

1 **Phylogenetic analysis of Antarctic notothenioids illuminates the utility of RADseq**
2 **for resolving Cenozoic adaptive radiations**

3

4 Thomas J. Near^{1, 2}, Daniel J. MacGuigan¹, Elyse Parker¹, Carl D. Struthers³, Christopher
5 D. Jones⁴, and Alex Dornburg⁵

6

7 ¹*Department of Ecology & Evolutionary Biology, Yale University, P.O. Box 208106,
8 New Haven, CT 06520, USA*

9 ²*Peabody Museum of Natural History, Yale University, New Haven, Connecticut 06520,
10 USA*

11 ³*Museum of New Zealand Te Papa Tongarewa, Wellington, New Zealand*

12 ⁴*Antarctic Ecosystem Research Division, NOAA Southwest Fisheries Science Center, La
13 Jolla, CA 92037, USA*

14 ⁵*North Carolina Museum of Natural Sciences, Raleigh, North Carolina 27601, USA*

15 Email: thomas.near@yale.edu

16

17 **Keywords:** Notothenioidei; phylogenomics; phylogenetic informativeness; signal noise;
18 icefishes

19

20

21 **Abstract**

22 Notothenioids are a clade of ~120 species of marine fishes distributed in extreme
23 southern hemisphere temperate near-shore habitats and in the Southern Ocean
24 surrounding Antarctica. Over the past 25 years, molecular and morphological approaches
25 have redefined hypotheses of relationships among notothenioid lineages as well as their
26 relationships among major lineages of percomorph teleosts. These phylogenies provide a
27 basis for investigation of mechanisms of evolutionary diversification within the clade,
28 and have enhanced our understanding of the notothenioid adaptive radiation. Despite
29 extensive efforts, there remain several questions concerning the phylogeny of
30 notothenioids. In this study we deploy DNA sequences of ~100,000 loci obtained using
31 RADseq to investigate the phylogenetic relationships of notothenioids and to assess the
32 utility of RADseq loci for lineages that exhibit divergence times ranging from the
33 Paleogene to the Quaternary. The notothenioid phylogenies inferred from the RADseq
34 loci provide unparalleled resolution and node support for several long standing problems
35 including, 1) relationships among species of *Trematomus*, 2) resolution of *Indonotothenia*
36 *cyanobrancha* as the sister lineage of *Trematomus*, 3) the deep paraphyly of
37 Nototheniidae, 4) the paraphyly of *Lepidonotothen* s.l., 5) paraphyly of *Artedidraco*, and
38 6) the monophyly of the Bathydraconidae. Assessment of site rates demonstrates that
39 RADseq loci are similar to mtDNA protein coding genes and exhibit peak phylogenetic
40 informativeness at the time interval during which the major Antarctic notothenioid
41 lineages originated and diversified. In addition to providing a well-resolved phylogenetic
42 hypothesis for notothenioids, our analyses quantify the predicted utility of RADseq loci
43 for Cenozoic phylogenetic inferences.

44

45 **1. Introduction**

46 Antarctic notothenioids (Cryonotothenioidea) are one of the most well studied
47 groups of marine fishes and one of few examples of marine teleost adaptive radiation
48 (Eastman, 1993; Clarke and Johnston, 1996; Ingram and Mahler, 2011; Matschiner et al.,
49 2011; Near et al., 2012; Colombo et al., 2015; Dornburg et al., 2017a). In addition to
50 exhibiting an interesting evolutionary history, notothenioids are vital to Antarctic marine
51 ecosystems, as they comprise a substantial component of the biomass, abundance, and
52 species diversity of near shore fishes (Eastman, 1993, 2005). Correspondingly, these
53 species are critical in linking lower level consumers and higher level predators in the
54 Antarctic marine food web (La Mesa et al., 2004), including species of high economic
55 importance for international fisheries interests (Constable et al., 2000; Abrams, 2013).
56 Despite a long history of research, a well-resolved species level phylogeny of
57 notothenioids is not available and several key phylogenetic questions remain unanswered.

58 Over the past quarter century efforts to investigate the phylogenetics of
59 notothenioids have resulted in important discoveries that dramatically altered subsequent
60 taxonomic classifications. For example, early morphological and molecular inferred
61 phylogenies resolve Bovichtidae, historically delimited to include *Bovichtus*, *Cottoperca*,
62 and *Pseudaphritis* (Eastman, 1993; Nelson, 1994), as paraphyletic and *Eleginops*
63 *maclovinus* as the sister lineage of Cryonotothenioidea instead of being closely related to
64 the nototheniid lineage *Dissostichus* (Balushkin, 1992; Lecointre et al., 1997; Bargelloni
65 and Lecointre, 1998). The most recent phylogenetic analyses of notothenioids use DNA
66 sequences sampled from multiple mitochondrial and nuclear genes with a taxon sampling
67 that includes most of the recognized species in the clade (Near et al., 2012; Dornburg et

68 al., 2017a). While these studies provide important insights into the relationships of
69 notothenioids and serve as the basis for comparative analyses investigating the history
70 and mechanisms of notothenioid diversification (Near et al., 2012; Dornburg et al.,
71 2017a), there are several unresolved issues in the phylogenetics of notothenioids: the lack
72 of phylogenetic resolution among the ~14 species of the rapidly diversifying *Trematomus*
73 (Kuhn and Near, 2009; Janko et al., 2011; Lautredou et al., 2012; Near et al., 2012); the
74 resolution of the neutrally buoyant *Pleuragramma antarctica* among the major lineages
75 of Cryonotothenioidea (Near and Cheng, 2008; Dettai et al., 2012; Near et al., 2012); and
76 the lack of support for monophyly of the Antarctic Dragonfishes (Bathydraconidae) in
77 molecular analyses (Bargelloni et al., 2000; Derome et al., 2002; Dettai et al., 2012; Near
78 et al., 2012). These remaining challenges to the resolution of notothenioid phylogeny
79 inhibit the investigation of important questions, such as the origin of neutral buoyancy
80 (Near et al., 2007; Near et al., 2012), species relationships within rapidly diversifying
81 lineages (e.g., *Trematomus* & Artedidraconidae; Lecointre et al., 2011; Lautredou et al.,
82 2012), and patterns of hemoglobin evolution in Bathydraconidae that led to the loss of
83 this protein in the Crocodile Icefishes (Channichthyidae) (Bargelloni et al., 1998; Near et
84 al., 2006; Lau et al., 2012).

85 Next-generation sequencing through reduced representation methods such as
86 restriction site associated DNA sequencing (RADseq) hold the promise of resolving
87 species level relationships in notothenioids. By sequencing DNA flanking restriction
88 sites, RADseq captures thousands of single nucleotide polymorphisms (SNPs) across any
89 target genome and have been used to resolve difficult phylogenetic problems in lineages
90 spanning beetles (Cruaud et al., 2014), plants (Massatti et al., 2016; Wang et al., 2017),

91 corals (Herrera and Shank, 2016), and Lake Victoria cichlids (Wagner et al., 2013).
92 Empirical assessments of RADseq data suggest cost-effective phylogenetic utility across
93 temporal scales spanning recent divergences to those dating back tens of millions of years
94 (Eaton et al., 2017). However, these assessments are based on post-hoc measure of
95 topological support such as bootstrap values that can be positively mislead by noise in the
96 dataset, or phylogenetic informativeness profiles (Townsend, 2007), which make no
97 explicit prediction of phylogenetic noise or tree topology (Townsend, 2007; Collins and
98 Hrbek, 2018).

99 It is important to consider that the length of a given internode can fundamentally
100 alter expectations of phylogenetic utility (Whitfield and Lockhart, 2007; Steel and
101 Leuenberger, 2017; Dornburg et al., 2018). A relationship exists between the timescale of
102 a phylogenetic question (T), the time between branching events (t_0), and the rate of
103 character evolution, which allows direct quantification of the predictive utility of a given
104 marker (Townsend et al., 2012; Su et al., 2014). A rapidly evolving marker will provide
105 phylogenetic information for deep divergences when waiting times between branching
106 events are long, while the same marker has a higher probability of being positively
107 misleading at a similar timescale when waiting times between branching events are
108 reduced (Townsend et al., 2012). Although previous research has demonstrated that
109 RADseq successfully resolves phylogenetic relationships dating ~50 million years (Eaton
110 et al., 2017; Collins and Hrbek, 2018), no empirical assessments have analyzed the
111 conditions under which RADseq remains cost-effective versus potentially misleading for
112 phylogenetic inference.

113 Here we assemble a RADseq dataset for the majority of living notothenioid
114 species, providing the first detailed phylogenomic investigations of this radiation. To
115 evaluate the impact of internode length on the predictive utility of sequenced RADseq
116 loci, we assess patterns of phylogenetic information content across tens of thousands of
117 RADseq loci using a combination of phylogenetic informativeness (PI) that complement
118 those presented in Collins and Hrbek (2018), and approaches to quantifying phylogenetic
119 signal and noise (Townsend, 2007; Townsend et al., 2012). Our results provide a strongly
120 supported phylogenetic hypothesis of notothenioid species-level relationships, the ability
121 to reject several previous phylogenetic hypotheses, and refine our perspective on the
122 predicted utility and limits of RADseq data.

123 **2. Methods**124 *2.1 Taxon Sampling, Sequencing, and Data Preparation*

125 The taxon sampling included 80 notothenioid species (Supplementary Table 1),
126 which includes all of the recognized taxonomic families and is very similar to previous
127 phylogenetic studies using Sanger sequenced legacy markers (Near et al., 2012). For
128 example, the species included in Near et al. (2012) that are not included in this study are
129 *Gobionotothen acuta*, *G. marionensis*, *Paranotothenia angustata*, *Bathydraco scotiae*,
130 *Neopagetopsis ionah*, and *Cryodraco antarcticus*. Species included in this study not in
131 Near et al. (2012) are *Nototheniops cf. nudifrons*, *Pogonophryne fusca*, and *Bathydraco*
132 *joannae*. We are confident that the minor differences in taxon sampling do not have a
133 strong effect on the phylogenetic inferences.

134 DNA was isolated from tissue samples using the Qiagen DNeasy tissue extraction
135 protocols (DNeasy, Qiagen, Valencia, CA). Extractions were gel-quantified in agarose
136 using New England Biolabs 100bp ladder (NEB, Ipswich, MA) to ensure successful
137 extractions and DNA concentrations were determined using a Qubit v. 3.0 fluorometer
138 (ThermoFisher Scientific, Philadelphia, PA). All DNA extractions were standardized to
139 contain between 17 and 23 ng DNA/μL.

140 The RADseq protocol was not optimized for notothenioids, but rather is a single
141 enzyme protocol that has been used in lineages of flowering plants (Eaton et al., 2017).
142 Floragenex Inc. (Portland, OR) prepared the RADseq libraries using the *SbfI* restriction
143 enzyme, a six base pair cutter (5'-CCTGCA-3') and sample-specific barcodes. The
144 samples were combined into two 95-sample multiplexed libraries. Floragenex created
145 two replicates of each library in order to minimize the influence of PCR duplication bias

146 and other technical errors. We sequenced each library twice on an Illumina HiSeq 2000
147 using single-end 100 base pair sequencing at the University of Oregon GC3F facility
148 (<https://gc3f.uoregon.edu/>). We used *pyrad* v.3.0.61 to assemble and align the RADseq
149 datasets (Eaton, 2014). Individual reads that contained more than four sites with Phred
150 scores < 20 were excluded. Reads were clustered using *vsearch* and an 88% similarity
151 threshold, allowing for approximately 11 base differences between reads within a cluster.
152 Analyses did not include clusters with a sequencing depth of less than six reads. We also
153 discarded consensus sequences for each cluster if they contained more than five
154 heterozygous or ambiguous bases. Consensus sequences were clustered as homologous
155 loci across samples with an 88% similarity threshold, excluding loci that were shared by
156 fewer than four of the sampled specimens. Accession numbers for the raw sequence reads
157 deposited in the NCBI BioSample database are given in Supplementary Table 1.

