

1 **Long-term trends in ichthyoplankton assemblage structure, biodiversity, and synchrony in**
2 **the Gulf of Alaska and their relationships to climate**

3 Kristin N. Marshall, Fishery Resource Analysis and Monitoring Division, Northwest Fisheries
4 Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric
5 Administration, 2725 Montlake Blvd E, Seattle, WA, 98112

6 Janet T. Duffy-Anderson, Alaska Fisheries Science Center, National Marine Fisheries Service,
7 National Oceanic and Atmospheric Administration, 7600 Sand Point Way NE, Seattle, WA,
8 98115

9 Eric J. Ward, Conservation Biology Division, Northwest Fisheries Science Center, National
10 Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake
11 Blvd E, Seattle, WA, 98112

12 Sean C. Anderson, School of Aquatic and Fishery Sciences, University of Washington, Seattle,
13 WA 98105; present address: Pacific Biological Station, Fisheries and Oceans Canada, 3190
14 Hammond Bay Road, Nanaimo, BC, V6T 6N7, Canada

15 Mary E. Hunsicker, Fish Ecology Division, Northwest Fisheries Science Center, National
16 Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2032 SE OSU
17 Drive, Newport, OR 97365

18 Benjamin C. Williams, College of Fisheries and Ocean Sciences, University of Alaska
19 Fairbanks, Juneau, Alaska, USA and Alaska Department of Fish and Game, Juneau, Alaska,
20 USA

21 **Abstract**

22 Understanding and tracking how ecosystems respond to changing environments is an ongoing
23 challenge. Marine ecosystems in the North Pacific support productive fisheries and diverse
24 ecosystem services, and they are subject to large-scale environmental, human, and ecological
25 perturbations. Ichthyoplankton time-series from these ecosystems may provide an important
26 indicator of lower trophic level dynamics and ecosystem functioning. Here we present a
27 spatiotemporal analysis using data from three decades of ichthyoplankton surveys in the Gulf of
28 Alaska to investigate temporal patterns in indicators of species richness, Shannon diversity, and
29 synchrony. Then we use Dynamic Factor Analysis (DFA) to synthesize the ichthyoplankton
30 assemblage with two dominant trends. We relate the biodiversity indices and DFA trends to
31 local and regional climate indices in the North Pacific. We find evidence for increased
32 temperatures driving increased species richness, and changes in synchrony coincident with
33 shifting assemblage composition and the 1988/1989 regime shift. Shannon diversity was largely
34 driven by the dominance of larval walleye pollock (*Gadus chalcogrammus*). Correlations
35 between climate drivers and DFA trends suggest that the influence of basin scale drivers (North
36 Pacific Gyre Oscillation and the Pacific Decadal Oscillation) was stronger than the influence of
37 local-scale drivers like regional sea surface temperature. Our work demonstrates the potential
38 value of ichthyoplankton surveys to provide indicators of climate-driven ecosystem variability
39 and long-term ecological change.

40 **Keywords**

41 Gulf of Alaska, ichthyoplankton, biodiversity, synchrony, walleye pollock, climate, ecosystem
42 indicators

43 **Introduction:**

44 Understanding how species, communities, and ecosystems respond to changing
45 environments and how to track those responses remains a fundamental challenge. In marine
46 ecosystems, for example, changes in fishing, climate, and oceanographic conditions can have a
47 range of biological consequences from no effect to strong cascading effects that propagate
48 through a food web (Hunt et al., 2011). A key part of this challenge is the complexity of
49 biophysical systems, and one way to reduce the dimensionality is to focus on ecological
50 indicators that can track shifts in community structure or the physical environment (Coll et al.,
51 2016). For example, indicators of biodiversity are commonly proposed because they integrate
52 across biotic scales, rely on data derived from multiple species, and can represent shifts in the
53 status of groups of species, community vulnerabilities, species loss, the adaptive capacities of
54 species and ecosystems, and ecosystem complexity and stability (Coll et al., 2016; Kershner et
55 al., 2011; Longo et al., 2015).

56 While biodiversity metrics provide insight on the status of an assemblage or community
57 at a point in time, synchrony metrics describe how population abundances or biomasses fluctuate
58 through time with respect to each other (Micheli et al., 1999). Synchrony can reflect the extent to
59 which the response to a stochastic, exogenous forcing factor is coincident among species, or it
60 can represent the intensity, strength, and coherence of trophic interactions (Liebhold et al., 2004).
61 Large-scale forcing events have been shown to increase synchrony with coincident changes
62 observed across species (Cottingham et al., 2001; Keitt, 2008; Tilman, 1996; Vasseur and
63 Gaedke, 2007), potentially destabilizing systems by unifying community response. The
64 consequences of a perturbation can be ephemeral, temporarily driving the community out of a
65 stable configuration, or enduring, forcing the system into a new stable state. Previous research

66 has shown that effects of small-scale forcing events may be temporary (Duffy-Anderson et al.,
67 2006; Frost et al., 2006; Mittelbach et al., 2006), while large-scale events can have effects that
68 persist over several decades (Beaugrand et al., 2002; Scheffer et al., 2001; Walsh et al., 2015;
69 Walther et al., 2002).

70 One of the largest marine ecosystems in the world where the interactions between climate
71 forcing, species interactions, and ecosystem resilience have been studied extensively is the Gulf
72 of Alaska (GOA). As a high-latitude system, the GOA is susceptible to climate-mediated
73 environmental variation and rapid changes in population and community structure. Extensive
74 sampling of the marine environment has occurred since the early 1980s, providing important
75 time series that can be used to evaluate effects of decadal-scale regime shifts. The most well-
76 known shift occurred in 1976/1977 characterized by a phase shift of the Pacific Decadal
77 Oscillation (PDO), the first mode of variability in sea surface temperature in the North Pacific
78 Ocean, from a negative to positive value (Mantua and Hare, 2002). This shift was accompanied
79 by an intensified Aleutian Low (AL) pressure system, ocean warming, increased circulation, and
80 increased stratification that persisted for over two decades. A second regime shift occurred in
81 1988/1989, driven by a strong polar vortex and weak AL (Overland et al., 1999; Yasunaka and
82 Hanawa, 2002) that lowered ocean temperatures and weakened overall circulation. Unlike the
83 well-characterized PDO-driven regime shift of 1976/1977, the 1988/1989 shift was not described
84 by PDO variability. Instead, a shift in the North Pacific Gyre Oscillation (NPGO), which
85 describes the second mode of variability of SST and relates to the gyre circulation and chemical
86 and biological properties in GOA, characterized this regime (Bond et al., 2003; Di Lorenzo et al.,
87 2008; Kilduff et al., 2015). This second shift raised awareness of the complex and dynamic

88 relationships between the major (physical) atmospheric and oceanographic forcing variables,
89 beyond the PDO. A third regime shift in 2007/2008 was less well described but is potentially
90 important. A recent comprehensive examination by Litzow and Mueter (2014) described the
91 2007/2008 shift as a transition to a PDO-negative, NPGO-positive state, featuring lower ocean
92 temperatures and changing circulation.

93 Other large-scale climate drivers may also correlate with variability in the GOA. The
94 Multivariate El Niño/Southern Oscillation Index (MEI) combines sea level pressure, winds, sea
95 surface temperature, air temperatures, and cloudiness across the tropical Pacific (Wolter and
96 Timlin, 1998, 1993). The North Pacific Index (NPI) describes sea level pressure over the area
97 30N-65N, 160E-140W (Trenberth and Hurrell, 1994). The GOA is typically a downwelling
98 system and the relaxation of that downwelling relates to Ekman transport driven by wind stress,
99 which could affect cross-shelf transport.

100 In addition to being a system that has experienced several large-scale climate shifts, the
101 GOA has also been the focus of long-term monitoring programs across multiple trophic levels in
102 the marine environment. A number of these datasets have been used to examine fish community
103 response to the climate-mediated perturbations described above, including regime shifts
104 (Anderson and Piatt, 1999; Litzow, 2006; Mueter and Norcross, 2002, 2000; Shelton et al.,
105 2017). Though less studied (but see Boeing and Duffy-Anderson, 2008; Doyle et al., 2009), high
106 resolution datasets of fish early life-history stages may be useful for understanding climate-
107 mediated impacts on fisheries. In particular, early life-history stages of fishes have informed
108 studies on the effects of non-native species (Manchester and Bullock, 2000), stock reductions
109 (Hoff, 2006; Hutchings and Baum, 2005), spatial shifts (Perry, 2005), and restructured trophic

110 interactions (Worm et al., 2006). One of the most data rich surveys that has spanned multiple
111 climate shifts in the GOA is run by the Ecosystems and Fisheries Oceanography Coordinated
112 Investigations (EcoFOCI) program, which has been collecting marine fish larvae from the
113 western GOA since the 1970s, and systematically over a gridded survey since the early 1980s
114 (McClatchie et al., 2014). These surveys are fishery independent, may provide early indicators of
115 future changes in the adult fish community, and may describe changes in adult species
116 composition, species interactions, spawning distribution, and phenology. As such, they are
117 useful indicators of bottom-up forcing on overall fish communities.

118 In this paper, we use three decades of ichthyoplankton data collected from the western
119 GOA to examine temporal variability in the structure of the spring ichthyoplankton assemblage
120 with respect to large-scale climate regimes. Our objectives were threefold: 1) explore temporal
121 trends in larval fish assemblage structure, biodiversity, synchrony, and pollock dominance; 2)
122 describe temporal trends shared among multiple species in the assemblage; and 3) explore
123 potential physical and biological drivers of patterns in shared trends and diversity indices. We
124 use the term “larval assemblage” to refer to co-occurring species, and the term “larval
125 community” to refer to groups of larvae that may interact directly or indirectly through shared
126 prey resources.

