

1 Cohort analysis of *Euphausia pacifica* from the Northeast Pacific population using a Gaussian
2 mixture model

3
4 C. Tracy Shaw¹, Hongsheng Bi¹, Leah R. Feinberg¹, and William T. Peterson²

5
6 ¹Cooperative Institute for Marine Resources Studies, Hatfield Marine Science Center, 2030 SE
7 Marine Science Drive, Newport, OR 97365, USA

8
9 ²NOAA-Fisheries, Northwest Fisheries Science Center, 2030 SE Marine Science Drive,
10 Newport, Oregon, 97365 USA

11 Present addresses:

12 Corresponding author: C. Tracy Shaw, University of South Florida College of Marine Science,
13 140 7th Ave S, MSL 119, St. Petersburg, FL 33701, USA, ctshaw@usf.edu

14
15 Hongsheng Bi, Chesapeake Biological Laboratory, University of Maryland Center for
16 Environmental Science, Solomons, Maryland 20688

17
18 Leah R. Feinberg, National Marine Fisheries Service, Silver Spring, MD 20910

19 Competing Interests: The authors certify that they have no competing interests and there has
20 been no significant financial support that could influence the outcome of this research.

21 Author contributions: project idea and design (CTS, WTP), sample collection (CTS, LRF, HB,
22 WTP), sample sorting (CTS, LRF), Matlab wizardry (HB), data analysis and writing (CTS, LRF,
23 HB).

24 25 26 27 28 **ACKNOWLEDGEMENTS**

29 This research was conducted in conjunction with projects funded by NOAA/NWFSC,
30 ONR/NOPP, NSF/CoOP/COAST, NOAA-GLOBEC, NSF/CoOP/RISE, and NOAA-SAIP.

31 32 **ABSTRACT**

33 *Euphausia pacifica* cohorts were identified from biweekly zooplankton samples collected on the
34 Newport Hydrographic Line (Newport, Oregon, USA) from 2001-2011. Cohorts were identified
35 using a Gaussian mixture model and tracked over time from the juvenile stage through
36 adulthood. Initial size mode at the juvenile stage was typically 4-5mm and final size modes
37 ranged from 12-18mm. In total, 28 cohorts were identified, of which 22 appear to be complete
38 cohorts that were tracked from start to finish during the 11-year study period. Of these 22
39 cohorts, 19 were tracked for ≤ 1.5 years. The three cohorts tracked for > 2 years grew more
40 slowly than other cohorts, though their final size modes were similar. These three cohorts were
41 associated with delayed upwelling and moderate chlorophyll concentrations, suggesting that their
42 extended duration and slower growth were related to suboptimal environmental conditions.
43 Growth rates calculated from cohort size modes decreased overall as animals reached adult size.
44 Cohort analysis captured some instances of negative growth, particularly after animals reached a
45 total length of 10mm, similar to instantaneous growth rates (IGR) measured in a previous study.
46 Survivorship curves were created from eggs and larvae for each year from 2001-2005.

47 Survivorship was similar among years except in 2005 when upwelling and subsequent spawning
48 were delayed by one month. Based on the survivorship curves, the *E. pacifica* juvenile stage
49 lasts an average of six months and the total life span in the study area is approximately two
50 years. Successful identification and tracking of cohorts suggests that euphausiids at station
51 NH25 are representative of the overall population dynamics of *Euphausia pacifica* in the shelf-
52 break region off the Oregon Coast.

53

54 **KEYWORDS**

55 *Euphausia pacifica*; Northeast Pacific; cohort analysis; growth rate; survivorship, Gaussian
56 mixture model

57

58 **1. INTRODUCTION**

59 *Euphausia pacifica* is the most abundant species of euphausiid in the North Pacific (Brinton
60 1962, Mauchline and Fisher 1969) and is present off the Oregon Coast year-round (Shaw et al.
61 (this volume)). *E. pacifica* may spawn as early as February and as late as October but there is
62 typically an intense period of spawning activity during the summer months of July and August
63 (Smiles and Pearcy 1971, Brinton 1976, Feinberg and Peterson 2003) in association with
64 phytoplankton blooms that are driven by coastal upwelling. The intense spawning activity
65 during the summer when large numbers of eggs are produced over a short time period may serve
66 to establish cohorts that can be tracked over time. *E. pacifica* in this area develop from egg to
67 juvenile in an average of 60 days (Feinberg et al. 2006), therefore juveniles collected
68 approximately two months after a spawning event could be attributed to those eggs. The
69 Newport Hydrographic Line time series has sampled for juvenile and adult euphausiids
70 approximately every two weeks since 2001. Here we apply a Gaussian mixture model to length
71 frequency data from these samples to determine whether we can identify cohorts of *E. pacifica*
72 and track their growth and development.

73

74 Cohort analysis relies on sampling the same population over time. It is difficult to define what
75 constitutes a population in a dynamic upwelling habitat like the Oregon Coast, let alone ascertain
76 whether the same population is being sampled, even when samples are collected at the same
77 location. For this study we hypothesized (as did Smiles & Pearcy 1971), that our samples were
78 either of the same population or of populations with similar age structure and growth rates.

79

80 As in other crustaceans, molting is an integral part of euphausiid development and occurs
81 frequently from the first calyptopis stage to adulthood (Mauchline 1980, Feinberg et al. 2006).
82 Unlike many other crustaceans, euphausiids continue to molt regularly as adults, and their length
83 may increase, decrease, or stay the same after each molt (Mauchline and Fisher 1969, Marinovic
84 and Mangel 1999, Pinchuk and Hopcroft 2006). Euphausiid growth is commonly measured
85 either by following cohorts using modal progression of length frequencies in preserved samples
86 (Smiles and Pearcy 1971, Brinton 1976, Bollens et al. 1992), or conducting instantaneous growth
87 rate (IGR) experiments on live animals (Ikeda and Dixon 1982, Buchholz 1991, Quetin and Ross
88 1991, Nicol et al. 1992, Virtue et al. 1996, Marinovic and Mangel 1999, Cuzin-Roudy 2000,
89 Pinchuk and Hopcroft 2006, Shaw et al. 2010). Growth rates from cohort analysis reflect overall
90 population trends and are calculated from the change in length of size modes between samples,
91 yielding one growth rate for each size mode present in sequential samples. IGR experiments
92 measure growth rates of individual live euphausiids during short-term laboratory incubations

93 (Quetin and Ross 1991, Nicol et al. 1992). They yield one growth rate per euphausiid that molts
94 during the experiment and reflect the range of individual variability. Previous cohort studies of
95 *Euphausia pacifica* growth used simple visualization, identifying size modes in length frequency
96 graphs and attempting to track them over time using modal progression (Smiles and Pearcy
97 1971, Brinton 1976, Bollens et al. 1992, Yoon et al. 2000, Kim et al. 2009). The simple
98 visualization method can be somewhat subjective and cannot distinguish occasions when size
99 modes overlap. The mixed normal distribution method employed in the present study increases
100 the accuracy of growth rates from cohort analysis by identifying overlapping size modes.

101
102 The Newport Hydrographic Line time series is uniquely suited to apply the cohort analysis
103 method to tracking *Euphausia pacifica* growth and development in the Northeast Pacific and to
104 assess these results within a larger context. The data are from an 11-year time series that
105 encompassed a wide range of environmental conditions. *E. pacifica* growth rates from live
106 animal (IGR) experiments provide context for cohort growth rates. Here we identify cohorts,
107 track them over time, calculate growth rates from cohort size modes, and create survivorship
108 curves to estimate the lifespan of *E. pacifica* in our study area.

109 110 2. METHODS

111 2.1. Sampling

112 Samples were collected as part of an ongoing long-term sampling
113 program on the Newport Hydrographic (NH) line off the coast of
114 Newport, Oregon, USA (44°39.1'N) (Fig. 1). Data for this study
115 are from January 2001 – December 2011. Cruises took place
116 approximately every two weeks but sampling intervals were
117 sometimes longer due to weather conditions, particularly during
118 winter months. Sampling intervals ranged from 2-72 days, with a
119 median of 16 days. Out of a total of 197 samples, only 21 had a
120 sampling interval >40 days. Cruises were generally aboard the 54'
121 RV *Elakha* but some sampling was from larger vessels during
122 longer research cruises. The same gear and towing protocol were
123 used regardless of sampling platform. Juvenile and adult
124 euphausiids were collected at station NH25, located 25 nautical
125 miles (40km) from shore (water depth 296m), just beyond the
126 continental shelf break (Fig. 1), in oblique tows to 25m using a
127 60cm bongo with 333 μ m black mesh nets. Tows were conducted at
128 night (between one hour after sunset and one hour before sunrise)
129 since *E. pacifica* are diel vertical migrators. The tow depth of 25m
130 targeted vertically migrating euphausiids (Brinton 1967, Bollens et al.
131 1992). Data for euphausiid eggs and larvae are from vertical net tows
132 (50cm ring net, 202 μ m mesh, 100m max tow depth) at stations NH05,
133 NH15, and NH25 (Fig. 1). Surface chlorophyll-*a* samples were collected with a bucket, making
134 them true surface values rather than ~1m depth as with many chlorophyll samples collected from
135 the “surface” bottle on a CTD rosette. Zooplankton samples were preserved at sea in 4%
136 buffered formalin and sorted in the laboratory at Hatfield Marine Science Center. All juvenile
137 and adult euphausiids were identified, staged, and measured by one author (CTS) to minimize

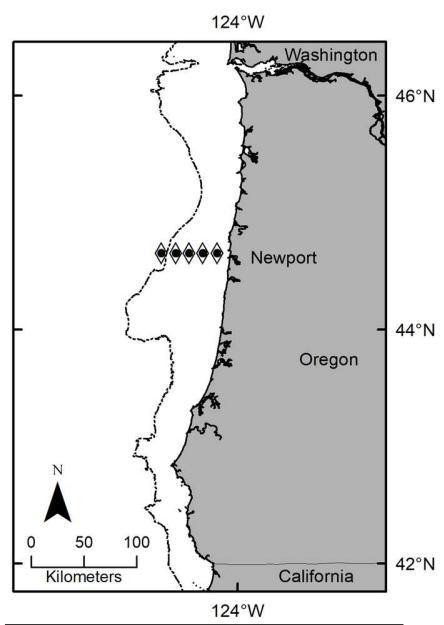
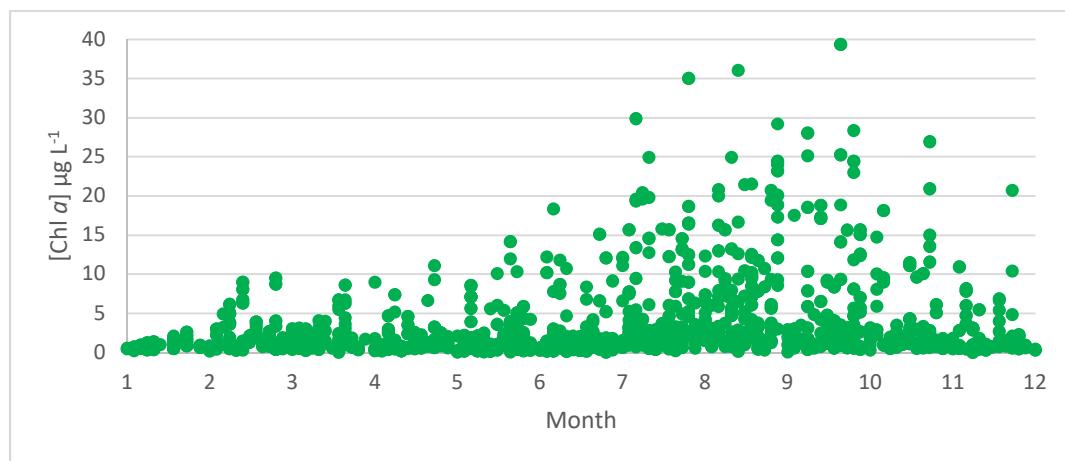


Figure 1 Newport Hydrographic (NH) line off Newport, Oregon, on the west coast of the USA. Station names from inshore to offshore: NH05, NH10, NH15, NH20, NH25. Station number represents the distance offshore (nm).

