

299 3.3 Predicted Phylogenetic Information Content

300 A violin plot based comparison of the probabiligndity of calculated site rates
301 for RADseq loci and other classes of Sanger seauklegacy markers reveal that

302 RADseq loci possess a similar distribution of rate®bserved in the previously sampled
303 mtDNA genes (Fig. 3A). Visualizing the density dfgrofiles through time for the

304 RADseq loci as a hexagonal heatmap (Fig 3B), steohigh-predicted level of

305 informativeness through the Miocene [~23.0 to 5.3 (#&y. 3B), with particularly high
306 densities of informative loci corresponding to gemlogic intervals hypothesized as the

307 periods of both the origin and diversification o&jor cryonotothenioid lineages (Fig. 3B
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& 3C). Mapping the PI profiles of all other classd#degacy markers used to investigate
notothenioid phylogeny onto this heatmap demoresrittle decline in PI during the
interval corresponding to the hypothesized geoltigie period and estimated 95%
highest posterior density intervals of moleculagsatpr the origin and diversification in
the clade (Fig. 3B & 3C). Quantification Bf the predicted phylogenetic signal
supporting a correct resolution, addthe amount of phylogenetic noise supporting
resolution based on homoplasy, also reveals highatilities ofR for short internodes
through the Late Miocene (~20 Ma; Fig. 4). In abesR rapidly maximized with the
addition of data, predicting that RADseq loci camtaigh levels of phylogenetic
information for resolving short internodes. Howewair quantifications reveal that the
predicted information content declines at interrsodating to early periods of the
Cenozoic (Fig. 4). By the Cretaceous-Paleogenedsryr(~66 Ma), there is very little
phylogenetic information remaining, even when thtadet contains @ariable

characters (Fig. 4).
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4. Discussion
4.1 Resolving the phylogenetic history of the notothenioid adaptive radiation

Over the past quarter century, the phylogeny obthenioids has come
increasingly into focus (Balushkin, 1992; Bargellenal., 1994; Lecointre et al., 1997,
Balushkin, 2000; Bargelloni et al., 2000; Near &ieeng, 2008; Dettai et al., 2012; Near
et al., 2012; Near et al., 2015; Dornburg et &1 7&); however, there remain
considerable areas of uncertainty. The trees mdeusing the RADseq dataset have an
unprecedented degree of resolution and node sufguadlationships within
cryonotothenioid lineages that exhibit high ratédigersification (Fig. 1). The
phylogeny inferred in this study provides importarsight regarding relationships among
species offrematomus, the phylogeny of species of Artedidraconidae acthrification
of the paraphyly oArtedidraco, the deep paraphyly of Nototheniidae, consistent n
monophyly ofLepidonotothen squamifrons and the species dfototheniops, the
relationships of Bathydraconidae, and continuecettamty in the phylogenetic
placement oPleuragramma antarctica. The well-supported resolution of relationships
throughout the notothenioid phylogeny, especiathpag the radiations of closely related
species (e.gTrematomus, Artedidraconidae, Channichthyidae, and Bathydratae),
provides opportunities to investigate mechanismspetiation and evolutionary
diversification in one of the most iconic and thezsed marine ecosystems of our planet,
an avenue of research identified as one of thprsaxities for Antarctic science
(Kennicutt et al., 2014).

Species offrematomus comprise an important element of the notothenioid

adaptive radiation (Janko et al., 2011; Lautredaal.e2012; Near et al., 2012) as well as
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a dominant component of the near shore notothefighdauna (Kock, 1992). However,
no prior study provides strong support for the hatson of the inter-relationships of these
species. The RADseq data reject all of the alteragathylogenetic relationships
involving Trematomus that includes a phylogeny inferred from a seegllcy Sanger
sequenced mitochondrial and nuclear genes, thepabfhaflrematomus is limited toT.
newnesi, and all other species are classifiedPssidotrematomus (Balushkin, 1982), and
that the Bald NototherRagothenia borchgrevinki, is not phylogenetically nested in
Trematomus (Table 1). Previous molecular studies have cossilst resolvedr. scotti as
the sister lineage to other specie§idmatomus (Ritchie et al., 1996; Sanchez et al.,
2007; Kuhn and Near, 2009; Janko et al., 2011;redou et al., 2012; Near et al., 2012),
a result also strongly supported in the RADseqrietephylogenies (Figs. 1 and 2). The
phylogeny ofTrematomus resolves strongly supported monophyletic groupgaining
epibenthic species. loennbergii, T. lepidorhinus, andT. eulepidotus as a clade, as well
as a clade containing the demersal spéekiesrnacchii andT. hansoni (Figs. 1 and 2).
These relationships, initially suggested from asiglpf sequence data of mtDNA rRNA
genes, are consistent with the expectations otdtalse driven adaptive radiation within
this clade (Ritchie et al., 1996).

