

1 Linkage of the Physical Environments in the Northern Antarctic Peninsula Region to the Southern
2 Annular Mode and the Implications for the Phytoplankton Production

3 Zhaoru Zhang^{1,*}, Eileen E. Hofmann², Michael S. Dinniman², Christian Reiss³, Walker O.
4 Smith¹, Jr.^{1,4} and Meng Zhou¹

5

6 ¹. School of Oceanography, Shanghai Jiao Tong University, Shanghai, China

7 ². Center for Coastal Physical Oceanography, Old Dominion University, Norfolk, VA, USA

8 ³. Antarctic Ecosystem Research Division, Southwest Fisheries Science Center, La Jolla, USA

9 ⁴. Virginia Institute of Marine Science, William & Mary, Gloucester Pt., VA, USA

10

11 *corresponding author:

12 Zhaoru Zhang

13 zrzhang@sjtu.edu.cn

14 School of Oceanography, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai,
15 200030, China

16

17

18 **Abstract**

19 The long-term (almost 20 years) hydrographic and primary production data collected by
20 the U.S. Antarctic Marine Living Resources (AMLR) program during the austral summer near
21 Elephant Island and the South Shetland Islands were combined with satellite observations to assess
22 interannual variability in environmental conditions and production of the northern Antarctic
23 Peninsula (NAP). Correlation analyses show that interannual variability of the region is related to
24 the dominant mode of the Southern Hemisphere extratropical climate variability, the Southern
25 Annular Mode (SAM). Post 2000, significant correlations ($r>0.5$, $p<0.1$) are detected between
26 SAM and environmental properties that potentially affect NAP phytoplankton production,
27 particularly mixed layer depth (MLD), the extent of the nutrient-rich Circumpolar Deep Water
28 (CDW), and photosynthetically available radiation (PAR). The relationship of these properties to
29 SAM exhibits spatial variability. Near Elephant Island, interannual variations of the summertime
30 MLD and PAR are significantly and positively correlated to the variation of the summer SAM
31 index ([r=0.89 and p=0.0003 for MLD; r=0.64 and p=0.04 for PAR](#)). Significant correlations also
32 exist between chlorophyll concentration and the summer SAM index ($r=0.7$, $p=0.02$), which are
33 attributed to the SAM-related change in PAR and vertical mixing. Near the South Shetland Islands,
34 the correlation between MLD and summer SAM index is weakened ($r=0.59$, $p=0.05$). Significant
35 correlations are found between CDW extent and the spring SAM index as well as the annual SAM
36 index ($r>0.7$, $p<0.01$). Significant correlations also exist between chlorophyll concentration and
37 the spring and annual SAM indices ($r>0.6$, $p<0.06$). The statistical relationship between
38 chlorophyll concentration and SAM is used with the predicted variation of SAM based on CMIP5
39 models to make projections of biological production change over the next 50 years in the NAP and
40 adjacent areas. With an estimated SAM trend of 0.03 yr^{-1} , in the next 50 years the surface

41 chlorophyll concentration over the NAP and WAP outer shelf and slope will increase by as much
42 as 0.5 mg m^{-3} , and the integrated chlorophyll concentration over the upper 100-m water column
43 will increase in the NAP area by 10 mg m^{-2} to 50 mg m^{-2} .

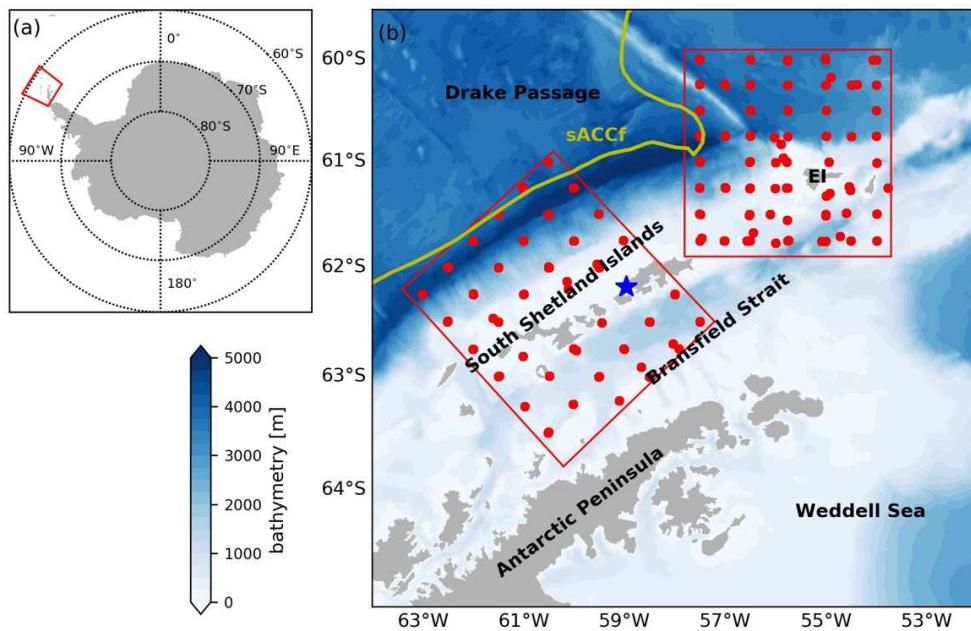
44

45 **Keywords**

46 northern Antarctic Peninsula, Southern Annular Mode, mixed layer depth, Circumpolar Deep
47 Water, phytoplankton production

48

49


50

51 **1. Introduction**

52 The continental shelf and slope region of the northern Antarctic Peninsula (NAP, Fig. 1) is
53 one of the biogeochemical hotspots in Antarctic marginal seas that supports abundant primary
54 producers and higher trophic level predators (Loeb et al., 2010; Nowacek et al., 2011). It is also a
55 major spawning and nursery ground for Antarctic krill (*Euphausia superba*) and provides an
56 important source of krill to the Scotia Sea region of the Southern Ocean (e.g. Murphy et al., 1998;
57 Murphy et al., 2004; Fach and Klinck, 2006; Espinasse et al., 2012). The production of the NAP
58 region and adjacent areas is significantly modulated by environmental conditions that include
59 vertical stratification, mesoscale circulation, light availability and sea-ice conditions (Renner et al.,
60 2012; Zhou et al., 2013; Schofield et al., 2018). The proximity of NAP to the southern boundary
61 of the Antarctic Circumpolar Current (ACC) allows on-shelf intrusions of the nutrient-rich
62 Circumpolar Deep Water (CDW), which is an important modulator of the shelf ecosystem
63 productivity (Prézelin et al., 2000; Loeb et al., 2010). Understanding variability in these physical
64 processes is critical for projecting variability and changes in ecosystem primary production and
65 biomass of the NAP and nearby areas.

66 The Antarctic Peninsula region has undergone significant climate change during the past
67 decades (Turner et al., 2005; Thompson et al., 2011; Schmidtko et al., 2014). The major modes for
68 the southern hemisphere (SH) extratropical climate variability, the Southern Annular Mode (SAM)
69 and the El Niño–Southern Oscillation (ENSO), affect the atmospheric circulation (Li et al., 2015;
70 Zhang et al., 2018), the oceanic circulation (Renner et al., 2012; Dotto et al., 2016) and the sea-ice
71 extent (Stammerjohn et al., 2008; Simpkins et al., 2012) in this area. The SAM is characterized by
72 opposite anomalies of sea-level pressure in the SH high and mid latitudes (Marshall, 2003), and is

73 the dominant mode for SH extratropical climate variability. Based on numerical circulation
74 simulations, Dinniman et al. (2012) identified a possible linkage between on-shelf CDW intrusions

75

76 **Fig. 1.** (a) Location of the AMLR survey area in the Southern Ocean (red box). (b) Map of the AMLR study
77 region in the northern Antarctic Peninsula (NAP), which includes the regions near Elephant Island (EI)
78 and the South Shetland Islands. The AMLR survey stations for 2003 (red dots) are shown to provide an example
79 of the sampling distribution. Boundaries of the EI and South Shetland Islands sampling grids are shown
80 (red lines). The Bellingshausen research station (blue star) and southern Antarctic Circumpolar Front
81 (sACCf, yellow line) are indicated.

82

83 and SAM variations for the western Antarctic Peninsula (WAP) region adjacent to NAP. Loeb et
84 al. (2010) found that during strong La Niña years the southern ACC front moves closer to the NAP
85 slope, favoring on-shelf intrusion of the nutrient-rich CDW, producing higher phytoplankton
86 biomass on the shelf. Chlorophyll concentration in the upper mixed layer of NAP waters is
87 positively correlated with the Southern Oscillation Index characterizing ENSO variability, and is
88 accompanied by a weak correlation with mixed layer temperature (Reiss et al., 2009).
89 Summertime primary production at a coastal site on the WAP continental shelf showed a negative

90 correlation with SAM, which was attributed to SAM-related changes in wintertime ice formation
91 and spring wind on upper ocean stratification (Saba et al., 2014).

92 These results advanced understanding of the linkage of large-scale climate modes to
93 temporal variability in physical and ecological properties in the NAP and adjacent areas. However,
94 such impacts may have significant spatial variability due to the complex geometry and dynamical
95 variability of the Antarctic Peninsula continental shelf system. For example, distance to the shelf
96 break can determine the influence of CDW intrusions (Dinniman and Klinck, 2004; Klinck et al.,
97 2004), latitudinal location controls the effects of westerlies and sea-ice freezing and melting
98 (Stammerjohn et al., 2008), and nutrients and micronutrients are supplied from different sources
99 in different areas (Serebrenikova and Fanning, 2004; Frants et al., 2013; Annett et al., 2015).
100 These variations produce different relationships between local oceanic processes and large-scale
101 climate patterns. Also, seasonal variability can modify the phase relation between the temporal
102 variability of the oceanic processes and the climate modes. Moreover, the temporal variability of
103 the individual climate modes occurs with different time scales, which results in shifting dominance
104 of a mode during different time periods.

105 The objective of this study is to identify and quantify the effects of the shifting relationships
106 in large-scale climate modes, in particular SAM, on the local oceanic system of NAP. The long-
107 term hydrographic and ecological data collected by the U.S. Antarctic Marine Living Resources
108 (AMLR) program in the environments of Elephant Island (EI) and the South Shetland Islands (SSIs)
109 in the NAP region (Fig. 1) are combined with satellite-derived observations to investigate the
110 relationships between interannual variability in the physical environment and ecosystem
111 production and SAM. This study focuses on the austral summer season when the AMLR
112 observations are available, primary production reaches its annual maxima, and sea ice is absent in

113 the AMLR survey area. The physical quantities of interest are mixed layer depth (MLD), the extent
114 of CDW, and irradiance availability over the study area. All potentially affect primary production
115 by modifying the horizontal fluxes of nutrients, the vertical supply of macronutrients and
116 micronutrients, and photosynthetic efficiency.

117

118 **2. Data and Methods**

119 **2.1. Data**

120 The U.S. AMLR program (<https://swfsc.noaa.gov/AERD-Data/>) conducted standardized
121 surveys near EI began from the early 1990s through 2011. The AMLR field seasons generally
122 included two summer surveys, one from January to February and one from February to early March,
123 although exceptions occurred in 2006 to 2007 and 2009 to 2011 when only one survey occurred
124 (Reiss et al., 2009; Loeb et al., 2010). The number of stations occupied during the surveys ranged
125 from 144 in 1994 to 48 in 2006, but the area covered by the surveys was similar among the years.
126 Beginning in 1997, the surveys were expanded westward to include the Bransfield Strait and the
127 shelf and slope areas north of the SSIs, and by 2001 a relatively fixed survey area near the SSIs
128 was established (Fig. 1). The number of stations occupied in this region varied from 20 in 2010 to
129 75 in 2002. For this study, the EI and SSIs survey regions are analyzed separately because of the
130 different time intervals included in the data and the different ocean dynamics in the two areas. In
131 2000 only a few stations were occupied in the EI and SSIs areas, and therefore, data from this year
132 were excluded from the analysis.

133 At each AMLR station, hydrographic data were collected using a Sea-Bird SBE 911 system
134 mounted on General Oceanics 12-bottle Rosette or a Sea-Bird SBE32 Carousel sampler. The CTD
135 casts collected samples to a maximum depth of 750 m or 5 m above the bottom at locations less

136 than 750 m, and water samples were collected at standard depths of 5, 10, 15, 20, 30, 40, 50, 75,
137 100, 200 and 750 m. The chlorophyll-*a* (hereafter Chl) concentration was determined by
138 fluorometric method using a Turner Designs fluorometer. The integrated Chl concentration over
139 the upper 100-m water column is used to indicate phytoplankton biomass in this study.

140 Satellite-retrieved Chl concentration data, obtained from the Moderate Resolution Imaging
141 Spectroradiometer (MODIS) Level-3 standard mapped dataset (<https://modis.gsfc.nasa.gov>) with
142 a horizontal resolution of 4 km, which are available starting in 2000, were used in the analysis.
143 Irradiance intensity was analyzed using the MODIS photosynthetically available radiation (PAR)
144 data. The seasonal and annual SAM indices used in this study are from the station-based Marshall
145 SAM index that is derived from the zonal pressure difference between the latitudes of 40°S and
146 65°S (Marshall, 2003). Wind speed data were obtained from meteorological observations made at
147 the Bellingshausen Station (Fig. 1), which are available at the Reference Antarctic Data for
148 Environmental Research (READER) project website (<https://legacy.bas.ac.uk/met/READER/>).
149 Antarctic ozone data were obtained from the National Aeronautics and Space Administration
150 (NASA) Ozone Watch dataset (<https://ozonewatch.gsfc.nasa.gov/meteorology/SO.html>), which
151 provides the total column ozone averaged around the polar cap for latitudes of 60°S–90°S in
152 Dobson Units (DU).