127

128 **Methods**

129 *Ichthyoplankton sampling*

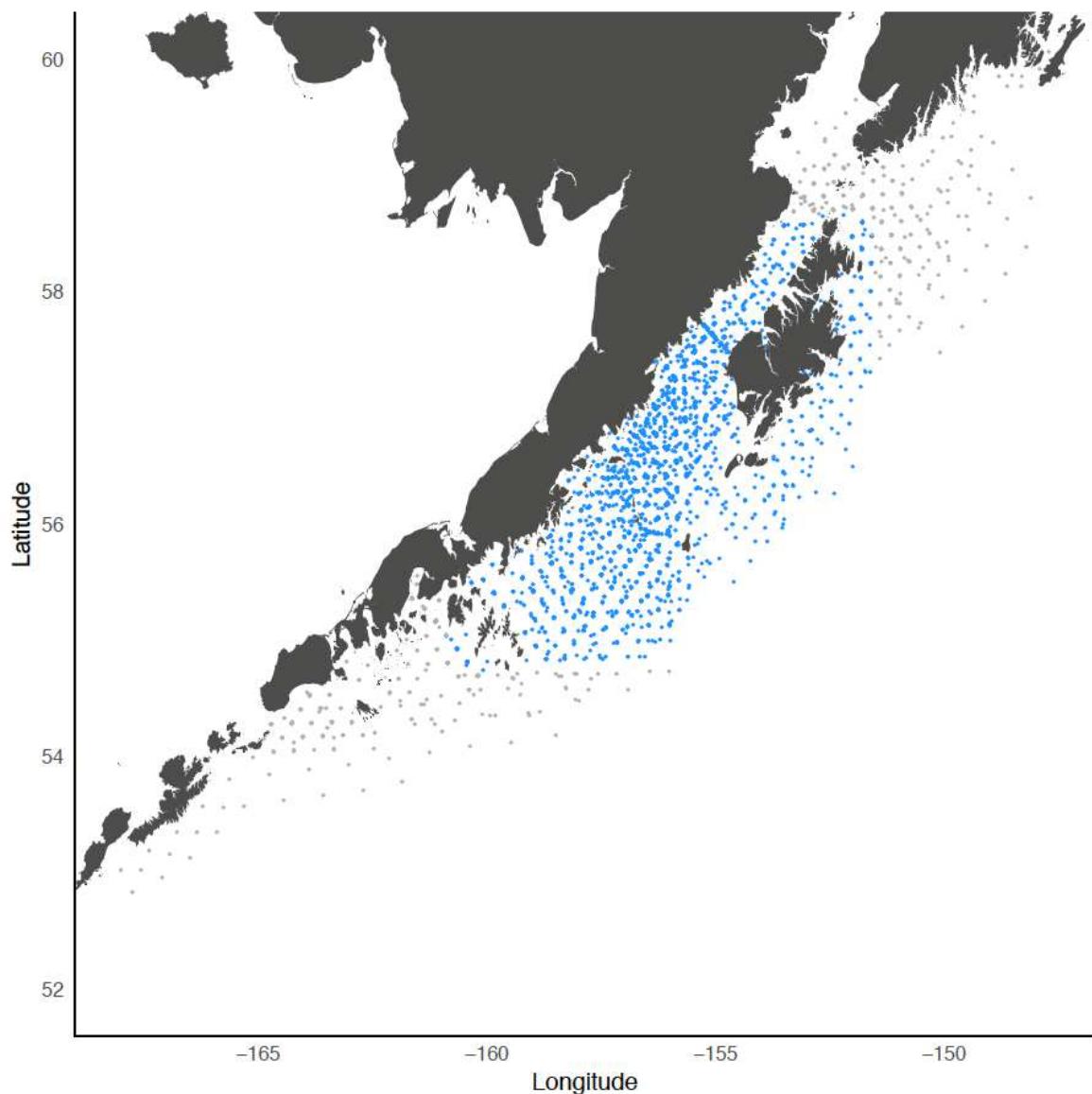
130 Ichthyoplankton data were collected in May and June from the western GOA by the
131 EcoFOCI from 1972 – 2013 (Table 1; McClatchie et al., 2014). These surveys were conducted

132 annually, with the exception of years 1984, 1986, and 2012. The historical distribution of
133 ichthyoplankton sampling extends along the Alaskan mainland and Peninsula on the continental
134 shelf from Prince William Sound southwest to Unimak Island (Fig. 1). The most intense
135 sampling has been in the vicinity of Shelikof Strait and Shelikof Sea Valley from mid-May
136 through early June. Ichthyoplankton were collected from oblique tows from the bottom (or 100
137 m depth maximum) to the surface with a 60 cm diameter bongo net (333 or 505 mm mesh) in a
138 standardized manner (Matarese et al., 2003). Data from both bongo net mesh sizes were
139 combined as prior analyses indicated no significant differences in ichthyoplankton catch rates
140 (selected species) between the two mesh sizes (333 um and 505 um; Boeing and Duffy-
141 Anderson, 2008). Calibrated flowmeters in the net mouth were used to estimate the volume of
142 water filtered. Samples were preserved in 5% formalin at sea and returned to the laboratory for
143 sorting. All ichthyoplankton were sorted at the Plankton Sorting and Identification Center in
144 Szczecin, Poland. Species were enumerated, identified to the lowest taxonomic level possible,
145 and measured. Fish larvae from sorted samples were returned to the National Oceanic and
146 Atmospheric Administration's Alaska Fisheries Science Center (AFSC), taxonomic
147 identifications were verified, and all data were archived in a relational database housed at the
148 AFSC (also available online from the Ichthyoplankton Information System
149 <http://access.afsc.noaa.gov/ichthyo/index.cfm>).

150 *Environmental and Biological Indices*

151 We used large-scale climate indices and spatially targeted descriptors of the physical
152 environment in our study region to investigate the influence of environmental indices on
153 ichthyoplankton (Tab. 1). We calculated a local temperature index from satellite monthly mean

154 temperatures within the study area. We also calculated a local sea level index from tide gauge
155 data from the closest station to the study area that had complete data over the study years
156 (Seldovia). In all cases, we used data from the first half of the year (Jan-June) to represent the
157 period during which most species spawned and ichthyoplankton were collected.


158 The presence and abundance of early life stages may reflect the status or abundance of
159 adult life stages during spawning (Koslow and Wright, 2016). To account for this, we used
160 spawning stock biomasses (SSB) of three of the most abundant species, pollock, Pacific cod
161 (*Gadus macrocephalus*), and arrowtooth flounder (*Atheresthes stomias*), from the 2015 GOA
162 stock assessments to represent these potential biological drivers (A'Mar and Palsson, 2015; Dorn
163 et al., 2015; Spies and Turnock, 2015). We lagged SSB by one year such that SSB was a
164 predictor for the following spring's ichthyoplankton data.

Index	Description	Source	Reference
PDO	Pacific Decadal Oscillation: Average of monthly anomalies from Jan thru June, 1981-2013	http://jisao.washington.edu/pdo/PDO.latest	(Mantua et al., 1997)
NPGO	North Pacific Gyre Oscillation: Average of monthly anomalies from Jan thru June, 1981-2013	http://www.o3d.org/npgo/nngo.php	(Di Lorenzo et al., 2008)
MEI	Multivariate ENSO Index: Average of bimonthly values from Jan thru June, 1981-2013	http://www.esrl.noaa.gov/psd/enso/mei/table.html	(Wolter and Timlin, 1998, 1993)
NPI	North Pacific Index: Average of bimonthly values from Jan thru June, 1981-2013	https://climatedataguide.ucar.edu/sites/default/files/climate_index_files/npindex_monthly.ascii	(Trenberth and Hurrell, 1994)
SST	Sea Surface Temperature: average of monthly means from Jan thru June, 1982-2013, subsetted to 90% quantiles of lat-long of ichthyoplankton data	http://www.esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.html	(Reynolds et al., 2002)
Upwelling	Upwelling index: average of monthly anomalies from Jan thru	http://www.pfeg.noaa.gov/Products/PFELData/upwell/month	

	June, 1981-2013, from station at 60°N 149°W	ly/upanoms.mon
MSL	Mean Sea Level: average of monthly mean water level from Jan thru June, 1981-2013, from Seldovia, AK (9455500)	https://tidesandcurrents.noaa.gov/inventory.html?id=9455500
POLL	Pollock spawning stock biomass, 1981-2013	(Dorn et al., 2015)
PCOD	Pacific cod spawning stock biomass, 1981-2013	(A'Mar and Palsson, 2015)
ARR	Arrowtooth flounder spawning stock biomass, 1981-2013	(Spies and Turnock, 2015)

165

166 **Table 1.** Environmental and biological variables investigated to explain temporal variation in
167 ichthyoplankton assemblage

168
169 **Figure 1.** Map of historical ichthyoplankton sampling for EcoFOCI using plankton nets in the
170 Gulf of Alaska (1972 – 2013). Points show all sampled locations over all years. Blue points
171 were those locations included in the present analyses, representing the 90 percent quantiles of the
172 tow locations.

173 *Ichthyoplankton index standardization*

174 We applied spatiotemporal index standardization methods to account for spatiotemporal
175 variability in sampling effort and autocorrelation. Though these methods are increasingly used in
176 fisheries (Shelton et al., 2014; Thorson et al., 2015), to our knowledge this is the first time they
177 have been applied to larval fish data or sampling of smaller organisms. These methods extend
178 generalized linear mixed models to include spatial random effects, and have been shown to
179 substantially reduce bias and uncertainty compared to traditional strata-based estimators
180 (Thorson et al., 2015). Because ichthyoplankton densities are commonly zero-inflated, we
181 applied models in a delta-generalized linear model (GLM) framework, fitting one statistical
182 model to presence-absence data to describe variability in occurrence, and a second model to
183 density data to describe variability in positive catch rates (Maunder and Punt, 2004; Pennington,
184 1983). Estimation was conducted separately for each species as latent Gaussian Markov random
185 fields in the R package INLA (Rue et al., 2009; Ruiz-Cárdenas et al., 2012). Following previous
186 work with Gaussian processes models and marine organisms, we modeled the spatial correlation
187 between locations with a Matérn covariance function (Ono, 2014; Ward et al., 2015).

188 We focused our modeling efforts on the most abundant 40 species in the ichthyoplankton
189 surveys (1981-2013), representing 90% of occurrences in the dataset (Tab. 2). Preliminary
190 analyses showed that including additional species beyond the top 40 resulted in poor
191 convergence of the standardization method, and therefore we chose 40 species as a cut-off. In
192 some cases, species were aggregated to the genus level due to interannual variation in taxonomic
193 resolution or to include taxa that would have otherwise been dropped due to lower species-
194 specific occurrences. Spatially, surveys are most often concentrated in Shelikof Strait and
195 Shelikof Sea Valley, though more recent efforts have expanded the sampling to the north or east

196 sides of Kodiak Island (Fig. 1). To reduce the influence of infrequently sampled locations, we
 197 restricted samples to the core sampling area, defined as those 20 x 20 km grids contained within
 198 the 90% quantiles of all grids sampled.