The RADseq phylogenies resolu@onotothenia cyanobrancha as the sister
lineage offrematomus (Figs. 1 and 2)a result consistent with analyses of mtDNA genes
and a combination of mtDNA and nuclear genes (Bbmgieand Lecointre, 1998;
Bargelloni et al., 2000; Dornburg et al., 201 7ajlonotothenia cyanobrancha was long
classified in the genusotothenia (DeWitt et al., 1990), but Balushkin (1984: 13)

described the monotypic genuglonotothenia to classify this species. Based on
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morphological analysesndonotothenia is resolved as the sister lineage of a clade
containingNotothenia andParanotothenia (Voskoboinikova, 1993: Fig. 8; Balushkin,
2000: Fig. 15). However, assessment of externaphwogical characters argues for a
closer relationship witArematomus (Hureau, 1970: 225, Table 14). The results of the
phylogenetic analyses of the RADseq data strorgjct a close relationship bf
cyanobrancha with other species dfotothenia and instead suggest that it is a species of
Trematomus (Figs. 1 and 2; Table 1).

Similar toTrematomus, previous molecular phylogenetic analyses do notige
strong node support for relationships inferred agngecies of Artedidraconidae.
Artedidraconids occupy benthic habitats of the Agtta continental shelf and exhibit a
high diversification rate relative to other notatimd lineages (Eakin, 1990; Near et al.,
2012). Consistent with previous molecular analy8esome et al., 2002; Lecointre et al.,
2011; Near et al., 2012), the phylogeny inferrearfithe RADseq dataset resolves
Artedidraco as paraphyletic, witlA. skottsbergi as the sister lineage of all other
artedidraconids (Figs. 1 and 2). The AU test rgjdloe best alternative phylogeny that
resolvesArtedidraco as a monophyletic group (Table 1). The remainperies of
Artedidraco sampled in this study, including the type spegiasirus (Lonnberg, 1905:
39), comprise a strongly supported clade in thedvtee that is sister olloidraco
longedorsalis (Fig. 1), a relationship not hypothesized in pregionolecular
phylogenetic analyses (Derome et al., 2002; Leomiet al., 2011; Near et al., 2012). The
deep paraphyly oArtedidraco s.l. and the lack of an available genus group name
accommodat@é. skottsbergi necessitates a taxonomic revision that refleeptiylogeny

and consistent resolution Aftedidraco s.l. as a paraphyletic group.
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Previous molecular analyses and the RADseq infgyhgtbgenies strongly
support monophyly of the species rich artedidratdineagePogonophryne (Figs. 1 and
2; Near and Cheng, 2008; Eakin et al., 2009; Laoiet al., 2011; Near et al., 2012);
however, the taxonomy of this group warrants rastadn. Species d?ogonophryne are
currently classified into five species groups oa Ilasis of external morphological traits
(Balushkin and Eakin, 1998). Although previous nealar analyses support these
groupings, the relationships among them remainaaived (Eakin et al., 2009). Analysis
of the RADseq dataset results in a strongly suggdgohylogenetic hypothesis for the
relationships among the species groupBagfonophryne; however, thd>. mentella
group, which includes the sampled speélesacropogon, P. cerebropogon, P. eakini,
andP. fusca, is not monophyletic aB. fusca is the sister lineages Bf barsukovi (Figs. 1
and 2). These results suggest a need for a reeaaamrof the classification of
Pogonophryne species diversity using a dataset with greatesrtamic sampling. Given
that species dPogonophryne exhibit substantial overlap in bathymetric distitibn
(Eakin, 1990; Eastman, 2017) and diet (WyanskiBardgjett, 1981; Eakin, 1990;
Lombarte et al., 2003), and are characterized by tdle morphological disparity
among the species (Eakin, 1977; Lombarte et ab3R0ncreased inter- and intraspecific
sampling is needed to assess the delimitationexfiep and investigate the mechanisms
driving diversification in this clade.

