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Understanding and tracking how ecosystems respond to changing environments is an ongoing 22 

challenge. Marine ecosystems in the North Pacific support productive fisheries and diverse 23 

ecosystem services, and they are subject to large-scale environmental, human, and ecological 24 

perturbations.  Ichthyoplankton time-series from these ecosystems may provide an important 25 

indicator of lower trophic level dynamics and ecosystem functioning. Here we present a 26 

spatiotemporal analysis using data from three decades of ichthyoplankton surveys in the Gulf of 27 

Alaska to investigate temporal patterns in indicators of species richness, Shannon diversity, and 28 

synchrony.  Then we use Dynamic Factor Analysis (DFA) to synthesize the ichthyoplankton 29 

assemblage with two dominant trends.  We relate the biodiversity indices and DFA trends to 30 

local and regional climate indices in the North Pacific.  We find evidence for increased 31 

temperatures driving increased species richness, and changes in synchrony coincident with 32 

shifting assemblage composition and the 1988/1989 regime shift. Shannon diversity was largely 33 

driven by the dominance of larval walleye pollock (Gadus chalcogrammus).  Correlations 34 

between climate drivers and DFA trends suggest that the influence of basin scale drivers (North 35 

Pacific Gyre Oscillation and the Pacific Decadal Oscillation) was stronger than the influence of 36 

local-scale drivers like regional sea surface temperature.  Our work demonstrates the potential 37 

value of ichthyoplankton surveys to provide indicators of climate-driven ecosystem variability 38 

and long-term ecological change. 39 

Keywords 40 
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Understanding how species, communities, and ecosystems respond to changing 44 

environments and how to track those responses remains a fundamental challenge. In marine 45 

ecosystems, for example, changes in fishing, climate, and oceanographic conditions can have a 46 

range of biological consequences from no effect to strong cascading effects that propagate 47 

through a food web (Hunt et al., 2011). A key part of this challenge is the complexity of 48 

biophysical systems, and one way to reduce the dimensionality is to focus on ecological 49 

indicators that can track shifts in community structure or the physical environment (Coll et al., 50 

2016). For example, indicators of biodiversity are commonly proposed because they integrate 51 

across biotic scales, rely on data derived from multiple species, and can represent shifts in the 52 

status of groups of species, community vulnerabilities, species loss, the adaptive capacities of 53 

species and ecosystems, and ecosystem complexity and stability (Coll et al., 2016; Kershner et 54 

al., 2011; Longo et al., 2015).  55 

While biodiversity metrics provide insight on the status of an assemblage or community 56 

at a point in time, synchrony metrics describe how population abundances or biomasses fluctuate 57 

through time with respect to each other (Micheli et al., 1999). Synchrony can reflect the extent to 58 

which the response to a stochastic, exogenous forcing factor is coincident among species, or it 59 

can represent the intensity, strength, and coherence of trophic interactions (Liebhold et al., 2004). 60 

Large-scale forcing events have been shown to increase synchrony with coincident changes 61 

observed across species (Cottingham et al., 2001; Keitt, 2008; Tilman, 1996; Vasseur and 62 

Gaedke, 2007), potentially destabilizing systems by unifying community response. The 63 

consequences of a perturbation can be ephemeral, temporarily driving the community out of a 64 

stable configuration, or enduring, forcing the system into a new stable state. Previous research 65 
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has shown that effects of small-scale forcing events may be temporary (Duffy-Anderson et al., 66 

2006; Frost et al., 2006; Mittelbach et al., 2006), while large-scale events can have effects that 67 

persist over several decades (Beaugrand et al., 2002; Scheffer et al., 2001; Walsh et al., 2015; 68 

Walther et al., 2002). 69 

One of the largest marine ecosystems in the world where the interactions between climate 70 

forcing, species interactions, and ecosystem resilience have been studied extensively is the Gulf 71 

of Alaska (GOA). As a high-latitude system, the GOA is susceptible to climate-mediated 72 

environmental variation and rapid changes in population and community structure.  Extensive 73 

sampling of the marine environment has occurred since the early 1980s, providing important 74 

time series that can be used to evaluate effects of decadal-scale regime shifts.  The most well-75 

known shift occurred in 1976/1977 characterized by a phase shift of the Pacific Decadal 76 

Oscillation (PDO), the first mode of variability in sea surface temperature in the North Pacific 77 

Ocean, from a negative to positive value (Mantua and Hare, 2002).  This shift was accompanied 78 

by an intensified Aleutian Low (AL) pressure system, ocean warming, increased circulation, and 79 

increased stratification that persisted for over two decades.  A second regime shift occurred in 80 

1988/1989, driven by a strong polar vortex and weak AL (Overland et al., 1999; Yasunaka and 81 

Hanawa, 2002) that lowered ocean temperatures and weakened overall circulation.  Unlike the 82 

well-characterized PDO-driven regime shift of 1976/1977, the 1988/1989 shift was not described 83 

by PDO variability.  Instead, a shift in the North Pacific Gyre Oscillation (NPGO), which 84 

describes the second mode of variability of SST and relates to the gyre circulation and chemical 85 

and biological properties in GOA, characterized this regime (Bond et al., 2003; Di Lorenzo et al., 86 