153 **2.2. Methods**

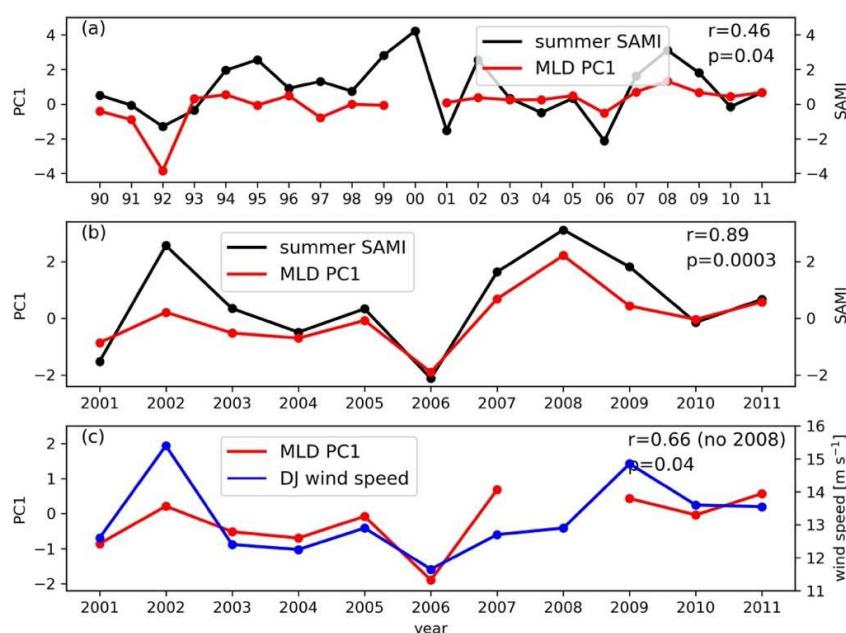
154 Mixed layer depth is defined as the depth where the potential density differs by 0.03 kg m^{-3}
155 from the surface potential density (Dong et al., 2008). The extent of CDW is indicated by the
156 temperature distribution along the potential density surface of 27.6 kg m^{-3} (Loeb et al., 2010). The
157 CDW extent over the study area is linked to both seasonal and annual SAM indices, with “annual”
158 defined by the summer season (December to February for SAM indices), which coincides with the

159 [AMLR survey season](#), and the autumn (March to May), winter (June to August) and spring
160 (September to November) seasons preceding the summer.

161 The variables derived from the AMLR measurements were mapped onto a 21×21 grid
162 (boundaries of the grid shown in Fig. 1b) using an objective analysis approach for both of the EI
163 and SSIs regions. The grid distance varies from 8 km to 12 km. The gridded data were analyzed
164 using empirical orthogonal function (EOF) analysis to obtain the principle component time series
165 associated with the 1st EOF mode (PC1) of the variables. The PC1 time series were then divided
166 by their standard deviations to obtain the normalized PC1 time series. The relationship between
167 the variables and SAM was examined by comparing the normalized PC1 time series (hereafter we
168 use PC1 to denote the normalized PC1 for convenience) and the SAM index. Correlation
169 coefficients (r) and statistical significance (p-value using Wald Test with t-distribution of the test
170 statistic; hereafter p) between each variable and SAM were obtained by linear regression.
171 [Correlations are considered as significant if \$p \leq 0.1\$](#) . Variability of the different variables was
172 analyzed by comparing their PC1 time series. The relationship obtained from the linear regression
173 was used to project Chl concentration using a projected trend in SAM obtained from phase 5 of
174 the Coupled Model Intercomparison Project (CMIP5) product by Zheng et al. (2013). [The spatial
175 patterns of 1st EOF modes of major variables analyzed in this study are provided in Fig. S1 and
176 Fig. S2.](#)

177

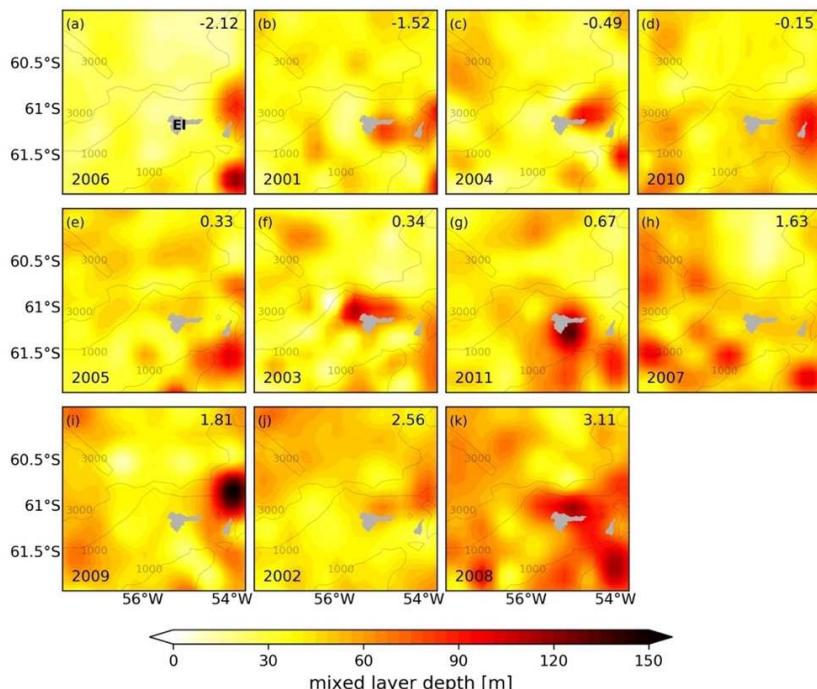
178 **3. Results**


179 **3.1 Mixed layer depth and summer SAM**

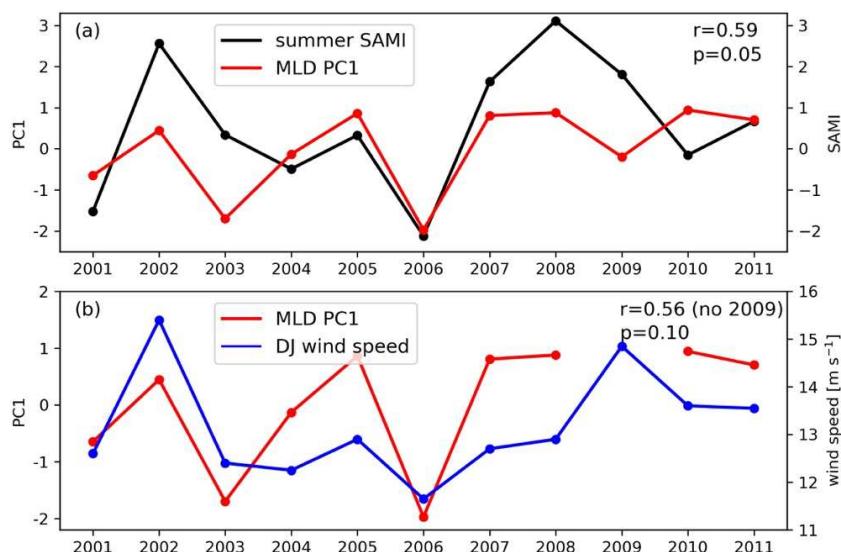
180 The PC1 time series of MLD in the EI region shows a weak and positive correlation ($r=0.46$,
181 $p=0.04$) with the summer SAM index (hereafter named SAMI) over the time covered by the

182 AMLR observations (Fig. 2a). The 1st EOF mode explains 32.9% of the total MLD variance (Table
 183 1). The positive correlation is most obvious after 2000 and as a result the data from 2001 to 2011
 184 were used to analyze the relation between MLD variability and the summer SAMI. During this
 185 period, the 1st EOF mode explains 86.3% of the total MLD variance (Table 1). The MLD PC1 and
 186 the summer SAMI (Fig. 2b) are more strongly correlated ($r=0.89$, $p=0.0003$) for 2001–2011 (all
 187 correlation statistics for the period 2001–2011 in this study are also summarized in Table S1),
 188 suggesting strong co-variability of MLD with SAM in summer during this period.

189 **Table 1.** The percent (%) of the total variance in mixed layer depth (MLD), photosynthetically available
 190 radiation (PAR), Circumpolar Deep Water extent indicated by the distribution of temperature on the
 191 potential density surface of 27.6 kg m^{-3} (T_{CDW}), and chlorophyll concentration integrated over the upper
 192 100 m (Chl-100m) explained by the 1st EOF mode in the Elephant Island (EI) and South Shetland Islands
 193 (SSIs) survey areas. The time span included in the analysis is shown.


	MLD		PAR		T_{CDW}		Chl-100m				
	EI		SSIs		EI		SSIs		EI		
Time	90–11	01–11	01–11	01–11	01–11	01–11	01–11	01–11	90–11	01–11	01–11
% variance	32.9	86.3	89.9	66.2	34.3	48.3	55.1	50.5	40.3		

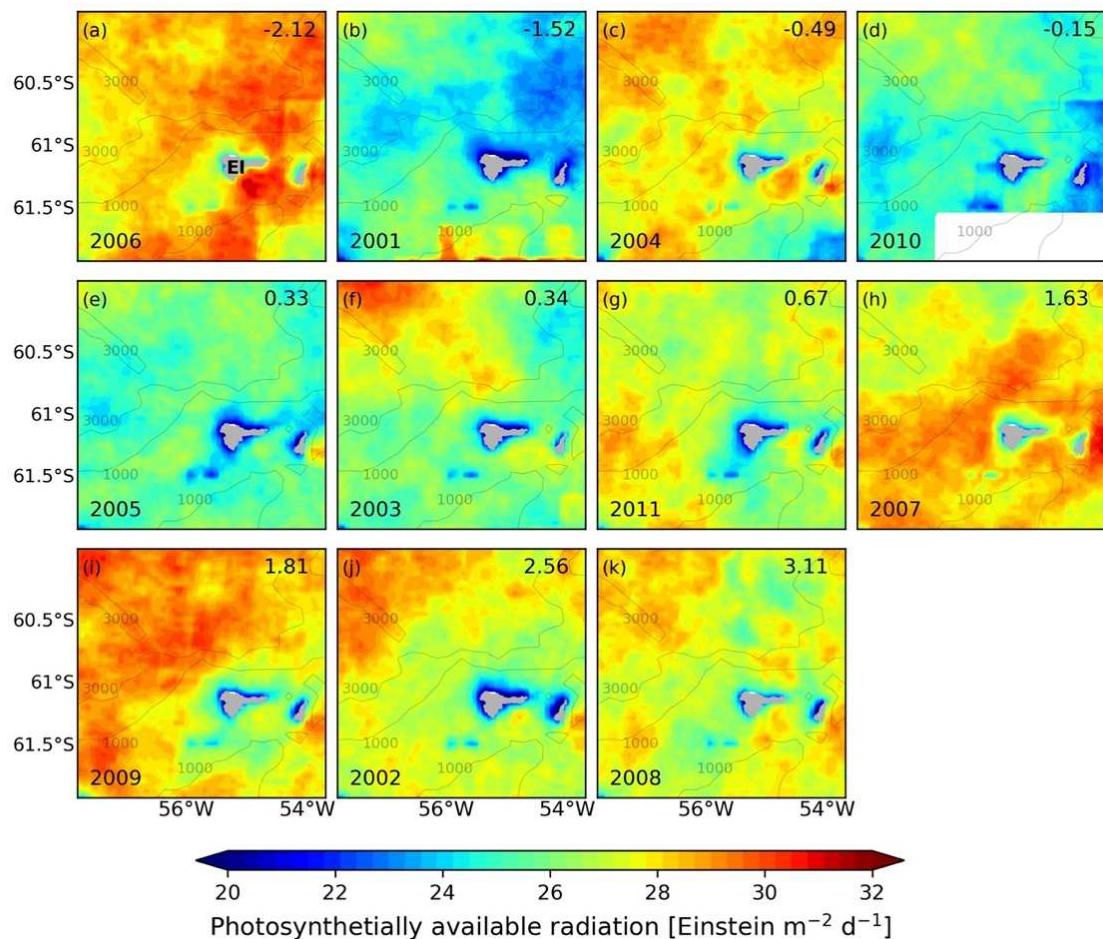
200


201 **Fig. 2.** (a) Time series for the Elephant Island region of the summer SAM Index (SAMI) and PC1 of mixed
 202 layer depth (MLD) calculated from the AMLR data during 1990–2011. (b) Same as (a) but for 2001–2011.
 203 (c) Time series of PC1 of MLD and the December-January (DJ) mean wind speed from the Bellingshausen
 204 Station for 2001–2011. The correlation coefficient (r) and significance level (p) for the time series are
 205 shown.

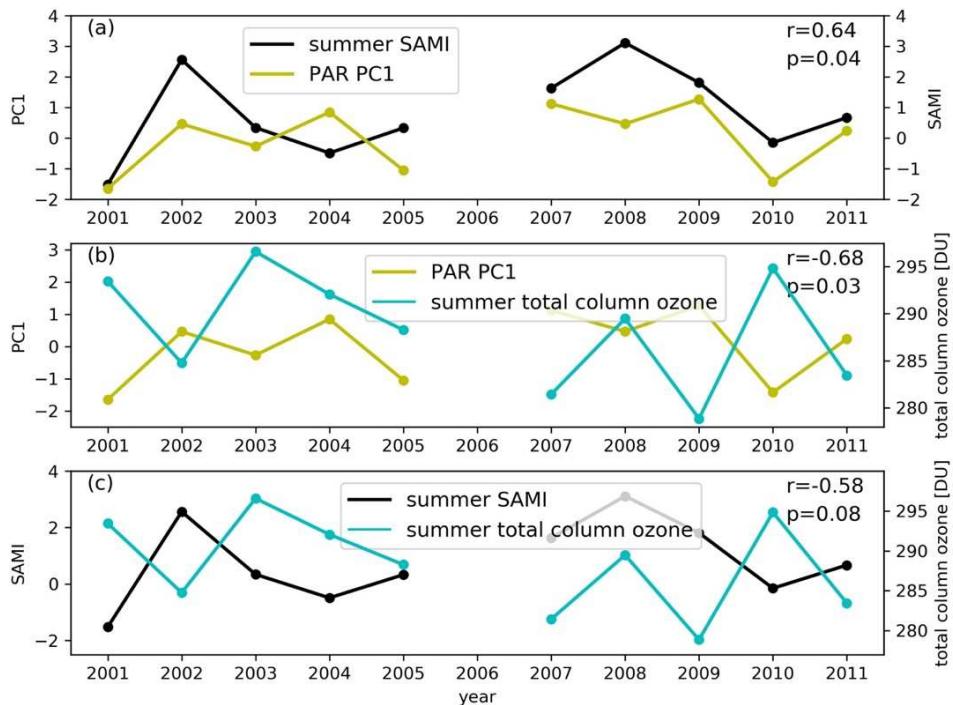
206 The spatial distributions of MLD in the EI region show that years with negative SAMI
 207 (Figs. 3a-d) have MLDs shallower than 40 m over the majority of this area. In years with SAMI
 208 above 1.0 (Figs. 3h-k), MLD increases to more than 60 m, and deepens to over 90 m in 2008 when
 209 SAMI has the largest positive value. Positive SAMI corresponds to strong westerly winds, and this
 210 effect was investigated by correlating the MLD PC1 time series with the summer wind speed time
 211 series from the Bellingshausen Station (Fig. 2c). A significant correlation exists between the MLD
 212 PC1 and the December-January mean wind speed ($r=0.66$, $p=0.04$) if year 2008 (characterized by
 213 low wind speed but high MLD) is removed ($r=0.42$ and $p=0.2$ if 2008 included). The wind speed
 214 was also significantly correlated with the summer SAMI ($r=0.64$ and $p=0.05$, not shown).