In addition to resolving relationships among theshabosely related species, the
RADseq inferred phylogenies also provide much neéedsolution to several higher-
level relationships within Cryonotothenioidea. Qrthe first molecular analyses of

notothenioid phylogeny, the inclusive family Notethidae is consistently resolved as a
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paraphyletic group (Bargelloni et al., 1994; Sacéteal., 2007; Dettai et al., 2012; Near
et al., 2012; Dornburg et al., 2017a). The conoéptototheniidae communicated in
taxonomic references (e.g., Eastman and Eakin,;20€l8on et al., 2016) has an origin
with the pioneering work of Regan (1913: 249-251d &lorman (1938: 7-10) who
provided important taxonomic revisions of nototloédiclassification. Specifically,
Regan (1913) classified speciedHzrpagifer andArtedidraco in Nototheniidae along
with Notothenia s.I., Trematomus, Pleuragramma, Dissostichus, andEleginops. Norman
(1938) classifiedhrtedidraco, Dolloidraco, Pogonophryne, andHarpagifer in
Harpagiferidae and limited NototheniidaeNotothenia s. |., Trematomus,

Pleuragramma, Dissostichus, andEleginops. Subsequent discoveries of new species
addedAethotaxis, Cryothenia, andGvozdarus to Nototheniidae (DeWitt, 1962; Daniels,
1981; Balushkin, 1989). Taxonomic revisions by Bakin (1976, 1992) led to the
removal ofEleginops maclovinus from Nototheniidae to the monotypic Eleginopsidae
and the description of several new gen@&abionotothen, Lepidonotothen, Nototheniops,
Patagonotothen, andParanotothenia all of which contain species that were previously
classified adNotothenia (Norman, 1938; Andriashev, 1965). The classifaabf these
disparate lineages &otothenia at the time of the origin of modern classificagdor
notothenioids contributed to the long held ided Nhatotheniidae is a natural group (e.g.,
Norman, 1938). Molecular phylogenies, includingsanferred from the RADseq data
(Figs. 1 and 2), provide a strong inference thableniidae as traditionally delimited is
not monophyletic. The alternative phylogeny witk thghest likelihood that depicts
Nototheniidae, as traditionally delimited, is reggtin the AU test (Table 1). While this

study did not sample speciesR&ranotothenia, previous molecular phylogenetic
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438 analyses consistently resolMetothenia andParanotothenia as a clade (Cheng et al.,
439 2003; Sanchez et al., 2007; Near and Cheng, 2068, &t al., 2012; Dornburg et al.,
440 2017a). We recommend that Nototheniidae is limiteotothenia andParanotothenia.
441 Similar to the traditional delimitation of Nototha&tae, the RADseq tree and
442 previous molecular phylogenetic analyses consistéant to resolvelepidonotothen

443 sguamifrons and species dfiototheniops as a monophyletic group (Bargelloni et al.,
444  2000; Near and Cheng, 2008; Dettai et al., 2012y Meal., 2012). Specifically..

445 sguamifronsis resolved as the sister lineagdatagonotothen (Figs. 1 and 2). In his
446 revision ofNotothenia, Balushkin (1976, 1979) described the gene&mdonotothen

447  (containingL. squamifrons and the two synonynis kempi andL. macrophthalma),

448  Nototheniops (containingN. larseni, and synonymsl. loesha, N. nybelini, andN. tchizh),
449 andLindbergichthys (containingN. mizops, N. nudifrons, and the undescribéd cf.

450 nudifrons). The most recent taxonomic revision of thesedges treatslototheniops and
451 Lindbergichthys as subgenera dfpidonotothen without identifying any morphological
452 evidence to support the hypothesis that they stmrenon ancestry (DeWitt et al., 1990:
453 294-295). Phylogenetic analysis of morphologicalreleters does not resolve

454  Lepidonotothen, Nototheniops, andLindbergichthys as a monophyletic group (Balushkin,
455  2000: Fig. 15) and this phylogeny is rejected i AU test (Table 1). We recommend
456 thatNototheniops (Balushkin, 1976) is the appropriate genus groapea forN. larseni,
457  N. mizops, N. nudifrons, andN. cf. nudifrons. The monophyly oNototheniops, as

458 delimited here (Figs. 1 and 2), is supported wabvesal synapomorphic morphological
459 characters that include an upper lateral line wélorated scales and a supraorbital

460 canal with four pores (Andersen, 1984: 24).