199 **Table 2.** Top 40 most commonly occurring species collected from ichthyoplankton sampling
 200 1981-2013. Percent occurrence calculated as number of tows in which each species was
 201 observed over all records and all years.

Family	Species Name	Common Name	Percent Positive Tows
Clupeidae	<i>Clupea pallasi</i>	Pacific herring	0.468
Bathylagidae	<i>Leuroglossus schmidti</i>	Northern smoothtongue	0.844
	<i>Bathylagus pacificus</i>	Slender blacksmelt	0.353
Osmeridae	<i>Mallotus villosus</i>	capelin	0.293
Myctophidae	<i>Protomyctophum thompsoni</i>	Northern flashlight fish	0.412
	<i>Stenobrachius leucopsarus</i>	Northern lampfish	4.656
Gadidae	<i>Gadus macrocephalus</i>	Pacific cod	6.477
	<i>Gadus chalcogrammus</i>	Walleye pollock	11.216
Scorpaenidae	<i>Sebastes</i> spp.	Rockfishes	4.881
Hexagrammidae	<i>Ophiodon elongatus</i>	Ling cod	0.35
	<i>Hexagrammos</i> spp.	Greenlings	1.266
Cottidae	<i>Icelinus</i> spp.	Sculpins	4.36
	<i>Myoxocephalus</i> spp.	Sculpins	0.584
	<i>Radulinus</i> spp.	Sculpins	1.187
	<i>Ruscarius meanyi</i>	Puget Sound sculpin	0.656
	<i>Triglops</i> spp.	Scuplins	0.178
Agonidae	<i>Bathyagonus alascanus</i>	Gray starsnout	2.833
	<i>Bathyagonus infraspinatus</i>	Spinycheek starsnout	0.534
	<i>Podothecus acipenserinus</i>	Sturgeon poacher	0.185
Liparidae	<i>Liparis fucensis</i>	Slipskin snailfish	1.049
Bathymasteridae	<i>Bathymaster</i> spp.	Ronquals	8.577
Stichaeidae	<i>Lumpenella longirostris</i>	Longsnout prickleback	0.554
	<i>Lumpenus maculatus</i>	Daubed shanny	1.273
	<i>Lumpenus sagitta</i>	Snake prickleback	0.162
	<i>Poroclinus rothrocki</i>	Whitebarred prickleback	1.721

	<i>Anoplarchus</i> spp.	Cockscombs	2.404
Cryptacanthodidae	<i>Cryptacanthodes aleutensis</i>	Dwarf wrymouth	2.058
Pholididae	<i>Pholis</i> spp.	Gunnels	3.034
Zaproridae	<i>Zaprora silenus</i>	Prowfish	0.765
Ammodytidae	<i>Ammodytes personatus</i>	Pacific sandlance	9.468
Pleuronectidae	<i>Atheresthes stomias</i>	Arrowtooth flounder	2.572
	<i>Glyptocephalus zachirus</i>	Rex sole	1.19
	<i>Hippoglossoides elassodon</i>	Flathead sole	10.094
	<i>Hippoglossus stenolepis</i>	Pacific halibut	1.342
	<i>Isopsetta isolepis</i>	Butter sole	0.861
	<i>Lepidopsetta bilineata</i>	Southern rock sole	3.453
	<i>Lepidopsetta polyxystra</i>	Northern rock sole	4.762
	<i>Microstomus pacificus</i>	Dover sole	0.854
	<i>Platichthys stellatus</i>	Starry flounder	2.49
	<i>Pleuronectes quadrituberculatus</i>	Alaska plaice	0.772

202

203 We conducted Markov chain Monte Carlo sampling from the approximate posterior
 204 distribution of each delta-GLM model, and used the resulting estimates of occurrence and
 205 positive catch rates to generate estimates of density. We projected these estimates to the centroid
 206 of an equally spaced 2-km grid within the core survey area, and summed the estimates across
 207 grid cells to generate an annual index of abundance. Repeating this process across posterior
 208 samples allowed us to compute posterior credible intervals for the density of each species in each
 209 year. For subsequent analyses, we used the means of the posterior densities of abundance for
 210 each species in each year. Code and data to replicate the analysis is available at
 211 <https://github.com/NCEAS/pfx-ichthyo>.

212

213 *Describing temporal trends in species diversity*

214 We estimated annual species richness and Shannon diversity indices from the standardized time
215 series of ichthyoplankton abundances. Species richness was calculated from the presence-
216 absence model output as the sum of probabilities (p_i) of presence of each species i in each year y
217 across s species: $R_y = \sum_{i=1}^s p_{iy}$. Shannon diversity represents the evenness of species present.
218 We chose the Shannon index over other diversity metrics because it is least sensitive to dominant
219 species (Jost, 2006) and pollock is dominant in our data (Fig. 2). We calculated the Shannon
220 index from the standardized indices of abundance: $H_y = -\sum_{i=1}^s a_{iy} \log a_{iy}$

221

222 *Describing temporal trends in synchrony among species*

223 Synchrony describes the similarity or dissimilarity of a group of species fluctuations through
224 time. Like diversity, many metrics of synchrony exist, each with strengths and weaknesses.
225 Gross et al. (2014) recently proposed a synchrony metric based on correlations, which they
226 showed to be less sensitive to dominant species than other metrics based on variances or
227 coefficient of variations (CVs). Gross's metric represents the correlation between the biomass of
228 each species and the total biomass of all the other species, averaged across species: $\eta =$
229 $\left(\frac{1}{s}\right) \sum_i \text{cor}(Y_i, \sum_{j \neq i} Y_j)$ where Y_i is the biomass of species i in s species. This metric varies
230 between -1 (maximum asynchrony) and 1 (perfect synchrony), and is centered on 0 when species
231 fluctuate independently.

232 We calculated a time series of synchrony using a moving window approach over 11-year
233 intervals such that the value of synchrony in 1991 represents the period over the previous 11
234 years (1981-1991). We investigated the sensitivity of synchrony to each contributing species in

235 the assemblage by jackknifing each species out of the analysis one at a time and re-calculating
236 the synchrony metric.

237

238 *Describing shared temporal trends among ichthyoplankton species*

239 We used Dynamic Factor Analysis (DFA) to describe the dominant patterns or trends in the
240 standardized ichthyoplankton data. DFA is a multivariate approach for time series data (Zuur et
241 al., 2003). Similar to a principal components analysis, DFA decomposes multivariate data into a
242 smaller number of components that describe the dominant patterns in the data. In DFA, the
243 shared trends and loadings of each species on each trend are estimated. We performed the DFA
244 using the MARSS package in R (Holmes et al., 2014, p. 201) on the standardized
245 ichthyoplankton time-series after rescaling each species by subtracting its mean and dividing by
246 its standard deviation across all years. AICc was used to determine the most parsimonious
247 model. We considered DFA models with 1-4 trends, and diagonal covariance matrices with
248 either equal or unequal elements. Missing values from years without surveys were treated as
249 NAs. Rotated trends and loadings were calculated using a varimax rotation (Zuur et al., 2003).
250 We describe the proportion of variation explained by the best-fit DFA model using the residuals
251 from the model prediction and means of the standardized indices such that:

$$R^2 = 1 - \frac{\sum(Y_{ij}^{pred} - Y_{ij}^{obs})^2}{\sum(\bar{Y}_j^{obs} - Y_{ij}^{obs})^2}$$

252 where Y_{ij}^{pred} is the prediction for each species in each year from the DFA model and Y_{ij}^{obs} is the
253 mean of the posterior of the standardized index for species i in year j .

254 *Describing structure in the ichthyoplankton assemblage*

255 We used hierarchical cluster analysis to group species based on their loading values on
256 Trend 1 and Trend 2. We determined an optimal number of clusters to represent the 40 species
257 using the elbow method and gap statistic (Tibshirani et al., 2001). We then explored how
258 clusters and trends associated with a suite of documented life history traits. We focused on traits
259 that previous studies identified as potentially important in characterizing the GOA spring
260 ichthyoplankton assemblage (Doyle et al., 2002). In particular, we characterized adult habitat,
261 spawn timing, larval duration, and species distribution (Table 3).