158

159 *2.2 Phylogenomic Inference and Testing Alternative Phylogenetic Hypotheses*

160 The RADseq alignment was analyzed using IQ-TREE to determine the optimal
161 molecular evolutionary model and infer a maximum likelihood phylogeny of
162 notothenioids (Nguyen et al., 2015; Kalyaanamoorthy et al., 2017). Node support was
163 assessed using an ultrafast bootstrap analysis with 1,000 replicates (Hoang et al., 2018).
164 Based on previous analyses (e.g., Near et al., 2012), we rooted our phylogenetic
165 inferences using the species of Bovichtidae sampled in this study.

166 In order to accommodate incomplete lineage sorting, we used the species tree
167 approach *tetrad* v.0.7.19, an implementation of SVDquartets in the software package
168 iPyrad (Chifman and Kubatko, 2014; <http://github.com/dereneaton/ipyrad>). We ran *tetrad*

169 using one randomly selected SNP per locus, for 102,232 SNPs. We inferred all 2,024,785
170 possible quartets for the 85 sampled specimens representing 80 species. *Tetrad* uses the
171 algorithm implemented by qQMC to join the individual quartet trees into a supertree
172 (Avni et al., 2015). We constructed a 50% majority-rule consensus tree from 100
173 nonparametric bootstrap replicates.

174 Alternative phylogenetic hypotheses were compared to the maximum likelihood
175 tree inferred from the IQ-TREE analysis using the approximately unbiased (AU) test
176 based on the resampling of estimated log-likelihoods (RELL) method (Kishino et al.,
177 1990; Shimodaira, 2002). The alternative phylogenetic hypotheses tested include (1) the
178 monophyly of Nototheniidae as delimited in standard references for fish and notothenioid
179 taxonomy (DeWitt et al., 1990; Eastman and Eakin, 2000; Nelson et al., 2016: 465-466),
180 (2) the monophyly of Pleuragrammatinae, containing *Pleuragramma antarctica*,
181 *Aethotaxis mitopteryx*, and *Dissostichus eleginoides* and *D. mawsoni* (Balushkin, 2000;
182 Near et al., 2007; Near and Cheng, 2008), (3) the monophyly of *Lepidonotothen* s.l.
183 (DeWitt et al., 1990), (4) the monophyly of *Artedidraco* (Lecointre et al., 2011), (5) the
184 monophyly of *Indonotothenia cyanobrancha* and sampled species of *Notothenia* (DeWitt
185 et al., 1990; Balushkin, 2000), (6) *Pagothenia borchgrevinki* as not phylogenetically
186 nested in *Trematomus*, (7) *Trematomus newnesi* and *T. borchgrevinki* are sister taxa and
187 all other species of *Trematomus* form a monophyletic group (Balushkin, 2000: Fig. 17),
188 which Balushkin classified in *Pseudotrematomus* (Balushkin, 1982), and (8) the
189 phylogeny of *Trematomus* presented in Lautréou et al. (2012: Fig. 2). The trees with the
190 highest likelihoods consistent with the alternative phylogenies were estimated using the
191 constraint tree search option in IQ-TREE (Nguyen et al., 2015).

192

193 *2.3 Quantifying Predicted Phylogenetic Utility*

194 We compared RADseq loci to a dataset of legacy markers used in previous
195 investigations of notothenioid relationships with very similar taxon sampling (Near et al.,
196 2012; Dornburg et al., 2017a) that consisted of two mitochondrial genes (*16S* and *ND2*),
197 one intron (*S7*), and five exons (*Rag1*, *tbr1*, *SH3PX3*, *glyt*, and *zic1*; DOI:
198 10.5281/zenodo.801836). We used the program HyPhy (Pond et al., 2005) in the
199 PhyDesign web interface (López-Giráldez and Townsend, 2011) to quantify site-specific
200 rates of substitution for each legacy marker as well as the newly generated RADseq data
201 using a publicly available notothenioid chronogram (Near et al., 2012; Dornburg et al.,
202 2017a) downloaded from zenodo (DOI: 10.5281/zenodo.801836) that was pruned to
203 mirror the taxon sampling of our alignment. The R package vioplot was used to generate
204 violin plots of rate distributions (<http://wsopuppenkiste.wiso.uni-goettingen.de/~dadler>).
205 By combining a rotated kernel density plot with a box plot of data quantiles, violin plots
206 allow for simultaneous visualization of both the quartiles and the underlying probability
207 distribution of the site rates (Hintze and Nelson, 1998). Using the equations presented in
208 Townsend (2007), phylogenetic informativeness (PI) was quantified for each locus in the
209 R package PhyInformR (Dornburg et al., 2016). Visual detection of declines in PI over
210 time have been considered a signature of homoplasy (Townsend and Leuenberger, 2011)
211 and linked to phylogenetic estimation error (Dornburg et al., 2017c). Given that a
212 RADseq dataset consists of thousands of loci, PI profiles were visualized using hexagon
213 binning to assess overall trends in PI between loci using the hexbinplot function package
214 hexbin (<http://github.com/edzer/hexbin>). The hexbin plots were compared with PI

215 profiles of the sampled legacy markers and mapped to the 95% highest probability
216 density interval of notothenioid divergence times estimated from previous relaxed
217 molecular clock analyses (Near et al., 2012; Dornburg et al., 2017a).

218 Although the shape of the PI profiles provides an indication of overall trends of
219 phylogenetic information content, these visualizations make no explicit quantification of
220 how convergence in character state not reflecting evolutionary history (noise) will impact
221 topological resolution (Townsend and Leuenberger, 2011; Dornburg et al., 2017c).

222 Townsend et al. (2012) proposed theory that allows the utility of a locus to be quantified
223 by comparing the predicted phylogenetic signal supporting a correct resolution (R) versus
224 the amount of phylogenetic noise supporting resolution based on homoplasy (H) of a
225 hypothetical phylogenetic quartet. We quantified the difference between R and H to
226 explicitly quantify and visualize trends of the predicted utility of RADseq data for
227 phylogenetic resolution. Specifically, we simultaneously assessed the predicted impact of
228 alignment length and temporal depth on RADseq based inferences of short internodes.

229 We quantified R and H for resolving a short (0.25 million year) internode (t_0 in Townsend
230 et al., 2012) using increasing quartet depths of 5 or 10 million years beginning 5 million
231 years ago (T in Townsend et al., 2012). For each hypothetical quartet, we increasingly
232 added 500 bp of variable sites from the concatenated RADseq alignment to determine
233 changes in R and H as a function of alignment length. Given that RADseq alignments are
234 often comprised of over one million variable sites, this approach allows us to assess at
235 what point we would expect the contribution of R to mitigate any potential impacts of H .
236 All quantifications were conducted in the R package PhyInformR (Dornburg et al., 2016)
237 and results were visualized as horizon plots in the LatticeExtra Package (Sarkar, 2008).

238 **3. Results**239 *3.1 RADseq Data*

240 We collected RAD data for 80 notothenioid species, representing all major
241 lineages (Supplementary Table 1). After initial quality filtering, we retained an average of
242 1.7×10^6 reads per sample, subsequently reduced to an average of 52,000 clusters per
243 sample. Each of these clusters has a minimum sequencing depth of 6X, with an average
244 depth of 23X across all sampled specimens. After additional filtering to remove clusters
245 with excess heterozygosity, we retained an average of 51,000 consensus sequences per
246 sample. The average estimated heterozygosity in these clusters is 3.6×10^{-3} , with an
247 average estimated base calling error rate of 6.0×10^{-4} . After clustering consensus
248 sequences into homologous loci, excluding loci shared by fewer than four taxa, and
249 filtering identified paralogs, the final dataset contains 104,709 loci. The average number
250 of loci per specimen is 25,881 (SD = 12110). The proportion of missing data in the final
251 concatenated alignment of all loci is 76.4%.

252

253 *3.2 Phylogenomic Inference*

254 Maximum likelihood IQ-TREE (MLiq) and SVDquartets analyses of the RADseq
255 dataset result in phylogenies that are highly congruent with one another (Figs. 1 and 2)
256 and very similar to previous inferences using Sanger sequenced legacy markers (Near et
257 al., 2012; Dornburg et al., 2017a). The phylogenies were rooted with the three sampled
258 species of Bovichtidae and relationships among the non-Antarctic lineages *Pseudaphritis*
259 *urvillii* and *Eleginops maclovinus* are identical to previous analyses (Near et al., 2012;
260 Near et al., 2015). These lineages are pruned out of the trees shown in Figures 1 and 2 to
261 allow focus on the relationships among the Cryonotothenioidea. The MLiq and

262 SVDquartets phylogenies differ at five nodes: the resolution of *Pleuragramma*
263 *antarctica*, and in four additional apical relationships that are not strongly supported in
264 either analysis (Figs. 1 and 2).

265 The MLiq phylogeny resolves two major cryonotothenioid clades, (1) a clade
266 containing *Trematomus*, *Indonotothenia cyanobrancha*, *Dissostichus*, *Aethotaxis*
267 *mitopteryx*, *Pleuragramma antarctica*, *Lepidonotothen squamifrons*, *Nototheniops*, and
268 *Patagonotothen* and (2) a clade containing *Gobionotothen*, *Notothenia*, *Harpagifer*,
269 Artedidraconidae, Bathydraconidae, and Channichthyidae. The Pleuragrammatinae,
270 composed of *P. antarctica*, *A. mitopteryx*, and the two species of *Dissostichus*, is resolved
271 as paraphyletic in both analyses; however, the subclade containing *A. mitopteryx* and
272 *Dissostichus* is strongly supported (Fig. 1). The Trematominae, comprising
273 *Patagonotothen*, *Nototheniops*, *L. squamifrons*, *I. cyanobrancha*, and *Trematomus*, form
274 a clade. *Indonotothenia cyanobrancha* is resolved as the sister lineage of *Trematomus*
275 and there is strong node support for the relationships among species of *Trematomus* (Fig.
276 1). *Nototheniops*, *Patagonotothen*, and *Lepidonotothen* form a clade, but *Lepidonotothen*
277 as traditionally delimited to contain *L. squamifrons* and the species of *Nototheniops* is
278 resolved as non-monophyletic as *L. squamifrons* is the sister lineage of *Patagonotothen*
279 (Figs. 1 and 2).

280 *Gobionotothen* is strongly supported as the sister lineage of an inclusive clade
281 containing *Notothenia*, *Harpagifer*, Artedidraconidae, Bathydraconidae, and
282 Channichthyidae (Figs. 1 and 2). The 14 sampled species of Bathydraconidae are a
283 monophyletic group and are resolved as sister lineage of the Channichthyidae (Figs. 1
284 and 2). Relationships within the bathydraconids and channichthyids are well supported in

285 the MLiq phylogeny, but relationships of the Antarctic Dragonfishes *Racovitzia glacialis*,
286 *Vomeridens infuscipinnis*, and species of *Bathydraco* are only moderately supported (Fig.
287 1). *Harpagifer* and Artedidraconidae are strongly supported as a clade, but within
288 Artedidraconidae *Artedidraco* is paraphyletic with *A. skottsbergi* resolved as the sister
289 lineage of all other artedidraconids and all other sampled species of *Artedidraco* (*A.*
290 *oriana*, *A. mirus*, *A. glareobarbatus*, and *A. shackletoni*) form a clade that is the sister
291 lineage of *Dolloidraco longedorsalis* (Fig. 1). *Histiodraco velifer* and the sampled
292 species of *Pogonophryne* are resolved as sister lineages (Figs. 1 and 2).

293 The AU test rejects seven of the eight alternative hypotheses when compared to
294 the optimal tree inferred from the IQ-TREE analysis (Table 1). The only hypothesis that
295 is not rejected is the monophyly of Pleuragrammatinae (Table 1), which is sampled with
296 *Pleuragramma antarctica*, *Aethotaxis mitopteryx*, *Dissostichus eleginoides*, and *D.*
297 *mawsoni* (Figs. 1 and 2).