461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

ar7

478

479

480

481

482

483

22

The evolutionary loss of red blood cells, hemogiohind the variable loss of
myoglobin expression in Channichthyidae are unemeng vertebrates (Ruud, 1954;
Sidell et al., 1997; Sidell and O'Brien, 2006). Temetics and physiological
consequences of these highly unusual traits arestuglied (Egginton and Rankin, 1998;
Egginton et al., 2002; Near et al., 2006; Beers%idell, 2009; Beers et al., 2010; Beers
and Sidell, 2011; Lewis et al., 2015; Xu et al.120Kuhn et al., 2016); however
increased resolution of the phylogenetic relatigmsiof Channichthyidae has potential to
provide insights into the evolution of hemoglobasd (Bargelloni et al., 1998; Near et
al., 2006; Lau et al., 2012). While morphologicatianolecular phylogenetic analyses
consistently resolve Channichthyidae and Bathydrige® as a clade (lwami, 1985: Fig.
174; Balushkin, 1992: Fig. 6; 2000: Fig. 11; Balgail et al., 2000; Near and Cheng,
2008), most molecular analyses result in phylogewieere the channichthyids are nested
in a paraphyletic Bathydraconidae. In these previmolecular analyses strong support
for the resolution of the sister lineage of Chahthgidae is lacking (e.g., Derome et al.,
2002; Dettai et al., 2012; Near et al., 2012). RAdseq dataset resolves
Bathydraconidae as a monophyletic group and therdiseage of Channichthyidae with
strong bootstrap support in the MLiq inferred plyday, but with lower support in the
SVDquartet phylogeny (Figs. 1 and 2). The commarestor of Channichthyidae and
Bathydraconidae likely exhibited decreased hemdfdmmoglobin concentrations, and
globin chain multiplicity (D'Avino and Di Prisco988; di Prisco, 1998; Verde et al.,
2007; Wuijcik et al., 2007). The phylogenetic reiolu of the channichthyid sister
lineage facilities contextualizing the genomic pedlys that have given rise to these

highly unusual phenotypes.
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Despite the well-supported phylogenetic resolugbnotothenioid relationships
resulting from analysis of the RADseq datasetplheement of the Antarctic Silverfish,
Pleuragramma antarctica, remains unresolved. This monotypic pelagic lineage
radical departure in phenotype from other nototbielsi (Eastman, 1997,
Voskoboinikova et al., 2017) and is of key impodamo Antarctic food webs (Zane et
al., 2006; Mintenbeck and Torres, 201Balushkin (2000: S101, Fig. 14) delimited the
clade Pleuragrammatinae to contRirantarctica, the two species dissostichus,
Aethotaxis mitopteryx, andGvozdarus svetovidovi based on pleural ribs originating from
the 4" or 5" vertebrae and the reduction or absence of a lrasisid in the skull. Among
notothenioidsPleuragramma antar ctica, Dissostichus mawsoni, andAethotaxis
mitopteryx are neutrally buoyant as adults (Eastman and De\Vi@82; Near et al., 2003;
Near et al., 2007), and common ancestry of thesadjes would indicate a single origin
of neutral buoyancy in notothenioids (Near et2007). However, previous molecular
analyses do not confidentially support monophylytEfuragrammatinae or result in
different resolutions foP. antarctica. Our analyses do not resolve Pleuragrammatinae as
a clade, but one poorly supported node sepaPatagarctica from a monophyletic
group containingd. mitopteryx and the two species bBlissostichus (Figs. 1 and 2).
Gvozdarus svetovidovi was not included in our analysis. Investigatiohaf uncertainty
regarding phylogenetic relationshipshofantarctica requires additional work as
evidenced by the inability of the RADseq datasetject the best alternative phylogeny

that depicts Pleuragrammatinae as a monophylesigpgTable 1).