215
 216 **Fig. 3.** Mixed layer depth distribution in the Elephant Island (EI, identified on panel a) region for 2001–
 217 2011. Years are arranged in order of increasing summer SAMI, which is shown for each year.

218 In the SSIs region, the 1st EOF mode explains 89.9% of the total MLD variance (Table 1).
 219 Similar to the EI region, a significant and positive correlation exists between the MLD PC1 and
 220 the summer SAMI (Fig. 4a), but the correlation is lower ($r=0.59$, $p=0.05$), which corresponds to
 221 lower correlation between the MLD PC1 and the summer wind speed (Fig. 4b; $r=0.56$ and $p=0.1$
 222 excluding year 2009 that has high wind speed but moderate MLD; [insignificant correlation if 2009](#)
 223 [included](#)).



224
 225 **Fig. 4.** Time series for the South Shetland Islands region during 2001–2011 of (a) summer SAM Index
 226 (SAMI) and PC1 of mixed layer depth (MLD) calculated from the AMLR data, and (b) PC1 of MLD and
 227 the December–January (DJ) mean wind speed from the Bellingshausen Station. The correlation coefficient
 228 (r) and significance level (p) of the correlation between the time series are shown.

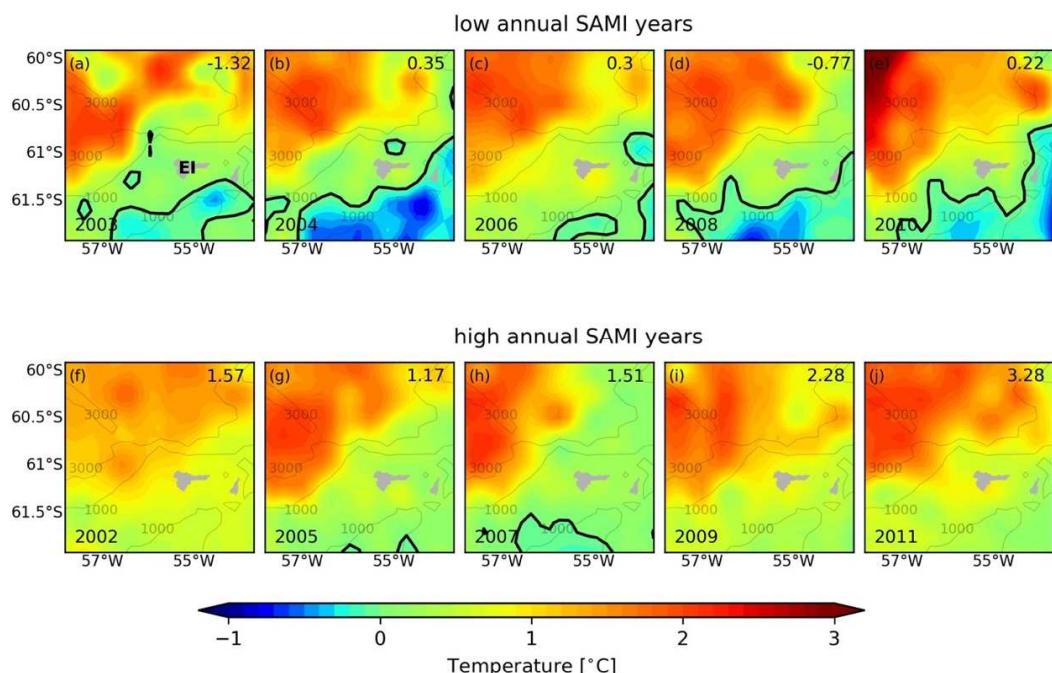

229 **3.2 Irradiance and summer SAM**

230 The spatial distributions of PAR (Fig. 5) derived from MODIS measurements made in the
 231 EI region over 2001–2011 (MODIS data started in 2000) show that, except for 2006 and 2004,
 232 there is a general increasing trend from low-SAMI (below 1.0) years to high-SAMI (above 1.0)
 233 years. In low-SAMI years (2001, 2010 and 2005), PAR values remained around 20–25 Einstein
 234 m⁻² d⁻¹ over the study area. In all years with SAMI above 1.5 (2007, 2009, 2002 and 2008), PAR

235 values over the AMLR survey region were above 28 Einstein $m^{-2} d^{-1}$. Temporal variation in PAR
 236 was 10%–20% of its mean value corresponding to the temporal variation of SAMI. PC1 of PAR
 237 over the EI region is significantly correlated with the summer SAMI excluding 2006, which has
 238 the lowest SAMI but high PAR values (Fig. 6a), and both are significantly correlated with the
 239 summer total ozone column averaged over the band 60°S–90°S (Figs. 6b and 6c). The distribution
 240 of PAR for the SSIs region is not included because extensive missing data in the southeast section
 241 of this area over nearly all years prevented meaningful analysis.

242
 243 **Fig. 5.** Distribution of summer photosynthetically available radiation (PAR) obtained from MODIS for the
 244 Elephant Island (EI, identified on panel a) region for 2001–2011. Years are arranged in the order of
 245 increasing summer SAMI, which is shown for each year. The white area in (d) is due to a data gap in the
 246 MODIS dataset.

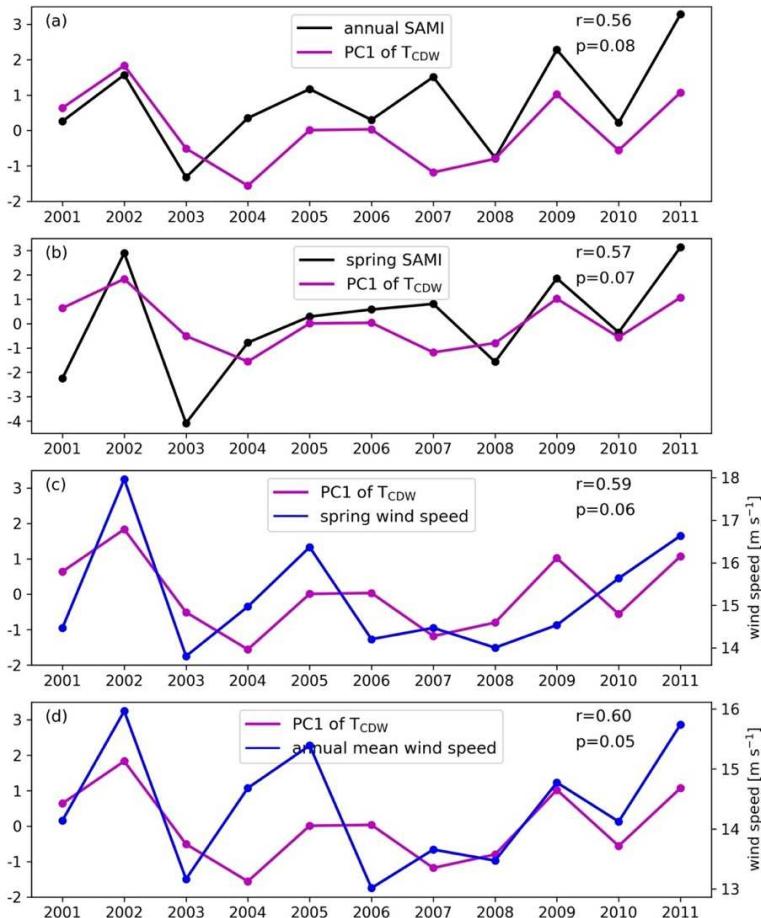
247


248 **Fig. 6.** Time series for the Elephant Island region during 2001–2011 of (a) summer SAMI and PC1 of
 249 photosynthetically available radiation (PAR), (b) PC1 of PAR and the total column ozone averaged over
 250 60°S–90°S in summer, (c) the total column ozone and summer SAMI. The correlation coefficient (r) and
 251 significance level (p) of the correlation between the time series are shown. The analysis excludes 2006 that
 252 has the lowest SAMI but high PAR values.

253 3.3 CDW extent and seasonal and annual SAM

254 3.3.1 Elephant Island region

255 No significant correlation was found between CDW extent and summer SAMI (not shown)
 256 for the study region. Instead, significant correlations were obtained for summertime CDW extent
 257 and annual SAMI and SAMI from the preceding spring season. The extent of CDW is indicated
 258 by temperature at the 27.6 kg m^{-3} potential density surface (hereafter denoted by T_{CDW}). Larger
 259 T_{CDW} implies stronger intrusion and larger coverage of CDW in the study area. The core of CDW
 260 is tracked by the T_{CDW} range $1.5\text{--}2.0^{\circ}\text{C}$, and the southern boundary of CDW is tracked by the 0°C
 261 isotherm (Loeb et al., 2010) (Fig. 7).


262 In the EI region, years with low annual SAMI (lower than or near 0; Figs. 7a-e) are
 263 associated with northerly movement of the 0°C isotherm, and the core of CDW remained to the
 264 north of EI. In years with high annual SAMI (>1.0 , Figs. 7f-j), the 0°C isotherm was displaced
 265 southwards and was not present in the study region in some years (2002, 2009 and 2011). CDW
 266 extended further south in these years and approached EI.

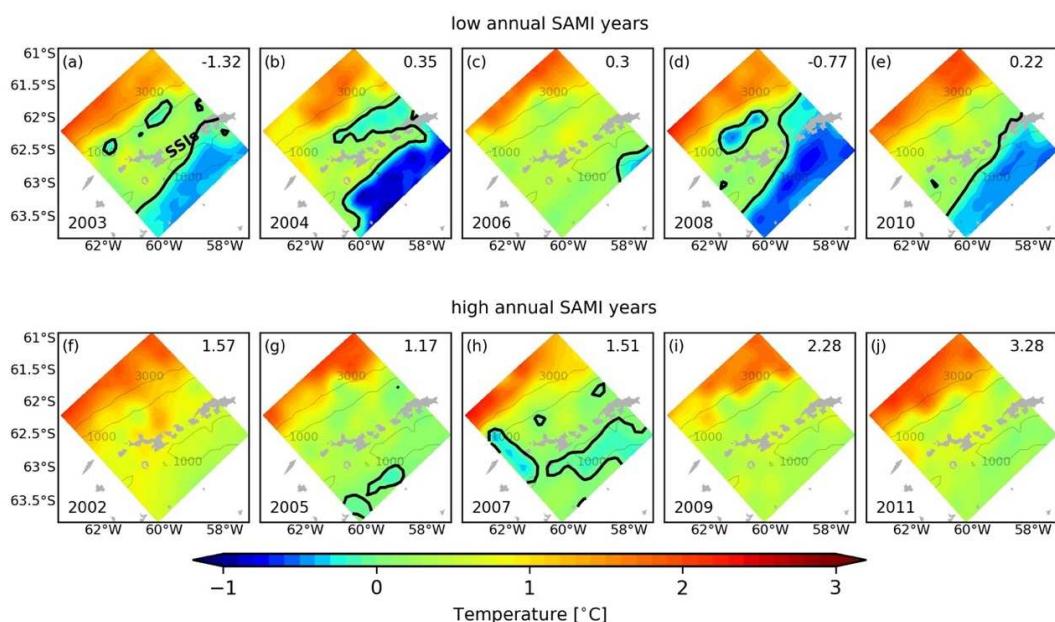
267

268 **Fig. 7.** Distribution of temperature on the potential density surface of 27.6 kg m^{-3} (T_{CDW}) over the Elephant
 269 Island (EI, identified on panel a) region during years with (a-e) low annual SAMI and (f-j) high annual
 270 SAMI. The 0°C isotherm (black line) and annual SAMI value in each year are shown.

271 Correlation of PC1 of T_{CDW} with the annual SAMI over 2001–2011 shows that CDW extent
 272 in the EI region is related to SAM variability (Fig. 8a). The 1st EOF mode explains 34.3% of the
 273 total variance of T_{CDW} (Table 1), which is significantly and positively correlated with the annual
 274 SAMI ($r=0.56$, $p=0.08$). This provides quantitative evidence for a relationship between interannual
 275 variations of CDW extent and SAM that is suggested by the temperature distributions (Fig. 7).

276
277
278
279
280
281

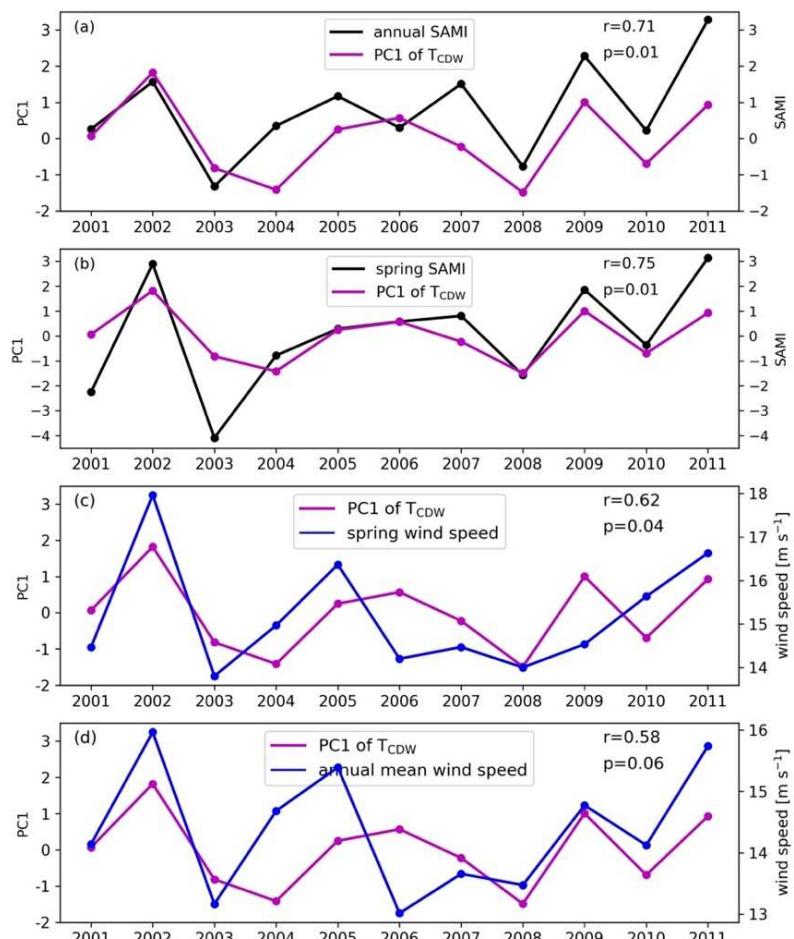
Fig. 8. Time series for the Elephant Island region during 2001–2011 of (a) annual SAMI and PC1 of temperature at the potential density surface of 27.6 kg m^{-3} (T_{CDW}), (b) spring SAMI and PC1 of T_{CDW} , (c) PC1 of T_{CDW} and the spring mean wind speed from the Bellingshausen Station, and (d) PC1 of T_{CDW} and the annual mean wind speed from the Bellingshausen Station. The correlation coefficient (r) and significance level (p) of the correlation between the time series are shown.