298

299 3.3 Predicted Phylogenetic Information Content

300 A violin plot based comparison of the probability density of calculated site rates
301 for RADseq loci and other classes of Sanger sequenced legacy markers reveal that
302 RADseq loci possess a similar distribution of rates as observed in the previously sampled
303 mtDNA genes (Fig. 3A). Visualizing the density of PI profiles through time for the
304 RADseq loci as a hexagonal heatmap (Fig 3B), shows a high-predicted level of
305 informativeness through the Miocene [~23.0 to 5.3 Ma] (Fig. 3B), with particularly high
306 densities of informative loci corresponding to the geologic intervals hypothesized as the
307 periods of both the origin and diversification of major cryonotothenioid lineages (Fig. 3B

308 & 3C). Mapping the PI profiles of all other classes of legacy markers used to investigate
309 notothenioid phylogeny onto this heatmap demonstrates little decline in PI during the
310 interval corresponding to the hypothesized geologic time period and estimated 95%
311 highest posterior density intervals of molecular ages for the origin and diversification in
312 the clade (Fig. 3B & 3C). Quantification of R , the predicted phylogenetic signal
313 supporting a correct resolution, and H , the amount of phylogenetic noise supporting
314 resolution based on homoplasy, also reveals high probabilities of R for short internodes
315 through the Late Miocene (~20 Ma; Fig. 4). In all cases, R rapidly maximized with the
316 addition of data, predicting that RADseq loci contain high levels of phylogenetic
317 information for resolving short internodes. However, our quantifications reveal that the
318 predicted information content declines at internodes dating to early periods of the
319 Cenozoic (Fig. 4). By the Cretaceous-Paleogene boundary (~66 Ma), there is very little
320 phylogenetic information remaining, even when the dataset contains 10^6 variable
321 characters (Fig. 4).

322

323 **4. Discussion**324 *4.1 Resolving the phylogenetic history of the notothenioid adaptive radiation*

325 Over the past quarter century, the phylogeny of notothenioids has come
326 increasingly into focus (Balushkin, 1992; Bargelloni et al., 1994; Lecointre et al., 1997;
327 Balushkin, 2000; Bargelloni et al., 2000; Near and Cheng, 2008; Dettai et al., 2012; Near
328 et al., 2012; Near et al., 2015; Dornburg et al., 2017a); however, there remain
329 considerable areas of uncertainty. The trees inferred using the RADseq dataset have an
330 unprecedented degree of resolution and node support for relationships within
331 cryonotothenioid lineages that exhibit high rates of diversification (Fig. 1). The
332 phylogeny inferred in this study provides important insight regarding relationships among
333 species of *Trematomus*, the phylogeny of species of Artedidraconidae and a clarification
334 of the paraphyly of *Artedidraco*, the deep paraphyly of Nototheniidae, consistent non-
335 monophyly of *Lepidonotothen squamifrons* and the species of *Nototheniops*, the
336 relationships of Bathymonidae, and continued uncertainty in the phylogenetic
337 placement of *Pleuragramma antarctica*. The well-supported resolution of relationships
338 throughout the notothenioid phylogeny, especially among the radiations of closely related
339 species (e.g., *Trematomus*, Artedidraconidae, Channichthyidae, and Bathymonidae),
340 provides opportunities to investigate mechanisms of speciation and evolutionary
341 diversification in one of the most iconic and threatened marine ecosystems of our planet,
342 an avenue of research identified as one of the six priorities for Antarctic science
343 (Kennicutt et al., 2014).

344 Species of *Trematomus* comprise an important element of the notothenioid
345 adaptive radiation (Janko et al., 2011; Lautredou et al., 2012; Near et al., 2012) as well as

346 a dominant component of the near shore notothenioid fish fauna (Kock, 1992). However,
347 no prior study provides strong support for the resolution of the inter-relationships of these
348 species. The RADseq data reject all of the alternative phylogenetic relationships
349 involving *Trematomus* that includes a phylogeny inferred from a set of legacy Sanger
350 sequenced mitochondrial and nuclear genes, the proposal that *Trematomus* is limited to *T.*
351 *newnesi*, and all other species are classified as *Pseudotrematomus* (Balushkin, 1982), and
352 that the Bald Nototen, *Pagothenia borchgrevinki*, is not phylogenetically nested in
353 *Trematomus* (Table 1). Previous molecular studies have consistently resolved *T. scotti* as
354 the sister lineage to other species of *Trematomus* (Ritchie et al., 1996; Sanchez et al.,
355 2007; Kuhn and Near, 2009; Janko et al., 2011; Lautredou et al., 2012; Near et al., 2012),
356 a result also strongly supported in the RADseq inferred phylogenies (Figs. 1 and 2). The
357 phylogeny of *Trematomus* resolves strongly supported monophyletic groups containing
358 epibenthic species *T. loennbergii*, *T. lepidorhinus*, and *T. eulepidotus* as a clade, as well
359 as a clade containing the demersal species *T. bernacchii* and *T. hansonii* (Figs. 1 and 2).
360 These relationships, initially suggested from analysis of sequence data of mtDNA rRNA
361 genes, are consistent with the expectations of habitat use driven adaptive radiation within
362 this clade (Ritchie et al., 1996).

363 The RADseq phylogenies resolve *Indonotothenia cyanobrancha* as the sister
364 lineage of *Trematomus* (Figs. 1 and 2), a result consistent with analyses of mtDNA genes
365 and a combination of mtDNA and nuclear genes (Bargelloni and Lecointre, 1998;
366 Bargelloni et al., 2000; Dornburg et al., 2017a). *Indonotothenia cyanobrancha* was long
367 classified in the genus *Notothenia* (DeWitt et al., 1990), but Balushkin (1984: 13)
368 described the monotypic genus *Indonotothenia* to classify this species. Based on

369 morphological analyses, *Indonotothenia* is resolved as the sister lineage of a clade
370 containing *Notothenia* and *Paranotothenia* (Voskoboinikova, 1993: Fig. 8; Balushkin,
371 2000: Fig. 15). However, assessment of external morphological characters argues for a
372 closer relationship with *Trematomus* (Hureau, 1970: 225, Table 14). The results of the
373 phylogenetic analyses of the RADseq data strongly reject a close relationship of *I.*
374 *cyanobrancha* with other species of *Notothenia* and instead suggest that it is a species of
375 *Trematomus* (Figs. 1 and 2; Table 1).

376 Similar to *Trematomus*, previous molecular phylogenetic analyses do not provide
377 strong node support for relationships inferred among species of Artedidraconidae.
378 Artedidraconids occupy benthic habitats of the Antarctic continental shelf and exhibit a
379 high diversification rate relative to other notothenioid lineages (Eakin, 1990; Near et al.,
380 2012). Consistent with previous molecular analyses (Derome et al., 2002; Lecointre et al.,
381 2011; Near et al., 2012), the phylogeny inferred from the RADseq dataset resolves
382 *Artedidraco* as paraphyletic, with *A. skottsbergi* as the sister lineage of all other
383 artedidraconids (Figs. 1 and 2). The AU test rejects the best alternative phylogeny that
384 resolves *Artedidraco* as a monophyletic group (Table 1). The remaining species of
385 *Artedidraco* sampled in this study, including the type species *A. mirus* (Lönnberg, 1905:
386 39), comprise a strongly supported clade in the MLiq tree that is sister to *Dolloidraco*
387 *longedorsalis* (Fig. 1), a relationship not hypothesized in previous molecular
388 phylogenetic analyses (Derome et al., 2002; Lecointre et al., 2011; Near et al., 2012). The
389 deep paraphyly of *Artedidraco* s.l. and the lack of an available genus group name to
390 accommodate *A. skottsbergi* necessitates a taxonomic revision that reflects the phylogeny
391 and consistent resolution of *Artedidraco* s.l. as a paraphyletic group.

392 Previous molecular analyses and the RADseq inferred phylogenies strongly
393 support monophyly of the species rich artedidraconid lineage *Pogonophryne* (Figs. 1 and
394 2; Near and Cheng, 2008; Eakin et al., 2009; Lecointre et al., 2011; Near et al., 2012);
395 however, the taxonomy of this group warrants reevaluation. Species of *Pogonophryne* are
396 currently classified into five species groups on the basis of external morphological traits
397 (Balushkin and Eakin, 1998). Although previous molecular analyses support these
398 groupings, the relationships among them remain unresolved (Eakin et al., 2009). Analysis
399 of the RADseq dataset results in a strongly supported phylogenetic hypothesis for the
400 relationships among the species groups of *Pogonophryne*; however, the *P. mentella*
401 group, which includes the sampled species *P. macropogon*, *P. cerebropogon*, *P. eakini*,
402 and *P. fusca*, is not monophyletic as *P. fusca* is the sister lineages of *P. barsukovi* (Figs. 1
403 and 2). These results suggest a need for a reexamination of the classification of
404 *Pogonophryne* species diversity using a dataset with greater taxonomic sampling. Given
405 that species of *Pogonophryne* exhibit substantial overlap in bathymetric distribution
406 (Eakin, 1990; Eastman, 2017) and diet (Wyanski and Targett, 1981; Eakin, 1990;
407 Lombarte et al., 2003), and are characterized by very little morphological disparity
408 among the species (Eakin, 1977; Lombarte et al., 2003), increased inter- and intraspecific
409 sampling is needed to assess the delimitation of species and investigate the mechanisms
410 driving diversification in this clade.

411 In addition to resolving relationships among the most closely related species, the
412 RADseq inferred phylogenies also provide much needed resolution to several higher-
413 level relationships within Cryonotothenioidea. Since the first molecular analyses of
414 notothenioid phylogeny, the inclusive family Nototheniidae is consistently resolved as a

415 paraphyletic group (Bargelloni et al., 1994; Sanchez et al., 2007; Dettai et al., 2012; Near
416 et al., 2012; Dornburg et al., 2017a). The concept of Nototheniidae communicated in
417 taxonomic references (e.g., Eastman and Eakin, 2000; Nelson et al., 2016) has an origin
418 with the pioneering work of Regan (1913: 249-251) and Norman (1938: 7-10) who
419 provided important taxonomic revisions of notothenioid classification. Specifically,
420 Regan (1913) classified species of *Harpagifer* and *Artedidraco* in Nototheniidae along
421 with *Notothenia* s.l., *Trematomus*, *Pleuragramma*, *Dissostichus*, and *Eleginops*. Norman
422 (1938) classified *Artedidraco*, *Dolloidraco*, *Pogonophryne*, and *Harpagifer* in
423 Harpagiferidae and limited Nototheniidae to *Notothenia* s. l., *Trematomus*,
424 *Pleuragramma*, *Dissostichus*, and *Eleginops*. Subsequent discoveries of new species
425 added *Aethotaxis*, *Cryotherenia*, and *Gvozdarus* to Nototheniidae (DeWitt, 1962; Daniels,
426 1981; Balushkin, 1989). Taxonomic revisions by Balushkin (1976, 1992) led to the
427 removal of *Eleginops maclovinus* from Nototheniidae to the monotypic Eleginopsidae
428 and the description of several new genera; *Gobionotothen*, *Lepidonotothen*, *Nototheniops*,
429 *Patagonotothen*, and *Paranotothenia* all of which contain species that were previously
430 classified as *Notothenia* (Norman, 1938; Andriashov, 1965). The classification of these
431 disparate lineages as *Notothenia* at the time of the origin of modern classifications for
432 notothenioids contributed to the long held idea that Nototheniidae is a natural group (e.g.,
433 Norman, 1938). Molecular phylogenies, including those inferred from the RADseq data
434 (Figs. 1 and 2), provide a strong inference that Nototheniidae as traditionally delimited is
435 not monophyletic. The alternative phylogeny with the highest likelihood that depicts
436 Nototheniidae, as traditionally delimited, is rejected in the AU test (Table 1). While this
437 study did not sample species of *Paranotothenia*, previous molecular phylogenetic

438 analyses consistently resolve *Notothenia* and *Paranotothenia* as a clade (Cheng et al.,
439 2003; Sanchez et al., 2007; Near and Cheng, 2008; Near et al., 2012; Dornburg et al.,
440 2017a). We recommend that Nototheniidae is limited to *Notothenia* and *Paranotothenia*.