4.2 RADseq and Cenozoic radiations
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Rapidly radiating clades characterize some of thetnmvestigated portions of
the Tree of Life (Venditti et al., 2010; Leacheakt 2016; Brennan and Oliver, 2017).
Regardless of time scale, the short internodegatipa species divergences that
characterize rapid radiations also present sontieeofost challenging problems in
phylogenetics (Sharma et al., 2014; Eytan et @lL52 As such, assessing the
phylogenetic utility of different classes of genemarkers is important for cost-
effective phylogenomic experimental design. Ouestigation of RADseq loci in
notothenioids reveals high levels of predicted iinfation for resolving short internodes
that date from the Late Oligocene through the Rleene (Figs. 3 & 4). This predicted
utility is reflected in high levels of support forost nodes in the notothenioid phylogeny
that correspond to these geologic ages (Fig. I\ever, for radiations dating to the
Early Cenozoic (~65 to 50 mya), our results sugthestmassive amount of data offered
by RADseq provides diminishing returns (Fig. 4)e$a findings provide quantitative
support substantiating claims that RADseq lociuaeful for resolving interspecific
phylogenetic problems (Cariou et al., 2013; Massatil., 2016; Eaton et al., 2017),
while also setting new expectations of the templarats for this class of data. Our
results suggests RADseq loci contain similar leegélshylogenetic information as the
flanking regions of ultra-conserved elements (UCB$)ch contain high levels of
phylogenetic information for divergences datingite Miocene (~20 mya) (Gilbert et al.,
2015). Both the RADseq loci sampled across therslityeof notothenioids and UCE-
flanking regions in teleost fishes exhibit a ragatay in phylogenetic information for
divergences arising prior to the K-Pg boundaryng (Fig. 3; Gilbert et al., 2015).

While our study suggests RADseq loci exhibit higihity for resolving difficult Late
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Cenozoic phylogenetic problems, it is importantdasider that predictions of utility are
not guarantees of successful phylogenetic resaliownsend and Leuenberger, 2011).

Neither PI profiles nor quartet internode resolutwobabilities make explicit
statements on the predicted levels of node sugpownsend and Leuenberger, 2011).
These approaches merely indicate whether thereriskability of phylogenetic
information given the theoretical expectations loylpgenetic experimental design. This
does not imply that phylogenetic information su#fit for strong node support is present
in the dataset. It is possible that limited phyloggec information explains the lack of
confidence in the phylogenetic resolutiorRbéuragramma antarctica and the inability
for the RADseq dataset to reject the monophylyhefRleuragrammatinae (Figs. 1 and 2;
Table 1). Alternatively, the nature of RADseq datposes several challenges to
predictions of utility that could also explain dack of confidence in the resolution of
these nodes.

The low number of variable sites per locus limits power of experimental
design approaches for finely dissecting informationtent by locus. While it is possible
to generate PI profiles from few or even singlesithe dependency of interaction of
locus length ork or H probabilities renders filtration approaches susthase used in
other studiesot only difficult (Prum et al., 2015; Dornburgadt, 2017b), but potentially
misleading. For example, Dornburg et al. (2017bgntly noted that fast evolving third
codon positions in exons captured by anchored tdydmrichment are characterized by
high instances of non-random convergence in basgiéncy (i.e., GC bias). Detecting
bias using similar approaches is not possible wiily a limited number of variable sites,

as convergences that appear slow will not be dedett the worst-case scenario,
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filtering only ‘fast’ sites detected using any nuenlof methods (e.g., Xia et al., 2003;
Goremykin et al., 2009; Goremykin et al., 2010) v&&d to amplification of an
erroneous “signal” in the data leading to confidefar an erroneous phylogenetic
resolution (Dornburg et al., 2017c). Given thatfaend base frequencies to be near
stationarity (A= 0.265; C= 0.239; G= 0.242; T=0.pB8cleotide bias is not likely a
major axis of error in the RADseq dataset. Howegeen a small number of loci
dominated by this or other forms of homoplasy ¢apact the topological resolution
(Shen et al., 2017). Additionally, RADseq datasktsontain high levels of missing data,
so it is possible that information rich sites foistnode were simply not captured during
sequencing. As such, determining the factors ligithe confident resolution of
Pleuragramma antarctica remains an open question. However, in the cadeeadther
inferred notothenioid relationships, congruencphglogenies inferred from different
sets of genes (e.g., Dettai et al., 2012; Nedr,2@L2) and expectations of utility based
on analysis of phylogenetic informativeness (Figor®vide confidence in our resolution
for the notothenioid phylogeny (Figs. 1 and 2).