138 observer bias. Egg counts were by WTP and LRF, euphausiid larvae were identified, staged, and
139 measured by LRF.

140

141 **2.2. Environmental Conditions**


142 *Euphausia pacifica* off the Oregon Coast are most strongly influenced by temperature and
143 upwelling (Shaw et al. (this volume)). The phase of the Pacific Decadal Oscillation (PDO)
144 serves as a proxy for temperature, although temperatures in the study area may lag changes in the
145 PDO by several months. The PDO was in cool phase 2000-2002, warm phase 2003-2006, and
146 cool phase 2007-2011. The spring and fall transition dates mark the start and end of the
147 upwelling season and are calculated from cumulative wind stress data measured at the jetty in
148 Newport, OR (<http://damp.coas.oregonstate.edu/windstress/allyears.html>). Typically the spring
149 transition occurred in April and the fall transition was in September or October, with the
150 upwelling season lasting 4-6 months. *Euphausia pacifica* spawning activity is fueled by
151 phytoplankton blooms so the timing and duration of the upwelling season serve as a proxy for
152 when ocean conditions should be favorable for blooms. During three years of this study the
153 spring transition was delayed by approximately one month - 2000 (12-June), 2005 (22-May), and
154 2010 (10-June) - resulting in a corresponding one-month delay in the formation of phytoplankton
155 blooms and subsequent spawning activity by *E. pacifica*.

156

157 **2.2.1. Chlorophyll**

158 Surface chlorophyll-*a* was measured using the acidification protocol (Welschmeyer 1994).
159 There is a clear pattern of higher chlorophyll concentrations from July-September (Fig. 2, Table
160 1), consistent with the timing of intense *Euphausia pacifica* spawning activity. A subsurface
161 chlorophyll-max was often present during summer months so chlorophyll concentrations
162 available to euphausiids may have been higher than what is represented by surface samples
163 collected with a bucket.

164

165

166 Figure 2. All individual surface chlorophyll-*a* measurements at stations NH05, NH10, NH15,
167 NH20, NH25 for the years 2000-2011.

168

169 Table 1. Average surface chlorophyll ($\mu\text{g L}^{-1}$) from stations NH05, NH10, NH15, NH20, NH25
170 by month and year. Blank squares = no samples.

	Jan	Feb	Mar	Apr	May	June	July	Aug	Sep	Oct	Nov	Dec
--	-----	-----	-----	-----	-----	------	------	-----	-----	-----	-----	-----

2000	0.48	0.53	1.82	1.80	0.45	0.43	6.36	4.61	1.71	1.54	0.91	0.34
2001	0.47	1.45	1.19	0.46	0.87	2.44	5.03	1.76	3.08	6.12	2.71	
2002	0.74	3.06	1.55	1.75	3.80	1.26	10.96	7.38	2.12	7.73	5.54	1.42
2003	0.73	2.43	1.64	1.94	0.49	3.82	5.51	8.61	7.54	0.90	1.48	
2004	0.80	0.52	1.54	0.36	0.74	1.42	6.74	4.62	2.16	1.51	1.26	1.27
2005	1.01	3.70	2.74	2.51	0.67	1.06	0.91	9.58	9.53	1.41	0.78	1.25
2006		1.72	0.54	1.17	1.96	0.83	4.57	4.46	3.71	4.24	0.71	1.15
2007	1.24	2.91	2.71	1.10	2.68	2.56	4.93	7.39	3.86	2.28	3.08	0.84
2008		1.04	4.31	1.60	2.65	1.74	3.63	3.41	10.88	2.65	1.11	0.79
2009	1.40	1.79	0.86	3.10	2.43	2.72	5.68	3.31	3.79	10.05	5.92	0.99
2010		3.07	0.43	1.94	1.83	1.85	13.35	6.13	7.32	2.12	1.27	1.20
2011	0.76	1.33	1.68	1.48	0.85	1.67	2.37	17.93	5.83	0.94	0.81	1.98
Avg	0.85	1.96	1.75	1.60	1.62	1.82	5.84	6.60	5.13	3.46	2.13	1.12

171

172

2.3. Euphausiid Data

173

2.3.1. Euphausiid eggs and larvae

174

Data for euphausiid eggs and larvae are from vertical net samples from stations NH05, NH15, and NH25 (Fig. 1). The euphausiids *Euphausia pacifica* and *Thysanoessa spinifera* both spawn in this area but their eggs can be identified to species since *T. spinifera* eggs are very sticky and were often covered in adhered debris (Summers 1993, Gomez-Gutierrez et al. 2007, Feinberg et al. 2010) while *E. pacifica* eggs were clean and did not stick to sorting dishes, forceps, each other, etc. Egg data are from 2000-2011 to include eggs from the 2000 spawning season that would give rise to cohorts in 2001. High densities of eggs (>200 eggs m^{-3} , referred to as “egg peaks”) indicate the period of intense summer spawning by *E. pacifica*. Survivorship curves for *E. pacifica* were created for 2001-2005 from eggs and larvae (nauplii, calyptopis, furcilia).

175

176

2.3.2. Adult and juvenile euphausiids

177

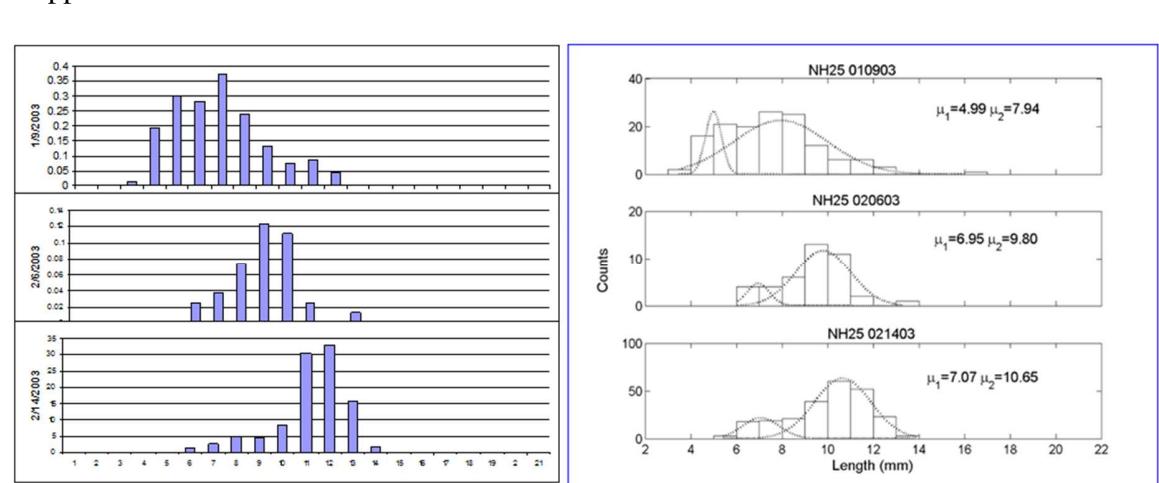
Euphausia pacifica from the nighttime bongo tows at NH25 were counted and measured to generate length frequencies for each sample. Details of length measurements are in Shaw et al. (this volume). Cohorts are based on juveniles and adults since the bongo net mesh size was too large to sample larvae quantitatively. Sample sizes of juveniles and adults were not large enough to separate cohorts by life stage.

178

179

2.4. Gaussian Mixture Models for Cohort Analysis

180


Size modes for each sample were identified using Gaussian mixture models in Matlab (R7, Mathworks). A Gaussian mixture model is a probabilistic model for representing different cohorts in the population at a given time where each cohort is approximated by a normal distribution (Titterington et al. 1985), a more rigorous (and less subjective) method than identifying cohorts by simple visualization of length frequencies. By placing each observed individual in a specific cohort, the Gaussian mixture model allows us to infer the statistical properties associated with each cohort. In other words, the Gaussian model can work with a mixture of normal distributions with overlap, where two size modes overlap within a similar size range (Fig. 3). This is essential to accurate interpretation of the data and is very difficult to do using simple visualization.

181

182

203 To identify size modes, we constructed a length frequency histogram for each sample. A mixture
 204 of multiple normal distributions was fitted to each length histogram to identify overlapping size
 205 modes. The underlying assumptions are that if the histogram followed a mixture of multiple
 206 normal distributions, individuals within the same normal distribution were likely to have
 207 originated from the same cohort whereas individuals from different distributions were likely
 208 from different cohorts. If the histogram followed a single normal distribution, individuals were
 209 considered to be members of the same cohort. The probability distribution of length frequency x
 210 can be written as $f(x) = \sum_{i=1}^n w_i \times g(x|i, \theta_i)$, where $f(x)$ is the mixed normal distribution, x_i
 211 is the length frequency from the i th normal distribution or cohort, $g(x|i, \theta_i)$ is the probability
 212 density function of the i th normal distribution with parameter θ_i , and w_i is the mixing
 213 coefficient, i.e., the percentage of the i th cohort.