441 Similar to the traditional delimitation of Nototheniidae, the RADseq tree and
442 previous molecular phylogenetic analyses consistently fail to resolve *Lepidonotothen*
443 *squamifrons* and species of *Nototheniops* as a monophyletic group (Bargelloni et al.,
444 2000; Near and Cheng, 2008; Dettai et al., 2012; Near et al., 2012). Specifically, *L.*
445 *squamifrons* is resolved as the sister lineage of *Patagonotothen* (Figs. 1 and 2). In his
446 revision of *Notothenia*, Balushkin (1976, 1979) described the genera *Lepidonotothen*
447 (containing *L. squamifrons* and the two synonyms *L. kempi* and *L. macrophtalma*),
448 *Nototheniops* (containing *N. larseni*, and synonyms *N. loesha*, *N. nybelini*, and *N. tchizh*),
449 and *Lindbergichthys* (containing *N. mizops*, *N. nudifrons*, and the undescribed *N. cf.*
450 *nudifrons*). The most recent taxonomic revision of these lineages treats *Nototheniops* and
451 *Lindbergichthys* as subgenera of *Lepidonotothen* without identifying any morphological
452 evidence to support the hypothesis that they share common ancestry (DeWitt et al., 1990:
453 294-295). Phylogenetic analysis of morphological characters does not resolve
454 *Lepidonotothen*, *Nototheniops*, and *Lindbergichthys* as a monophyletic group (Balushkin,
455 2000: Fig. 15) and this phylogeny is rejected in the AU test (Table 1). We recommend
456 that *Nototheniops* (Balushkin, 1976) is the appropriate genus group name for *N. larseni*,
457 *N. mizops*, *N. nudifrons*, and *N. cf. nudifrons*. The monophyly of *Nototheniops*, as
458 delimited here (Figs. 1 and 2), is supported with several synapomorphic morphological
459 characters that include an upper lateral line with perforated scales and a supraorbital
460 canal with four pores (Andersen, 1984: 24).

461 The evolutionary loss of red blood cells, hemoglobin, and the variable loss of
462 myoglobin expression in Channichthyidae are unique among vertebrates (Ruud, 1954;
463 Sidell et al., 1997; Sidell and O'Brien, 2006). The genetics and physiological
464 consequences of these highly unusual traits are well studied (Egginton and Rankin, 1998;
465 Egginton et al., 2002; Near et al., 2006; Beers and Sidell, 2009; Beers et al., 2010; Beers
466 and Sidell, 2011; Lewis et al., 2015; Xu et al., 2015; Kuhn et al., 2016); however
467 increased resolution of the phylogenetic relationships of Channichthyidae has potential to
468 provide insights into the evolution of hemoglobin loss (Bargelloni et al., 1998; Near et
469 al., 2006; Lau et al., 2012). While morphological and molecular phylogenetic analyses
470 consistently resolve Channichthyidae and Bathyraconidae as a clade (Iwami, 1985: Fig.
471 174; Balushkin, 1992: Fig. 6; 2000: Fig. 11; Bargelloni et al., 2000; Near and Cheng,
472 2008), most molecular analyses result in phylogenies where the channichthyids are nested
473 in a paraphyletic Bathyraconidae. In these previous molecular analyses strong support
474 for the resolution of the sister lineage of Channichthyidae is lacking (e.g., Derome et al.,
475 2002; Dettai et al., 2012; Near et al., 2012). The RADseq dataset resolves
476 Bathyraconidae as a monophyletic group and the sister lineage of Channichthyidae with
477 strong bootstrap support in the MLiq inferred phylogeny, but with lower support in the
478 SVDquartet phylogeny (Figs. 1 and 2). The common ancestor of Channichthyidae and
479 Bathyraconidae likely exhibited decreased hematocrit, hemoglobin concentrations, and
480 globin chain multiplicity (D'Avino and Di Prisco, 1988; di Prisco, 1998; Verde et al.,
481 2007; Wujcik et al., 2007). The phylogenetic resolution of the channichthyid sister
482 lineage facilities contextualizing the genomic pathways that have given rise to these
483 highly unusual phenotypes.

484 Despite the well-supported phylogenetic resolution of notothenioid relationships
485 resulting from analysis of the RADseq dataset, the placement of the Antarctic Silverfish,
486 *Pleuragramma antarctica*, remains unresolved. This monotypic pelagic lineage is a
487 radical departure in phenotype from other notothenioids (Eastman, 1997;
488 Voskoboinikova et al., 2017) and is of key importance to Antarctic food webs (Zane et
489 al., 2006; Mintenbeck and Torres, 2017). Balushkin (2000: S101, Fig. 14) delimited the
490 clade Pleuragrammatinae to contain *P. antarctica*, the two species of *Dissostichus*,
491 *Aethotaxis mitopteryx*, and *Gvozdarus svetovidovi* based on pleural ribs originating from
492 the 4th or 5th vertebrae and the reduction or absence of a basisphenoid in the skull. Among
493 notothenioids, *Pleuragramma antarctica*, *Dissostichus mawsoni*, and *Aethotaxis*
494 *mitopteryx* are neutrally buoyant as adults (Eastman and DeVries, 1982; Near et al., 2003;
495 Near et al., 2007), and common ancestry of these lineages would indicate a single origin
496 of neutral buoyancy in notothenioids (Near et al., 2007). However, previous molecular
497 analyses do not confidently support monophyly of Pleuragrammatinae or result in
498 different resolutions for *P. antarctica*. Our analyses do not resolve Pleuragrammatinae as
499 a clade, but one poorly supported node separates *P. antarctica* from a monophyletic
500 group containing *A. mitopteryx* and the two species of *Dissostichus* (Figs. 1 and 2).
501 *Gvozdarus svetovidovi* was not included in our analysis. Investigation of the uncertainty
502 regarding phylogenetic relationships of *P. antarctica* requires additional work as
503 evidenced by the inability of the RADseq dataset to reject the best alternative phylogeny
504 that depicts Pleuragrammatinae as a monophyletic group (Table 1).

505
506 4.2 RADseq and Cenozoic radiations

507 Rapidly radiating clades characterize some of the most investigated portions of
508 the Tree of Life (Venditti et al., 2010; Leache et al., 2016; Brennan and Oliver, 2017).
509 Regardless of time scale, the short internodes separating species divergences that
510 characterize rapid radiations also present some of the most challenging problems in
511 phylogenetics (Sharma et al., 2014; Eytan et al., 2015). As such, assessing the
512 phylogenetic utility of different classes of genomic markers is important for cost-
513 effective phylogenomic experimental design. Our investigation of RADseq loci in
514 notothenioids reveals high levels of predicted information for resolving short internodes
515 that date from the Late Oligocene through the Pleistocene (Figs. 3 & 4). This predicted
516 utility is reflected in high levels of support for most nodes in the notothenioid phylogeny
517 that correspond to these geologic ages (Fig. 1). However, for radiations dating to the
518 Early Cenozoic (~65 to 50 mya), our results suggest the massive amount of data offered
519 by RADseq provides diminishing returns (Fig. 4). These findings provide quantitative
520 support substantiating claims that RADseq loci are useful for resolving interspecific
521 phylogenetic problems (Cariou et al., 2013; Massatti et al., 2016; Eaton et al., 2017),
522 while also setting new expectations of the temporal limits for this class of data. Our
523 results suggests RADseq loci contain similar levels of phylogenetic information as the
524 flanking regions of ultra-conserved elements (UCEs), which contain high levels of
525 phylogenetic information for divergences dating to the Miocene (~20 mya) (Gilbert et al.,
526 2015). Both the RADseq loci sampled across the diversity of notothenioids and UCE-
527 flanking regions in teleost fishes exhibit a rapid decay in phylogenetic information for
528 divergences arising prior to the K-Pg boundary, 66 mya (Fig. 3; Gilbert et al., 2015).
529 While our study suggests RADseq loci exhibit high utility for resolving difficult Late

530 Cenozoic phylogenetic problems, it is important to consider that predictions of utility are
531 not guarantees of successful phylogenetic resolution (Townsend and Leuenberger, 2011).

532 Neither PI profiles nor quartet internode resolution probabilities make explicit
533 statements on the predicted levels of node support (Townsend and Leuenberger, 2011).

534 These approaches merely indicate whether there is a probability of phylogenetic
535 information given the theoretical expectations of phylogenetic experimental design. This
536 does not imply that phylogenetic information sufficient for strong node support is present
537 in the dataset. It is possible that limited phylogenetic information explains the lack of
538 confidence in the phylogenetic resolution of *Pleuragramma antarctica* and the inability
539 for the RADseq dataset to reject the monophyly of the Pleuragrammatinae (Figs. 1 and 2;
540 Table 1). Alternatively, the nature of RADseq data imposes several challenges to
541 predictions of utility that could also explain our lack of confidence in the resolution of
542 these nodes.

543 The low number of variable sites per locus limits the power of experimental
544 design approaches for finely dissecting information content by locus. While it is possible
545 to generate PI profiles from few or even single sites, the dependency of interaction of
546 locus length on R or H probabilities renders filtration approaches such as those used in
547 other studies not only difficult (Prum et al., 2015; Dornburg et al., 2017b), but potentially
548 misleading. For example, Dornburg et al. (2017b) recently noted that fast evolving third
549 codon positions in exons captured by anchored hybrid enrichment are characterized by
550 high instances of non-random convergence in base frequency (i.e., GC bias). Detecting
551 bias using similar approaches is not possible with only a limited number of variable sites,
552 as convergences that appear slow will not be detected. In the worst-case scenario,

553 filtering only ‘fast’ sites detected using any number of methods (e.g., Xia et al., 2003;
554 Goremykin et al., 2009; Goremykin et al., 2010) will lead to amplification of an
555 erroneous “signal” in the data leading to confidence for an erroneous phylogenetic
556 resolution (Dornburg et al., 2017c). Given that we found base frequencies to be near
557 stationarity ($A= 0.265$; $C= 0.239$; $G= 0.242$; $T=0.253$) nucleotide bias is not likely a
558 major axis of error in the RADseq dataset. However, even a small number of loci
559 dominated by this or other forms of homoplasy can impact the topological resolution
560 (Shen et al., 2017). Additionally, RADseq datasets do contain high levels of missing data,
561 so it is possible that information rich sites for this node were simply not captured during
562 sequencing. As such, determining the factors limiting the confident resolution of
563 *Pleuragramma antarctica* remains an open question. However, in the case of the other
564 inferred notothenioid relationships, congruence in phylogenies inferred from different
565 sets of genes (e.g., Dettai et al., 2012; Near et al., 2012) and expectations of utility based
566 on analysis of phylogenetic informativeness (Fig. 3) provide confidence in our resolution
567 for the notothenioid phylogeny (Figs. 1 and 2).

568 Understanding the drivers of diversification in rapidly radiating clades is a
569 primary area of research in evolutionary biology (e.g., Gavrilets and Losos, 2009). Given
570 that many of the iconic vertebrate adaptive radiations such as anoles (Poe et al., 2017)
571 and cichlids (Friedman et al., 2013) are Cenozoic in origin, our findings coupled with the
572 effectiveness of capturing large amounts of data for non-model organisms underscore the
573 utility of RADseq for providing phylogenetic resolution to recent radiations and species
574 flocks (e.g., Wagner et al., 2013). However, our study also demonstrates the
575 heterogeneity of phylogenetic information within this class of genomic markers, offering

576 insights into phylogenetic informativeness as it related to divergence time (Fig. 3), which
577 is consistent with results presented by Collins and Hrbek (2018). While RADseq is of
578 tremendous utility for late Cenozoic radiations, returns increasingly diminish for
579 radiations moving deeper in time towards the beginning of the Cenozoic or earlier (Figs.
580 3 and 4). Our results provide an important context for the application of RADseq data to
581 resolving interspecific phylogenetics and compliment similar studies conducted on other
582 types of next-generation sequence data such as UCE or loci captured by anchored hybrid
583 enrichment (Gilbert et al., 2015; Prum et al., 2015; Dornburg et al., 2017b; Reddy et al.,
584 2017; Collins and Hrbek, 2018). Future studies comparing the relative performance of
585 multiple classes of markers targeted by next-generation sequencing techniques will
586 contribute to the optimization of phylogenetic experimental design and lead to an
587 efficient and cost effective resolution of the Genomic Tree of Life.