282 The correlation between CDW extent and annual SAMI was further analyzed to determine
283 seasonal variability. Correlations of PC1 of T_{CDW} were done with SAMI time series from the
284 autumn, winter and spring seasons preceding the summer. The only significant correlation is with
285 the spring SAMI ($r=0.57$, $p=0.07$; Fig. 8b), which suggests that there is a lag in SAM influence on
286 CDW distribution in the EI region.

287 The association between CDW intrusion and SAM results from westerly wind influence
288 (Dinniman et al., 2012), and this was tested with correlations between PC1 of T_{CDW} and spring

289 mean wind speed from the Bellingshausen Station (Fig. 8c). A significant and positive correlation
 290 is detected with spring wind speed ($r=0.59$, $p=0.06$; Fig. 8c), though such correlation is largely
 291 weighed by data from 2002 and 2011. This suggests that a positive SAM in spring associated with
 292 strengthened westerly wind can enhance the intrusion of CDW over the EI region. However, the
 293 significant correlation obtained with annual SAMI (Fig. 8d) allows the possibility that conditions
 294 in the previous autumn and spring affect CDW extent.

295 3.3.2 The South Shetland Islands region


296 In the SSIs region, the relationship of CDW extent with SAM is similar to that in the EI
 297 region. The extent of CDW is related to the annual SAMI (Fig. 9). Years with low annual SAMI
 298 are characterized by waters colder than 0°C occupying the southern section of the study area, while
 299 warm waters only remained in areas north of the SSIs and the shelf region shallower than 1000 m
 300 south of the SSIs (Figs. 9a, b, d and e). The exception is 2006 when water with temperatures of $0-$
 301 1°C occupied the study region (Fig. 9c). High annual SAMI is associated with water warmer than
 302 0°C covering the study region (Figs. 9f-j).

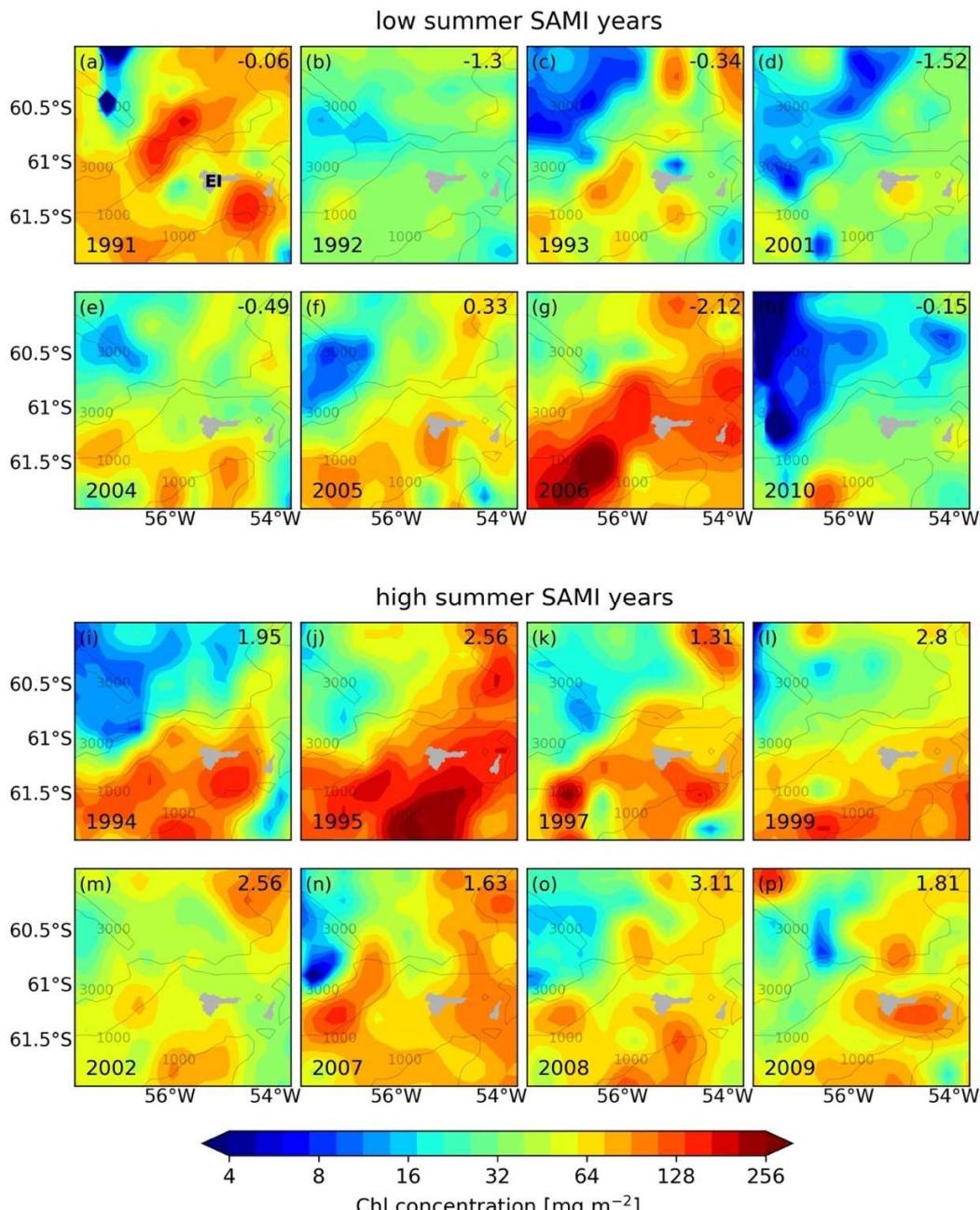
303

304 **Fig. 9.** Distribution of temperature on the potential density surface of 27.6 kg m^{-3} over the South Shetland
 305 Islands region (SSIs, identified on panel a) during years with (a-e) low annual SAMI and (f-j) years with
 306 high annual SAMI. The 0°C isotherm (black line) and annual SAMI value in each year are shown.

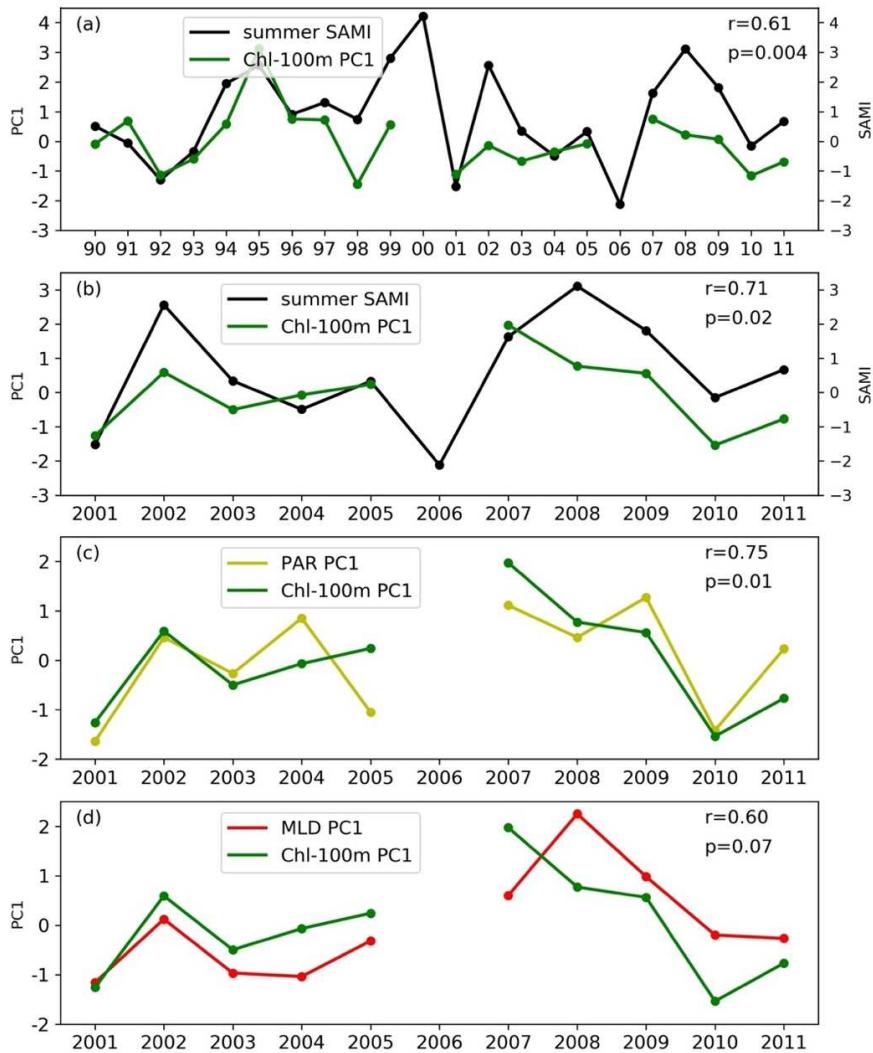
307 The correlation between PC1 of T_{CDW} and the annual SAMI is higher than its counterpart
 308 in the EI region ($r=0.71$ and $p=0.01$, Fig. 10a vs. Fig. 8a). The correlation between PC1 of T_{CDW}
 309 and spring SAMI is also significantly increased compared to the EI region ($r=0.75$ and $p=0.01$,
 310 Fig. 10b vs. Fig. 8b). The increase in correlation between CDW extent and spring SAMI is
 311 followed by an increase in correlation between the former and the spring wind speed (Figs. 10c),

312
 313 **Fig. 10.** Time series for the South Shetland Island region during 2001–2011 of (a) annual SAMI and PC1
 314 of temperature at the potential density surface of 27.6 kg m^{-3} (T_{CDW}), (b) spring SAMI and PC1 of T_{CDW} , (c)
 315 PC1 of T_{CDW} and the spring mean wind speed from the Bellingshausen Station, and (d) PC1 of T_{CDW} and
 316 the annual mean wind speed from the Bellingshausen Station. The correlation coefficient (r) and
 317 significance level (p) of the correlation between the time series are shown.

318 though similar to Fig. 8c, the correlation between CDW extent and wind is largely dominated by
319 data from 2002 and 2011. The correlation of CDW extent to the annual wind speed for the SSIs
320 region is slightly reduced compared to that obtained for the EI region (Fig. 10d vs. Fig. 8d).


321 **3.4 Chlorophyll distribution**

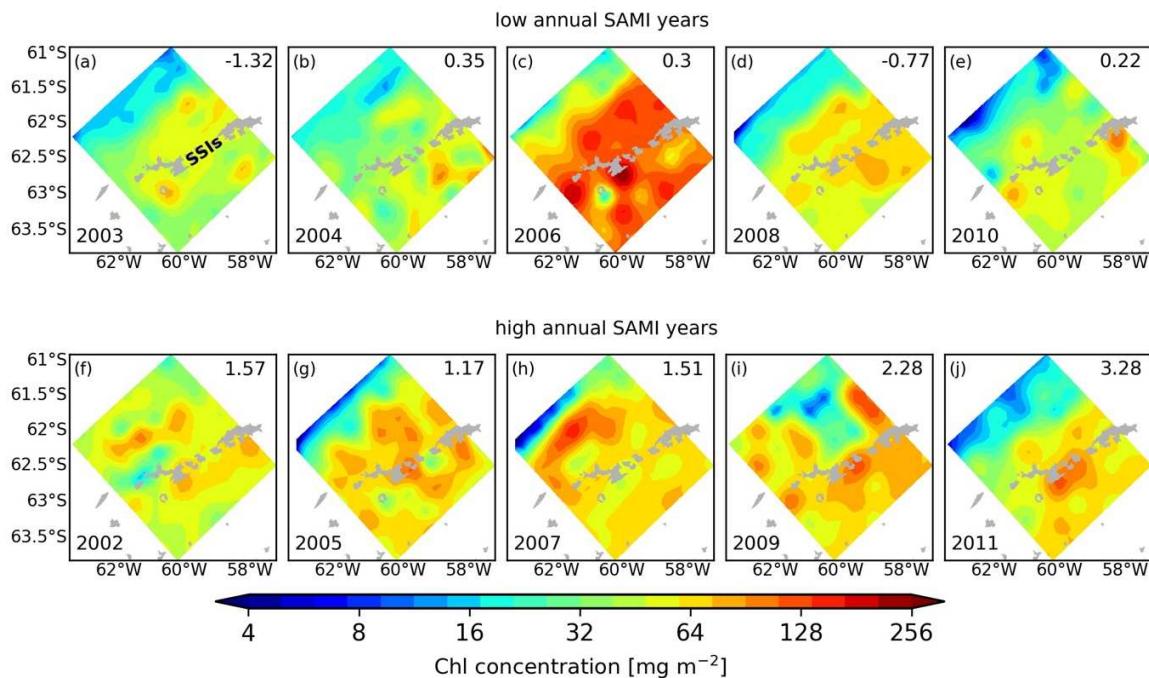
322 **3.4.1 Elephant Island region**


323 The integrated Chl concentration over the upper 100 m (hereafter Chl-100m) calculated
324 from observations provides a proxy for inferring SAM effects on the ecosystem over the period
325 encompassed by the AMLR surveys in the Elephant Island region (Fig. 11). The low-summer-
326 SAMI years are mostly characterized by Chl-100m concentrations lower than 60 mg m⁻², and the
327 open ocean area in the northwestern section (offshore of the 3000-m isobath) had concentrations
328 below 30 mg m⁻² (Figs. 11a-f, h). One notable exception is 2006 (Fig. 11g) when Chl-100m
329 concentrations exceeded 100 mg m⁻² over a large fraction of the study area, while 1991 (Fig. 11a)
330 is also noted for large Chl-100m concentrations above 64 mg m⁻² over most of the region. In high-
331 summer-SAMI years, Chl-100m concentrations above 60 mg m⁻² occurred over most of the survey
332 area, except for the northwestern section (Figs. 11i-p). Chlorophyll concentrations in this region
333 remain low, but are higher relative to those in low-summer-SAMI years.