214
 215 Estimates of each parameter required a mixing coefficient w_i and a parameter for each normal
 216 distribution $\theta_i = \{\mu_i, \sigma_i\}$, where μ_i is the mean length and σ_i is the variance of i th cohort. The
 217 standard log-likelihood for $X = \{x_1, x_2, \dots, x_i\}$ can be expressed as $E = -\ln L(\gamma) =$
 218 $-\sum_{i=1}^n \ln g(x|i, \gamma)$, where $\gamma = \{w_1, w_2, \dots, w_i, \theta_1, \theta_2, \dots, \theta_i\}$. The mixing coefficient, mean
 219 length, and variance for each normal distribution were estimated by maximizing the log-
 220 likelihood. The distributions were visualized over time and cohorts were tracked between
 221 samples based on size mode and the length of the sampling interval (Fig. S1). Euphausiid
 222 distribution is notoriously patchy, which could explain the occasional disappearance and
 223 reappearance of size modes.

225
 226 Figure 3. Example length frequency data from the same three samples shown using simple
 227 visualization (left panels) and Gaussian mixture model with overlapping size modes (right
 228 panels). μ_x = mean of each size mode. All Gaussian graphs are in Figure S1.

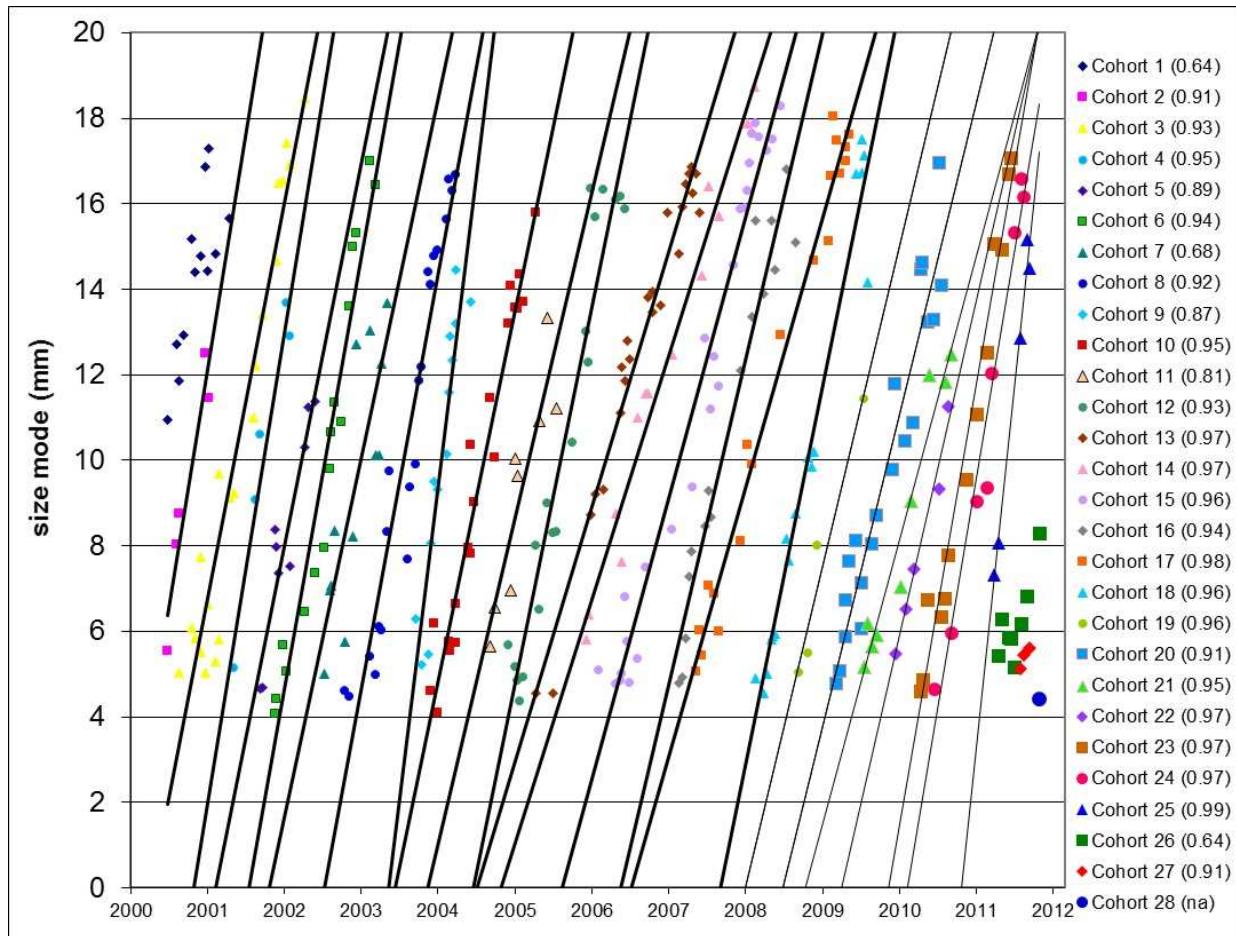
229 2.5. Growth Rates

230 2.5.1. Cohort growth rates

231 Mean size modes identified from the Gaussian mixture models are designated as μ_1, μ_2 etc. for
 232 each size mode in a sample (ex. Fig. 3, Fig. S1). Cohort growth rate was calculated as
 233 $growth = (\mu_{i,t2} - \mu_{i,t1}) / (t2 - t1)$. The μ values are the means of size modes in sequential
 234 samples and t values are the sampling dates. Hence this subtracts the earlier size mode from the
 235 more recent one and divides by the number of days between samples, yielding a growth rate in
 236 $mm\ d^{-1}$ (ex Fig. 3, Fig. S1). There is one growth rate for each size mode comparison, e.g., if
 237

238 there are two size modes in a sample there is a separate growth rate for the change in size of each
239 mode. Sampling intervals of two weeks or more might span two or more intermolt periods. As
240 such, euphausiids could have molted two or three times during the sampling interval, and might
241 grow, shrink, or remain the same size at each molt. Different size modes in the same sample
242 cannot belong to the same cohort.

244 2.5.2. Instantaneous Growth Rates (IGR)


245 Instantaneous growth rate (IGR) experiments were conducted 2001-2009 using live *Euphausia*
246 *pacifica* collected at station NH25 in the same bongo net tows as the preserved samples used for
247 cohort analysis. See Shaw et al. (2010) for details of IGR experiments. Growth rates from IGR
248 experiments are compared with growth rates from cohort analysis reported in the present study.
249 Growth rates from both methods are expressed in units of mm d⁻¹ even though euphausiid growth
250 occurs incrementally at the time of each molt (every 7-10d) rather than as a continuous process.

252 3. RESULTS

253 3.1. Cohort Identification

254 Cohorts of *Euphausia pacifica* were successfully identified and tracked over time based on size
255 modes determined from length frequency data using a Gaussian mixture model (Fig. 4). The
256 “detection date” of a cohort is the sampling date when a size mode was first identified, as distinct
257 from the “start date,” which is the predicted hatching date of the eggs that initiated the cohort
258 (Table 2). Given the sampling interval of approximately twice per month, the detection date may
259 vary by up to a month from when the size mode was first present in the ocean.

260 Cohorts were detected during most months, with 2-3 cohorts detected in most years, and 4
261 detected in 2011 (Table 2). Every year except 2006 included cohorts tracked over shorter (<1yr)
262 and longer (>1yr) durations starting from detection date. Cohorts detected during the typically
263 downwelling months of November-February were always tracked for <1yr. All cohorts tracked
264 for >1yr were detected from March-October but three of the cohorts tracked for <1yr were also
265 detected during these months. There are partial cohorts at the start (Cohort 1) and end (Cohorts
266 25-28) of the study where the full cohort progression did not fall within the study period (Fig. 4).
267 Cohort 1 began in 2000, prior to the start of sampling for juvenile and adult euphausiids, so this
268 cohort was detected at a larger size mode of ~11mm. Cohort 2 could have been present earlier
269 than its January 2001 detection date, as this was the first month of sampling for juvenile and
270 adult euphausiids. Cohorts 3-24 appear to be complete cohorts that were tracked from start to
271 finish (detection to disappearance) during the study period. Cohorts 7 and 8 likely merged as the
272 animals developed over time, as indicated by the reduced power (lower R²) to distinguish these
273 cohorts (Fig. 4). Cohorts 25-28 were detected May-December of 2011 and likely continued into
274 2012, which was not analyzed for cohorts. Cohort start date is estimated from the date
275 progression trendline (Fig. 4). The similar slopes of the trendlines (Fig. 4) suggest that growth
276 rates were similar overall throughout the study period (one-way ANOVA p<0.05).

286 Figure 4. Date progression of all cohorts from 2001-2011. The full progressions of Cohort 1
 287 and Cohorts 25-28 were not encompassed by the sampling period. Figure legend includes R^2
 288 values of trendlines (in parentheses). See Table 2 for predicted cohort start dates.
 289

290 3.2. Cohorts by Cumulative Days

291 To compare progression patterns, the complete cohorts (Cohorts 3-24, detected 2001-2010) are
 292 shown by cumulative days from detection date (Fig. 5). Size mode at detection was 4-6mm and
 293 final size modes were typically 12-18mm (Table 2). Note that this does not represent the largest
 294 *Euphausia pacifica* individuals since a size mode comprises both smaller and larger animals
 295 (Figure S1). The largest *E. pacifica* were ~26mm but the average length was ~17mm (Shaw et
 296 al. (this volume)), similar to maximum cohort size modes. Many cohorts followed a similar
 297 pattern of size mode progression from ~5mm to ~17mm within ~500d (Fig. 5). Cohorts 13, 14,
 298 and 15 deviate from this pattern, increasing in size more slowly and persisting for closer to 800d.
 299 Since these three cohorts were the only ones tracked for over two years, they are the only cohorts
 300 represented after day 600 (Fig. 5). Throughout their progression, size modes of Cohorts 13 and
 301 14 are often slightly smaller than other cohorts, and Cohort 15 is noticeably smaller than any
 302 other cohort until after day 600 (Fig. 5, purple circles).
 303

Figure 5. Size modes of probable complete cohorts (3-24) shown by cumulative days from cohort detection to compare progression patterns. Cohort detection dates are shown in the figure legend. All cohorts combined $R^2=0.8347$, all cohorts excluding 13-15 $R^2=0.8631$, cohorts 13-15 $R^2=0.9297$.

3.3. Projected Cohort Start Dates

The projected start date is the estimated hatching date of eggs that initiated the cohort. Projected start dates were estimated using two methods: date progression (Fig. 4) and cumulative days (Fig. 5). There is good agreement overall between the start dates predicted by these two methods (Table 2, $R^2=0.9988$), and about half of the predictions were within a few days of each other. However, predicting the exact date of hatching is too precise for this data set given the inherent uncertainty from sampling intervals and overlapping size modes so further date comparisons are by month.