588

589

590 **5. Acknowledgements**

591 Field and laboratory support was provided by W. Brooks, H. W. Detrich, J. Kendrick, K.
592 L. Kuhn, K.-H. Kock, A. Lamb, J. A. Moore, and J. Pennington, G. Watkins-Colwell, K.
593 Zapfe. P. Brickle (South Atlantic Environmental Research Institute, Falkland Islands), A.
594 L. DeVries and C.-H. C. Cheng (University of Illinois, USA), D. A. Fernández (Centro
595 Austral de Investigaciones Científicas, Argentina), and A. Dettai and G. Lecointre
596 (Muséum National d’Histoire Naturelle, France) provided critical specimens. Fieldwork
597 was facilitated through the United States Antarctic Marine Living Resources Program
598 and the officers and crew of the RV *Yuzhmorgeologiya*, and the 2004 ICEFISH cruise
599 aboard the RVIB *Nathaniel B. Palmer*. Fresh color images of notothenioids used in

600 Figures 1 and 2 were taken by P. Marriott, P. McMillan (NIWA), and R. McPhee (Te
601 Papa). Specimens and data collected by and made available through the New Zealand
602 International Polar Year-Census of Antarctic Marine Life Project are gratefully
603 acknowledged. Te Papa collection development fund AP 2879 “Ross Sea Census of
604 Antarctic Marine Life International Polar Year (CAML IPY) Voyage”. This work was
605 supported (in part) by the NZ National Institute of Water and Atmospheric Research Ltd
606 Core Funded Coasts & Oceans Programme 2: Biological Resources subcontract for
607 fundamental knowledge of marine fish biodiversity with the Museum of New Zealand Te
608 Papa Tongarewa. This research was supported by the Bingham Oceanographic fund of
609 the Peabody Museum of Natural History, Yale University and the United States National
610 Science Foundation ANT-0839007. Two reviewers provided helpful comments on the
611 manuscript. All data and analysis files have been archived on Zenodo (DOI
612 10.5281/zenodo.1406314).

613

614

615

616

References

617 Abrams, P.A., 2013. How precautionary is the policy governing the Ross Sea Antarctic
618 toothfish (*Dissostichus mawsoni*) fishery? Antarctic Sci. 26, 3-14.

619 Andersen, N.C., 1984. Genera and subfamilies of the family Nototheniidae (Pisces,
620 Perciformes) from the Antrarctic and Subantarctic. Steenstrupia 10, 1-34.

621 Andriashov, A.P., 1965. A general review of the Antarctic fish fauna. In: Mieghem, J.v.,
622 Oye, P.v. (Eds.), Biogeography and ecology in Antarctica. Junk, The Hague, pp.
623 491-550.

624 Avni, E., Cohen, R., Snir, S., 2015. Weighted quartets phylogenetics. Syst. Biol. 64, 233-
625 242.

626 Balushkin, A.V., 1976. [A short revision of notothenids (Notothenia Richardson and
627 related species) from the family Nototheniidae.]. In: A.Skarlato, O., Korovina, V.
628 (Eds.), [Zoogeography and systematics of fish] In Russian, Leningrad, pp. 118-
629 134.

630 Balushkin, A.V., 1979. *Lindbergichthys* (Nototheniidae) a new generic name for
631 *Lindbergia* Balushkin, 1976 Non Reidel, 1959. J. Ichthyol. 19 (5), 144-145.

632 Balushkin, A.V., 1982. Classification of the trematomin fishes of Antarctica. In:
633 Kafanov, A.I. (Ed.), Biology of the shelf zones of the World Ocean. USSR
634 Academy of Sciences Far East Center, Vladivostok.

635 Balushkin, A.V., 1984. Morphological bases of the systematics and phylogeny of the
636 nototheniid fishes. Academy of Sciences USSR, Zoological Institute, Leningrad.

637 Balushkin, A.V., 1989. *Gvozdarus svetovidovi* gen. et sp. n. (Pisces, Nototheniidae) from
638 the Ross Sea (Antarctic). Zool. Zh. 68, 83-88.

639 Balushkin, A.V., 1992. Classification, phylogenetic relationships, and origins of the
640 families of the suborder Notothenioidei (Perciformes). *J. Ichthyol.* 32(7), 90-110.

641 Balushkin, A.V., 2000. Morphology, classification, and evolution of notothenioid fishes
642 of the Southern Ocean (Notothenioidei, Perciformes). *J. Ichthyol.* 40, S74-S109.

643 Balushkin, A.V., Eakin, R.R., 1998. *Pogonophryne fusca* sp. nov. (Artedidraconidae,
644 Notothenioidei) and notes on the species composition and groups of the genus
645 *Pogonophryne* Regan. *J. Ichthyol.* 38, 574-579.

646 Bargelloni, L., Lecointre, G., 1998. Four years in notothenioid systematics: a molecular
647 perspective. In: Prisco, G.D., Pisano, E., Clarke, A. (Eds.), *Fishes of Antarctica: A*
648 *biological overview*. Springer-Verlag, Berlin-Heidelberg, pp. 259-273.

649 Bargelloni, L., Marcato, S., Patarnello, T., 1998. Antarctic fish hemoglobins: evidence
650 for adaptive evolution at subzero temperature. *Proc. Nat. Acad. Sci. USA* 95,
651 8670-8675.

652 Bargelloni, L., Marcato, S., Zane, L., Patarnello, T., 2000. Mitochondrial phylogeny of
653 notothenioids: a molecular approach to Antarctic fish evolution and
654 biogeography. *Syst. Biol.* 49, 114-129.

655 Bargelloni, L., Ritchie, P.A., Patarnello, T., Battaglia, B., Lambert, D.M., Meyer, A.,
656 1994. Molecular evolution at subzero temperatures: mitochondrial and nuclear
657 phylogenies of fishes from Antarctica (Suborder Notothenioidei), and the
658 evolution of antifreeze glycopeptides. *Mol. Biol. Evol.* 11, 854-863.

659 Beers, J.M., Borley, K.A., Sidell, B.D., 2010. Relationship among circulating
660 hemoglobin, nitric oxide synthase activities and angiogenic poise in red- and

661 white-blooded Antarctic notothenioid fishes. *Comp. Biochem. Phys. A* 156, 422-
662 429.

663 Beers, J.M., Sidell, B.D., 2009. Nitric oxide synthase activity correlates with hemoglobin
664 content in Antarctic notothenioid fishes. *Integ. Comp. Biol.* 49, E198-E198.

665 Beers, J.M., Sidell, B.D., 2011. Thermal tolerance of Antarctic notothenioid fishes
666 correlates with level of circulating hemoglobin. *Physiol. Biochem. Zool.* 84, 353-
667 362.

668 Brennan, I.G., Oliver, P.M., 2017. Mass turnover and recovery dynamics of a diverse
669 Australian continental radiation. *Evolution* 71, 1352-1365.

670 Cariou, M., Duret, L., Charlat, S., 2013. Is RAD - seq suitable for phylogenetic
671 inference? An *in silico* assessment and optimization. *Ecol. & Evol.* 3, 846-852.

672 Cheng, C.-H.C., Chen, L.B., Near, T.J., Jin, Y.M., 2003. Functional antifreeze
673 glycoprotein genes in temperate-water New Zealand nototheniid fish infer an
674 Antarctic evolutionary origin. *Mol. Biol. Evol.* 20, 1897-1908.

675 Chifman, J., Kubatko, L., 2014. Quartet inference from SNP data under the coalescent
676 model. *Bioinformatics* 30, 3317-3324.

677 Clarke, A., Johnston, I.A., 1996. Evolution and adaptive radiation of Antarctic fishes.
678 *Trends Ecol. Evol.* 11, 212-218.

679 Collins, R.A., Hrbek, T., 2018. An *in silico* comparison of protocols for dated
680 phylogenomics. *Syst. Biol.* 67, 633-650.

681 Colombo, M., Damerau, M., Hanel, R., Salzburger, W., Matschiner, M., 2015. Diversity
682 and disparity through time in the adaptive radiation of Antarctic notothenioid
683 fishes. *J. Evol. Biol.* 28, 376-394.

684 Constable, A.J., de la Mare, W.K., Agnew, D.J., Everson, I., Miller, D., 2000. Managing
685 fisheries to conserve the Antarctic marine ecosystem: practical implementation of
686 the Convention on the Conservation of Antarctic Marine Living Resources
687 (CCAMLR). ICES Journal of Marine Science 57, 778-791.

688 Cruaud, A., Gautier, M., Galan, M., Foucaud, J., Sauné, L., Genson, G., Dubois, E.,
689 Nidelet, S., Deuve, T., Rasplus, J.-Y., 2014. Empirical assessment of RAD
690 sequencing for interspecific phylogeny. Mol. Biol. Evol. 31, 1272-1274.

691 D'Avino, R., Di Prisco, G., 1988. Antarctic fish hemoglobin: an outline of the molecular
692 structure and oxygen binding properties—I. Molecular structure. Comparative
693 Biochemistry and Physiology Part B: Comparative Biochemistry 90, 579-584.

694 Daniels, R.A., 1981. *Cryothenia peninsulae*, a new genus and species of notothenioid fish
695 from the Antarctic Peninsula. Copeia 1981, 559-562.

696 Derome, N., Chen, W.-J., Dettai, A., Bonillo, C., Lecointre, G., 2002. Phylogeny of
697 Antarctic dragonfishes (Bathydraconidae, Notothenioidei, Teleostei) and related
698 families based on their anatomy and two mitochondrial genes. Mol. Phylogenetic.
699 Evol. 24, 139-152.

700 Dettai, A., Berkani, M., Lautredou, A.C., Couloux, A., Lecointre, G., Ozouf-Costaz, C.,
701 Gallut, C., 2012. Tracking the elusive monophyly of nototheniid fishes (Teleostei)
702 with multiple mitochondrial and nuclear markers. Marine Genomics 8, 49-58.

703 DeWitt, H.H., 1962. A new Antarctic nototheniid fish with notes on two recently
704 described nototheniiforms. Copeia 1962, 826-833.

705 DeWitt, H.H., Heemstra, P.C., Gon, O., 1990. Nototheniidae. In: Gon, O., Heemstra, P.C.
706 (Eds.), *Fishes of the Southern Ocean*. J.L.B. Smith Institute of Ichthyology,
707 Grahamstown, South Africa, pp. 279-331.

708 di Prisco, G., 1998. Molecular adaptations of Antarctic fish hemoglobins. In: Prisco,
709 G.D., Pisano, E., Clarke, A. (Eds.), *Fishes of Antarctica: A biological overview*.
710 Springer-Verlag, pp. 339-353.

711 Dornburg, A., Federman, S., Lamb, A.D., Jones, C.D., Near, T.J., 2017a. Cradles and
712 museums of Antarctic teleost biodiversity. *Nature Ecol. & Evol.* 1, 1379-1384.

713 Dornburg, A., Fisk, J.N., Tamagnan, J., Townsend, J.P., 2016. PhyInformR: phylogenetic
714 experimental design and phylogenomic data exploration in R. *BMC Evol. Biol.*
715 16, 262.

716 Dornburg, A., Su, Z., Townsend, J.P., 2018. Optimal rates for phylogenetic inference and
717 experimental design in the era of genome-scale datasets. *Syst. Biol.*, syy047-
718 syy047.

719 Dornburg, A., Townsend, J.P., Brooks, W., Spriggs, E., Eytan, R.I., Moore, J.A.,
720 Wainwright, P.C., Lemmon, A.R., Lemmon, E.M., Near, T.J., 2017b. New
721 insights on the sister lineage of percomorph fishes with an anchored hybrid
722 enrichment dataset. *Mol. Phylogenet. Evol.* 110, 27-38.

723 Dornburg, A., Townsend, J.P., Wang, Z., 2017c. Maximizing power in phylogenetics and
724 phylogenomics: a perspective illuminated by fungal big data. In: Townsend, J.P.,
725 Wang, Z. (Eds.), *Advances in Genetics*. Academic Press, pp. 1-47.

726 Eakin, R., 1990. Artedidraconidae. In: Gon, O., Heemstra, P.C. (Eds.), Fishes of the
727 Southern Ocean. J.L.B. Smith Institute of Ichthyology, Grahamstown, South
728 Africa, pp. 332-356.