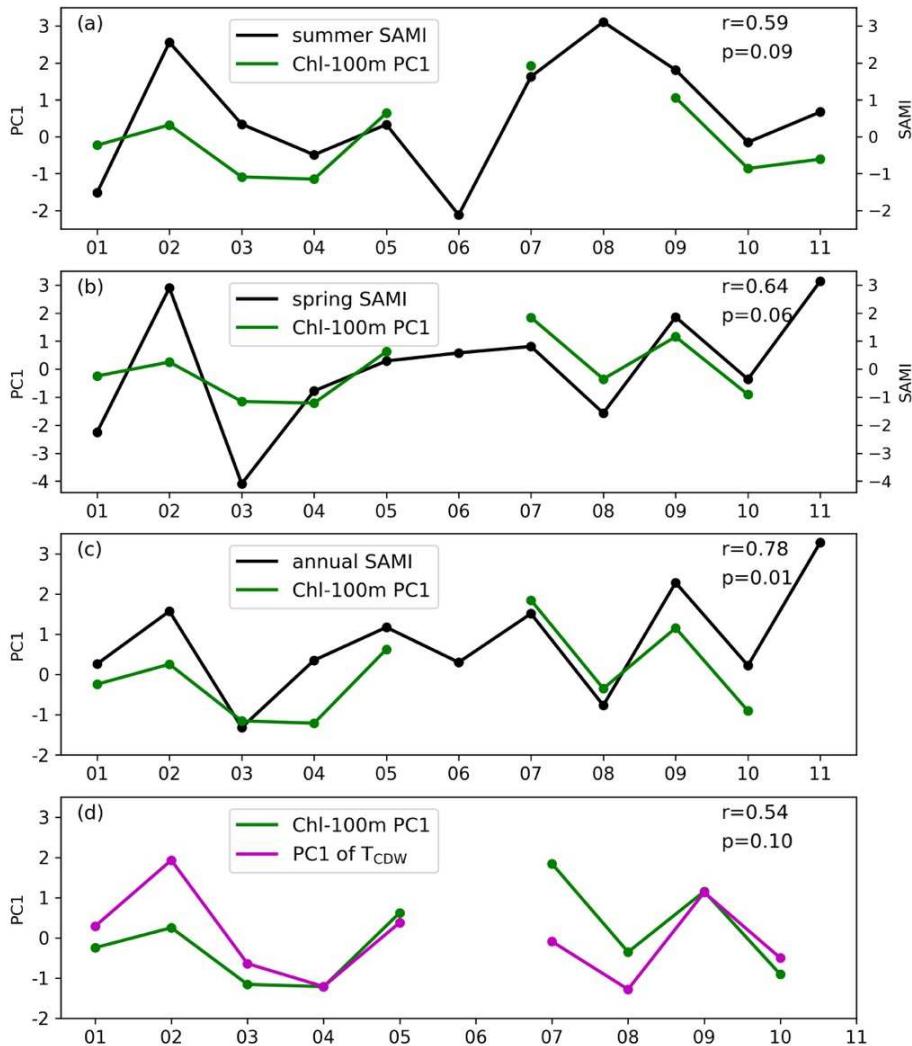
334 The correlation between PC1 of Chl-100m and summer SAMI is high and positive ($r=0.61$,
335 $p=0.004$) for 1990–2011, excluding the anomalous 2006 observations that are a factor of 2 to 3
336 higher (Fig. 12a). The 1st EOF mode explains 55.1% of the Chl-100m variance. The correlation
337 between PC1 of Chl-100m and summer SAMI is higher, 0.71, for 2001–2011 (Fig. 12b).
338 Excluding the anomalous year 2006, PC1 of Chl-100m is significantly and positively correlated
339 with PC1 of PAR and PC1 of MLD (Figs. 12c and 12d) for 2001–2011. The correlation with PAR

340 is higher than that with MLD ($r=0.75$ vs. 0.60 , $p=0.01$ vs. 0.07). No significant correlation is found
341 between PC1 of Chl-100m and PC1 of T_{CDW} in this area.

342 Chl concentration [mg m^{-2}]
 343 **Fig. 11.** Distribution of chlorophyll concentration in the Elephant Island (EI, identified on panel a) obtained
 344 by integrating the AMLR observations over the upper 100 m for years with (a-h) low summer SAMI and
 345 (i-p) high summer SAMI. The summer SAMI value is shown for each year.


346

347 **Fig. 12.** (a) Time series for the Elephant Island region of summer SAMI and PC1 of chlorophyll
 348 concentration integrated over the upper 100 m (Chl-100m) for 1990–2011. (b) Same as (a) but for 2001–
 349 2011. Time series of (c) PC1 of Chl-100m and PC1 of PAR and (d) PC1 of Chl-100m and PC1 of MLD for
 350 2001–2011. The correlation coefficient (r) and significance level (p) of the correlation between the time
 351 series are shown. The analysis excludes 2006 that has the lowest SAMI but high values of PAR and Chl-
 352 100m.


353 3.4.2 The South Shetland Islands region

354 In years with low annual SAMI (Figs. 13a–e), Chl-100m over the SSIs region were 10–60
 355 mg m⁻², except for 2006 when Chl-100m were exceptionally high. For years with annual SAMI
 356 above 1.0 (Figs. 13f–j), Chl-100m over the SSIs increased to 64–150 mg m⁻². The correlation
 357 between PC1 of Chl-100m and summer SAMI in the SSIs region for 2001–2011 is less than that

358 for the Elephant Island region ($r=0.59$, $p=0.09$; Fig. 14a). No significant relationship emerged
 359 between the Chl-100m PC1 and the MLD PC1 (not shown), and the large gap in PAR data
 360 availability for the region precluded investigation of a Chl-100m–PAR relationship. Compared to
 361 the summer SAMI correlation, the correlations between Chl-100m and spring and annual SAMI
 362 are higher. Excluding data from 2006 and 2011, the correlation between PC1 of Chl-100m and
 363 spring SAMI increases to 0.64 (Fig. 14b, $p=0.06$; [the correlation is insignificant if 2011 data are included](#)). PC1 of Chl-100m is more correlated with the annual SAMI (Fig. 14c, $r=0.78$, $p=0.01$).
 364 PC1 of Chl-100m is weakly and significantly correlated with T_{CDW} (Fig. 14d) ($r=0.54$, $p=0.10$) if
 365 data from 2006 and 2011 are excluded ([insignificant if 2011 data are included](#)), although the
 366 correlation is not as strong as that obtained with SAM.
 367

368
 369 **Fig. 13.** Distribution of chlorophyll concentration integrated over the upper 100 m in the South Shetland
 370 Islands (SSIs, identified on panel a) region during (a-e) years with low annual SAMI and (f-j) years with
 371 high annual SAMI. The annual SAMI value for each year is shown.

372

373 **Fig. 14.** Time series for the South Shetland Islands region during 2001–2011 of (a) summer SAMI and PC1
 374 of chlorophyll integrated over 100 m (Chl-100m), (b) spring SAMI and PC1 of Chl-100m, (c) annual SAMI
 375 and PC1 of Chl-100m, and (d) PC1 of Chl-100m and PC1 of temperature on the potential density surface
 376 of 27.6 kg m^{-3} (T_{CDW}). The correlation coefficient (r) and significance level (p) of the correlation between
 377 the time series are shown. Data from 2006 were excluded from calculation of all correlations and data from
 378 2011 were excluded from calculation of the correlations shown in b-d.

379

380 **4. Discussion**

381 **4.1 Vertical mixing and chlorophyll concentration**

382 The mixed layer depth (MLD) is affected by wind forcing and ocean-atmosphere heat
 383 fluxes. A shift in SAM towards its positive phase (corresponding to higher SAM index) increases

384 the sea-level pressure difference between the SH mid and high latitudes, resulting in strengthened
385 and poleward shifted westerlies (Lefebvre et al., 2004; Sen Gupta and England, 2006), which
386 potentially enhances vertical mixing in Antarctic marginal seas. However, a positive SAM phase
387 is also associated with strengthening of the Amundsen Sea Low, which produces stronger
388 northwesterlies over the NAP that bring warm air from the lower latitudes to the NAP region
389 (Lefebvre et al., 2004; Zhang et al., 2018), producing warming and enhanced precipitation, which
390 can increase the surface stratification [by atmosphere-ocean heat fluxes](#). The variability in MLD,
391 and hence vertical mixing, is then a trade-off in the relative strength of the two effects. [We](#)
392 [examined the surface temperature patterns over the study areas and did not find notable differences](#)
393 [between the high and low SAMI years \(not shown\), suggesting that air-sea fluxes are not a](#)
394 [dominant factor for the MLD variation.](#) The significant positive correlations between summer wind
395 speed and MLD in the EI and SSIs regions also support that wind is the major factor linking the
396 MLD and SAM variability. Wind-induced Ekman convergence or divergence can result in
397 [downwelling or upwelling](#), which will increase or decrease the MLD. Temperature profiles along
398 [cross-shelf transects were examined and no significant trend in upwelling or downwelling with](#)
399 [increasing SAMI was detected, indicating that convergence and divergence would not play a](#)
400 [significant role in the relation between MLD and SAM.](#)

401 The effect of vertical mixing on chlorophyll concentration in the NAP is a balance between
402 irradiance availability and the provisioning of nutrients to the upper ocean. Light limitation has
403 been identified as an important factor controlling spring primary production (Arrigo et al., 2010;
404 Joy-Warren et al., 2019). Positive SAM has been related to Antarctic ozone mass deficit (Arblaster
405 and Meehl, 2006; Polvani et al., 2011), which can increase the intensity of visible light reaching
406 the surface (Hamre et al., 2008). The significant positive correlations between PAR and SAMI

407 with Antarctic ozone mass provides support for increased light delivery to the sea surface during
408 the positive SAM phase, although the mechanism linking PAR and SAM variability is not fully
409 understood. Cloudiness is likely a component of this correlation, but cloudiness data sufficient to
410 describe this relationship are not available for the NAP region. The increased PAR under positive
411 SAM shift in turn supports enhanced levels of chlorophyll production.

412 The significant positive correlations obtained between Chl-100m, MLD, and summer
413 SAMI for the EI region support the contention that a shift in SAM towards its positive phase results
414 in enhanced vertical mixing (deeper MLD) that potentially provides macronutrients and the
415 micronutrient – dissolved iron, to surface waters. The associated increased PAR over the EI region
416 can mitigate the effect of reduced light availability resulting from increased mixing.

417 Dissolved iron (dFe) has been shown to be a key limiting factor for primary production in
418 Antarctic marginal seas including the NAP region (Measures et al., 2013; Jiang et al., 2019). On
419 the NAP continental shelf, dFe concentrations are generally high (above 0.5 nM; Ardelan et al.,
420 2010; Measures et al., 2013) and not considered as a limiting factor for primary production.
421 However, in recent years studies found that dFe values can have significant spatial variability in
422 the NAP and nearby WAP shelf areas due to heterogeneous biological production and iron sources.
423 For example, Sanchez et al. (2019) detected low dFe concentrations (0.02-0.19 nM) at coastal
424 stations west of EI. Also, Annett et al. (2017) found for the WAP area that abuts the AMLR study
425 region, that high dFe concentrations are present at coastal stations, but low concentrations (< 0.1
426 nmol kg⁻¹) were widespread in mid- to outer-shelf surface waters, indicating possible iron
427 limitation of shelf primary production. Sediments can be a major source of iron in the NAP region
428 (Measures et al., 2013), suggesting that enhanced vertical mixing could have a role in supplying
429 more dFe from deep waters rich in dFe to the surface layers. As shown in Frants et al. (2013) and

430 Measures et al. (2013), the ferricline in the open ocean near the EI and SSIs regions varies from
431 40 m to 120 m, and therefore stronger vertical mixing can mitigate the dFe limitation in surface
432 water and enhance productivity. Tagliabue et al. (2014) also showed that winter deep mixing is
433 efficient in entraining dFe from deep waters into surface water in the Southern Ocean, and this
434 process is active near the Antarctic Peninsula. These scenarios provide a direct link between large-
435 scale climate variability and local biological production.

436 Significant correlations between summer SAMI and Chl-100m and between MLD and Chl-
437 100m were not obtained for the SSIs region, rather Chl-100m was significantly correlated with
438 annual SAMI. Chlorophyll concentrations in the autumn, winter and spring seasons preceding the
439 summer season are limited by light and are low (MODIS data, not shown), so iron supplied to
440 surface water by the strong vertical mixing in these seasons may not be fully utilized and could
441 accumulate and contribute to summer primary production. Similarly, the biomass produced in
442 spring by the winter iron supply could be retained in the summer, contributing to the high
443 summertime Chl concentration. Therefore, the correlation between summertime Chl-100 m and
444 annual SAMI may reflect the integrated effect of enhanced vertical mixing over the year which
445 controls the cumulative inputs of dissolved iron to surface waters or cumulative biomass. On the
446 other hand, in the SSIs region significant correlations between Chl-100m and autumn and winter
447 SAMI were not found and the correlation with spring SAMI is lower than that for annual SAMI.
448 This implies that chlorophyll concentrations in this area also respond to other processes, such as
449 CDW intrusions, and that it is the interactions of these processes that control the seasonal
450 concentrations (Loeb et al., 2010). For the shelf north of EI, Zhou et al. (2013) showed that surface
451 iron can be transported to the open ocean by the interaction of a southward meander of ACC with
452 the shelf. With this active transport, surface iron may not accumulate in this region. Supply of

453 summertime surface iron is then by vertical mixing in this season, which may explain the high
454 correlation of Chl-100 m in the EI region with summer MLD and summer SAMI relative to the
455 SSIs region. Renner et al. (2012) suggested that connectivity between the Weddell Sea and the
456 NAP region in the upper ocean is restricted during positive phases of SAM by the stronger
457 westerlies and poleward shifts of ACC fronts. As transport from the Weddell Sea is reduced, the
458 open ocean northeast of EI may be more affected by surface iron-rich waters transported from the
459 EI and SSI shelf areas. This provides another mechanism that links the Chl variability and SAM
460 variability for the region northeast of EI.