Table 2. Cohort details. Detection date and end date are the first and last dates the cohort size modes were tracked in samples. Size mode start and end are the first and last size modes attributed to that cohort. Projected start dates are predicted hatching dates derived from date progression (d) (Fig. 4) and cumulative days from cohort detection (c) (Fig. 5). There are no values for duration or projected start date from cumulative days for Cohort 1 as it was initiated in 2000, prior to the start of sampling for juvenile and adult euphausiids. Cohorts 25-27 are likely

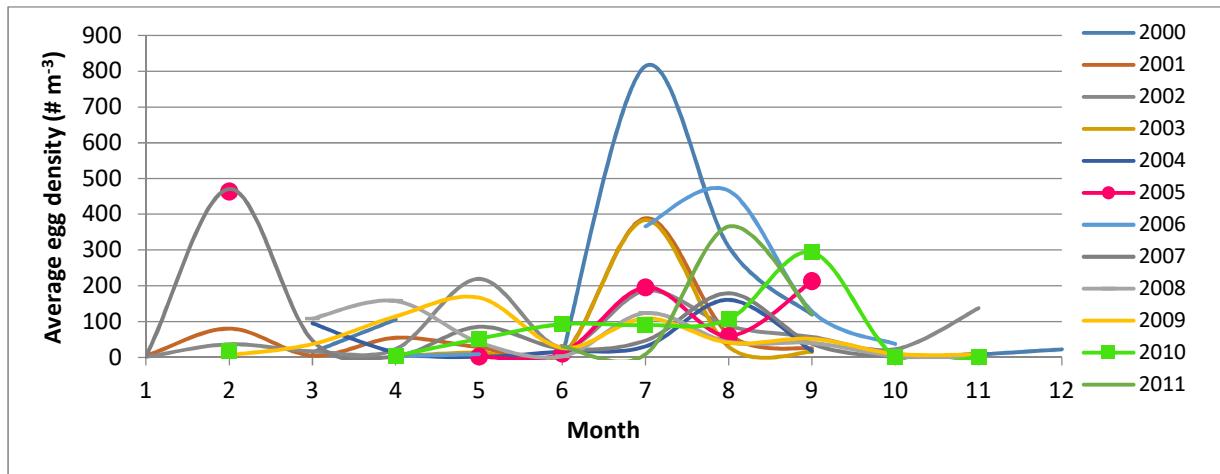
325 incomplete but start dates have been calculated from the available size modes. Cohort 28 only
 326 has one size mode as it was detected during the last month of the study.

Cohort #	Detection date	End date	Cohort duration (years)	Size mode - start (mm)	Size mode - end (mm)	Projected cohort start date from date progression (d)	Projected cohort start date from cumulative days (c)
1	27-Jan-01	7-Nov-01	na	10.96	15.66	22-Mar-99	na
2	27-Jan-01	18-Jul-01	0.47	5.54	11.46	5-Jul-00	10-Jul-00
3	20-Mar-01	15-Oct-02	1.57	5.04	18.48	17-Sep-00	15-Nov-00
4	27-Nov-01	8-Aug-02	0.70	5.13	12.89	20-Jul-01	27-May-01
5	4-Apr-02	3-Dec-02	0.67	4.66	11.37	14-Jul-01	12-Sep-01
6	30-May-02	5-Sep-03	1.27	4.07	16.43	25-Mar-02	2-Feb-02
7	9-Jan-03	23-Oct-03	0.79	4.99	13.67	4-May-02	22-Apr-02
8	16-Apr-03	30-Aug-04	1.38	4.60	16.67	23-Mar-03	10-Jan-03
9	2-Mar-04	6-Nov-04	0.68	6.30	13.71	7-Oct-03	29-Oct-03
10	10-May-04	30-Aug-05	1.31	4.59	15.78	6-Jan-04	29-Nov-03
11	5-Feb-05	5-Dec-05	0.83	5.66	11.21	19-Feb-04	6-Mar-04
12	27-Apr-05	12-Oct-06	1.46	5.67	15.87	1-Oct-04	19-Nov-04
13	30-Aug-05	12-Sep-07	2.04	4.55	15.79	19-Mar-05	7-Dec-04
14	18-Apr-06	22-May-08	2.10	5.80	18.74	26-Feb-05	25-Mar-05
15	15-Jun-06	16-Sep-08	2.26	5.07	18.29	9-Nov-05	28-Dec-05
16	12-Jun-07	27-Oct-08	1.38	4.80	15.09	18-Sep-06	30-Sep-06
17	30-Aug-07	16-Sep-08	1.05	5.05	12.93	15-Sep-06	7-Dec-06
18	27-May-08	24-Nov-08	0.50	4.91	17.13	11-Oct-07	13-Dec-07
19	8-Dec-08	5-Oct-09	0.82	5.04	11.42	10-Apr-08	11-Apr-08
20	2-Jun-09	20-Sep-10	1.30	4.77	14.09	28-Sep-08	29-Sep-08
21	5-Oct-09	4-Nov-10	1.08	5.16	12.48	8-Jan-09	9-Jan-09
22	22-Feb-10	19-Oct-10	0.65	5.48	11.25	23-Jun-09	24-Jun-09
23	18-Jun-10	4-Aug-11	1.13	4.58	17.07	23-Jan-10	24-Jan-10
24	18-Aug-10	29-Sep-11	1.12	4.65	16.15	19-Apr-10	16-Apr-10
25	18-May-11	26-Oct-11	0.44	7.32	14.50	20-Dec-10	21-Dec-10
26	8-Jun-11	10-Dec-11	0.51	5.43	8.30	21-Apr-10	22-Apr-10
27	13-Sep-11			5.13	5.62	26-May-10	26-May-10
28	10-Dec-11			4.39			

327
 328 **3.4. Cohorts and Egg Densities**
 329 Estimated cohort start dates were compared to monthly egg densities to investigate the
 330 relationship between timing of egg peaks and cohort detection date. Use of a monthly timescale
 331 is based on a previous study that followed *Euphausia pacifica* development from egg to juvenile
 332 (Feinberg et al. 2006). This study found that the amount of time individual animals spent at each
 333 developmental stage increased with successive stages and varied among individuals such that
 334 development time to juvenile for individuals spawned within a few days of each other varied by
 335 as much as three weeks (Feinberg et al. 2006). This suggests that age estimates for animals
 336 collected in the field are only accurate to within approximately one month. The mean hatching
 337 time for euphausiid eggs in our study area is ~40 h (Gómez-Gutiérrez 2002, Feinberg et al. 2006)
 338 so eggs are present in the water column for <2 days. Our median sampling interval of 16 days
 339 will not detect every small individual spawning event but is sufficient to identify the timing of
 340 intense spawning activity during the summer. Egg densities are shown as monthly totals for
 341 stations NH05, 15, and 25 combined (Table 3). Total eggs is a more informative measure than

342 the monthly average due to occasional elevated egg densities outside of the peak spawning
343 season.

344
345 Chlorophyll and egg densities are often high in the same month (Table 3) since *Euphausia*
346 *pacifica* spawning events are fueled by phytoplankton blooms (Smiles and Pearcy 1971, Brinton
347 1976) and the euphausiids spawn rapidly in response to an increase in chlorophyll, even if it is
348 only a relative increase from the previous month (Table 1). The highest densities of *E. pacifica*
349 eggs were typically during the upwelling months of July and August (Fig. 6, Table 3), coincident
350 with the periods of highest chlorophyll (Table 1). Egg densities dropped after August in most
351 years but in 2005 and 2010 the highest values were in September (Fig. 6, Table 3) as the one-
352 month delay in the onset of upwelling in these years led to a corresponding delay in elevated egg
353 densities. There were February egg peaks in 2005 and 2007 (Table 3), possibly in response to
354 brief periods of upwelling-favorable winds that resulted in an increase in chlorophyll (Table 1).
355


356 Projected cohort start dates calculated from both cumulative days (c) and date progression (d)
357 (Table 2) were matched to monthly egg densities (Table 3). Predictions from date progression
358 matched better overall than those from cumulative days, but date progression also sometimes
359 matched the start dates of two different cohorts to the same egg peak (Jul-01, Sep-06). Some
360 predicted start dates match beautifully with high egg densities (e.g. July 2000, July 2001,
361 February 2005), others do not, particularly when cohorts were detected during the winter months
362 of November – January. Months with high egg densities often do not match a projected cohort
363 start date. There is less data for October – January due to reduced sampling opportunities during
364 winter months, though existing data and low chlorophyll concentrations (Table 1), which are not
365 conducive to *E. pacifica* spawning, suggest that egg densities are likely to be low at this time of
366 year. Cohorts with predicted start dates during these months are thus unlikely to result from a
367 high density of eggs.
368

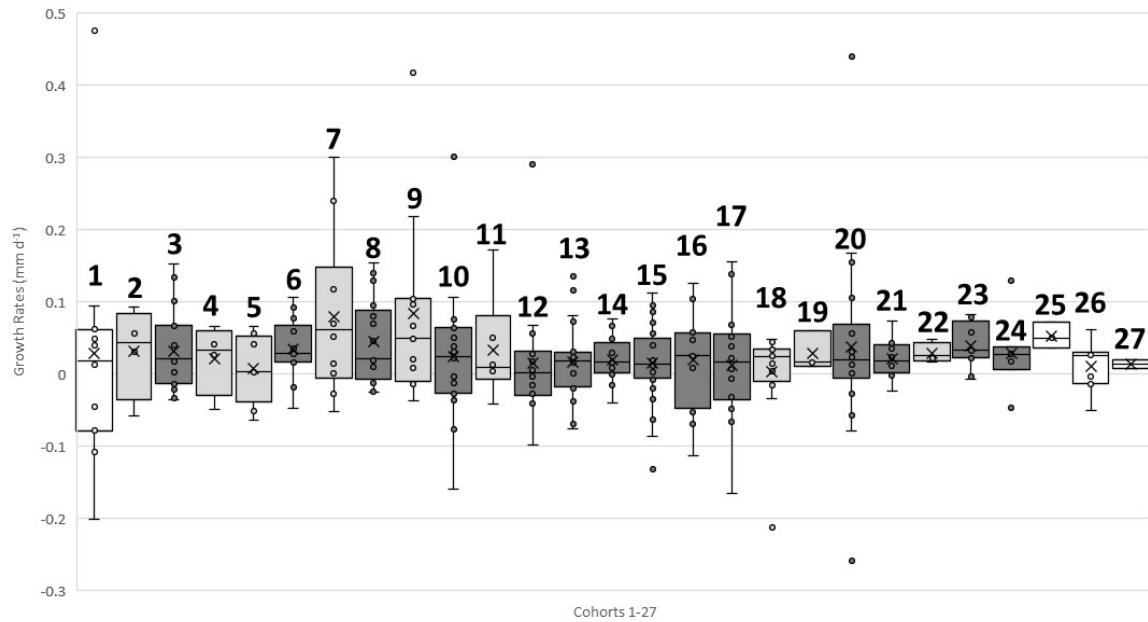
369 Table 3. Egg density (eggs m⁻³) by month and year matched to predicted cohort start dates. Egg
370 densities are monthly totals for stations NH05+NH15+NH25. Empty squares=no samples. Gray
371 shading shows predicted cohort start dates by cohort number and prediction method
372 (c=cumulative days, d=date progression). Red squares indicate cohort start dates that correspond
373 with egg densities >200 eggs m⁻³.