729 Eakin, R.R., 1977. Morphology and distribution of species in the genus *Pogonophryne*
730 (Pisces, Harpagiferidae). In: Pawson, D.L., Kornicker, L.S. (Eds.), Antarctic
731 research series, vol. 28, Biology of the Antarctic Seas VIII. American
732 Geophysical Union, Washington, pp. 1-20.

733 Eakin, R.R., Eastman, J.T., Near, T.J., 2009. A new species and a molecular phylogenetic
734 analysis of the Antarctic fish genus *Pogonophryne* (Notothenioidei:
735 Artedidraconidae). Copeia 2009, 705-713.

736 Eastman, J.T., 1993. Antarctic fish biology: evolution in a unique environment.
737 Academic Press, San Diego.

738 Eastman, J.T., 1997. Phyletic divergence and specialization for pelagic life in the
739 Antarctic nototheniid fish *Pleuragramma antarcticum*. Comp. Biochem. Phys.
740 118A, 1095-1101.

741 Eastman, J.T., 2005. The nature of the diversity of Antarctic fishes. Polar Biol. 28, 93-
742 107.

743 Eastman, J.T., 2017. Bathymetric distributions of notothenioid fishes. Polar Biol. 40,
744 2077-2095.

745 Eastman, J.T., DeVries, A.L., 1982. Buoyancy studies of notothenioid fishes in McMurdo
746 Sound, Antarctica. Copeia 1982, 385-393.

747 Eastman, J.T., Eakin, R.R., 2000. An updated species list of notothenioid fish

748 (Perciformes; Notothenioidei), with comments on Antarctic species. *Arch. Fish.*

749 *Mar. Res.* 48, 11-20.

750 Eaton, D.A.R., 2014. PyRAD: assembly of de novo RADseq loci for phylogenetic

751 analyses. *Bioinformatics* 30, 1844-1849.

752 Eaton, D.A.R., Spriggs, E.L., Park, B., Donoghue, M.J., 2017. Misconceptions on

753 missing data in RAD-seq phylogenetics with a deep-scale example from

754 flowering plants. *Syst. Biol.* 66, 399-412.

755 Egginton, S., Rankin, J.C., 1998. Vascular adaptations for a low pressure / high flow

756 blood supply to locomotory muscles of Antarctic icefish. In: Di Prisco, G.,

757 Pisano, E., Clarke, A. (Eds.), *Fishes of Antarctica: A biological overview*.

758 Springer Milan, Milano, pp. 185-195.

759 Egginton, S., Skilbeck, C., Hoofd, L., Calvo, J., Johnston, I.A., 2002. Peripheral oxygen

760 transport in skeletal muscle of Antarctic and sub-Antarctic notothenioid fish. *J.*

761 *Exp. Biol.* 205, 769-779.

762 Eytan, R.I., Evans, B.R., Dornburg, A., Lemmon, A.R., Lemmon, E.M., Wainwright,

763 P.C., Near, T.J., 2015. Are 100 enough? Inferring acanthomorph teleost

764 phylogeny using Anchored Hybrid Enrichment. *BMC Evol. Biol.* 15.

765 Friedman, M., Keck, B.P., Dornburg, A., Eytan, R.I., Martin, C.H., Hulsey, C.D.,

766 Wainwright, P.C., Near, T.J., 2013. Molecular and fossil evidence place the origin

767 of cichlid fishes long after Gondwanan riftting. *Proc. R. Soc. B* 280, 20131733.

768 Gavrilets, S., Losos, J.B., 2009. Adaptive radiation: contrasting theory with data. *Science*

769 323, 732-737.

770 Gilbert, P.S., Chang, J., Pan, C., Sobel, E.M., Sinsheimer, J.S., Faircloth, B.C., Alfaro,
771 M.E., 2015. Genome-wide ultraconserved elements exhibit higher phylogenetic
772 informativeness than traditional gene markers in percomorph fishes. *Mol.*
773 *Phylogenet. Evol.* 92, 140-146.

774 Goremykin, V.V., Nikiforova, S.V., Bininda-Emonds, O.R.P., 2010. Automated removal
775 of noisy data in phylogenomic analyses. *J. Mol. Evol.* 71, 319-331.

776 Goremykin, V.V., Viola, R., Hellwig, F.H., 2009. Removal of noisy characters from
777 chloroplast genome-scale data suggests revision of phylogenetic placements of
778 *Amborella* and *Ceratophyllum*. *J. Mol. Evol.* 68, 197-204.

779 Herrera, S., Shank, T.M., 2016. RAD sequencing enables unprecedented phylogenetic
780 resolution and objective species delimitation in recalcitrant divergent taxa. *Mol.*
781 *Phylogenet. Evol.* 100, 70-79.

782 Hintze, J.L., Nelson, R.D., 1998. Violin plots: a box plot-density trace synergism. *The*
783 *American Statistician* 52, 181-184.

784 Hoang, D.T., Chernomor, O., von Haeseler, A., Minh, B.Q., Vinh, L.S., 2018. UFBoot2:
785 Improving the Ultrafast Bootstrap Approximation. *Mol. Biol. Evol.* 35, 518-522.

786 Hureau, J.-C., 1970. Biologie comparee de quelques Poissons antarctiques
787 (Nototheniidae). *Bull. Inst. oceanogr. Monaco*, 1-244.

788 Ingram, T., Mahler, D.L., 2011. Niche diversification follows key innovation in Antarctic
789 fish radiation. *Mol. Ecol.* 20, 4590-4591.

790 Iwami, T., 1985. Osteology and relationships of the family Channichthyidae. *Mem. Nat.*
791 *Inst. Polar Res. Tokyo* 36, 1-69.

792 Janko, K., Marshall, C., Musilova, Z., Van Houdt, J., Couloux, A., Cruaud, C., Lecointre,
793 G., 2011. Multilocus analyses of an Antarctic fish species flock (Teleostei,
794 Notothenioidei, Trematominae): Phylogenetic approach and test of the early-
795 radiation event. *Mol. Phylogen. Evol.* 60, 305-316.

796 Kalyaanamoorthy, S., Minh, B.Q., Wong, T.K.F., von Haeseler, A., Jermiin, L.S., 2017.
797 ModelFinder: fast model selection for accurate phylogenetic estimates. *Nat.*
798 *Methods* 14, 587-589.

799 Kennicutt, M.C., Chown, S.L., Cassano, J.J., Liggett, D., Massom, R., Peck, L.S.,
800 Rintoul, S.R., Storey, J.W.V., Vaughan, D.G., Wilson, T.J., Sutherland, W.J.,
801 2014. Polar research: six priorities for Antarctic science. *Nature* 512, 23-25.

802 Kishino, H., Miyata, T., Hasegawa, M., 1990. Maximum likelihood inference of protein
803 phylogeny and the origin of chloroplasts. *J. Mol. Evol.* 31, 151-160.

804 Kock, K.H., 1992. Antarctic fish and fisheries. Cambridge University Press, Cambridge.

805 Kuhn, D.E., O'Brien, K.M., Crockett, E.L., 2016. Expansion of capacities for iron
806 transport and sequestration reflects plasma volumes and heart mass among white-
807 blooded notothenioid fishes. *Am J Physiol-Reg I* 311, R649-R657.

808 Kuhn, K.L., Near, T.J., 2009. Phylogeny of *Trematomus* (Notothenioidei: Nototheniidae)
809 inferred from mitochondrial and nuclear gene sequences. *Antarctic Sci.* 21, 565-
810 570.

811 La Mesa, M., Eastman, J.T., Vacchi, M., 2004. The role of notothenioid fish in the food
812 web of the Ross Sea shelf waters: a review. *Polar Biol.* 27, 321-338.

813 Lau, Y.T., Parker, S.K., Near, T.J., Detrich, H.W., 2012. Evolution and function of the
814 globin intergenic regulatory regions of the Antarctic dragonfishes
815 (Notothenioidei: Bathymonidae). *Mol. Biol. Evol.* 29, 1071-1080.

816 Lautredou, A.C., Hinsinger, D.D., Gallut, C., Cheng, C.H.C., Berkani, M., Ozouf-Costaz,
817 Cruaud, C., Lecointre, G., Dettai, A., 2012. Phylogenetic footprints of an
818 Antarctic radiation: The Trematominae (Notothenioidei, Teleostei). *Mol.*
819 *Phylogenetic Evol.* 65, 87-101.

820 Leache, A.D., Banbury, B.L., Linkem, C.W., de Oca, A.N., 2016. Phylogenomics of a
821 rapid radiation: is chromosomal evolution linked to increased diversification in
822 north american spiny lizards (Genus *Sceloporus*)? *BMC Evol Biol* 16, 63.

823 Lecointre, G., Bonillo, C., Ozouf-Costaz, C., Hureau, J.-C., 1997. Molecular evidence for
824 the origins of Antarctic fishes: paraphyly of the Bovichtidae and no indication for
825 the monophyly of the Notothenioidei (Teleostei). *Polar Biol.* 18, 193-208.

826 Lecointre, G., Gallut, C., Bonillo, C., Couloux, A., Ozouf-Costaz, C., Dettai, A., 2011.
827 The Antarctic fish genus *Artedidraco* is paraphyletic (Teleostei, Notothenioidei,
828 Artedidraconidae). *Polar Biol.* 34, 1135-1145.

829 Lewis, J.M., Grove, T.J., O'Brien, K.M., 2015. Energetic costs of protein synthesis do not
830 differ between red- and white-blooded Antarctic notothenioid fishes. *Comp.*
831 *Biochem. Phys. A* 187, 177-183.

832 Lombarte, A., Olaso, I., Bozzano, A., 2003. Ecomorphological trends in the
833 Artedidraconidae (Pisces : Perciformes : Notothenioidei) of the Weddell Sea.
834 *Antarctic Sci.* 15, 211-218.

835 Lönnberg, E., 1905. The fishes of the Sweedish South Polar Expedition.

836 Wissenschaftliche Ergebnisse der Schwedischen Südpolar-Expedition 1901-1903

837 5, 1-69.

838 López-Giráldez, F., Townsend, J.P., 2011. PhyDesign: an online application for profiling

839 phylogenetic informativeness. *BMC Evol. Biol.* 11.

840 Massatti, R., Reznicek, A.A., Knowles, L.L., 2016. Utilizing RADseq data for

841 phylogenetic analysis of challenging taxonomic groups: A case study in *Carex*

842 sect. *Racemosae*. *Am. J. Bot.* 103, 337-347.

843 Matschiner, M., Hanel, R., Salzburger, W., 2011. On the origin and trigger of the

844 notothenioid adaptive radiation. *Plos One* 6, e18911.

845 Mintenbeck, K., Torres, J.J., 2017. Impact of climate change on the Antarctic Silverfish

846 and its consequences for the Antarctic ecosystem. In: Vacchi, M., Pisano, E.,

847 Ghigliotti, L. (Eds.), *The Antarctic Silverfish: a Keystone Species in a Changing*

848 *Ecosystem*. Springer International Publishing, Cham, pp. 253-286.

849 Near, T.J., Cheng, C.-H.C., 2008. Phylogenetics of notothenioid fishes (Teleostei:

850 Acanthomorpha): inferences from mitochondrial and nuclear gene sequences.

851 *Mol. Phylogenet. Evol.* 47, 832-840.

852 Near, T.J., Dornburg, A., Harrington, R.C., Oliveira, C., Pietsch, T.W., Thacker, C.E.,

853 Satoh, T.P., Katayama, E., Wainwright, P.C., Eastman, J.T., Beaulieu, J.M., 2015.

854 Identification of the notothenioid sister lineage illuminates the biogeographic

855 history of an Antarctic adaptive radiation. *BMC Evol. Biol.* 15, 109.

856 Near, T.J., Dornburg, A., Kuhn, K.L., Eastman, J.T., Pennington, J.N., Patarnello, T.,

857 Zane, L., Fernandez, D.A., Jones, C.D., 2012. Ancient climate change, antifreeze,

858 and the evolutionary diversification of Antarctic fishes. Proc. Nat. Acad. Sci.
859 USA 109, 3434-3439.