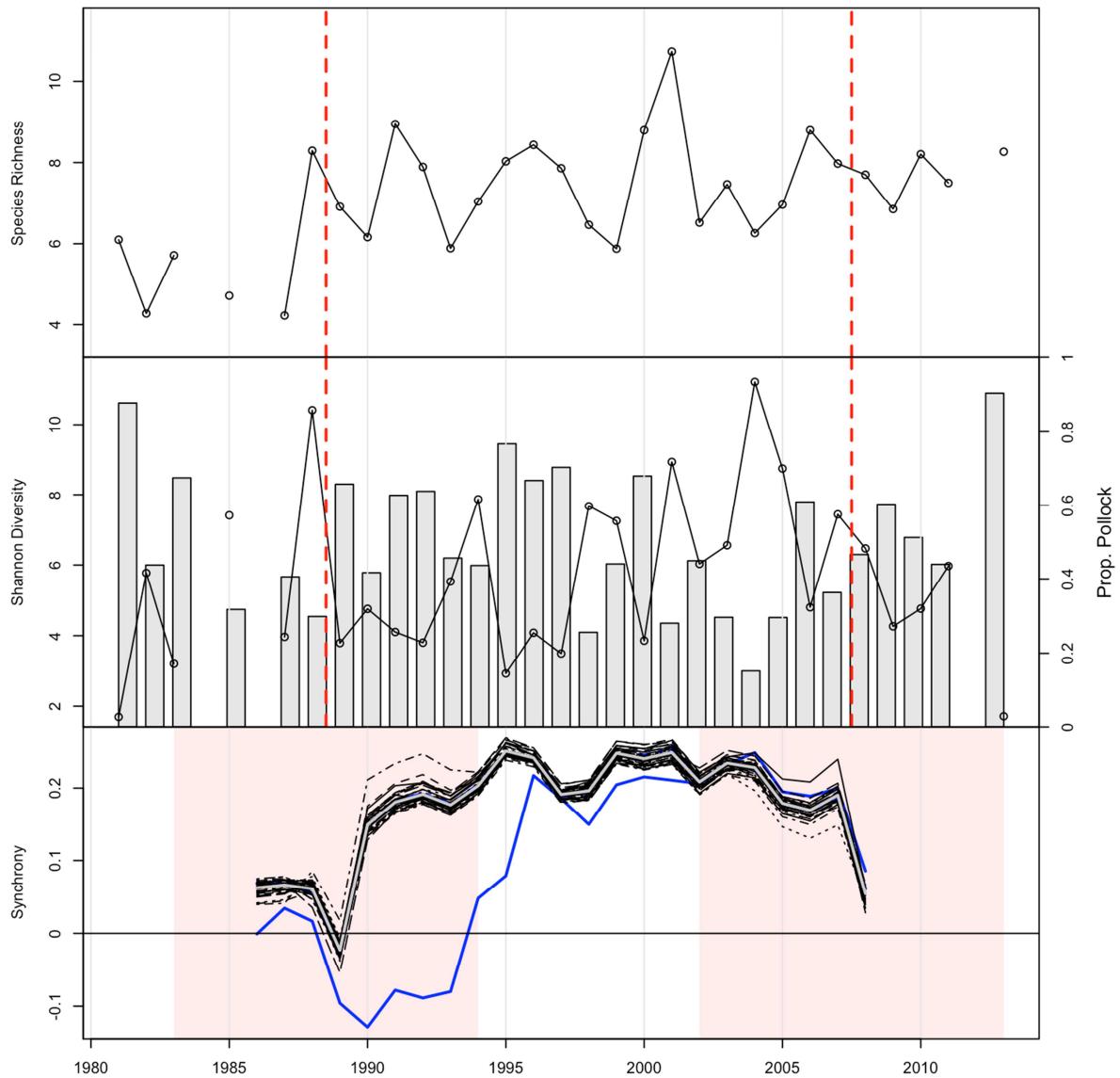
262 *Exploring potential physical and biological drivers of biodiversity and shared trends*

263 Given the documented climate regime shifts in the GOA, we used moving window cross
264 correlation analysis to explore if and how correlations between ichthyoplankton diversity metrics
265 and trends and environmental indices varied over time. There are many examples of
266 nonstationary interactions between environmental/biological indices and fish populations in
267 Alaska ecosystems (Ciannelli et al., 2012; Duffy-Anderson et al., 2005; Litzow and Ciannelli,
268 2007) and other ecosystems as well (Deyle et al., 2013; Myers, 1998; Ottersen et al., 2013; Stige
269 et al., 2013). Often, fish populations seemingly respond to certain dominant variables for a
270 period of time, and then the dominant variables shift. This can be caused by changes in the
271 magnitude of environmental variables, indirect or interacting effects, and shifts in ecosystem
272 state (e.g., Stige et al., 2013; Sugihara et al., 2012). Here, we used a moving window cross-
273 correlation analysis, combining output of the DFA model with potential environmental drivers.
274 We calculated Pearson correlation coefficients between each environmental driver and the two
275 DFA trends and two diversity indices over an 11-year moving window. Ninety percent
276 confidence intervals were calculated using the Pyper-Peterman correction for autocorrelated data

277 (Pyper and Peterman, 1998). We investigated different lengths of moving windows and found
278 the results to be generally robust to window length.

279

280 **Results**


281 *Temporal trends in diversity and synchrony*

282 The diversity and synchrony indices from 1981 to 2013 illustrated shifts in the
283 probability of occurrence and abundance of species (Fig. 2). They also highlight the variable role
284 of pollock in structuring the ichthyoplankton community. Species richness gradually increased
285 over three decades (Fig. 2, upper panel), driven by increased probabilities of occurrence of warm
286 water associated species in the GOA in later years (*Lepidopsetta polyxystra*, *Ophiodon*
287 *elongatus*, *Platichthys stellatus*, and *Sebastes* spp., a complex which is primarily comprised of
288 Pacific ocean perch, *Sebastes alutus*, in spring collections, Appendix A). The Shannon diversity
289 index exhibited strong negative correlation with the proportion of larval pollock observed in the
290 survey (Fig. 2, middle panel). Shannon diversity increased during the 1980s, but dropped
291 between 1988 and 1989, coincident with the 1988/1989 regime shift in the GOA. Shannon
292 diversity was relatively low during the 1990s (except for 1994 when pollock abundance was
293 low). Higher diversity occurred between 1998-2005 (except 2000 when pollock abundance was
294 high), but then declined, with a minimum observed in 2013 (when pollock abundance was very
295 high).

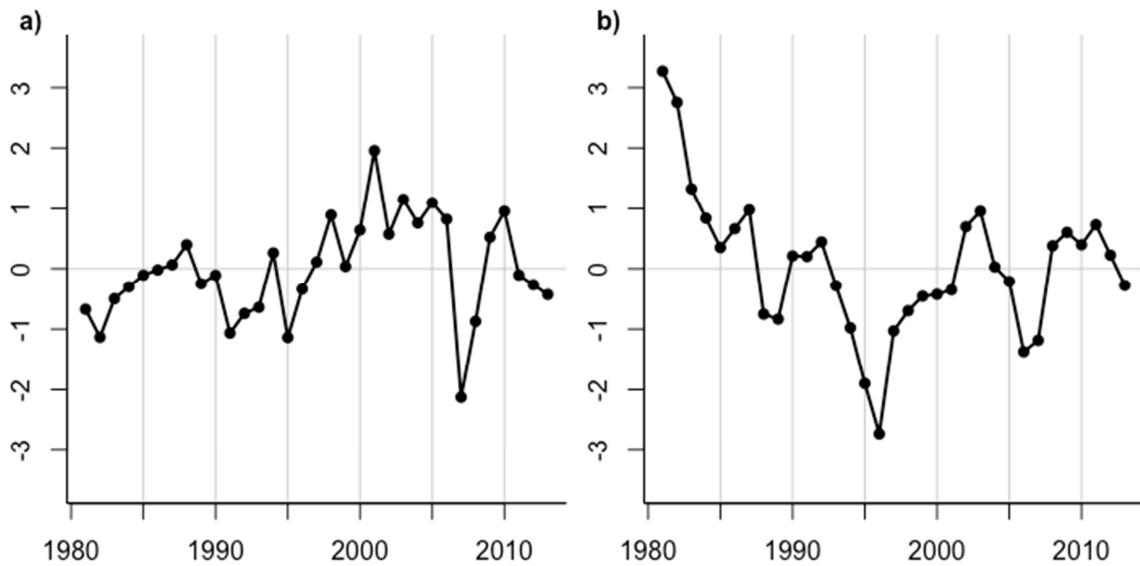
296 The time series of synchrony also shows evidence of abrupt shifts, and reflects the
297 dominant role of pollock in the ichthyoplankton assemblage, particularly in the early years of
298 these data. Pollock clearly drives the overall synchrony index through the early 1990s

299 (difference between blue and gray lines, Fig. 2, lower panel). Removing the effect of pollock, the
300 other ichthyoplankton species were independent to weakly asynchronous during this period (blue
301 line, synchrony values of 0 to -0.2). Synchrony shifted to positive values in the mid-1990s, in
302 metrics with and without pollock, indicating that pollock and rest of the assemblage fluctuated in
303 similar ways from the 1990s to 2013. This positive shift in synchrony coincided with the
304 1988/1989 regime shift in the GOA, reduced dominance of pollock in the samples, and higher
305 Shannon diversity. Synchrony over 2003-2013 dropped as numbers of pollock larvae in the
306 assemblage increased dramatically in 2013.

307

308

309 **Figure 2.** Ichthyoplankton assemblage dynamics between 1981-2013. Top panel shows species
 310 richness. Middle panel shows Shannon diversity (lines) and the proportion of total sampled
 311 larvae that were pollock (bars). Bottom panel shows synchrony within an 11-year moving
 312 window (x-value is midpoint of the window), where each black line represents synchrony with
 313 one species left out of the assemblage. Heavy gray line shows synchrony with all species and the


314 blue line shows synchrony without pollock. Vertical red lines indicate years of regime shifts in
315 the GOA, and shaded red areas in bottom panel indicate the moving windows that include the
316 years of the regime shifts.

317

318 *Constructing shared temporal trends among ichthyoplankton species*

319 We fit 8 potential DFA models to describe shared trends among ichthyoplankton, and model
320 selection with AIC_C revealed the best model was a two-trend model with an equal variance-
321 covariance matrix (Appendix C). The model with the next lowest AIC_C value was nearly 20
322 units higher, thus we did not consider any other candidate models. The best fit model explained
323 28 percent of the total variation.

324 The best-fit model had two shared trends that described the dynamics of the
325 ichthyoplankton assemblage over 1981-2013 (Fig. 3). Trend 1 showed moderate-to- low
326 amplitude until the mid-1990s (most values between 0 and -1 SD of the mean). From 1996 -
327 2010 Trend 1 was generally positive, with a peak in 2001. But, two years in the 2000s (2007-
328 2008) were very low (-2 SD below the mean). The most recent years of Trend 1 were close to the
329 mean. Trend 2 declined from a peak (+3 SD) in 1981 to its lowest value in 1996 (-3 SD). By
330 2000, Trend 2 increased to the mean and has exhibited multi-year fluctuations through 2013,
331 with low values in 2006 and 2007.


332

333 **Figure 3.** Common Trends 1 (a) and 2 (b) estimated from Dynamic Factor Analysis on 40
 334 species of ichthyoplankton from 1981 to 2013.