Year	Jan	Feb	Mar	Apr	May	June	July	Aug	Sep	Oct	Nov	Dec
2000			27.93	317.71		24.08	3257.47 (2c,d)	1543.91	238.68 (3d)		7.62 (3c)	22.42
2001	20.00	160.66	4.86	109.46	84.84 (4c)	15.13	3111.68 (4d, 5d)	323.61	74.24 (5c)			
2002	1.67	36.59 (6c,d)	50.47	46.57 (7c)	878.16 (7d)	137.15	1488.57	965.05	57.17	22.77	137.43	
2003	(8c)	6.22 (8d)		2.95	55.90	10.04	1150.91	58.54	76.89	(9c,d)	(10c)	
2004	(10d)	(11d)		190.14 (11c)	14.09	2.74	96.96	61.04	1448.49	87.59	(12d)	1.37 (12c)
2005		1392.56 (14d)	(13d, 14c)		7.51	11.08	195.59	359.41	425.86		(15d)	(15c)
2006		1.60		6.96	43.18		1465.38	2795.64	642.06 (16c,d; 17d)	74.24		(17c)

2007	2.71	941.66	93.97	6.33	256.67	122.19	93.51	896.13 (18d)	152.67	1.40	10.56	(18c)
2008			324.79	789.12	253.18 (19c,d)	5.36	866.26	212.91	200.14 (20c,d)	3.88	1.53	
2009	(21c,d)	6.48	36.91	343.52	835.54	80.41 (22c,d)	1413.45	244.80	103.79	19.53	7.79	
2010	(23c,d)	18.41		3.91 (24c,d)	103.69	278.08	450.37	957.83	1761.19	3.93	1.26	(25c,d)
2011		9.58		125.59		124.15	25.05	1464.08	241.95			

374

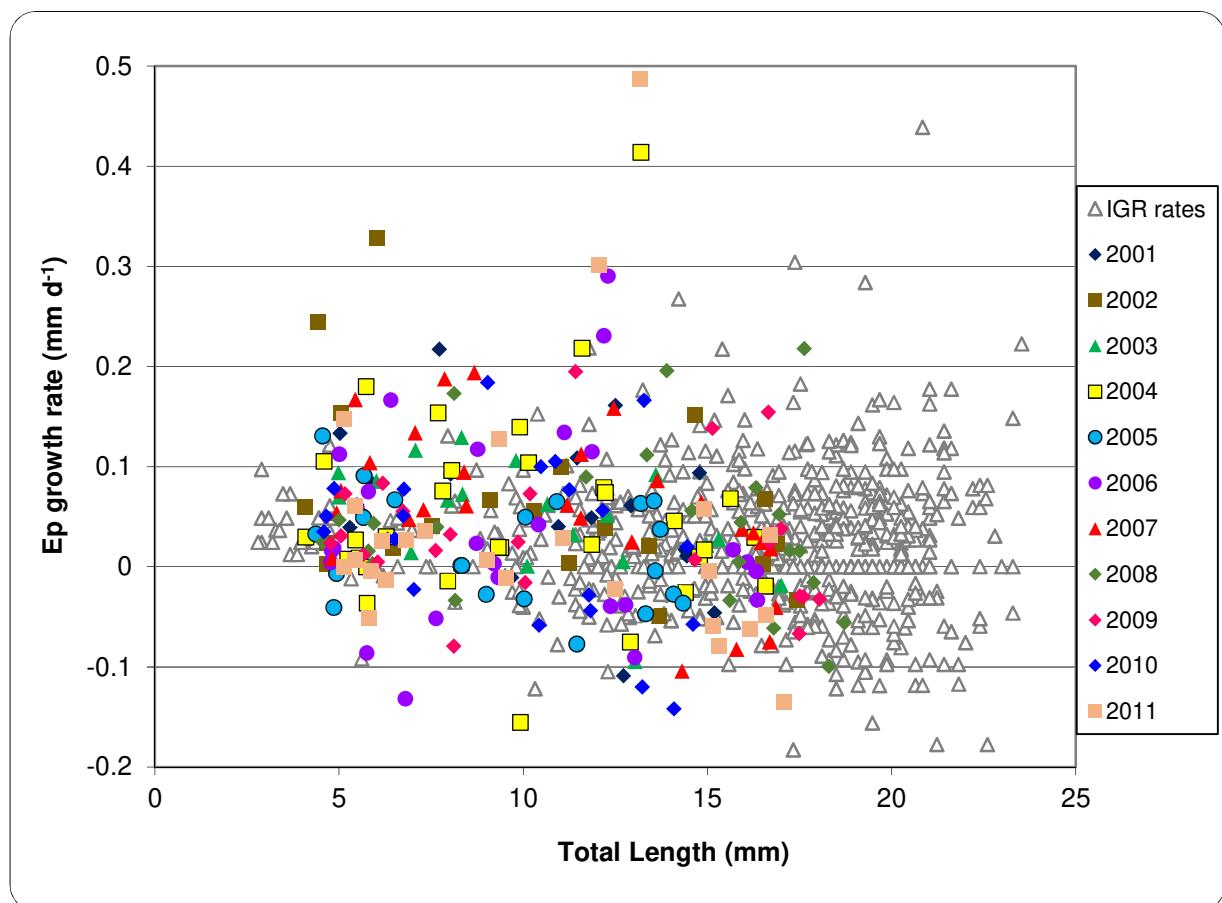
375
376
377
378
379


Figure 6. Average monthly egg densities 2000-2011 for stations NH05, NH15, and NH25 combined. High egg density in February 2005 is due to an early phytoplankton bloom. Late onset of upwelling delayed highest summer egg densities until September in 2005 (pink circles) and 2010 (green squares).

380
381
382
383
384
385
386
387
388
389
390
391

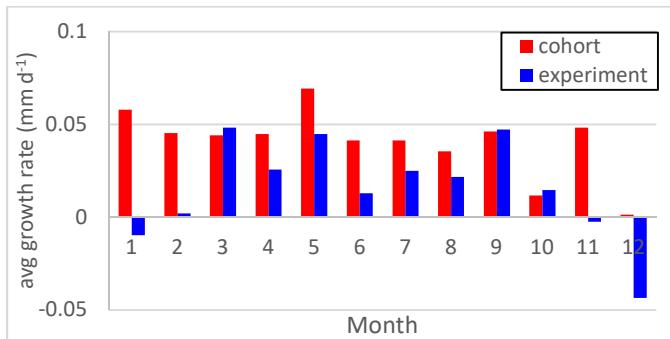
3.5. Growth Rates

3.5.1. Growth rates among cohorts


Average cohort growth rates were in the range of 0.05-0.1 mm d⁻¹ with some cohorts more variable than others (Fig. 7). There was no noticeable pattern between growth rates and cohort duration. The longest-duration cohorts (Cohorts 13-15) took longer to reach the maximum size mode and were clearly smaller than other cohorts at similar points in their progression (Fig. 5) but had fairly narrow ranges of growth rates, similar to the shortest duration cohorts and also to some that were tracked for just over one year.

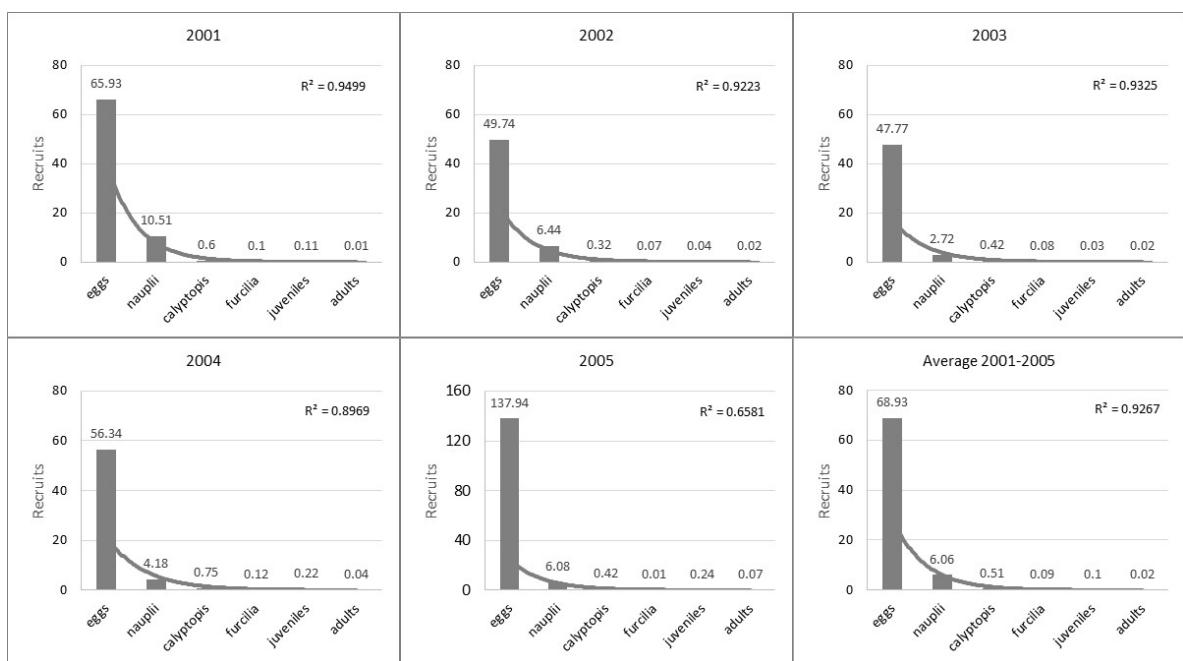
392
 393 Figure 7. Box & whisker plot showing the median and first and third quartiles of growth rates
 394 (mm d^{-1}) for Cohorts 1-27. White = partial cohorts, light gray = cohorts tracked <1 yr, dark gray
 395 = cohorts tracked >1 yr. See Table 2 for cohort durations. Cohort 28 is not shown since it
 396 consists of a single size mode.