860 Near, T.J., Kendrick, B.J., Detrich, H.W., Jones, C.D., 2007. Confirmation of neutral
861 buoyancy in *Aethotaxis mitopteryx* DeWitt (Notothenioidei : Nototheniidae).
862 Polar Biol. 30, 443-447.

863 Near, T.J., Parker, S.K., Detrich, H.W., 2006. A genomic fossil reveals key steps in
864 hemoglobin loss by the Antarctic icefishes. Mol. Biol. Evol. 23, 2008-2016.

865 Near, T.J., Russo, S.E., Jones, C.D., DeVries, A.L., 2003. Ontogenetic shift in buoyancy
866 and habitat in the Antarctic toothfish, *Dissostichus mawsoni* (Perciformes:
867 Nototheniidae). Polar Biol. 26, 124-128.

868 Nelson, J.S., 1994. Fishes of the world, 3rd edition. Wiley, New York.

869 Nelson, J.S., Grande, T.C., Wilson, M.V.H., 2016. Fishes of the world. John Wiley &
870 Sons, Inc., Hoboken.

871 Nguyen, L.T., Schmidt, H.A., von Haeseler, A., Minh, B.Q., 2015. IQ-TREE: A fast and
872 effective stochastic algorithm for estimating maximum likelihood phylogenies.
873 Mol. Biol. Evol. 32, 268-274.

874 Norman, J.R., 1938. Coast fishes. Part III. The Antarctic zone. Discovery Rep. 18, 1-104.

875 Poe, S., Nieto-Montes de Oca, A., Torres-Carvajal, O., De Queiroz, K., Velasco, J.A.,
876 Truett, B., Gray, L.N., Ryan, M.J., Kohler, G., Ayala-Varela, F., Latella, I., 2017.
877 A phylogenetic, biogeographic, and taxonomic study of all extant species of
878 *Anolis* (Squamata; Iguanidae). Syst Biol 66, 663-697.

879 Pond, S.L.K., Frost, S.D.W., Muse, S.V., 2005. HyPhy: hypothesis testing using
880 phylogenies. Bioinformatics 21, 676-679.

881 Prum, R.O., Berv, J.S., Dornburg, A., Field, D.J., Townsend, J.P., Lemmon, E.M.,
882 Lemmon, A.R., 2015. A comprehensive phylogeny of birds (Aves) using targeted
883 next-generation DNA sequencing. *Nature* 526, 569-573.

884 Reddy, S., Kimball, R.T., Pandey, A., Hosner, P.A., Braun, M.J., Hackett, S.J., Han,
885 K.L., Harshman, J., Huddleston, C.J., Kingston, S., Marks, B.D., Miglia, K.J.,
886 Moore, W.S., Sheldon, F.H., Witt, C.C., Yuri, T., Braun, E.L., 2017. Why do
887 phylogenomic data sets yield conflicting trees? Data type influences the Avian
888 Tree of Life more than taxon sampling. *Syst. Biol.* 66, 857-879.

889 Regan, C.T., 1913. The Antarctic fishes of the Scottish National Antarctic Expedition.
890 *Transactions of the Royal Society of Edinburgh* 49, 229-292.

891 Ritchie, P.A., Bargelloni, L., Meyer, A., Taylor, J.A., Macdonald, J.A., Lambert, D.M.,
892 1996. Mitochondrial phylogeny of trematomid fishes (Nototheniidae,
893 Perciformes) and the evolution of Antarctic fish. *Mol. Phylogenet. Evol.* 5, 383-
894 390.

895 Ruud, J.T., 1954. Vertebrates without erythrocytes and blood pigment. *Nature* 173, 848-
896 850.

897 Sanchez, S., Dettai, A., Bonillo, C., Ozouf-Costaz, C., Detrich, H.W., Lecointre, G.,
898 2007. Molecular and morphological phylogenies of the Antarctic teleostean
899 family Nototheniidae, with emphasis on the Trematominae. *Polar Biol.* 30, 155-
900 166.

901 Sarkar, D., 2008. *Lattice: multivariate data visualization with R*. Springer-Verlag, New
902 York.

903 Sharma, P.P., Kaluziak, S.T., Perez-Porro, A.R., Gonzalez, V.L., Hormiga, G., Wheeler,
904 W.C., Giribet, G., 2014. Phylogenomic interrogation of arachnida reveals
905 systemic conflicts in phylogenetic signal. *Mol Biol Evol* 31, 2963-2984.

906 Shen, X.-X., Hittinger, C.T., Rokas, A., 2017. Contentious relationships in phylogenomic
907 studies can be driven by a handful of genes. *Nature Ecol. & Evol.* 1, 0126.

908 Shimodaira, H., 2002. An approximately unbiased test of phylogenetic tree selection.
909 *Syst. Biol.* 51, 492-508.

910 Sidell, B.D., O'Brien, K.M., 2006. When bad things happen to good fish: the loss of
911 hemoglobin and myoglobin expression in Antarctic icefishes. *J. Exp. Biol.* 209,
912 1791-1802.

913 Sidell, B.D., Vayda, M.E., S, D.J., Londraville, R.L., Yuan, M.-L., Rodnick, K.J.,
914 Eppley, Z.A., Costello, L., 1997. Variable expression of myoglobin among the
915 hemoglobinless Antarctic icefishes. *Proc. Nat. Acad. Sci. USA* 94, 3420-3424.

916 Steel, M., Leuenberger, C., 2017. The optimal rate for resolving a near-polytomy in a
917 phylogeny. *Journal of Theoretical Biology* 420, 174-179.

918 Su, Z., Wang, Z., López-Giráldez, F., Townsend, J.P., 2014. The impact of incorporating
919 molecular evolutionary model into predictions of phylogenetic signal and noise.
920 *Front. Ecol. Evol.* 2, 11.

921 Townsend, J.P., 2007. Profiling phylogenetic informativeness. *Syst. Biol.* 56, 222-231.

922 Townsend, J.P., Leuenberger, C., 2011. Taxon sampling and the optimal rates of
923 evolution for phylogenetic inference. *Syst. Biol.* 60, 358-365.

924 Townsend, J.P., Su, Z., Tekle, Y.I., 2012. Phylogenetic signal and noise: predicting the
925 power of a data set to resolve phylogeny. *Syst. Biol.* 61, 835-849.

926 Venditti, C., Meade, A., Pagel, M., 2010. Phylogenies reveal new interpretation of
927 speciation and the Red Queen. *Nature* 463, 349-352.

928 Verde, C., Lecointre, G., di Prisco, G., 2007. The phylogeny of polar fishes and the
929 structure, function and molecular evolution of hemoglobin. *Polar Biol.* 30, 523-
930 539.

931 Voskoboinikova, O., Detrich, H.W., III, Albertson, R.C., Postlethwait, J.H., Ghigliotti,
932 L., Pisano, E., 2017. Evolution reshaped life for the water column: the skeleton of
933 the Antarctic Silverfish *Pleuragramma antarctica* (Boulenger 1902). In: Vacchi,
934 M., Pisano, E., Ghigliotti, L. (Eds.), *The Antarctic silverfish. A keystone species*
935 in a changing ecosystem. Springer International Publishing, Cham, pp. 3-26.

936 Voskoboinikova, O.S., 1993. Evolution of the visceral skeleton and phylogeny of the
937 Nototheniidae. *J. Ichthyol.* 33, 23-47.

938 Wagner, C.E., Keller, I., Wittwer, S., Selz, O.M., Mwaiko, S., Greuter, L., Sivasundar,
939 A., Seehausen, O., 2013. Genome-wide RAD sequence data provide
940 unprecedented resolution of species boundaries and relationships in the Lake
941 Victoria cichlid adaptive radiation. *Mol. Ecol.* 22, 787-798.

942 Wang, X., Ye, X., Zhao, L., Li, D., Guo, Z., Zhuang, H., 2017. Genome-wide RAD
943 sequencing data provide unprecedented resolution of the phylogeny of temperate
944 bamboos (Poaceae: Bambusoideae). *Sci Rep* 7, 11546.

945 Whitfield, J.B., Lockhart, P.J., 2007. Deciphering ancient rapid radiations. *Trends Ecol.*
946 *Evol.* 22, 258-265.

947 Wujcik, J.M., Wang, G., Eastman, J.T., Sidell, B.D., 2007. Morphometry of retinal
948 vasculature in Antarctic fishes is dependent upon the level of hemoglobin in
949 circulation. *J. Exp. Biol.* 210, 815-824.

950 Wyanski, D.M., Targett, T.E., 1981. Feeding biology of fishes in the endemic Antarctic
951 Harpagiferidae. *Copeia* 1981, 686-693.

952 Xia, X., Xie, Z., Salemi, M., Chen, L., Wang, Y., 2003. An index of substitution
953 saturation and its application. *Mol Phylogenetic Evol* 26, 1-7.

954 Xu, Q., Cai, C., Hu, X., Liu, Y., Guo, Y., Hu, P., Chen, Z., Peng, S., Zhang, D., Jiang, S.,
955 Wu, Z., Chan, J., Chen, L., 2015. Evolutionary suppression of erythropoiesis via
956 the modulation of TGF - β signalling in an Antarctic icefish. *Mol. Ecol.* 24,
957 4664-4678.

958 Zane, L., Marcato, S., Bargelloni, L., Bortolotto, E., Papetti, C., Simonato, M., Varotto,
959 V., Patarnello, T., 2006. Demographic history and population structure of the
960 Antarctic silverfish *Pleuragramma antarcticum*. *Mol. Ecol.* 15, 4499-4511.

961

962

963

964 **Figure Legends**

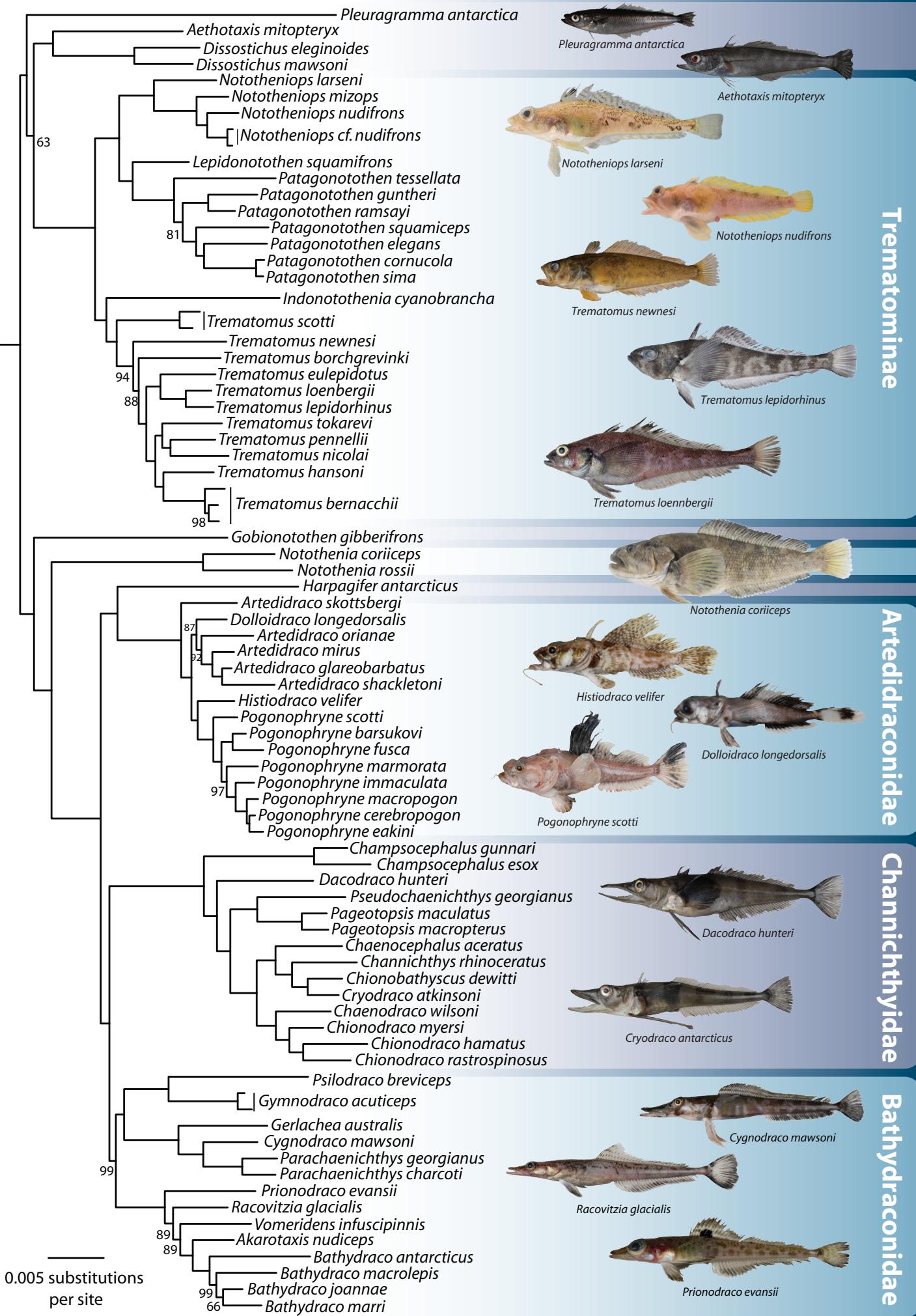
965 **Figure 1.** Maximum likelihood phylogeny of Cryonotothenioidea inferred from RADseq
966 dataset using IQ-TREE. Numbers at nodes are bootstrap values for those with less than
967 100% support. Photographs of notothenioid specimens by P. Marriott, P. McMillan, R.
968 McPhee, T. J. Near, and C. Struthers and are deposited at the Museum of New Zealand
969 Te Papa Tongarewa and Peabody Museum of Natural History, Yale University.