335 *Describing structure in the ichthyoplankton assemblage*

336 The cluster analysis of species loadings on the trends revealed four groups that
 337 characterized ichthyoplankton assemblage structure (Fig. 4, Tab. 3). Cluster 1 contained species
 338 loading negatively on Trend 2 that increased over the 1980s and 1990s (11 species, Fig. 4).
 339 Many of these species, but not all, occupy waters over the slope as adults and spawn in winter
 340 (Tab. 3). Species loading strongly positive on Trend 2 and weak to positive on Trend 1 formed
 341 another cluster (Cluster 2), which also included species that did not load strongly on either trend.
 342 Some of these species experienced substantial declines in biomass in the 1980s and 1990s
 343 (*Bathymaster spp.* and *Lumpenella longirostris*). The species in Cluster 2 did not appear to share
 344 life history traits (Tab. 3). The third cluster included species loading positively on Trend 1 and
 345 weakly on Trend 2 ($|loading| < 0.2$) that generally increased in abundance after 1996 (Appendices

346 B-C). Of the eight species in that cluster (Fig. 4), several were either warm-water associated or
 347 had more southern ranges (e.g., *Lepidopsetta bilineata*, *Sebastes spp.* (Pacific ocean perch),
 348 *Ophiodon elongatus*, Tab. 3) and/or showed increasing trends in adult biomass over this same
 349 period (Pacific ocean perch). Species in cluster 3 were generally spring spawning with demersal
 350 eggs and occupying benthic shelf habitat as adults. Cluster 4 contained 14 species that loaded
 351 strongly negative on Trend 1, indicating a decrease in abundance after the early 1990s. These
 352 decreasing species included some species that are cold-water associated or have more northern
 353 ranges (e.g. *Lepidopsetta polyxystra*) and/or species where adult abundance has also declined in
 354 recent years (e.g. pollock). Most species in Cluster 4 occupied shelf or nearshore benthic habitat
 355 as adults (Tab. 3).

356

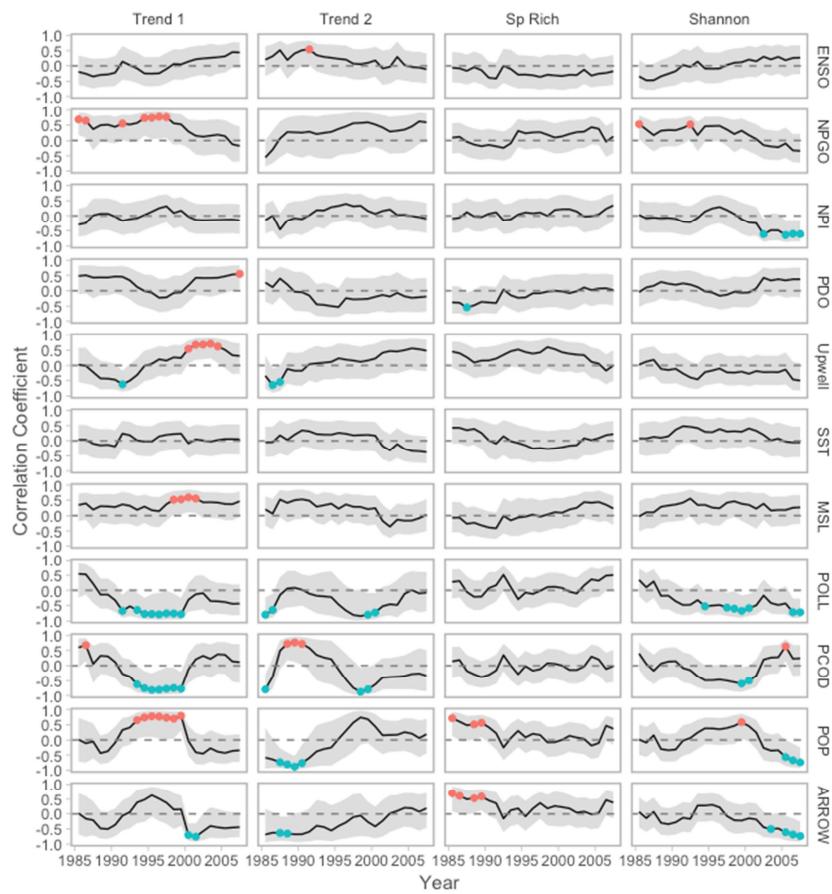
357 **Figure 4.** Loadings of ichthyoplankton species on DFA Trend 1 (x-axis) and Trend 2 (y-axis).
 358 Label shading is proportional to the log-scaled mean abundance of each species across all years.
 359 Point colors indicate clusters identified by hierarchical cluster analysis. Species abbreviations
 360 described in Table 3.

361 **Table 3.** Life history traits of ichthyoplankton assemblage and clusters identified from cluster
 362 analysis

Species	Abbv	Adult Habitat	Adult bathymetric	Spawn timing	Egg Ecology	Larval duration (months)	Range	Cluster
<i>Anoplarchus</i> .spp.	An.sp	benthic	nearshore	spring	demersal	3	northern	1
<i>Icelinus</i> .spp.	Ic.sp	benthic	nearshore	spring	demersal	NA	northern	1
<i>Platichthys</i> .stellatus	Pl.st	benthic	slope	late spring	pelagic	2	southern	1
<i>Stenobrachius</i> .leucopsarus	St.le	pelagic	slope	spring	pelagic	8	both	1
<i>Atheresthes</i> .stomias	At.st	benthic	slope	winter	pelagic	5	both	1
<i>Microstomus</i> .pacificus	Mi.pa	benthic	slope	spring	pelagic	8	southern	1
<i>Bathyagonus</i> .alascanus	Ba.al	benthic	shelf	spring	demersal	3	both	1
<i>Leuroglossus</i> .schmidti	Le.sc	pelagic	slope	winter	pelagic	3	northern	1
<i>Protomyctophum</i> .thompsoni	Pr.th	pelagic	slope	winter	pelagic	8	both	1
<i>Bathylagus</i> .pacificus	Ba.pa	pelagic	slope	winter	pelagic	3	both	1
<i>Zaprora</i> .silenus	Za.si	benthic	slope	spring	demersal	4	northern	1
<i>Bathymaster</i> .spp.	Ba.sp	benthic	shelf	late spring	demersal	5	both	2
<i>Hippoglossoides</i> .elassodon	Hi.el	benthic	slope	early spring	pelagic	4	northern	2
<i>Glyptocephalus</i> .zachirus	Gl.za	benthic	slope	spring	pelagic	8	southern	2
<i>Clupea</i> .pallasi	Cl.pa	pelagic	nearshore, shelf	late spring	demersal	3	southern	2
<i>Lumpenella</i> .longirostris	Lu.lo	benthic	shelf	spring	demersal	3	northern	2
<i>Bathyagonus</i> .infraspinatus	Ba.in	benthic	shelf	spring	demersal	3	both	2
<i>Sebastes</i> .spp.	Se.sp	benthic	slope	spring	live bearing	5	both	3
<i>Isopsetta</i> .isolepis	Is.is	benthic	nearshore, shelf	early spring	pelagic	2	southern	3
<i>Lepidopsetta</i> .bilineata	Le.bi	benthic	shelf	late spring	demersal	4	southern	3
<i>Cryptacanthodes</i> .aleutensis	Cr.al	benthic	shelf	spring	demersal	3	both	3
<i>Poroclinus</i> .rothrocki	Po.ro	benthic	shelf	spring	demersal	4	both	3
<i>Radulinus</i> .spp.	Ra.sp	benthic	shelf	spring	demersal	NA	southern	3
<i>Liparis</i> .fucensis	Li.fu	benthic	shelf	late spring	demersal	2	both	3

Rusarius.meanyi	Ru.me	benthic	shelf	spring	demersal	3	southern	3
Ophiodon.elongatus	Op.el	benthic	shelf	late winter	demersal	3	southern	3
Gadus.chalcogrammus	Ga.ch	benthic	shelf	early spring	pelagic	4	both	4
Ammodytes.personatus	Am.pe	pelagic	nearshore, shelf	late winter	demersal	8	both	4
Gadus.macrocephalus	Ga.ma	benthic	shelf	early spring	demersal	3	northern	4
Lepidopsetta.polyxystra	Le.po	benthic	shelf	early spring	demersal	5	northern	4
Lumpenus.maculatus	Lu.ma	benthic	nearshore	spring	demersal	5	northern	4
Hexagrammos.spp.	He.sp	benthic	nearshore	winter	demersal	8	both	4
Hippoglossus.stenolepis	Hi.st	benthic	slope	winter	pelagic	5	northern	4
Pleuronectes.quadrifilis	Pl.qu	benthic	shelf	late spring	pelagic	2	northern	4
Mallotus.villosus	Ma.vi	pelagic	nearshore	summer	demersal	8	northern	4
Pholis.spp.	Ph.sp	benthic	nearshore	late winter	demersal	3	both	4
Myoxocephalus.spp.	My.sp	benthic	shelf	spring	demersal	5	northern	4
Podothecus.acipenserinus	Po.ac	benthic	shelf	spring	demersal	3	both	4
Triglops.spp.	Tr.sp	benthic	shelf	spring	demersal	3	both	4
Lumpenus.sagitta	Lu.sa	benthic	shelf	late winter	demersal	3	northern	4

363


364 *Potential physical and biological drivers of biodiversity and shared trends*

365 Our analysis of diversity revealed that ichthyoplankton species richness was negatively
 366 correlated with the PDO during one 11-year window (from 1983 to 1993), but was not correlated
 367 with any other environmental drivers over this same period (Fig. 5). Species richness was
 368 generally positively correlated with increasing spawning stock biomass of Pacific ocean perch
 369 and arrowtooth flounder during 1981-1995. Due to declines during this same time period, species
 370 richness was negatively correlated with Pacific cod.

371 Shannon diversity was positively correlated with the NPGO during most of the 1980s and
 372 1990s, but this correlation diminished after the 1988/1989 regime shift (characterized by the
 373 NPGO shifting negative). During the late 1990s to 2013, Shannon diversity was negatively
 374 correlated with the NPI. Shannon diversity was also negatively correlated with lagged pollock
 375 SSB in most years after 1990, echoing the negative correlation between the proportion of larval

376 pollock observed in the spring survey and the Shannon diversity index (Fig 2). SSB of the other
377 species either increased or declined during most of the three decades, which caused inconsistent
378 correlations with the more variable Shannon diversity time series.