397 3.5.2. Comparison of cohort and IGR growth rates


398 A comparison of cohort growth rates from the present study with instantaneous growth rates
 399 (IGR) from a previous study (Shaw et al. 2010) shows that results from both methods may be
 400 highly variable (Fig. 8). Cohort growth rates were usually positive and in the range of 0.01-
 401 0.2mm d^{-1} . Growth rates were positive for animals <5mm and higher overall for smaller size
 402 modes. Several of the higher negative growth rates for animals <10mm were from 2006, when
 403 Cohort 15 was notably smaller than all other cohorts for the period from ~350-~550 days (Fig.
 404 5). Growth rates >0.2mm d^{-1} were uncommon but occurred occasionally in 2001, 2002, 2004,
 405 2006, 2008, and 2011 (Fig. 8). Negative growth rates were usually <0.05mm d^{-1} for all size
 406 modes, which may reflect slight variations between sampling dates rather than actual negative
 407 growth in the population. The fact that negative growth of individuals was frequently observed
 408 in IGR experiments once animals reached a length of 10mm (Shaw et al. 2010) suggests that
 409 negative growth in cohort size modes $\geq 10\text{mm}$ is more likely to reflect the actual growth rate in
 410 the population. Negative growth was more common in 2005 and 2010 (delayed upwelling),
 411 2006 and 2007 (slow growing cohorts), and 2011 (chlorophyll low until August (Table 1)). The
 412 range of growth rates is similar among years, with minimal interannual variability.

415
 416
 417 Figure 8. Growth rates of *E. pacifica* by total length. Note that the axes do not intersect at zero.
 418 To examine interannual variability, colors designate the year the growth rate was measured
 419 rather than the cohort to which it belongs. IGR growth rates from 2001-2009 (gray Δ) are shown
 420 for comparison. There are no cohort rates for animals >18 mm since that is the maximum cohort
 421 size mode.

422
 423 3.5.3. Monthly average growth rates


424 Monthly average cohort growth rates were always positive (Fig. 9) even though negative cohort
 425 growth rates were not uncommon (Fig. 8). Average growth rates from IGR experiments are
 426 positive March-October, but negative in November, December, and January, and only slightly
 427 positive in February. IGR growth rates are similar to cohort growth rates in March and
 428 September but lower in all other months. Negative growth has more influence on IGR rates
 429 since there are more measurements of negative growth for individuals than for cohorts.

431
432 Figure 9. Monthly average growth rates for cohort and IGR experiments.
433

434 3.6. Survivorship Curves

435 Survivorship curves for each year from 2001-2005 (Fig. 10) are based on counts of eggs and
436 larvae in vertical net samples. Values for eggs, nauplii, calyptopis, and furcilia were determined
437 by dividing annual averages by stage duration (Feinberg et al. 2006). Survivorship followed an
438 exponential decline for all years, with similar fit during 2001-2004 ($R^2 \approx 0.90$ for all years), but
439 egg density was much higher in 2005 and this, coupled with low survivorship, resulted in a
440 weaker fit ($R^2 = 0.68$) (Fig. 10). Juveniles and adults were fitted to the curves since we do not
441 have measured durations for these stages. Estimated stage durations for juveniles and adults are
442 180d and 270d, respectively, suggesting a total lifespan of ~2 years.
443

444
445 Figure 10. Survivorship curves 2001-2005 and average of all five years. Note the different scale
446 for 2005 due to extremely high egg densities.
447

448 4. DISCUSSION

449 The cohort analysis technique is predicated on sampling the same population on an appropriate
450 timescale for the target species. The present study successfully identified cohorts and tracked
451

452 them over time, suggesting that biweekly samples from station NH25 satisfied these criteria for
453 *Euphausia pacifica*. Although sampling intervals sometimes exceeded two weeks, particularly
454 during winter months, cohorts were successfully tracked over these longer periods. Longer
455 sampling intervals in winter may be mitigated to some extent by the fact that food resources are
456 typically low during these months and thus euphausiid growth is likely to be minimal. *E.*
457 *pacifica* are also known to shrink during winter when food availability is reduced (Mauchline
458 and Fisher 1969, Marinovic and Mangel 1999, Pinchuk and Hopcroft 2006). Although it is
459 complicated to define what constitutes a “population” in a dynamic upwelling region like the
460 Oregon Coast, the success of the present study at tracking cohorts suggests that euphausiids at
461 station NH25 are representative of the overall population dynamics of *E. pacifica* in the shelf-
462 break region off the Oregon Coast.

463

464 **4.1. Seasonality of Cohorts**

465 Complete cohorts were tracked for periods of 6-27 months. There was a tendency for cohorts
466 with longer durations to be detected during upwelling and those with shorter durations during
467 downwelling but there were exceptions in both cases. Other studies have also found seasonal
468 differences in *Euphausia pacifica* cohort duration. Off of southern California, cohorts detected
469 from June-December were tracked for 10-13mo while those detected from February-May were
470 tracked for 5-8mo (Brinton 1976). In the Oyashio region of Japan, cohorts initiated in May had a
471 duration of 17mo, compared to 26mo for those initiated in August (Kim et al. 2009). Cohort
472 duration off of Oregon did not have clear seasonal relationships. All cohorts tracked for >12mo
473 (n=14) were detected from March-October. However, three of the eight cohorts tracked for
474 <12mo were detected from March-May. Cohorts detected from December-February were all
475 tracked <12mo. The relationship with upwelling was also unclear, as cohorts detected during
476 upwelling conditions were tracked from 6-27mo and those detected during downwelling from 8-
477 19mo. The study period spanned cool and warm phases of the PDO but cohort durations were
478 similarly variable during both phases, suggesting that these large-scale temperature differences
479 were not strongly affecting *E. pacifica* spawning or development.

480

481 **4.2. Growth**

482 Cohort growth rate is a measurement at the population (or subpopulation) level and represents
483 average growth during the sampling interval (~16d in the present study). IGR growth rates are
484 for individual euphausiids and integrate the conditions they experienced during the previous
485 intermolt period (usually 7-10d off the Oregon Coast) (Shaw et al. 2010). Both methods provide
486 useful information about euphausiid growth when conducted rigorously, but the different
487 methodologies mean that the data are not interchangeable. Growth rates from cohort analysis
488 reflect an overall population trend while IGR rates show the range of individual variability (Fig.
489 8). Cohort growth rates declined with increasing length, indicating that population growth as a
490 whole decreases as animals reach adulthood, while IGR growth rates show that individual
491 variability remains high (Fig. 8). The most common growth rate measured in IGR experiments
492 was zero, meaning the animal molted with no change in length (Shaw et al. 2010). The cohort
493 analysis method would be unlikely to measure a growth rate of zero, though it did capture some
494 very low growth rates and even some negative ones. Cohorts 13-15 progressed much more
495 slowly to adult size than other cohorts but the range of their growth rates was similar (Fig. 7).
496 The fact that these three cohorts took two years to grow to the same size that other cohorts
497 achieved in ≤1 year suggests that growth rates for these cohorts were often close to zero.

498 Interestingly, average monthly growth rates from both cohort and IGR methods were similarly
499 high in March and September ($\sim 0.045 \text{ mm d}^{-1}$) (Fig. 9), coinciding with the typical timing of
500 seasonal transitions in spring (March/April) and fall (September/October). This may reflect
501 increased food availability at the start of the upwelling season, and an increase in smaller animals
502 from the summer spawning season growing at higher rates in the fall prior to the onset of
503 downwelling conditions.

504

505 **4.3. Maximum Size Mode**

506 Most cohorts attained their maximum size mode of $\sim 17 \text{ mm}$ after $\le 1 \text{ yr}$. Cohorts 13, 14, and 15
507 grew more slowly but attained maximum size modes of 15.8mm, 18.7mm, and 18.3mm,
508 respectively, similar to those of other cohorts (Table 2). The $>17 \text{ mm}$ size range may be
509 advantageous for reproduction. A synthesis of *Euphausia pacifica* brood sizes at various
510 locations in the North Pacific found that females of all sizes (13-25mm) produced broods of up
511 to 200 eggs but only females $\ge 16 \text{ mm}$ produced broods > 200 eggs (up to 700 eggs per brood)
512 (Feinberg et al. 2013). Although overall size ranges of adult *E. pacifica* were similar among
513 years during this study, smaller adults comprised a larger percentage of the population during the
514 period when Cohorts 13-15 were present (Shaw et al. (this volume)). The percentage of adults
515 $> 20 \text{ mm}$ was already low in 2004 (7.5%), suggesting that adults in the population were smaller
516 overall going into 2005. In 2005 only 3.3% of adults were $> 20 \text{ mm}$. In 2006 almost 13% of
517 adults were $> 20 \text{ mm}$ but this was still low compared to an average of 28% during the study period
518 and $> 60\%$ in 2008 and 2009. Egg densities were high in the summer of 2006, indicating that
519 reproductive effort was high even though the spawning population had a high percentage of
520 smaller females.

521

522 **4.4. Cohorts and Environmental Conditions**

523 A longer lifespan may seem like a positive outcome, but the slower growth rates and longer
524 durations of Cohorts 13, 14, and 15 may have resulted from unfavorable environmental
525 conditions rather than optimal ones. Growth of oceanic zooplankton such as euphausiids is
526 driven primarily by temperature and food (Huntley and Boyd 1984, Clark and Peck 1991, Hirst
527 et al. 2003) and growth rates of these three cohorts may have been slower based on the food
528 resources available. Cohort 13 was initiated in 2005, a year when the PDO was in warm phase,
529 the onset of upwelling was delayed by a month, and the upwelling season was very short (Shaw
530 et al. (this volume)). Chlorophyll values were relatively high in August and September of 2005
531 but low during the fall and winter into 2006, with chlorophyll values in summer 2006 being the
532 lowest overall during the study period (Table 1). Cohorts 14 and 15 were detected in 2006,
533 probably formed from euphausiids that overwintered as juveniles after the late spawning in 2005.
534 Timing and duration of upwelling were more typical in 2006 but the PDO was still in warm
535 phase and summer chlorophyll concentrations peaked at $4.5 \mu\text{g L}^{-1}$ while in other years they were
536 typically $> 7 \mu\text{g L}^{-1}$ during at least one summer month (Table 1). The anomalously small size
537 modes in Cohort 15 correspond to the period from May-December 2007 when chlorophyll was
538 relatively low, except for a moderately high value in August (Table 1). Chlorophyll is a useful
539 proxy for food availability but does not represent all potential prey and euphausiid diets may
540 vary seasonally in the study area (Du and Peterson 2014, Fisher et al. (this volume)).
541 Phytoplankton community composition is affected by changes in water temperature (Iriarte and
542 González 2004, Kudela et al. 2006, Du et al. 2015), with warmer water shifting the community
543 from larger species to smaller ones, resulting in reduced energy transfer from primary production

544 to larger animals (Cavole et al. 2016). The slower growth of these cohorts may be related to
545 lower quality and/or abundance of food resources, which increased the time it took for them to
546 grow to large adult size. The ability of this analysis to capture the effect of environmental
547 conditions on euphausiid growth makes it a potentially useful tool to apply to similar data sets to
548 assess responses to environmental variability.
549