461 Another aspect of deeper vertical mixing potentially counters the positive effect of iron
462 addition. That is, when waters below the mixed layer are entrained [into the mixed layer](#), surface
463 phytoplankton are “diluted”, as waters below the mixed layer generally have less chlorophyll than
464 those above. This effect [occurs during weather events such as cyclones or storms](#). While this effect
465 may have occurred, it is not observed in the analyses because the AMLR data are [composites](#)
466 spanning two to three months and the satellite composites are seasonal means, thereby, masking
467 short-term effects of episodic mixing.

468 **4.2 Associations of CDW extent with chlorophyll concentration and with SAM**

469 Prézelin et al. (2000) and Prézelin et al. (2004) found that the hot spots of primary
470 production in the WAP shelf area coincided with the presence of CDW. These hot spots are also
471 characterized by low $\text{Si(OH)}_4:\text{NO}_3^-$ ratios resulting from preferential removal of Si(OH)_4 by
472 diatoms. Vertical mixing can bring water with high $\text{Si(OH)}_4:\text{NO}_3^-$ ratios, derived from CDW, to
473 the upper ocean, where it becomes available to phytoplankton. Alderkamp et al. (2012) and
474 Gerringa et al. (2012) identified modified CDW (MCDW) as a dFe source for coastal areas in the
475 Amundsen Sea. Arrigo et al. (2018) showed that high concentrations of nitrate and phosphate from

476 CDW were provided to upper ocean waters in non-shelf regions near the WAP, which were then
477 entrained into surface water by winter deep mixing, creating high macronutrient concentration
478 required to sustain the spring blooms. These processes potentially contribute to the correlation
479 between Chl-100 m and CDW extent in the SSIs region.

480 Numerical circulation modeling studies suggested that the ACC transport is positively
481 correlated with SAM via change in westerlies (Hall and Visbeck, 2002; Yang et al., 2007;), and
482 enhanced ACC transport favors increased CDW transport onto WAP shelves (Dinniman et al.,
483 2012). Meredith and Hogg (2006) and Screen et al. (2010) suggested that ACC mesoscale eddy
484 activity during positive SAM phases facilitates the on-shelf intrusion of CDW. Whether the SAM
485 can lead to a meridional shift of the ACC is in dispute (Gille et al., 2016). The AMLR survey
486 region extends almost to the southern edge of ACC, making it difficult to analyze the above
487 processes. However, variability in mesoscale eddy activities and ACC position related to SAM
488 variations may contribute to the significant correlations between CDW extent and SAM but
489 relatively weak correlations between the former and wind as shown in Fig. 10.

490 In the EI and SSIs regions, the lagged correlation between CDW extent and SAMI (CDW
491 extent in summer is correlated with the preceding spring SAMI) implies that the positive SAM
492 shift in spring enhances CDW intrusion via strengthened westerlies that promote deep-water
493 upwelling along the slope or ACC transport. The time scale for the intruded CDW to spread over
494 the shelf region is about three months This finding is consistent with the numerical circulation
495 model results from Graham et al. (2016), which showed that 60–90 days is needed for the intruded
496 CDW to spread over the shelf regions of NAP and WAP.

497 **4.3 Spatial and temporal variations of the relationship between oceanic properties and SAM**
498 4.3.1 Spatial variability

499 The Antarctic Peninsula region is influenced by the ACC, waters from the Weddell Sea
500 and the marginal seas along West Antarctica as well as the seasonal advance and retreat of sea ice.
501 The complexity of these interactions produces significant spatial variability of the oceanic
502 processes and their association with large-scale climate patterns. Saba et al. (2014) found a
503 negative correlation between summer primary production and SAM from the preceding winter and
504 spring for the northern part of the west Antarctic Peninsula continental shelf (Palmer Station,
505 64.8°S, 61.4°W) based on observations spanning 21 years. This negative correlation results from
506 reduced summer stratification that is produced by reduced winter sea-ice formation (thus less ice
507 melting in summer) and stronger westerlies under positive SAM. The reduced stratification is
508 unfavorable to primary production because of shorter retention times of phytoplankton in the
509 euphotic layer and dilution of surface dissolved iron concentrations, which originate from glacier
510 melt water and are surface concentrated (Annett et al., 2015).

511 The correlations obtained for the EI and SSIs regions in this study differ from that found
512 by Saba et al. (2014) because of differences in vertical mixing, nutrient supply, and the effects of
513 CDW intrusions. The EI and SSIs regions are located at more northerly latitudes and are less
514 affected by sea ice conditions and have longer periods of open water, which affects MLD and
515 vertical mixing. Dissolved iron in the EI and SSIs regions is mostly supplied from sediments
516 (Measures et al., 2013). As a result, the enhanced vertical mixing associated with a shift toward
517 positive SAM has opposite effects on mixed layer dissolved iron concentrations. Vertical mixing
518 enhances surface dissolved iron concentration in the EI and SSIs areas and dilutes those along the
519 Antarctic Peninsula, thereby producing opposite Chl-SAM relations for the two areas.

520 The EI and SSIs regions are close to the southern boundary of the ACC and are more easily
521 influenced by CDW intrusions. This effect is evidenced by the positive significant correlations

522 between Chl-100m, CDW extent and SAM obtained in this study. However, this correlation shows
523 spatial variability within these regions, with summertime CDW extent being more strongly linked
524 to the spring and annual SAM for the SSIs region than the EI region. Also, a significant correlation
525 between summer Chl-100m and CDW extent was found for the SSIs region but not for EI. This
526 spatial variability results from the pattern of CDW intrusions onto the NAP and nearby WAP shelf,
527 which occur at locations with curving bathymetry, particularly the trenches located southwest of
528 the SSIs (Dinniman and Klinck, 2004; Graham et al., 2016). These conditions occur along the SSIs
529 shelf and CDW intrusions have more of an influence on this region. The EI region is influenced
530 by CDW extent, but this region is also influenced by waters from the Weddell Sea (Gordon et al.,
531 2000; Dotto et al., 2016; Du et al., 2018). Dotto et al. (2016) found that salinity in the deep waters
532 of the central and eastern basins of the Bransfield Strait is negatively correlated with SAM,
533 possibly due to weakened Weddell Sea coastal currents during positive SAM phases, which reduce
534 the transport of salty shelf waters in the Weddell Sea to the Bransfield Strait. The multiple
535 influences of SAM on deep water properties near EI can blur the correlations between CDW extent
536 and SAM in this region.

537 4.3.2 Temporal variability

538 [Significant correlations of MLD or CDW extent with summer/spring SAM in the EI and](#)
539 SSIs regions occurred only after 2000 and persisted for 2001 to 2011. Similar responses of ocean
540 and sea-ice variables in the Southern Ocean with the positive phase of SAM and the negative phase
541 of ENSO (i.e., La Niña) have been found (e.g., Simpkins et al., 2012; Ruiz Barlett et al., 2017),
542 which make separating the effects of SAM and ENSO difficult. For example, the in-phase relation
543 between positive SAM and La Niña has decadal variations as well as seasonal dependence (Ciasto
544 et al., 2015; Yu et al., 2015). In the late 1990s, ENSO transitioned from an Eastern-Pacific (EP)

545 to a Central-Pacific (CP) type (Yeo and Kim, 2015), which was followed by a similar decadal
546 variation in the ENSO-SAM relationship. Yu et al. (2015) showed that in austral spring, only the
547 CP-ENSO can excite SAM, so a significant ENSO-SAM relation only existed after the late 1990s.
548 Ciasto et al. (2015) found the opposite for austral summer, with significant correlations between
549 ENSO and SAM occurring before the late 1990s during the EP-ENSO period, but not thereafter.

550 Correlations between the oceanic variables and ENSO, represented by the Multivariate
551 ENSO Index (MEI), provide an analysis of ENSO-SAM interactions in the study areas. The
552 correlations of PC1s of MLD, CDW extent and Chl-100m with seasonal MEI for 2001–2011 show
553 insignificant correlations for MLD and Chl-100m for both regions (Table 2), although correlations
554 with SAMI were significant. The CDW extent is significantly correlated with spring MEI in the
555 EI region. These results are consistent with the analysis of Yu et al. (2015) and Ciasto et al. (2015)
556 which showed that after 2000, the ENSO-SAM relationship is weak in summer and significant in
557 spring. However, the weak correlation between CDW extent in the SSIs with spring MEI is an
558 exception.

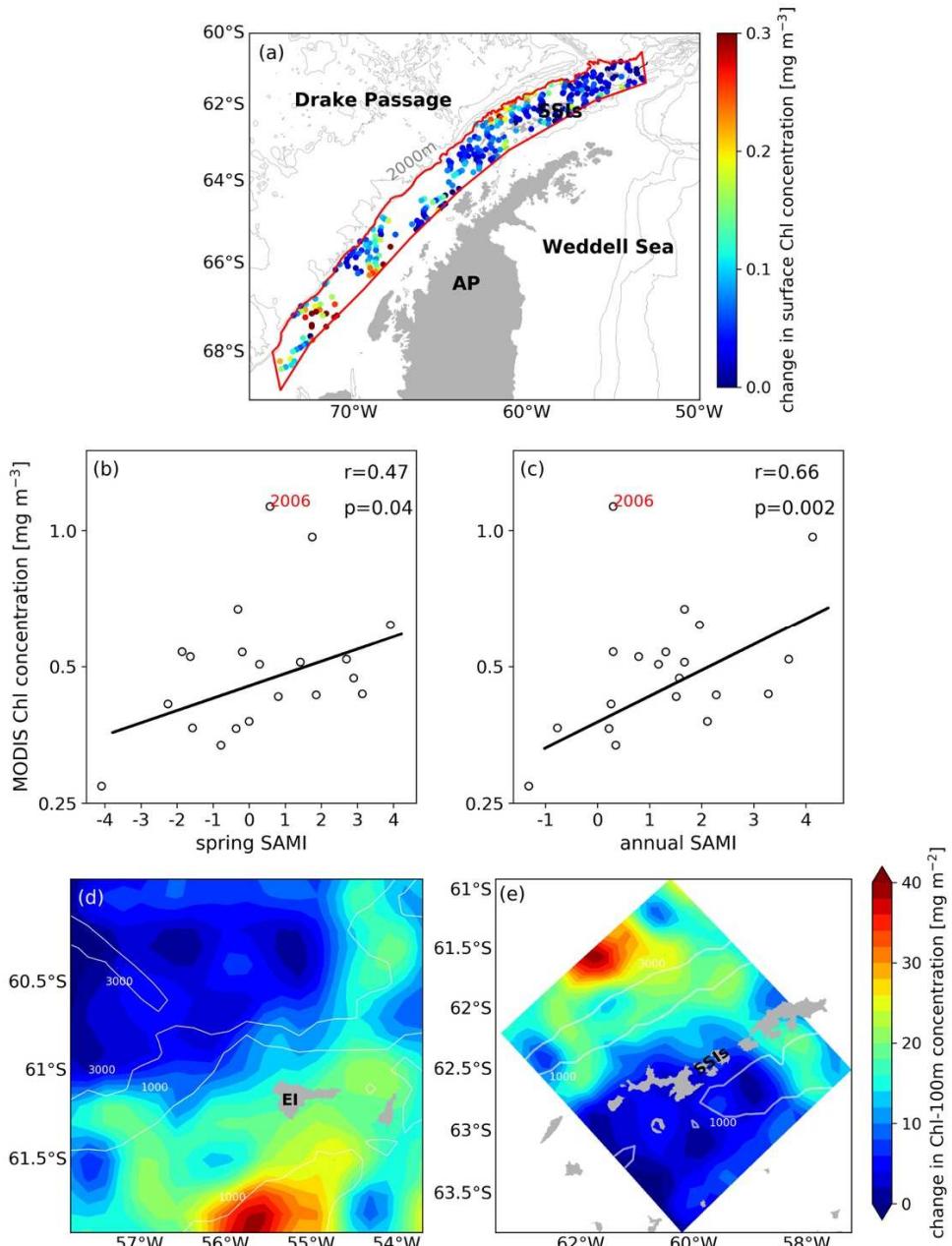
559 **Table 2.** Correlation coefficients between mixed layer depth (MLD), Circumpolar Deep Water extent
560 indicated by the distribution of temperature on the potential density surface of 27.6 kg m^{-3} (T_{CDW}), and
561 chlorophyll concentration integrated over the upper 100 m (Chl-100m), and seasonal multivariate ENSO
562 index (MEI) for the Elephant Island (EI) and South Shetland Islands (SSIs) survey regions. Numbers not
563 calculated are denoted by the minus sign. [Correlations that are significant \(\$p \leq 0.1\$ \) are highlighted in bold](#).

	MLD		T_{CDW}		Chl-100m	
	EI	SSIs	EI	SSIs	EI	SSIs
summer MEI	-0.25	0.03	-	-	-0.01	-0.04
spring MEI	-	-	-0.56	-0.4	-	-0.15

568 This analysis indicates that in summer, the effect of SAM on the oceanic processes in the
569 NAP area from 2001 to 2011 is independent of ENSO, since the effect of the latter is insignificant

570 in the study region. This suggests that future research work investigating climatic control of
571 dynamical and marine ecosystems in the NAP area and Southern Ocean regions should focus more
572 on SH high-latitude climate modes, rather than remote tropical modes like ENSO (Martinson et
573 al., 2008; Reiss et al., 2009; Loeb et al., 2010). Before 2000, the remote control from tropical
574 processes on the SH high-latitude climate found by Ciasto et al. (2015) potentially affected
575 correlations of oceanic quantities in the NAP with SAM.

576 The Chl-SAM relationship identified 2006 as an anomalous year, characterized by low
577 summer and annual SAMI but high Chl-100m values. The anomalous high PAR values in 2006
578 could have resulted in the high Chl concentration. The relation between CDW extent and SAM
579 was also anomalous in 2006 for both of the EI and SSIs regions, with warm water occupying a
580 larger fraction of the study area relative to other low-SAMI years. Therefore, the strong CDW
581 intrusion in 2006 may have contributed to the high biomass in this year.