379 To guide our interpretation of the common trends from DFA, we examined correlations
380 with environmental indices and SSB indices. Trend 1 was positively correlated with NPGO
381 from 1981 until 2003 (years indicate edges of moving windows, Fig. 5) with both exhibiting
382 similar high values in 2001 and low values in the same years in the 1980s and 1990s (Figs. 3 and
383 D2). The correlation between upwelling and Trend 1 was negative from 1987 to 1997, but
384 switched to positive in 1996 to 2010. Mean sea level was correlated with Trend 1 from 1994 to
385 2002. For fish time series, Trend 1 was negatively correlated with pollock and Pacific cod SSB
386 during 1987 to 2005 and positively correlated with Pacific ocean perch during those same years.
387 Trend 2 was positively correlated with the MEI during 1987 to 1997. Similar to Trend 1, Trend 2
388 was negatively correlated with the upwelling anomaly from 1982-1994. For adult fish indices,
389 both Trend 1 and 2 were correlated with adult pollock, but Trend 2 was negatively correlated in
390 the first few years of the time-series, picking up an extreme value in 1981. In the 1980s and early
391 1990s Trend 2 was also negatively correlated with adult Pacific ocean perch and arrowtooth
392 flounder but positively correlated with Pacific cod. We saw no correlations between Trend 2 and
393 any of the environmental or SSB covariates after 2006.

394

395 **Figure 5.** Moving window cross correlations between environmental and spawning stock
 396 biomass variables and DFA trends and diversity indices. Each panel shows a time series of
 397 Pearson correlations (black line) with 90 percent confidence intervals that account for
 398 autocorrelation (CI, grey-shaded region) with a window length of 11 years (e.g., x-value for 1986
 399 represents years 1981 to 1991). Red and blue points represent correlations in which the
 400 confidence intervals are greater or less than zero, respectively.

401 **Discussion**

402 Our analysis shows that ecological indicators developed from ichthyoplankton surveys
 403 are potentially useful for monitoring and assessing the effects of gradual change and abrupt shifts

404 in Large Marine Ecosystems. The standardized indices of probability of occurrence and
405 abundance we estimated for the 40 ichthyoplankton species shown here represent the most
406 precise and least biased estimates of abundance for spring ichthyoplankton in the GOA over
407 three decades. The biodiversity indices, synchrony, and DFA trends we developed show
408 evidence of long-term gradual change in this ecosystem, as well as supporting evidence for
409 abrupt shifts. These patterns were correlated with several factors: climate shifts that occurred in
410 the North Pacific ecosystem in 1988/1989 and 2007/2008, the influence of pollock - the
411 dominant larval species - on the co-occurring ichthyoplankton assemblage, and the assemblage
412 response to environmental forcing events relative to the abundance of pollock.

413 Species richness and DFA Trend 1 both showed gradual changes from 1981-2013. These
414 trends may reflect a range shift of southern latitude species into the western GOA pursuant to
415 overall ocean warming. Abundances of larval southern rock sole (*L. bilineata*), Pacific ocean
416 perch (*S. alutus*), lingcod (*O. elongatus*), and starry flounder (*P. stellatus*, Appendix B) have
417 increased, consistent with an increase in bottom temperatures in the GOA (Fig. D2). DFA Trend
418 1 separated some warm and cold-water associated species, which could be a leading indicator of
419 replacement of cold water species like northern rock sole (*L. polyxystra*) with a warm water
420 congeneric, southern rock sole, over time. Climate-mediated changes in ichthyoplankton
421 phenology, distribution, and community structure have been documented in other Large Marine
422 Ecosystems (e.g., Asch, 2015; Brodeur et al., 2008; Greve et al., 2005; Walsh et al., 2015) and
423 erratic occurrences of adults of warm water affinity species have been documented recently in
424 the GOA (skipjack tuna (*Katsuwonus pelamis*), ocean sunfish (*Mola mola*), thresher shark
425 (*Alopias vulpinus*; J. Orsi, NOAA AFSC, personal communication).

426 Our results support the idea that large-scale modes of North Pacific atmospheric and
427 oceanographic variability are important environmental drivers of the spring ichthyoplankton
428 assemblage. Specifically, the NPGO appeared to have greater influence than other drivers we
429 explored. While the PDO has received significant attention for contributing to ecosystem regime
430 shifts in the GOA, we found stronger evidence of correlations between the spring
431 ichthyoplankton assemblage and the NPGO over the PDO from the 1980s to the mid 2000s.
432 Litzow and Mueter (2014) noted a similar phenomenon during the same period, which they
433 attributed to the white noise-dominated signal of the PDO during those years. Variations in the
434 NPGO have been correlated to production indices, including shifts in nutrient availability and
435 phytoplankton, zooplankton, and salmon (*Oncorhyncus* spp., Di Lorenzo et al., 2008; Ohlberger
436 et al., 2016; Sydeman et al., 2013). Our results provide further support for the influence of the
437 NPGO on the North Pacific marine ecosystem from the 1980s to mid-2000s.

438 Despite the dominance of the NPGO, our results cannot rule out the PDO as a potential
439 driver of spring ichthyoplankton. Trend 1 was positively correlated with the PDO in the most
440 recent years of data (2003-2013). Further, both DFA trends had strong anomalies in 2007/2008,
441 the same year as the most recent PDO shift. The absence of significant correlations with the
442 PDO in other years may be due to the ichthyoplankton time series beginning several years after
443 the most influential PDO regime shift of 1976/1977. It is also possible that more local indices
444 better reflect ocean conditions most relevant to the spring ichthyoplankton assemblage,
445 suggested by similar correlation patterns between Trend 1 and sea level, upwelling, and the PDO
446 beginning in the mid-1990s. While the dominance of the PDO and NPGO in the North Pacific
447 has been described elsewhere (Bond et al., 2003; Di Lorenzo et al., 2008; Litzow and Mueter,

448 2014), our results demonstrate that the spring larval fish assemblage may be sensitive to the
449 fluctuations and relative strengths of both and therefore may be useful indicators of the impacts
450 of climate variability on lower trophic dynamics in the GOA.

451 Observed positive correlations between Trend 1, upwelling, and some warm water-
452 affinity species may seem counterintuitive. However, “upwelling” in the GOA (a downwelling
453 system) is more accurately a relaxation of the intense downwelling that occurs throughout
454 winter. The climatological upwelling index in summer is near zero (Ladd et al., 2005).

455 Weakened summer winds prompt relaxation events and influxes of cold, deep, slope-origin water
456 during those times are assumed due to observed increases in salinity at depth (Stabeno et al.,
457 2004). Strong vertical stratification in late spring/summer can preclude mixing of on-shelf slope
458 waters to the depths of larval occurrence (typically <50 m in late spring), and shoaling of the
459 mixed layer depth is observed during relaxation events. Moreover, relaxation of downwelling
460 winds reduces the on-shelf flux of cold, basin water in the Ekman surface layer (Ladd et al.
461 2005), which may lead to warmer water near surface during upwelling periods. As such, it may
462 not be so unusual to observe positive relationships between warm-affinity species and
463 downwelling relaxation events in late spring.

464 Both DFA trends bear resemblance to trends from a separate examination of climate-
465 biological interactions using entirely different biological datasets (Litzow and Mueter, 2014). In
466 that paper, the authors also examined the relationships between biological time-series data
467 collected from the GOA (large invertebrates, groundfish recruitment, recruitment of small neritic
468 species, salmon, and zooplankton) and leading climate indices. Their first axis of biological
469 variability was described by a pattern very similar to our DFA Trend 2, with a strong decline

470 noted from the 1970s through the 1990s, and a shift to variability afterward. Inflection points
471 were similar in years 2000-2011, inclusive of very low values in years 2007-2008. Their second
472 axis of biological variability was positive from 1980-1995, and switched to negative between
473 1996-2008. This pattern was similar to our DFA Trend 1. The fact that these two studies,
474 focusing on different species and life stages, found similar trends in biological responses
475 suggests that many components of GOA ecosystem may respond similarly to broad-scale climate
476 forcing, or are in other ways linked.

477 Despite the contrasting patterns of fluctuations indicated by the two DFA trends, the
478 synchrony metric we calculated was generally positive and relatively constant across the three
479 decades. However, we saw asynchrony and independence during the 1980s and early 1990s
480 when pollock were removed from the dataset. This coincided with the highest years of pollock
481 SSB, and many years of high proportional abundance of larval pollock (Figs. 2, D2). This pattern
482 could be explained by several possible mechanisms. An abundance of pollock larvae could
483 indicate ecosystem conditions that are favorable for larval feeding and survival across species. In
484 this case, numerous pollock indicate a hospitable environment (less limiting) that supports an
485 array of prey types, habitat, and refuges. Such an environment could facilitate the expression of
486 species diversity, leading to greater asynchrony across species. In less productive years pollock
487 abundances are low, as are abundances of other species, due to greater ecosystem constraints on
488 resources. Synchrony under constrained conditions might be realized when ecosystem conditions
489 are insufficient to support diversity. Another possible explanation is that the abundance of
490 pollock could modulate the strength of competition among the other larval fish species. Pollock
491 are versatile zooplanktivores and numerically dominant in the system. These qualities may allow

492 them to compete for resources at a level well above that of other co-occurring species. Pollock
493 ascendancy could increase trophic interactions among other species for remaining resources,
494 leading to dissimilar responses, variable competitive outcomes, and differential survivorship.
495 Reduced numbers of pollock larvae in the system could alleviate competition for prey resources
496 and homogenize responses to environmental fluctuations. How pollock abundance could
497 intensify trophic interactions is unclear, though it has been previously-demonstrated that larval
498 pollock grazing can have a measurable effect on zooplankton standing stock due to the sheer
499 numbers of pollock larvae present in the system (Duffy-Anderson et al., 2002). A third
500 possibility is that years of high pollock abundance could trigger predator-mediated apparent
501 competition, where predators of larval pollock increase predation on abundant pollock and less
502 abundant other species simultaneously. Of course, all samples analyzed here were collected from
503 a relatively small geographic region (Kodiak vicinity of the western GOA), so a fourth
504 explanation is that synchrony is reflected as similar responses to local events. Nevertheless, we
505 demonstrated that a pronounced change in synchrony during the 1990s persisted for over a
506 decade, suggesting long-term impacts to the plankton community as a whole.

507 Overall, our work shows that spring ichthyoplankton in the GOA integrates signals from
508 the physical environment and adult spawning stock biomass. Our analyses revealed the
509 composition of the assemblage is indicative of both gradual change and abrupt regime shifts. The
510 biodiversity, synchrony, and DFA trends we presented are a first step towards developing
511 ecosystem indicators from ichthyoplankton time series for the GOA. Ichthyoplankton are an
512 important component of the lower trophic levels of the marine food web, as such, they can

513 provide useful indicators of food availability, and they may also be potential leading indicators
514 of change in marine ecosystems.