550 **4.5. Relationship between Egg Peaks and Cohort Start Dates**

551 The impetus for this study was to investigate the relationship between egg peaks and cohort start
552 dates. Timing of spawning informs the survival and development of larvae based on the
553 environmental conditions they experienced as they grew up. For example, larvae hatched in July
554 and August are likely to encounter two months of elevated phytoplankton concentrations, which
555 should favor maturation to the juvenile stage prior to the onset of downwelling conditions. As
556 seen in this study, the later onset of upwelling in 2005 and 2010 delayed the timing of highest
557 egg densities (Table 3, Fig. 6). Larvae spawned later in the season are less likely to encounter a
558 prolonged period of favorable feeding conditions as they develop, which may reduce overall
559 survival or increase development time to juvenile. As a result, they may not develop to juvenile
560 prior to winter, or if they do they may be smaller and in poorer condition, reducing overwintering
561 survival. However, matching egg peaks with cohort start dates met with limited success (Table
562 3). Timing of egg peaks may not be the most useful predictor of cohort initiation as biweekly
563 sampling is likely too long an interval to accurately predict cohorts based on egg peaks,
564 particularly due to the short residence time of eggs in the water column. However, even if egg
565 data were collected with finer temporal resolution, relating the projected start date of a cohort to
566 a specific egg peak would still be imprecise due to the inherent uncertainty from variability in
567 developmental rates from egg to juvenile.
568

569 Intense summer spawning activity may not be the only way to establish a cohort. The
570 composition of *Euphausia pacifica* life stages in preserved samples from late fall to early spring
571 suggests that they regularly overwinter in the juvenile stage (Brinton 1976, Shaw et al. (this
572 volume)). Euphausiids from late summer and fall spawning events may develop at different
573 rates and coalesce into cohorts during the late fall or winter, resulting in cohorts that are not
574 descended from an egg peak. After overwintering, juveniles that comprise one size mode may
575 be the product of several spawning events and span an age range of a month or more. This
576 variability is another confounding factor when trying to match a cohort start date to a period of
577 high egg density.
578

579 **4.6. Other Predictive Relationships**

580 Given that the spring transition (ST) initiates conditions favorable for phytoplankton blooms, and
581 *Euphausia pacifica* spawn in response to elevated chlorophyll concentrations, we investigated
582 whether any relationships among these events could predict the appearance of cohorts. The ST is
583 inherently less variable than other parameters since it is determined using land-based
584 instrumentation and thus not dependent on at-sea sampling intervals. Chlorophyll concentrations
585 might have better predictive value than egg densities since phytoplankton blooms are longer-
586 duration events and more likely to coincide with at-sea sampling than the short periods when
587 eggs are present in relation to a spawning event. Comparisons use the first month that
588 chlorophyll concentration and egg density are notably higher than in previous months since these
589 relative increases will trigger a response. This comparison investigates response to ST so

590 spawning events that occur prior to ST are not included. The interval between ST and increased
 591 chlorophyll was 2.3 months on average, similar to the ~2.5 month interval between ST and
 592 elevated egg density (Table 4). Elevated chlorophyll and egg density often occur in the same
 593 month since *E. pacifica* spawn rapidly in response to increases in chlorophyll concentrations.
 594 The relationship between egg density and cohort detection (Table 4) is the most variable due to
 595 short residence time of eggs in the water column and variability in euphausiid development
 596 times, resulting in two sources of potential mismatch between egg density and cohort detection.
 597 The timing between ST and cohort detection averaged ~6 months, but ranged from ~2-9 months.
 598 This interval was shorter in 2005 and 2010 when delayed onset reduced the length of the
 599 upwelling season. The relationship between ST and chlorophyll is fairly consistent and varies
 600 predictably in relation to the timing of upwelling, in spite of potential variability due to sampling
 601 intervals. ST has the advantage of being measured without going to sea and its consistent
 602 relationship with elevated chlorophyll may make it a useful proxy for the timing of increased
 603 spawning activity. This can provide an estimate for the timing of summer and fall cohorts based
 604 on *E. pacifica* development times. Chlorophyll concentrations measured at finer temporal scales
 605 using autonomous gliders or satellites have potential predictive value for euphausiid spawning
 606 and growth as these measurements provide more detailed environmental conditions than can be
 607 obtained from shipboard sampling.
 608

609 Table 4. Timing of spring transition, elevated chlorophyll (chl) and egg densities, and cohort
 610 detection dates. Chl and Eggs are the first month of elevated values (Tables 1 & 3). Columns 5-
 611 9 are the number of months between the two events in the column header. Shaded values do not
 612 make biological sense and are excluded from averages. Size mode could have appeared any time
 613 between the previous sampling date and the collection date.

Spring Transition (ST)	Chl	Eggs	Cohort Detection Date	ST to Chl (mo)	ST to Eggs (mo)	ST to Cohort (mo)	Chl to Cohort (mo)	Eggs to Cohort (mo)	Cohort #
1-May-01	Jul-01	Jul-01	27-Nov-01	2.03	2.03	7.00	4.97	4.97	4
17-Apr-02	Jul-02	Jul-02	09-Jan-03	2.50	2.50	8.90	6.40	6.40	7
20-Apr-03	Jul-03	Jul-03	02-Mar-04	2.40	2.40	10.57	8.17	8.17	9
21-Apr-04	Jul-04	Aug-04	05-Feb-05	2.37	3.40	9.67	7.30	6.27	11
22-May-05	Aug-05	Sep-05	30-Aug-05	2.37	3.40	3.33	0.97	-0.07	13
20-Apr-06	Jul-06	Jul-06	12-Jun-07	2.40	2.40	13.93	11.53	11.53	16
27-Apr-07	Aug-07	Aug-07	30-Aug-07	3.20	3.20	4.17	0.97	0.97	17
29-Apr-08	Sep-08	Jul-08	08-Dec-08	4.17	2.10	7.43	3.27	5.33	19
14-May-09	Jul-09	Jul-09	05-Oct-09	1.60	1.60	4.80	3.20	3.20	21
10-Jun-10	Jul-10	Sep-10	18-Aug-10	0.70	2.77	2.30	1.60	-0.47	24
			Average	2.37	2.58	5.95	4.60	5.72	

614

615 **4.7. Survivorship**

616 Survivorship of *Euphausia pacifica* is rarely reported as it is time consuming to determine and
 617 requires frequent sampling with a small enough mesh size to collect all larval stages
 618 quantitatively. Survivorship in our study declined exponentially from egg to juvenile, though
 619 high egg density and low survivorship in 2005 resulted in a weaker relationship. Off southern
 620 California, Brinton (1976) found a similar survivorship pattern, with a roughly exponential rapid
 621 decline during the larval phase. Low survivorship from egg to juvenile in 2005 was clearly

related to environmental conditions. The onset of upwelling was delayed by one month in 2005, with a corresponding delay in the phytoplankton blooms (Table 1) that fuel *Euphausia pacifica* spawning. Although spawning effort was high once it began, the delay meant that egg densities were highest in September, a month or more later than the typical pattern of highest egg densities in July-August (Fig. 6). Although conditions were good for spawning, they probably were not good for survival of larvae produced so late in the season, as this likely resulted in a mismatch between when larvae need to feed and when sufficient food resources were available. Based on the average development time of 60 days, (Feinberg et al. 2006) juveniles spawned in September would likely recruit in November when chlorophyll concentrations are typically low (Table 1), resulting in an unfavorable food environment and increased mortality.

4.8. Lifespan of *Euphausia pacifica* off the Oregon Coast

Reported lifespans for *Euphausia pacifica* range from ~10 months to 2 years, with longer lifespans at higher latitudes (Lasker 1966, Brinton 1976, Ross 1981, Iguchi et al. 1993, Kim et al. 2009). Since lifespan appears to vary with geographic location and environmental conditions, estimates from one region are likely not applicable to other areas. It is difficult to determine the lifespan of euphausiids. It can be estimated by raising euphausiids from eggs in the laboratory, but this is time-consuming and may not represent survival in the wild due to animals being raised in small containers, differences in diet, and the absence of predation (Ross 1981, Feinberg et al. 2006). The age of individual euphausiids can be estimated using pigment analysis but this is labor-intensive, highly technical, and can be costly (Harvey et al. 2010). It would be a laborious, and most likely inconclusive, long-term project to measure stage durations of juveniles and adults in the laboratory, especially with a species as highly variable as *E. pacifica*. The estimated stage durations of 180d for juveniles and 270d for adults obtained from survivorship curves suggest that, in our study area, the juvenile stage lasts an average of 6 months, and *E. pacifica* have a potential total lifespan of two years (if they avoid being eaten by one of the myriad predators). This potential for *E. pacifica* to grow to adulthood and comprise part of the adult population for over a year could confound the process of distinguishing their original cohort. However, we found only one occasion where it seems likely that two cohorts merged (Cohorts 7 and 8) (Table 2). The actual duration of the juvenile stage will vary based on timing of spawning, food resources, development time, and environmental conditions. The estimate of a two-year lifespan for *E. pacifica* is consistent with previous studies (Lasker 1966, Iguchi et al. 1993, Kim et al. 2009), ageing studies of *E. pacifica* from the Oregon Coast using lipofuscin (Harvey et al. 2010), and laboratory observations (*E. pacifica* collected as adults lived for 2+ years in the lab in Oregon, Shaw & Feinberg, pers. obs.). An estimated lifespan for *E. pacifica* in this region may be useful for modeling and stock assessment purposes.

5. CONCLUSIONS

Cohort analysis using a Gaussian mixture model successfully identified cohorts of *Euphausia pacifica* and tracked them for up to two years off the Oregon Coast. The use of mixed normal distribution methods improves the ability to track size modes over time by identifying overlapping size modes. A sampling interval of approximately two weeks was sufficient in this study area, though appropriate sampling intervals for this species will differ in other areas since their spawning patterns, growth, development, and lifespan differ geographically. Sampling intervals longer than two months are likely not biologically relevant for tracking cohort progression or calculating growth rates. Growth rates from cohort analysis represent general

668 population trends, in contrast with growth rates from IGR experiments that encompass the wide
669 range of individual variability. Population growth rates may be more useful for modeling and
670 stock assessment applications than the highly variable individual rates.

671
672 An unexpected but potentially significant finding is that this analysis detected an effect of
673 environmental conditions on cohort growth. The cohorts detected in August 2005 and April and
674 June 2006 were the only cohorts tracked for over two years, had noticeably smaller size modes
675 than other cohorts at similar days from detection, and progressed more slowly to adult size.
676 These cohorts were associated with delayed upwelling and moderate chlorophyll concentrations,
677 suggesting that their slow growth was a result of suboptimal environmental conditions. The
678 abundance of smaller adults from these cohorts resulted in a higher percentage of smaller adults
679 (<20mm) for a period of two years. The Gaussian mixture model method may be useful to
680 analyze other data sets for environmental effects, particularly for retrospective analyses of data
681 from other long-term sampling programs.