Understanding the drivers of diversification inidip radiating clades is a
primary area of research in evolutionary biologyg (eGavrilets and Losos, 2009). Given
that many of the iconic vertebrate adaptive radretisuch as anoles (Poe et al., 2017)
and cichlids (Friedman et al., 2013) are Cenoazoirigin, our findings coupled with the
effectiveness of capturing large amounts of dataaém-model organisms underscore the
utility of RADseq for providing phylogenetic resdilon to recent radiations and species
flocks (e.g., Wagner et al., 2013). However, oudgtalso demonstrates the

heterogeneity of phylogenetic information withimstklass of genomic markers, offering
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insights into phylogenetic informativeness as lated to divergence time (Fig. 3), which
is consistent with results presented by Collins ldraek (2018). While RADseq is of
tremendous utility for late Cenozoic radiationsguras increasingly diminish for
radiations moving deeper in time towards the bagmof the Cenozoic or earlier (Figs.
3 and 4). Our results provide an important contexxthe application of RADseq data to
resolving interspecific phylogenetics and complitng@milar studies conducted on other
types of next-generation sequence data such asdd©€i captured by anchored hybrid
enrichment (Gilbert et al., 2015; Prum et al., 2@&rnburg et al., 2017b; Reddy et al.,
2017; Collins and Hrbek, 2018). Future studies cammg the relative performance of
multiple classes of markers targeted by next-gdineraequencing techniques will
contribute to the optimization of phylogenetic esipeental design and lead to an

efficient and cost effective resolution of the Geno Tree of Life.
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Figure Legends

Figure 1. Maximum likelihood phylogeny of Cryonotothenioidiederred from RADseq
dataset using IQ-TREE. Numbers at nodes are baptsalues for those with less than
100% support. Photographs of notothenioid specirbgr. Marriott, P. McMillan, R.
McPhee, T. J. Near, and C. Struthers and are depasi the Museum of New Zealand

Te Papa Tongarewa and Peabody Museum of Naturridig&/ale University.

Figure 2. Species tree inferred using SVDquartets. Numbens@gs are bootstrap
support values. Nodes that differ from the maxinikelihood IQ-TREE (Fig. 1) are
marked with a filled black circle. Photographs ofathenioid specimens by P. Matrriott,
P. McMillan, R. McPhee, T. J. Near, and C. Struthaard are deposited at the Museum of
New Zealand Te Papa Tongarewa and Peabody MuseNiatwfal History, Yale

University.

Figure 3. Predictions of phylogenetic utility for RADseq alegjacy DNA sequence
datasets. A. Violin plot comparing the distributioisite rates for each dataset, with the
size of each dataset in base pairs (bp) indicdiedeaeach plot. An asterisk marks the
truncation of the upper tail of the site rate dlsttion for graphical purposes.

B. Hexbin plot of the relative phylogenetic infortiveness (P1) over time of each
RADseq locus. Colors correspond to number of Idtha measured value of
informativeness. Curved lines represent Pl profiesach legacy DNA sequence dataset.
C. Highest 95% posterior density interval of crytwibenioid divergence times taken
from Dornburg et al. (2017a). Dashed vertical linegesponding to the previously

estimated most recent common ancestor of cryonendatfds and the onset of rapid
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lineage diversification hypothesized in Near e(2012). Photograph ddistiodraco
velifer by A. Stewart and is deposited at the Museum a¥ Mealand Te Papa

Tongarewa.

Figure 4. Horizon plots depicting the relationship betweegusnce length and the
predicted probability of phylogenetic noid#)(misleading inference based on
phylogenetic signalR). Each row corresponds to a temporal depth ofpotinetical
guartet beginning with recent divergences and ektgnto the K-Pg boundary. Colors
indicate the values d®-H, with darker blue colors indicating higt whites indicating
little remaining resolving power; and darker readicating strong predicted probabilities

of H overwhelming signal.
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Table 1. Comparison of phylogenetic hypothesesatbthienioidei using the approximately unbiased (A&} based on the

resampling of estimated log-likelihoods (RELL) madh

Phylogenetic hypothesis logLn AlogLn bp-RELL p-AU
Optimal ML tree (Fig. 1) -7765781.407  0.000 0713 .77@
Nototheniidae monophyletic -7766949.513 1168.106 000. 0.010
Pleuragrammatinae monophyletic -7765888.625 107.218 0.283 0.250
Lepidonotothen monophyletic -7768175.483 2394.076 0.000 0.007
Artedidraco monophyletic -7767136.315 1354.908 0.000 0.006
Indonotothenia andNotothenia sister taxa -7767942.406  2160.999 0.000 0.001
Pagothenia not nested ifrematomus -7768068.765  2287.358 0.000 0.001
Pseudotrematomus (Balushkin 1982; 2000) -7772505.186 6723.779 0.000 0.001

Phylogeny offrematomus in Lautrédou et al. (2012) -7771618.300 5836.893 .000 0.001