515 **Acknowledgements**

516 This work evolved from a working group hosted by the National Center for Ecological Synthesis
517 and Analysis (NCEAS) and funded by the Exxon Valdez Oil Spill Trustee Council. We thank
518 the working group members for discussions and feedback on this work. Thanks to M. Busby for
519 assistance with ichthyoplankton life history traits. We thank three anonymous reviewers, the
520 editor, N. Manuta, and O. Shelton for comments that improved this manuscript. JDA was funded
521 in part by NOAA's North Pacific Climate Regimes and Ecosystems Productivity (NPCREP) and
522 Fisheries and the Environment Program (FATE) Programs. SCA was funded by a David H.
523 Smith Conservation Research Fellowship. This research is contribution EcoFOCI-0882 to
524 NOAA's Fisheries-Oceanography Coordinated Investigations.

525 **References**

526 A'Mar, T., Palsson, W.A., 2015. Assessment of the Pacific cod stock in the Gulf of Alaska. North
527 Pacific Fisheries Management Council.

528 Anderson, P.J., Piatt, J.F., 1999. Community reorganization in the Gulf of Alaska following ocean
529 climate regime shift. *Marine Ecology Progress Series* 189, 117–123.

530 Asch, R.G., 2015. Climate change and decadal shifts in the phenology of larval fishes in the
531 California Current ecosystem. *Proceedings of the National Academy of Sciences* 112,
532 E4065–E4074.

533 Beaugrand, G., Reid, P.C., Ibanez, F., Lindley, J.A., Edwards, M., 2002. Reorganization of North
534 Atlantic marine copepod biodiversity and climate. *Science* 296, 1692–1694.

535 Boeing, W.J., Duffy-Anderson, J.T., 2008. Ichthyoplankton dynamics and biodiversity in the Gulf
536 of Alaska: Responses to environmental change. *Ecological Indicators* 8, 292–302.
537 <https://doi.org/10.1016/j.ecolind.2007.03.002>

538 Bond, N.A., Overland, J.E., Spillane, M., Stabeno, P., 2003. Recent shifts in the state of the North
539 Pacific. *Geophysical Research Letters* 30.

540 Brodeur, R.D., Peterson, W.T., Auth, T.D., Soulen, H.L., Parnell, M.M., Emerson, A.A., 2008.
541 Abundance and diversity of coastal fish larvae as indicators of recent changes in ocean

542 and climate conditions in the Oregon upwelling zone. *Marine Ecology Progress Series*
543 366, 187–202.

544 Ciannelli, L., Bartolino, V., Chan, K.-S., 2012. Non-additive and non-stationary properties in the
545 spatial distribution of a large marine fish population. *Proceedings of the Royal Society of*
546 *London B: Biological Sciences* 279, 3635–3642.

547 Coll, M., Shannon, L.J., Kleisner, K., Juan Jordà, M.J., Bundy, A., Akoglu, A.G., Banaru, D., Boldt,
548 J.L., Borges, M.F., Cook, A., others, 2016. Ecological indicators to capture the effects of
549 fishing on biodiversity and conservation status of marine ecosystems. *Ecological*
550 *Indicators* 60, 947–962.

551 Cottingham, K.L., Brown, B.L., Lennon, J.T., 2001. Biodiversity may regulate the temporal
552 variability of ecological systems. *Ecology Letters* 4, 72–85.

553 Deyle, E.R., Forarty, M., Hsieh, C., Kaufman, L., MacCall, A., Munch, S.B., Perretti, C.T., Ye, H.,
554 Sugihara, G., 2013. Predicting climate effects on Pacific sardine. *Proceedings of the*
555 *National Academy of Science of the United States of America* 110, 6430–6435.

556 Di Lorenzo, E., Schneider, N., Cobb, K.M., Franks, P.J.S., Chhak, K., Miller, A.J., McWilliams, J.C.,
557 Bograd, S.J., Arango, H., Curchitser, E., others, 2008. North Pacific Gyre Oscillation links
558 ocean climate and ecosystem change. *Geophysical Research Letters* 35.

559 Dorn, M.W., Aydin, K., Jones, D., McCarthy, A., Palsson, W.A., Spalinger, K., 2015. Assessment of
560 the Walleye Pollock Stock in the Gulf of Alaska. *North Pacific Fisheries Management*
561 *Council*.

562 Doyle, M.J., Mier, K.L., Busby, M.S., Brodeur, R.D., 2002. Regional variation in springtime
563 ichthyoplankton assemblages in the northeast Pacific Ocean. *Progress in Oceanography*
564 53, 247–281. [https://doi.org/10.1016/S0079-6611\(02\)00033-2](https://doi.org/10.1016/S0079-6611(02)00033-2)

565 Doyle, M.J., Picquelle, S.J., Mier, K.L., Spillane, M.C., Bond, N.A., 2009. Larval fish abundance
566 and physical forcing in the Gulf of Alaska, 1981–2003. *Progress in Oceanography* 80,
567 163–187. <https://doi.org/10.1016/j.pocean.2009.03.002>

568 Duffy-Anderson, J.T., Bailey, K., Ciannelli, L., Cury, P., Belgrano, A., Stenseth, N.C., 2005. Phase
569 transitions in marine fish recruitment processes. *Ecological Complexity* 2, 205–218.

570 Duffy-Anderson, J.T., Bailey, K.M., Ciannelli, L., 2002. Consequences of a superabundance of
571 larval walleye pollock *Theragra chalcogramma* in the Gulf of Alaska in 1981. *Marine*
572 *Ecology Progress Series* 243, 179–190.

573 Duffy-Anderson, J.T., Busby, M.S., Mier, K.L., Deliyanides, C.M., Stabeno, P.J., 2006. Spatial and
574 temporal patterns in summer ichthyoplankton assemblages on the eastern Bering Sea
575 shelf 1996–2000. *Fisheries Oceanography* 15, 80–94. <https://doi.org/10.1111/j.1365-2419.2005.00348.x>

577 Frost, T.M., Fischer, J.M., Klug, J.L., Arnott, S.E., Montz, P.K., 2006. Trajectories Of Zooplankton
578 Recovery In The Little Rock Lake Whole-Lake Acidification Experiment. *Ecological*
579 *Applications* 16, 353–367.

580 Greve, W., Prinage, S., Zidowitz, H., Nast, J., Reiners, F., 2005. On the phenology of North Sea
581 ichthyoplankton. *ICES Journal of Marine Science: Journal du Conseil* 62, 1216–1223.

582 Gross, K., Cardinale, B.J., Fox, J.W., Gonzalez, A., Loreau, M., Wayne Polley, H., Reich, P.B., van
583 Ruijven, J., 2014. Species Richness and the Temporal Stability of Biomass Production: A

584 New Analysis of Recent Biodiversity Experiments. *The American Naturalist* 183, 1–12.
585 <https://doi.org/10.1086/673915>

586 Hoff, G.R., 2006. Biodiversity as an index of regime shift in the eastern Bering Sea. *Fishery*
587 *Bulletin* 104, 226–237.

588 Holmes, E.E., Ward, E.J., Scheuerell, M.D., 2014. Analysis of multivariate time-series using the
589 MARSS package.

590 Hunt, G.L., Coyle, K.O., Eisner, L.B., Farley, E.V., Heintz, R.A., Mueter, F., Napp, J.M., Overland,
591 J.E., Ressler, P.H., Salo, S., others, 2011. Climate impacts on eastern Bering Sea
592 foodwebs: a synthesis of new data and an assessment of the Oscillating Control
593 Hypothesis. *ICES Journal of Marine Science: Journal du Conseil* fsr036.

594 Hutchings, J.A., Baum, J.K., 2005. Measuring marine fish biodiversity: temporal changes in
595 abundance, life history and demography. *Philosophical Transactions of the Royal Society*
596 B: Biological Sciences

597 Jost, L., 2006. Entropy and diversity. *Oikos* 113, 363–375.

598 Keitt, T.H., 2008. Coherent ecological dynamics induced by large-scale disturbance. *Nature* 454,
599 331–334. <https://doi.org/10.1038/nature06935>

600 Kershner, J., Samhouri, J.F., James, C.A., Levin, P.S., 2011. Selecting indicator portfolios for
601 marine species and food webs: a Puget Sound case study. *PLoS one* 6, e25248.

602 Kilduff, D.P., Di Lorenzo, E., Botsford, L.W., Teo, S.L., 2015. Changing central Pacific El Niños
603 reduce stability of North American salmon survival rates. *Proceedings of the National*
604 Academy of Sciences

605 Koslow, J.A., Wright, M., 2016. Ichthyoplankton sampling design to monitor marine fish
606 populations and communities. *Marine Policy* 68, 55–64.

607 Ladd, C., Stabeno, P., Cokelet, E.D., 2005. A note on cross-shelf exchange in the northern Gulf of
608 Alaska. *Deep Sea Research Part II: Topical Studies in Oceanography* 52, 667–679.

609 Liebhold, A., Koenig, W.D., Bjørnstad, O.N., 2004. Spatial synchrony in population dynamics.
610 *Annu. Rev. Ecol. Evol. Syst.* 35, 467–490.

611 Litzow, M., 2006. Climate regime shifts and community reorganization in the Gulf of Alaska:
612 how do recent shifts compare with 1976/1977? *ICES Journal of Marine Science* 63,
613 1386–1396. <https://doi.org/10.1016/j.icesjms.2006.06.003>

614 Litzow, M.A., Ciannelli, L., 2007. Oscillating trophic control induces community reorganization in
615 a marine ecosystem. *Ecology Letters* 10, 1124–1134. <https://doi.org/10.1111/j.1461-0248.2007.01111.x>

617 Litzow, M.A., Mueter, F.J., 2014. Assessing the ecological importance of climate regime shifts:
618 An approach from the North Pacific Ocean. *Progress in Oceanography* 120, 110–119.

619 Litzow, M.A., Mueter, F.J., Hobday, A.J., 2014. Reassessing regime shifts in the North Pacific:
620 incremental climate change and commercial fishing are necessary for explaining
621 decadal-scale biological variability. *Global change biology* 20, 38–50.

622 Longo, C., Halpern, B.S., Lindenmayer, D., Barton, P., Pierson, J., 2015. Building indicators for
623 coupled marine socio-ecological systems. *Indicators and Surrogates of Biodiversity and*
624 *Environmental Change* 137.