582 **4.4 The relationship between biological production and SAM and projections of future
583 conditions**

584 Satellite-derived measurements of surface Chl concentration allow expanding the
585 correlation obtained between chlorophyll concentration and SAM for the AMLR study region to a
586 larger area. Also, the extended temporal coverage of the satellite observations after 2000, relative
587 to the AMLR observations, allow testing the Chl-SAM relationship over a longer time scale. The
588 outer shelf and slope region inshore of the 2000-m isobath in the NAP and nearby WAP region
589 was used to test the Chl-SAM relationship because of the availability of satellite data; the analysis
590 then allows application of the relationship to a different area (Fig. 15a).

591 For the MODIS period, 2000–2018, significant and positive correlations were obtained
592 between the interannual variation of area-averaged surface Chl concentration and spring ($r=0.47$,

593 p=0.02; Fig. 15b) and annual SAMI ($r=0.66$, $p=0.002$; Fig. 15c). Setting the offshore boundary of
594 the selected region at the 1000-m isobaths yields higher correlation coefficients, 0.54 and 0.70 for
595 spring and annual SAMI respectively, similar to those obtained for the SSIs region. These
596 correlations suggest that oceanic processes are linked to SAM over a broader region of the
597 continental shelf and slope of the Antarctic Peninsula.

598 Although significant correlations were not found between the hydrographic properties and
599 SAM for the EI region before 2000, Chl-100m in this region is significantly correlated with the
600 summer SAMI throughout the AMLR observational period 1990–2011 (Fig. 12a). [The Chl-](#)
601 [summer SAM correlation prior to 2000 may arise from the co-variability of PAR and the summer](#)
602 [SAM, but this hypothesis cannot be verified because of the lack of PAR data for this time period.](#)
603 The robust Chl-SAM correlation in the AMLR survey area, together with the robust correlation
604 between annual SAMI and Chl concentration over the NAP and WAP continental shelf and slope
605 in 2000–2018 was used to project primary production, represented by chlorophyll concentration,
606 associated with projected changes in SAM. Variability in SAM results from Antarctic ozone mass
607 and greenhouse concentration (Shindell and Schmidt, 2004; Arblaster and Meehl 2006). Using the
608 output of 12 models from the CMIP5 product, Zheng et al. (2013) estimated the trend in SAM for
609 the 21st century for the 4.5 (RCP4.5) and 8.5 (RCP8.5) representative concentration pathways. The
610 RCP4.5 pathway did not show a consistent and significant trend in SAM. The RCP8.5 pathway,
611 however, showed a significant and positive trend in SAM that varied from 0.01 yr^{-1} to 0.06 yr^{-1} for
612 different models. [Using an average trend in SAM of \$0.03 \text{ yr}^{-1}\$, and based on point-wise linear](#)
613 [relation between annual SAMI and Chl obtained by regression using the MODIS data in 2000–](#)
614 [2018, the surface Chl change over the next 50 years was projected for the NAP and WAP regions,](#)
615 [which varies from 0 to \$0.5 \text{ mg m}^{-3}\$ \(Fig. 15a\). Projected change in Chl-100m associated with SAM](#)

616

617 **Fig. 15.** (a) Map showing the portion of the western Antarctic Peninsula outer shelf and slope (red outline)
618 that was used for projection of change in surface chlorophyll concentration over the next 50 years (colored
619 circles), assuming a SAM trend of 0.03 yr^{-1} . Only locations with significant correlations ($p < 0.1$) between
620 surface chlorophyll concentration and annual SAMI for 2000–2018 (MODIS period) are shown. (b) (c) Regression
621 between area-averaged surface chlorophyll concentration over the selected region versus the
622 spring SAMI for 2000 to 2018 (solid line). The correlation coefficient (r) and significance level (p) of the
623 correlation are shown. (d) Same as (b) except for annual SAMI. Projected change in chlorophyll
624 concentration integrated over the upper 100 m in the next 50 years for the (d) Elephant Island (EI) and (e)
625 South Shetland Islands (SSIs) regions.

626 over the next 50 years for the EI region varies from 10–25 mg m⁻² over the continental shelf region
627 inshore of the 1000-m isobath to 30–50 mg m⁻² in deeper ocean south of EI (Fig. 15d). In the SSIs
628 region, significant change in Chl-100m occurs north of the SSIs and varies from 10 mg m⁻² to over
629 40 mg m⁻² (Fig. 15e). These projections are only valid if the SAM-Chl relationship is robust over
630 the next 50 years, and if such a relationship includes future decadal variability, such as that
631 observed between SAM and physical variables (e.g., MLD, CDW extent) for 1990–2010, the
632 projected change in Chl concentration needs to be re-evaluated.

633

634 **5. Conclusions**

635 The long-term hydrographic and chlorophyll measurements made by the U.S. AMLR
636 program during the austral summer near EI and the SSIs captured decadal variability in the
637 relationships between the NAP ocean environment and large-scale climate modes. The interannual
638 variations in hydrographic properties and chlorophyll concentration in the AMLR study area are
639 significantly and positively correlated with SAM post 2000, with weak or insignificant correlation
640 before 2000. The AMLR observations are one of the longest time series for Antarctic coastal and
641 shelf waters and these are just at the resolution of decadal climate variability. This underscores the
642 importance of maintaining long term measurement programs in the Antarctic. The SAM-
643 chlorophyll production relationship in the study area is opposite to that found in the northern part
644 of the west Antarctic Peninsula continental shelf, suggesting different roles across the Antarctic
645 ocean of vertical mixing in regulating natural iron input to the marine ecosystem that are associated
646 with a change in SAM.

647 The projected chlorophyll response to SAM in the EI and SSIs regions suggest significant
648 increase in [phytoplankton production](#). Assuming the other correlations with SAM persist, then the

649 shift to longer periods of positive SAM in the EI and SSIs regions will be accompanied by
650 enhanced vertical mixing, increased irradiance availability, and increased CDW inputs; all of
651 which support increased primary production. These regions support diverse and productive food
652 webs. Enhanced chlorophyll biomass will potentially manifest itself in greater standing stocks
653 throughout the food web. However, it is unknown what effect vertical mixing changes will have
654 on the phytoplankton composition, which can be an important factor in regulating grazing and
655 energy transfer within food webs. In other polar systems like the Ross Sea, future changes have
656 been modeled, and it was suggested that phytoplankton composition will respond to the
657 environmental forcing (mixed layer depth changes, iron inputs, sea ice removal) and also change
658 (Smith et al., 2014; Kaufman et al., 2017). The importance of similar changes in the West
659 Antarctic remains uncertain, and awaits a clear description of the mechanisms that influence
660 phytoplankton composition in this region.

661

662 **Acknowledgement**

663 Support for Z. Zhang and M. Zhou was provided by the National Natural Science Foundation of
664 China (grant number 41876221 and grant number 41941008). Support for M. Dinniman and E.
665 Hofmann was provided by U.S. National Science Foundation grant OPP-1643652. Support for W.
666 Smith Jr. was provided by the National Natural Science Foundation of China (grant number
667 41876228). We thank the two anonymous reviewers for their helpful comments that substantially
668 improved the manuscript.

669

670

671

672 **References**

673 Ardelan, M.V., Holm-Hansen, O., Hewes, C.D., Reiss, C.S., Silva, N.S., Dulaiova, H., Steinnes,
674 E., Sakshaug, E., 2010. Natural iron enrichment around the antarctic Peninsula in the Southern
675 Ocean. *Biogeosciences* 7 (1), 11–25.

676 Alderkamp, A.-C., Mills, M.M., van Dijken, G.L., Laan, P., Thuroczy, C.-E., Gerringa, L., de Baar,
677 H.J.W., Payne, C.D., Visser, R.J.W., Buma, A.G.J., Arrigo, K.R., 2012. Iron from melting
678 glaciers fuels phytoplankton blooms in Amundsen Sea (Southern Ocean), *Phytoplankton*
679 *characteristics and productivity. Deep-Sea Res. II*, 71–76, 32–48.

680 Annett, A.L., Skiba, M., Henley, S.F., Venables, H.J., Meredith, M.P., Statham, P.J., Ganeshram,
681 P.J., 2015. Comparative roles of upwelling and glacial iron sources in Ryder Bay, coastal
682 western Antarctic Peninsula. *Mar. Chem.* 176, 21–23.

683 Arblaster, J.M., Meehl, G.A., 2006. Contributions of external forcings to southern annular mode
684 trends. *J. Clim.* 19, 2896–2905.

685 Arrigo, K.R., Mills, M.M., Kropuenske, L.R., van Dijken, G.L., Alderkamp, A.C., Robinson, D.H.,
686 2010. Photophysiology in two major southern ocean phytoplankton taxa: photosynthesis and
687 growth of *Phaeocystis antarctica* and *Fragilariaopsis cylindrus* under different irradiance levels.
688 *Integr. Comp. Biol.* 50(6), 950–966.

689 Arrigo, K. R., van Dijken, G.L., Alderkamp, A.-C., Erickson, Z.K., Lewis, K.M., Lowry, K.E.,
690 Joy-Warren, H.L., Middag, R., Nash-Arrigo, J.E., Selz., V., van de Poll, W., 2017. Early
691 spring phytoplankton dynamics in the western Antarctic Peninsula. . *J. Geophys. Res.*, 122,
692 9350–9369.

693 Ciasto, L.M., Simpkins, G.R., England, M.H., 2015. Teleconnections between Tropical Pacific
694 SST Anomalies and Extratropical Southern Hemisphere Climate. *J. Clim.* 28, 56–65.

695 Dinniman, M.S., Klinck, J.M., 2004. A model study of circulation and cross-shelf exchange on the
696 west Antarctic Peninsula continental shelf. *Deep-Sea Res. II* 51, 2003–2022.

697 Dinniman, M.S., Klinck, J.M., Hofmann, E.E., 2012. Sensitivity of Circumpolar Deep Water
698 transport and ice shelf basal melt along the West Antarctic Peninsula to changes in the winds.
699 *J. Clim.* 25, 4799–4816.

700 Dong, S., Sprintall, J., Gille, S., Talley, L., 2008. Southern Ocean mixed layer depth from Argo
701 float profiles. *J. Geophys. Res.* 113, C06013.

702 Dotto, T.S., Kerr, R., Mata, M.M., Garcia, C.A.E., 2016. Multidecadal freshening and lightening
703 in the deep waters of the Bransfield Strait, Antarctica. *J. Geophys. Res.* 121, 3741–3756.

704 Du, G., Zhang, Z., Zhou, M., Zhu, Y., Zhong, Y., 2018. The upper 1000-m slope currents north of
705 the South Shetland Islands and Elephant Island based on ship cruise observations. *J. Ocean*
706 *Univ. China* 17(2), 1091–1103.

707 Espinasse, B., Zhou, M., Zhu, Y., Hazen, E.L., FriedLaender, A.S., Nowacek, D.P., Chu, D.,
708 Carlotti, F., 2012. Austral fall winter transition of mesozooplankton assemblages and krill
709 aggregations in an embayment west of the Antarctic Peninsula. *Mar. Ecol. Prog. Ser.* 452, 63–
710 80.

711 Fach, B.A., Klinck, J.M., 2006. Transport of Antarctic krill (*Euphausia superba*) across the Scotia
712 Sea. Part I: Circulation and particle tracking simulations. *Deep-Sea Res. II* 51, 987–1010.

713 Frants, M., Gille, S.T., Hatta, M., Hiscock, W.T., Kahru, M., Measures, C.I., Mitchell, B.G., Zhou,
714 M., 2013. Analysis of horizontal and vertical processes contributing to natural iron supply in
715 the mixed layer in southern Drake Passage. *Deep-Sea Res. II* 90, 68–76.

716 Gerringa, L.J.A., Alderkamp, A.-C., Laan, P., Thuroczy, C.-E., De Baar, H.J.W., Mills, M.M.,
717 Van Dijken, G.L., Van Haren, H., Arrigo, K.R., 2012. Iron from melting glaciers fuels the

718 phytoplankton blooms in Amundsen Sea (Southern Ocean); iron biogeochemistry. Deep-Sea
719 Res. II 71–76, 16–31.

720 Gordon, A.L., Mensch, M., Dong, Z., Smethie, Jr, W.M., de Bettencourt J., 2000. Deep and bottom
721 water of the Bransfield Strait eastern and central basins. J. Geophys. Res. Oceans, 105(C5),
722 11337–11346.

723 Graham, J.A., Dinniman, M.S., Klinck, J.M., 2016. Impact of model resolution for on-shelf heat
724 transport along the West Antarctic Peninsula. J. Geophys. Res. Oceans 121, 7880–7897.

725 Hamre, B., Stamnes, J.J., Frette, Ø, Erga, S., Stamnes, K., 2008. Could stratospheric ozone
726 depletion lead to enhanced aquatic primary production in the polar regions? Limnol.
727 Oceanogr., 53(1), 332–338.

728 Jiang, M., Measures, C.I., barbeau, K., Charette, M.A., Gille, S.T., Hatta, M., Kahru, M., Mitchell,
729 B.G., Naveira Garabato, A.C., Reiss, C., Selph, K., Zhou, M., 2019. Fe sources and transport
730 from the Antarctic Peninsula shelf to the southern Scotia Sea. Deep-Sea Res. I 150, 103060.

731 Joy-Warren, H., van Dijken, G.L., Alderkamp, A., Leventer, A., Lewis, K.M., Selz, V., Lowry,
732 K.E., van de Poll, W., Arrigo, K.A., 2019. Light is the primary driver of early season
733 phytoplankton production along the western Antarctic Peninsula. J. Geophys. Res. Oceans
734 124(11), 7345–7399.

735 Kaufman, D.E., Friedrichs, M.A.M., Smith Jr., W.O., Hofmann, E.E., Dinniman, M.S., Hennings,
736 J.C.P., 2017. Climate change impacts on Ross Sea biogeochemistry: results from 1D modeling
737 experiments. J. Geophys. Res. 122, 2339–2359.

738 Lefebvre, W., Goosse, H., Timmermann, R., Fichefet, T., 2004. Influence of the Southern Annular
739 Mode on the sea ice-ocean system. J. Geophys. Res. 109, C09005.

740 Li, X., Gerber, E.P., Holland, D.M., Yoo, C., 2015. A Rossby wave bridge from the tropical
741 Atlantic to West Antarctica. *J. Clim.* 28(6), 2256–2273.

742 Loeb, V., Hofmann, E.E., Klinck, J.M., Holm-Hansen, O., 2010. Hydrographic control of the
743 marine ecosystem in the South Shetland-Elephant Island and Bransfield Strait region. *Deep-*
744 *Sea Res.* II 57, 519–542.