970

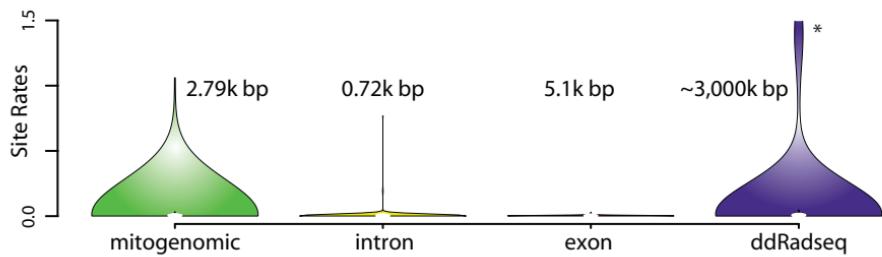
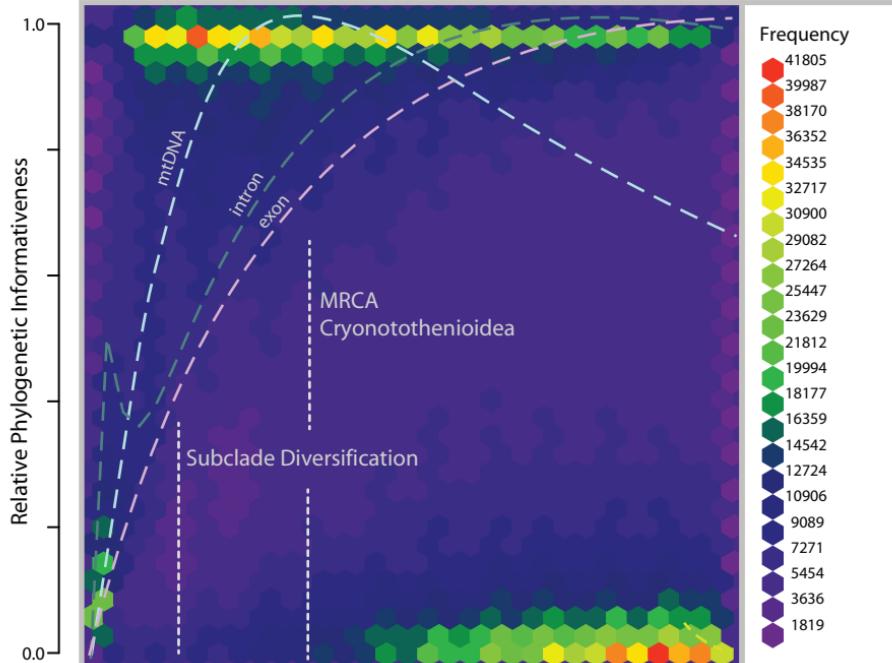
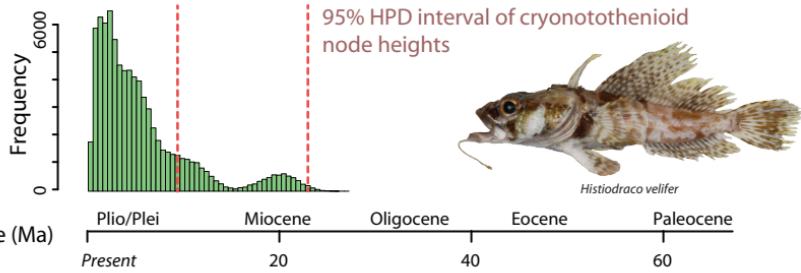
971 **Figure 2.** Species tree inferred using SVDquartets. Numbers at nodes are bootstrap
972 support values. Nodes that differ from the maximum likelihood IQ-TREE (Fig. 1) are
973 marked with a filled black circle. Photographs of notothenioid specimens by P. Marriott,
974 P. McMillan, R. McPhee, T. J. Near, and C. Struthers and are deposited at the Museum of
975 New Zealand Te Papa Tongarewa and Peabody Museum of Natural History, Yale
976 University.

977

978 **Figure 3.** Predictions of phylogenetic utility for RADseq and legacy DNA sequence
979 datasets. A. Violin plot comparing the distribution of site rates for each dataset, with the
980 size of each dataset in base pairs (bp) indicated above each plot. An asterisk marks the
981 truncation of the upper tail of the site rate distribution for graphical purposes.
982 B. Hexbin plot of the relative phylogenetic informativeness (PI) over time of each
983 RADseq locus. Colors correspond to number of loci with a measured value of
984 informativeness. Curved lines represent PI profiles of each legacy DNA sequence dataset.
985 C. Highest 95% posterior density interval of cryonotothenioid divergence times taken
986 from Dornburg et al. (2017a). Dashed vertical lines corresponding to the previously
987 estimated most recent common ancestor of cryonotothenioids and the onset of rapid


988 lineage diversification hypothesized in Near et al. (2012). Photograph of *Histiодraco*
989 *velifer* by A. Stewart and is deposited at the Museum of New Zealand Te Papa
990 Tongarewa.

991




992 **Figure 4.** Horizon plots depicting the relationship between sequence length and the
993 predicted probability of phylogenetic noise (H) misleading inference based on
994 phylogenetic signal (R). Each row corresponds to a temporal depth of a hypothetical
995 quartet beginning with recent divergences and extending to the K-Pg boundary. Colors
996 indicate the values of $R-H$, with darker blue colors indicating high R , whites indicating
997 little remaining resolving power; and darker reds indicating strong predicted probabilities
998 of H overwhelming signal.

999

CRYONOTHENIOIDEA

A.**B.****C.**

Time
Increasing

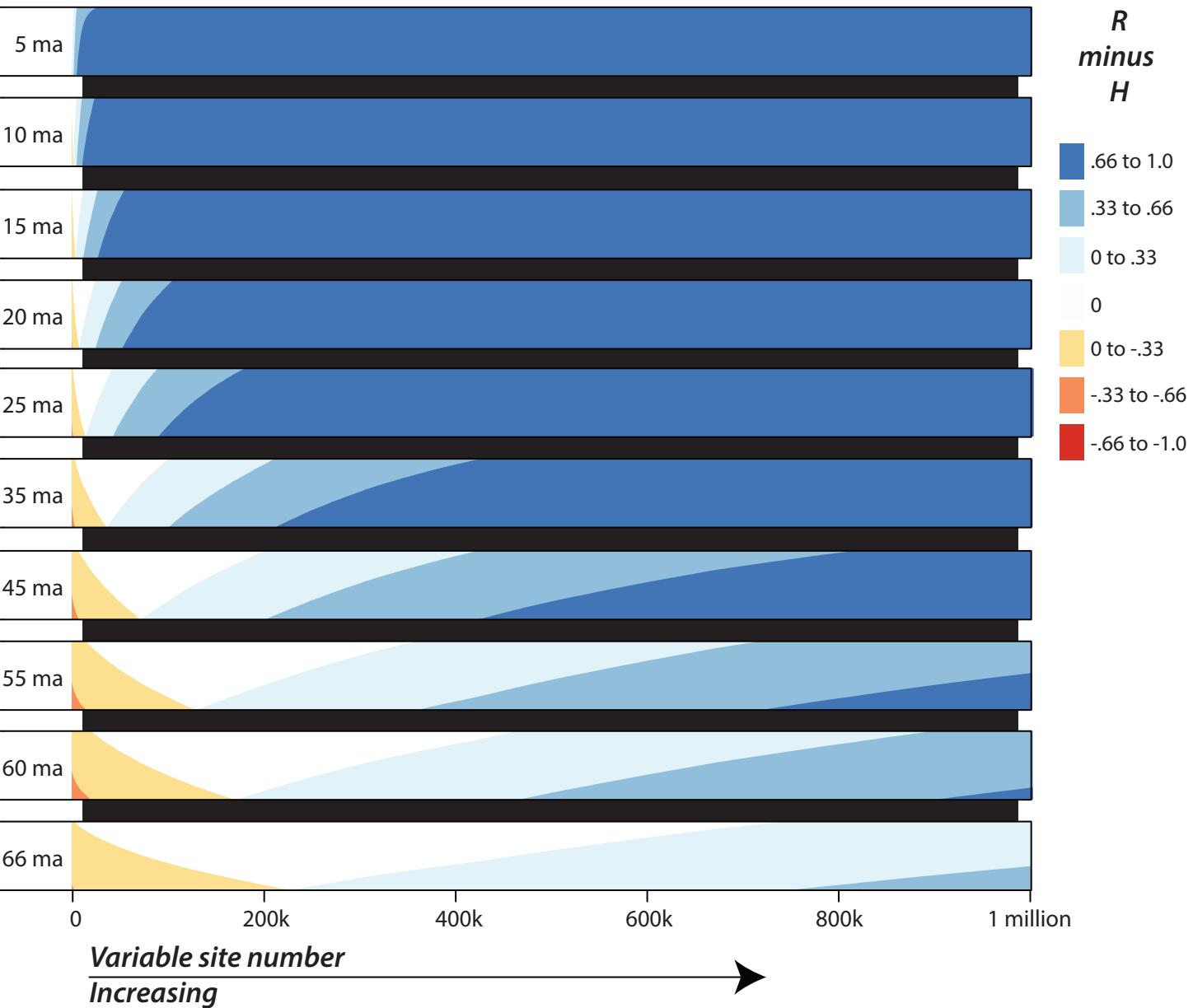


Table 1. Comparison of phylogenetic hypotheses of Notothenioidei using the approximately unbiased (AU) test based on the resampling of estimated log-likelihoods (RELL) method.

Phylogenetic hypothesis	logLn	ΔlogLn	bp-RELL	p-AU
Optimal ML tree (Fig. 1)	-7765781.407	0.000	0.713	0.774
<i>Nototheniidae</i> monophyletic	-7766949.513	1168.106	0.000	0.010
<i>Pleuragrammatinae</i> monophyletic	-7765888.625	107.218	0.283	0.250
<i>Lepidonotothen</i> monophyletic	-7768175.483	2394.076	0.000	0.007
<i>Artedidraco</i> monophyletic	-7767136.315	1354.908	0.000	0.006
<i>Indonotothenia</i> and <i>Notothenia</i> sister taxa	-7767942.406	2160.999	0.000	0.001
<i>Pagothenia</i> not nested in <i>Trematomus</i>	-7768068.765	2287.358	0.000	0.001
<i>Pseudotrematomus</i> (Balushkin 1982; 2000)	-7772505.186	6723.779	0.000	0.001
Phylogeny of <i>Trematomus</i> in Lautréou et al. (2012)	-7771618.300	5836.893	0.000	0.001