682
683 The slower growth and longer duration of these cohorts is an example of the inherent plasticity
684 of *Euphausia pacifica* that allows them to respond to changes in their environment. The range of
685 environmental variability during the study period was apparently within the tolerance range for
686 this species, but the reduced survivorship, slower growth, and higher percentage of small adults
687 in response to delayed upwelling indicate that these conditions were not optimal and raise
688 concerns for the future. Continued warming will affect the ecosystem off of Oregon in ways yet
689 unknown, but some predictions suggest that the timing and duration of upwelling will be
690 affected. If later onset of upwelling becomes more common, *E. pacifica* spawning is likely to
691 occur later in the year, resulting in reduced survivorship and slower growth to large adult size.
692 This would shift the population to a higher percentage of small adults, which has consequences
693 for the many higher trophic level predators that prey on euphausiids. Smaller adults would be a
694 lower-quality food resource and also produce smaller broods of eggs. Consequently, a higher
695 percentage of small adults may lead to reduced reproductive success and an overall decrease in
696 abundance. Later spawning could also result in a mismatch in the phenology of euphausiid prey
697 availability, particularly for migratory predators and nesting seabirds.

698 699 **6. REFERENCES**

700
701 Bollens, S. M., B. W. Frost, and T. S. Lin. 1992. Recruitment, growth, and diel vertical
702 migration of *Euphausia pacifica* in a temperate fjord. *Marine Biology* **114**:219-228.
703 Brinton, E. 1962. The Distribution of Pacific Euphausiids. *Bulletin of the Scripps Institution of*
704 *Oceanography* **8**:21-270.
705 Brinton, E. 1967. Vertical migration and avoidance capability of euphausiids in the California
706 Current. **12**:451-483.
707 Brinton, E. 1976. Population biology of *Euphausia pacifica* off southern California. *Fishery*
708 *Bulletin* **74**:733-762.
709 Buchholz, F. 1991. Moult cycle and growth of Antarctic krill *Euphausia superba* in the
710 laboratory. *Marine Ecology Progress Series* **69**:217-229.
711 Cavole, L. M., A. M. Demko, R. E. Diner, A. Giddings, I. Koester, C. M. L. S. Pagniello, M.-L.
712 Paulsen, A. Ramirez-Valdez, S. M. Schwenck, N. K. Yen, M. E. Ziill, and P. J. S. Franks.

2016. Biological Impacts of the 2013–2015 Warm-Water Anomaly in the Northeast Pacific: Winners, Losers, and the Future. *Oceanography* **29**:273–285.

Clark, A., and L. S. Peck. 1991. The physiology of polar marine zooplankton. *Polar Research* **10**:355–370.

Cuzin-Roudy, J. 2000. Seasonal reproduction, multiple spawning, and fecundity in northern krill, *Meganyctiphanes norvegica*, and Antarctic krill, *Euphausia superba*. *Canadian Journal of Fisheries and Aquatic Science* **57**:6–15 Suppl. 13.

Du, X., and W. Peterson. 2014. Feeding rates and selectivity of adult *Euphausia pacifica* on natural particle assemblages in the coastal upwelling zone off Oregon, USA, 2010. *Journal of Plankton Research* **36**:1031–1046 DOI: doi:10.1093/plankt/fbu027.

Du, X., W. T. Peterson, and L. O’Higgins. 2015. Interannual variations in phytoplankton community structure in the northern California Current during the upwelling seasons of 2001–2010. *Marine Ecology Progress Series* **519**:75–87 DOI: 10.3354/meps11097.

Feinberg, L. R., and W. T. Peterson. 2003. Variability in duration and intensity of euphausiid spawning off central Oregon, 1996–2001. *Progress in Oceanography* **57**:363–379 DOI: 10.1016/S0079-6611(03)00106-X.

Feinberg, L. R., C. T. Shaw, and W. T. Peterson. 2006. Larval development of *Euphausia pacifica* in the laboratory: variability in developmental pathways. *Marine Ecology Progress Series* **316**:127–137.

Feinberg, L. R., C. T. Shaw, W. T. Peterson, M. Decima, Y. Okazaki, and S.-J. Ju. 2013. *Euphausia pacifica* brood sizes: a North Pacific synthesis. *Journal of Plankton Research* **35**:1192–1206 DOI: 10.1093/plankt/fbt064.

Fisher, J. L., J. Menkel, L. Copeman, C. T. Shaw, L. R. Feinberg, and W. T. Peterson. (this volume). Comparison of condition metrics and lipid content between *Euphausia pacifica* and *Thysanoessa spinifera* in the northern California Current, USA. *Progress in Oceanography*.

Gómez-Gutiérrez, J. 2002. Hatching mechanism and delayed hatching of the eggs of three broadcast spawning euphausiid species under laboratory conditions. *Journal of Plankton Research* **24**:1265–1276 DOI: 10.1093/plankt/24.12.1265.

Harvey, H. R., S.-J. Ju, S.-K. Son, L. R. Feinberg, C. T. Shaw, and W. T. Peterson. 2010. The biochemical estimation of age in Euphausiids: Laboratory calibration and field comparisons. *Deep-Sea Research II* **57**:663–671 DOI: 10.1016/j.dsr2.2009.10.015.

Hirst, A. G., J. C. Ross, and R. S. Lalmpitt. 2003. A Synthesis of Growth Rates in Marine Epipelagic Invertebrate Zooplankton. *Advances in Marine Biology* **44**:1–142 DOI: 10.1016/S0065-2881(03)44002-9.

Huntley, M., and C. Boyd. 1984. Food-limited growth of marine zooplankton. *The American Naturalist* **124**:455–478 DOI: 10.1086/284288.

Iguchi, N., T. Ikeda, and A. Imamura. 1993. Growth and life cycle of an euphausiid crustacean (*Euphausia pacifica* Hansen) in Toyama Bay, southern Japan Sea. *Bulletin of the Japan Sea National Fisheries Research Institute* **43**:69–81.

Ikeda, T., and P. Dixon. 1982. Body shrinkage as a possible over-wintering mechanism of the antarctic krill, *Euphausia superba* Dana. *Journal of Experimental Marine Biology and Ecology* **62**:143–151 DOI: Doi 10.1016/0022-0981(82)90088-0.

Iriarte, J. L., and H. E. González. 2004. Phytoplankton size structure during and after the 1997/98 El Niño in a coastal upwelling area of the northern Humboldt Current System. *Marine Ecology Progress Series* **269**:83–90 DOI: 10.3354/meps269083.

759 Kim, H. S., A. Yamaguchi, and T. Ikeda. 2009. Abundance, biomass and life cycle patterns of
760 euphausiids (*Euphausia pacifica*, *Thysanoessa inornata* and *T. longipes*) in the Oyashio
761 region, western subarctic Pacific. *Plankton Benthos Research* **4**:43-52.

762 Kudela, R. M., W. P. Cochlan, T. D. Peterson, and C. G. Trick. 2006. Impacts on phytoplankton
763 biomass and productivity in the Pacific Northwest during the warm ocean conditions of
764 2005. *Geophysical Research Letters* **33** DOI: 10.1029/2006GL026772.

765 Lasker, R. 1966. Feeding, Growth, Respiration, and Carbon Utilization of a Euphausiid
766 Crustacean. *Journal of the Fisheries Research Board of Canada* **23**:1291-1317 DOI:
767 10.1139/f66-121.

768 Marinovic, B., and M. Mangel. 1999. Krill can shrink as an ecological adaptation to temporarily
769 unfavourable environments. *Ecology Letters* **2**:338-343.

770 Mauchline, J. 1980. The biology of mysids and euphausiids. *Advances in Marine Biology* **18**:1-
771 681.

772 Mauchline, J., and L. R. Fisher. 1969. The biology of euphausiids. *Advances in Marine Biology*
773 **7**:1-454.

774 Nicol, S., M. Stolp, T. Cochran, P. Geijsel, and J. Marshal. 1992. Growth and shrinkage of
775 Antarctic krill *Euphausia superba* from the Indian Ocean sector of the Southern Ocean
776 during summer *Marine Ecology Progress Series* **89**:175-181.

777 Pinchuk, A. I., and R. R. Hopcroft. 2006. Seasonal variations in the growth rates of euphausiids
778 (*Thysanoessa inermis*, *T. spinifera*, and *Euphausia pacifica*) from the northern Gulf of
779 Alaska. *Marine Biology* **151**:257-269.

780 Quetin, L. B., and R. M. Ross. 1991. Behavioral and physiological characteristics of the
781 Antarctic krill, *Euphausia superba*. *American Zoologist* **31**:49-63.

782 Ross, R. M. 1981. Laboratory culture and development of *Euphausia pacifica*. *Limnology and
783 Oceanography* **26**:235-246.

784 Shaw, C. T., J. L. Fisher, and W. T. Peterson. (this volume). Population dynamics of the
785 euphausiids *Euphausia pacifica* and *Thysanoessa spinifera*, with notes on *Thysanoessa*
786 *inspinata*, off of Newport, Oregon, USA. *Progress in Oceanography*.

787 Shaw, C. T., W. T. Peterson, and L. R. Feinberg. 2010. Growth of *Euphausia pacifica* in the
788 upwelling zone off the Oregon coast. *Deep-Sea Research II* **57**:584-593 DOI:
789 10.1016/j.dsr2.2009.10.008.

790 Smiles, M. C., and W. G. Pearcy. 1971. Size structure and growth rate of *Euphausia pacifica* off
791 the Oregon coast. *Fishery Bulletin* **69**:79-86.

792 Titterington, D. M., A. F. M. Smith, and U. E. Makov. 1985. *Statistical Analysis of Finite
793 Mixture Distributions*. Wiley:1-243.

794 Virtue, P., P. D. Nichols, S. Nicol, and G. Hosie. 1996. Reproductive trade-off in male Antarctic
795 krill, *Euphausia superba*. *Marine Biology* **126**:521-527.

796 Welschmeyer, N. A. 1994. Fluorometric analysis of chlorophyll a in the presence of chlorophyll
797 b and pheophytins. *Limnology and Oceanography* **39**:1985-1992 DOI:
798 10.4319/lo.1994.39.8.1985.

799 Yoon, W. D., S. H. Cho, D. Lim, Y. K. Choi, and Y. Lee. 2000. Spatial distribution of
800 *Euphausia pacifica* (Euphausiacea: Crustacea) in the Yellow Sea. *Journal of Plankton
801 Research* **22**:939-949 DOI: 10.1093/plankt/22.5.939.

802