745 Marshall, G.J., 2003. Trends in the Southern Annular Mode from observations and reanalyses. *J.*
746 *Clim.* 16, 4134–4143.

747 Martinson, D.G., Stammerjohn, S.E., Iannuzzi, I.A., Smith, R.C., Vernet, M., 2008. Western
748 Antarctic Peninsula physical oceanography and spatio-temporal variability. *Deep-Sea Res.* II
749 55, 1964–1987.

750 Measures, C.I., Brown, M.T., Selph, K.E., Apprill, A., Zhou, M., Hatta, M., Hiscock, W.T., 2013.
751 The influence of shelf processes in delivering dissolved iron to the HNLC waters of the Drake
752 Passage, Antarctica. *Deep-Sea Res.* II 90, 77–88.

753 Murphy, E.J., Thorpe, S.E., Watkins, J.L., Hewitt, R., 2004. Modeling the krill transport pathways
754 in the Scotia Sea: spatial and environmental connections generating the seasonal distribution
755 of krill. *Deep-Sea Res.* II 51(12-13), 1435–1456.

756 Murphy, E.J., Watkins, J.L., Reid, K., Trathan, P.N., Everson, I., Croxall, J.P., Priddle, J., Brandon,
757 M.A., Brierley, A.S., Hofmann, E., 1998. Interannual variability of the South Georgia marine
758 ecosystem: biological and physical sources of variation in the abundance of krill. *Fisheries*
759 *Oceanography* 7(3 - 4), 381 – 390.

760 Nowacek, D.P., Friedlaender, A.S., Halpin, P.N., Hazen, E.L., Johnston, D.W., Read, A.J., B.
761 Espinasse, M. Zhou, Y. Zhu, 2011. Super-aggregations of krill and humpback whales in
762 Wilhelmina Bay, Antarctic Peninsula. *PLoS ONE* 6(4), e19173.

763 Polvani, L.M., Waugh, D.W., Correa, G.J.P., Son, S.W., 2011. Stratospheric ozone depletion: the
764 main driver of twentieth-century atmospheric circulation changes in the southern hemisphere.
765 *J. Clim.* 24, 795–812.

766 Prézelin, B.B., Hofmann, E.E., Mengelt, C., Klinck, J.M., 2000. The linkage between Upper
767 Circumpolar Deep Water (UCDW) and phytoplankton assemblages on the west Antarctic
768 Peninsula continental shelf. *J. Mar. Res.* 58, 165–202.

769 Prézelin, B.B., Hofmann, E.E., Moline, M., Klinck, J.M., 2004. Physical forcing of phytoplankton
770 community structure and primary production in continental shelf waters of the western
771 Antarctic Peninsula. *J. Mar. Res.* 62, 419–460.

772 Reiss, C.S., Hewes, C.D., Holm-Hansen, O., 2009. Influence of atmospheric teleconnections and
773 Upper Circumpolar Deep Water on phytoplankton biomass around Elephant Island,
774 Antarctica. *Mar. Ecol. Prog. Ser.* 377, 51–62.

775 Renner, A.H.H., Thorpe, S.E., Heywood, K.J., Murphy, E.J., Watkins, J.L., Meredith, M.P., 2012.
776 Advection pathways near the tip of the Antarctic Peninsula: Trends, variability and ecosystem
777 implications. *Deep-Sea Res. I* 63, 91–101.

778 Ruiz Barlett, E.M., Tosonotto, G.V., Piola, A.R., Sierra, M.E., Mata, M.M., 2018. On the temporal
779 variability of intermediate and deep waters in the Western Basin of the Bransfield Strait.
780 *Deep-Sea Res. II* 149, 31–46.

781 Saba, G.K., Fraser, W.R., Saba, V.S., Iannuzzi, R.A., Coleman, K.E., Doney, S.C., Ducklow,
782 H.W., Martinson, D.G., Miles, T.N., Patterson-Fraser, D.L., Stammerjohn, S.E., Steinberg,
783 D.K., Schofield, O.M., 2014. Winter and spring controls on the summer food web of the
784 coastal West Antarctic Peninsula. *Nat. Commun.* 5, 4318.

785 Schmidtko, S., Heywood, K.J., Thompson, A.F., Aoki, S., 2014. Multidecadal warming of
786 Antarctic waters. *Science* 346 (6214), 1227–1231.

787 Schofield, O., Brown, M., Kohut, J., Nardelli, S., Saba, G., Waite, N., Ducklow, H., 2018. Changes
788 in the upper ocean mixed layer and phytoplankton productivity along the West Antarctic
789 Peninsula. *Phil. Trans. R. Soc. A* 376, 20170173.

790 Sen Gupta, A., England, M.H., 2006. Coupled ocean–atmosphere–ice response to variations in the
791 southern annular mode. *J. Clim.* 19, 4457–4486.

792 Serebrenikova, Y.M., Fanning, K.A., 2004. Nutrients in the Southern Ocean GLOBEC region:
793 Variations, water circulation, and cycling, *Deep-Sea Res. II* 51, 1981–2002.

794 Shindell, D. T., Schmidt, G. A., 2004. Southern Hemisphere climate response to ozone changes
795 and greenhouse gas increase. *Geophys. Res. Lett.* 31, L18209.

796 Simpkins, G.R., Ciasto, L.M., Thompson, D., England, M.H., 2012. Seasonal relationships
797 between large-scale climate variability and Antarctic sea ice concentration. *J. Clim.* 19, 5451–
798 5469.

799 [Smith Jr., W.O., Ainley, D.G., Arrigo, K.R., Dinniman, M.S., 2014. The oceanography and](#)
800 [ecology of the Ross Sea. *Annu. Rev. Mar. Sci.* 6, 469–487.](#)

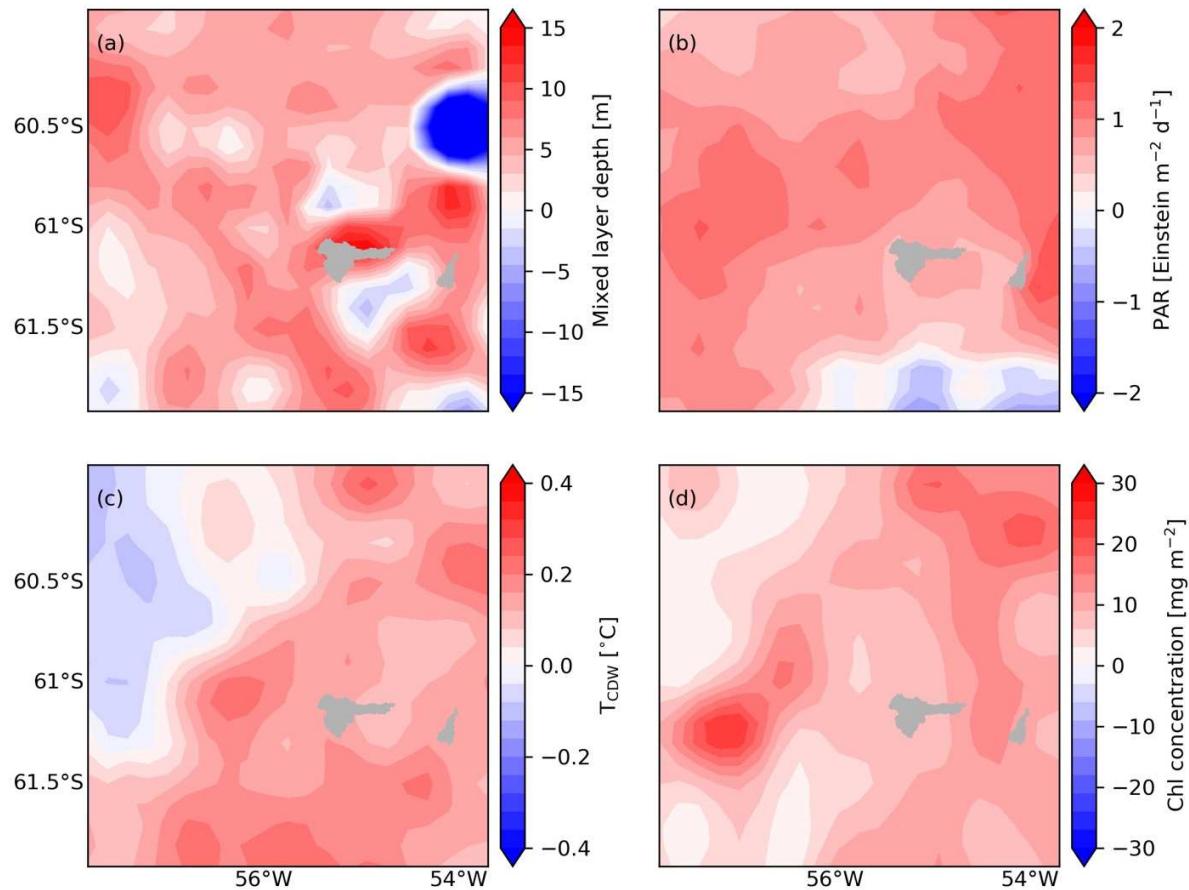
801 Stammerjohn, S.E., Martinson, D.G., Smith, R.C., Yuan, X., Rind, D., 2008. Trends in Antarctic
802 annual sea ice retreat and advance and their relation to El Niño-Southern Oscillation and
803 southern annular mode variability. *J. Geophys. Res.* 11, C03S90.

804 Tagliabue, A., Sallée, J., Bowie, A.R., Lévy, M., Swart, S., Boyd, P.W., 2014. Surface-water iron
805 supplies in the Southern Ocean sustained by deep winter mixing. *Nat. Geosci.* 7, 314–320.

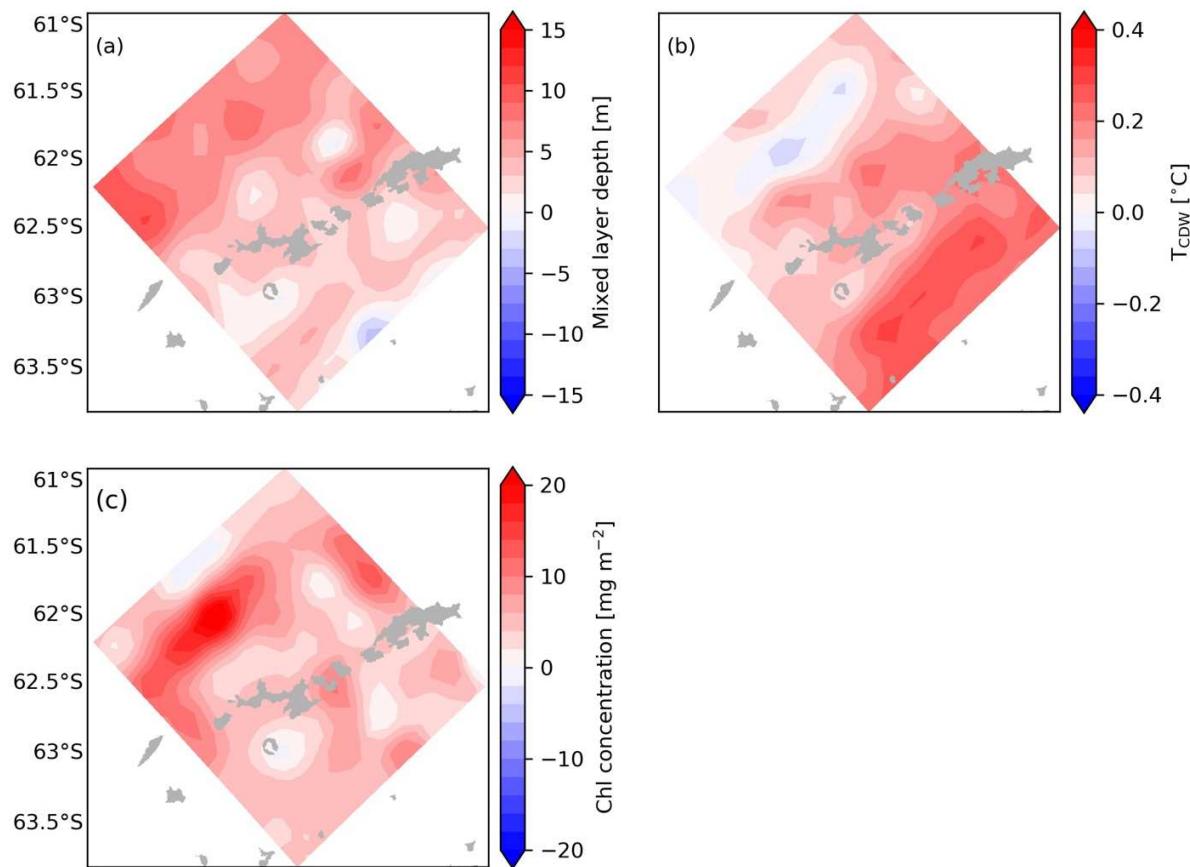
Supplementary materials

827 **Table S1.** Coefficients and p values (numbers in parenthesis) of correlations between oceanic quantities in
 828 the EI and SSIs regions with SAM indices, and of correlations between Chl-100m and the physical factors.
 829 All statistics are for the period of 2001–2011.

830


	MLD		PAR		T _{CDW}		Chl-100m	
	EI	SSIs	EI	SSIs	EI	SSIs	EI	SSIs
Summer SAMI	0.89 (0.003)	0.59 (0.05)	0.64 ^a (0.04)				0.71 (0.02)	0.59 ^b (0.09)
Spring SAMI					0.57 (0.07)	0.75 (0.01)		0.64 ^c (0.06)
Annual SAMI					0.56 (0.08)	0.71 (0.01)		0.78 ^c (0.01)
MLD							0.60 ^a (0.07)	
PAR							0.75 ^a (0.01)	
T_{CDW}								0.54 ^c (0.10)

846 ^a: Data from 2006 are excluded


847 ^b: Data from 2006 and 2008 are excluded

848 ^c: Data from 2006 and 2011 are excluded

849

850
 851 **Fig. S1.** The 1st EOF modes of (a) mixed layer depth, (b) photosynthetically available radiation
 852 (PAR), (c) temperature at the potential density surface of 27.6 kg m^{-3} (T_{CDW}) and (c) integrated
 853 Chl concentration over the upper 100 m for the Elephant Island region.
 854

855
856
857
858

Fig. S2. The 1st EOF modes of (a) mixed layer depth, (b) temperature at the potential density surface of 27.6 kg m^{-3} (T_{CDW}) and (c) integrated Chl concentration over the upper 100 m for the South Shetland Islands region.