625 Manchester, S.J., Bullock, J.M., 2000. The impacts of non-native species on UK biodiversity and
626 the effectiveness of control. *Journal of Applied Ecology* 37, 845–864.

627 Mantua, N.J., Hare, S.R., 2002. The Pacific Decadal Oscillation. *Journal of Oceanography* 58, 35–
628 44.

629 Mantua, N.J., Hare, S.R., Zhang, Y., Wallace, J.M., Francis, R.C., 1997. A Pacific interdecadal
630 climate oscillation with impacts on salmon production. *Bull. Amer. Meteorol. Soc.* 78,
631 1069–1079.

632 Matarese, A.C., Blood, D.M., Picquelle, S.J., Benson, J.L., 2003. Atlas of abundance and
633 distribution patterns of ichthyoplankton from the Northeast Pacific Ocean and Bering
634 Sea ecosystems: based on research conducted by the Alaska Fisheries Science Center
635 (1972–1996).

636 Maunder, M.M., Punt, A.E., 2004. Standardizing catch and effort data: a review of recent
637 approaches. *Fisheries Research* 70, 141–159.

638 McClatchie, S., Duffy-Anderson, J., Field, J.C., Goericke, R., Griffith, D., Hanisko, D.S., Hare, J.A.,
639 Lyczkowski-Shultz, J., Peterson, W.T., Watson, W., others, 2014. Long time series in US
640 fisheries oceanography. *Oceanography* 27, 48–67.

641 Micheli, F., Cottingham, K.L., Bascompte, J., Bjørnstad, O.N., Eckert, G.L., Fischer, J.M., Keitt,
642 T.H., Kendall, B.E., Klug, J.L., Rusak, J.A., 1999. The dual nature of community variability.
643 *Oikos* 161–169.

644 Mittelbach, G.G., Garcia, E.A., Taniguchi, Y., 2006. Fish reintroductions reveal smooth
645 transitions between lake community states. *Ecology* 87, 312–318.

646 Mueter, F.J., Norcross, B.L., 2002. Spatial and temporal patterns in the demersal fish
647 community on the shelf and upper slope regions of the Gulf of Alaska. *Fishery Bulletin*
648 100, 559–581.

649 Mueter, F.J., Norcross, B.L., 2000. Changes in species composition of the demersal fish
650 community in nearshore waters of Kodiak Island, Alaska. *Canadian Journal of Fisheries
651 and Aquatic Sciences* 57, 1169–1180.

652 Myers, R.A., 1998. When Do Environment–recruitment Correlations Work? *Reviews in Fish
653 Biology and Fisheries* 8, 285–305. <https://doi.org/10.1023/a:1008828730759>

654 Ohlberger, J., Scheuerell, M.D., Schindler, D.E., 2016. Population coherence and environmental
655 impacts across spatial scales: a case study of Chinook salmon. *Ecosphere* 7.

656 Ono, K., 2014. The spatial dimensions of fisheries: improved use of spatial information into
657 fisheries management and information for assessments. University of Washington.

658 Ottersen, G., Stige, L.C., Durant, J.M., Chan, K.-S., Rouyer, T.A., Drinkwater, K.F., Stenseth, N.C.,
659 2013. Temporal shifts in recruitment dynamics of North Atlantic fish stocks: effects of
660 spawning stock and temperature. *Marine Ecology Progress Series* 480, 205–225.

661 Overland, J.E., Adams, J.M., Bond, N.A., 1999. Decadal variability of the Aleutian Low and its
662 relation to high-latitude circulation. *Journal of Climate* 12, 1542–1548.

663 Pennington, M., 1983. Efficient estimators of abundance, for fish and plankton surveys.
664 *Biometrics* 281–286.

665 Perry, A.L., 2005. Climate Change and Distribution Shifts in Marine Fishes. *Science* 308, 1912–
666 1915. <https://doi.org/10.1126/science.1111322>

667 Pyper, B.J., Peterman, R.M., 1998. Comparison of methods to account for autocorrelation in
668 correlation analyses of fish data. *Canadian Journal of Fisheries and Aquatic Sciences* 55,
669 2127–2140.

670 Reynolds, R.W., Rayner, N.A., Smith, T.M., Stokes, D.C., Wang, W., 2002. An improved in situ
671 and satellite SST analysis for climate. *Journal of climate* 15, 1609–1625.

672 Rue, H., Martino, S., Lindgren, F., Simpson, D., Riebler, A., Krainski, E.T., 2009. INLA: Functions
673 which allow to perform a full Bayesian analysis of structured (geo-) additive models
674 using Integrated Nested Laplace Approximation. R Package version 0.0 ed.

675 Ruiz-Cárdenas, R., Krainski, E.T., Rue, H. avard, 2012. Direct fitting of dynamic models using
676 integrated nested laplace approximations—INLA. *Computational Statistics & Data
677 Analysis* 56, 1808–1828.

678 Scheffer, M., Carpenter, S., Foley, J.A., Folke, C., Walker, B., 2001. Catastrophic shifts in
679 ecosystems. *Nature* 413, 591–596.

680 Shelton, A.O., Hunsicker, M.E., Ward, E.J., Feist, B.E., Blake, R., Ward, C.L., Williams, B.C., Duffy-
681 Anderson, J.T., Hollowed, A.B., Haynie, A.C., 2017. Spatio-temporal models reveal subtle
682 changes to demersal communities following the Exxon Valdez oil spill. *ICES Journal of
683 Marine Science*.

684 Shelton, A.O., Thorson, J.T., Ward, E.J., Feist, B.E., 2014. Spatial semiparametric models improve
685 estimates of species abundance and distribution. *Canadian Journal of Fisheries and
686 Aquatic Sciences* 71, 1655–1666.

687 Spies, I., Turnock, B.J., 2015. Assessment of the arrowtooth flounder stock in the Gulf of Alaska.
688 North Pacific Fishery Management Council, PO Box 103136.

689 Stabeno, P.J., Bond, N.A., Hermann, A.J., Kachel, N.B., Mordy, C.W., Overland, J.E., 2004.
690 Meteorology and oceanography of the Northern Gulf of Alaska. *Continental Shelf
691 Research* 24, 859–897.

692 Stige, L.C., Hunsicker, M.E., Bailey, K.M., Yaragina, N.A., Hunt Jr, G.L., 2013. Predicting fish
693 recruitment from juvenile abundance and environmental indices. *Marine Ecology
694 Progress Series* 480, 245–261.

695 Sugihara, G., May, R., Ye, H., Hsieh, C.H., Deyle, E., Fogarty, M., Munch, S., 2012. Detecting
696 causality in complex ecosystems. *Science* 338, 496–500.
697 <https://doi.org/10.1126/science.1227079>

698 Sydeman, W.J., Santora, J.A., Thompson, S.A., Marinovic, B., Lorenzo, E.D., 2013. Increasing
699 variance in North Pacific climate relates to unprecedented ecosystem variability off
700 California. *Global Change Biology* 19, 1662–1675.

701 Thorson, J.T., Shelton, A.O., Ward, E.J., Skaug, H.J., 2015. Geostatistical delta-generalized linear
702 mixed models improve precision for estimated abundance indices for West Coast
703 groundfishes. *ICES Journal of Marine Science: Journal du Conseil* fsu243.

704 Tibshirani, R., Walther, G., Hastie, T., 2001. Estimating the number of clusters in a data set via
705 the gap statistic. *Journal of the Royal Statistical Society: Series B (Statistical
706 Methodology)* 63, 411–423.

707 Tilman, D., 1996. Biodiversity: population versus ecosystem stability. *Ecology* 77, 350–363.

708 Trenberth, K.E., Hurrell, J.W., 1994. Decadal atmosphere-ocean variations in the Pacific. *Climate*
709 *Dynamics* 9, 303–319.

710 Vasseur, D.A., Gaedke, U., 2007. Spectral analysis unmasks synchronous and compensatory
711 dynamics in plankton communities. *Ecology* 88, 2058–2071.

712 Walsh, H.J., Richardson, D.E., Marancik, K.E., Hare, J.A., 2015. Long-Term Changes in the
713 Distributions of Larval and Adult Fish in the Northeast U.S. Shelf Ecosystem. *PLOS ONE*
714 10, e0137382. <https://doi.org/10.1371/journal.pone.0137382>

715 Walther, G.-R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T.J., Fromentin, J.-M.,
716 Hoegh-Guldberg, O., Bairlein, F., 2002. Ecological responses to recent climate change.
717 *Nature* 416, 389–395.

718 Ward, E.J., Jannot, J.E., Lee, Y.-W., Ono, K., Shelton, A.O., Thorson, J.T., 2015. Using
719 spatiotemporal species distribution models to identify temporally evolving hotspots of
720 species co-occurrence. *Ecological Applications* 25, 2198–2209.

721 Wolter, K., Timlin, M.S., 1998. Measuring the strength of ENSO events: how does 1997/98 rank?
722 *Weather* 53, 315–324.

723 Wolter, K., Timlin, M.S., 1993. Monitoring ENSO in COADS with a seasonally adjusted principal
724 component index, in: Proc. of the 17th Climate Diagnostics Workshop.

725 Worm, B., Barbier, E.B., Beaumont, N., Duffy, J.E., Folke, C., Halpern, B.S., Jackson, J.B., Lotze,
726 H.K., Micheli, F., Palumbi, S.R., others, 2006. Impacts of biodiversity loss on ocean
727 ecosystem services. *science* 314, 787–790.

728 Yasunaka, S., Hanawa, K., 2002. Regime shifts found in the Northern Hemisphere SST field.
729 *Journal of the Meteorological Society of Japan. Ser. II* 80, 119–135.

730 Zuur, A.F., Tuck, I.D., Bailey, N., 2003. Dynamic factor analysis to estimate common trends in
731 fisheries time series. *Canadian Journal of Fisheries and Aquatic Sciences* 60, 542–552.
732 <https://doi.org/10.1139/f03-030>

733

734

735 **Supplementary Material**

736 Appendix A: Time series of standardized probabilities of occurrence by species

737 Appendix B: Time series of standardized abundance by species

738 Appendix C: Model predictions from Dynamic Factor Analysis, by species

739 Appendix D: Model selection table, time series of environmental and SSB indices, and time
740 series of GAK1 temperature

741