2008; Kilduff et al., 2015).  This second shift raised awareness of the complex and dynamic 87 
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relationships between the major (physical) atmospheric and oceanographic forcing variables, 88 

beyond the PDO.  A third regime shift in 2007/2008 was less well described but is potentially 89 

important.  A recent comprehensive examination by Litzow and Mueter (2014) described the 90 

2007/2008 shift as a transition to a PDO-negative, NPGO-positive state, featuring lower ocean 91 

temperatures and changing circulation.  92 

Other large-scale climate drivers may also correlate with variability in the GOA.  The 93 

Multivariate El Niño/Southern Oscillation Index (MEI) combines sea level pressure, winds, sea 94 

surface temperature, air temperatures, and cloudiness across the tropical Pacific (Wolter and 95 

Timlin, 1998, 1993). The North Pacific Index (NPI) describes sea level pressure over the area 96 

30N-65N, 160E-140W (Trenberth and Hurrell, 1994). The GOA is typically a downwelling 97 

system and the relaxation of that downwelling relates to Ekman transport driven by wind stress, 98 

which could affect cross-shelf transport.  99 

In addition to being a system that has experienced several large-scale climate shifts, the 100 

GOA has also been the focus of long-term monitoring programs across multiple trophic levels in 101 

the marine environment.  A number of these datasets have been used to examine fish community 102 

response to the climate-mediated perturbations described above, including regime shifts 103 

(Anderson and Piatt, 1999; Litzow, 2006; Mueter and Norcross, 2002, 2000; Shelton et al., 104 

2017). Though less studied (but see Boeing and Duffy-Anderson, 2008; Doyle et al., 2009), high 105 

resolution datasets of fish early life-history stages may be useful for understanding climate-106 

mediated impacts on fisheries.  In particular, early life-history stages of fishes have informed 107 

studies on the effects of non-native species (Manchester and Bullock, 2000), stock reductions 108 

(Hoff, 2006; Hutchings and Baum, 2005), spatial shifts (Perry, 2005), and restructured trophic 109 
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interactions (Worm et al., 2006). One of the most data rich surveys that has spanned multiple 110 

climate shifts in the GOA is run by the Ecosystems and Fisheries Oceanography Coordinated 111 

Investigations (EcoFOCI) program, which has been collecting marine fish larvae from the 112 

western GOA since the 1970s, and systematically over a gridded survey since the early 1980s 113 

(McClatchie et al., 2014). These surveys are fishery independent, may provide early indicators of 114 

future changes in the adult fish community, and may describe changes in adult species 115 

composition, species interactions, spawning distribution, and phenology.  As such, they are 116 

useful indicators of bottom-up forcing on overall fish communities. 117 

In this paper, we use three decades of ichthyoplankton data collected from the western 118 

GOA to examine temporal variability in the structure of the spring ichthyoplankton assemblage 119 

with respect to large-scale climate regimes. Our objectives were threefold: 1) explore temporal 120 

trends in larval fish assemblage structure, biodiversity, synchrony, and pollock dominance; 2) 121 

describe temporal trends shared among multiple species in the assemblage; and 3) explore 122 

potential physical and biological drivers of patterns in shared trends and diversity indices. We 123 

use the term “larval assemblage” to refer to co-occurring species, and the term “larval 124 

community” to refer to groups of larvae that may interact directly or indirectly through shared 125 

prey resources. 126 

 127 

Methods 128 

Ichthyoplankton sampling 129 

Ichthyoplankton data were collected in May and June from the western GOA by the 130 

EcoFOCI from 1972 – 2013 (Table 1; McClatchie et al., 2014). These surveys were conducted 131 
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annually, with the exception of years 1984, 1986, and 2012. The historical distribution of 132 

ichthyoplankton sampling extends along the Alaskan mainland and Peninsula on the continental 133 

shelf from Prince William Sound southwest to Unimak Island (Fig. 1).  The most intense 134 

sampling has been in the vicinity of Shelikof Strait and Shelikof Sea Valley from mid-May 135 

through early June.  Ichthyoplankton were collected from oblique tows from the bottom (or 100 136 

m depth maximum) to the surface with a 60 cm diameter bongo net (333 or 505 mm mesh) in a 137 

standardized manner (Matarese et al., 2003). Data from both bongo net mesh sizes were 138 

combined as prior analyses indicated no significant differences in ichthyoplankton catch rates 139 

(selected species) between the two mesh sizes (333 um and 505 um; Boeing and Duffy-140 

Anderson, 2008). Calibrated flowmeters in the net mouth were used to estimate the volume of 141 

water filtered. Samples were preserved in 5% formalin at sea and returned to the laboratory for 142 

sorting.  All ichthyoplankton were sorted at the Plankton Sorting and Identification Center in 143 

Szczecin, Poland.  Species were enumerated, identified to the lowest taxonomic level possible, 144 

and measured.  Fish larvae from sorted samples were returned to the National Oceanic and 145 

Atmospheric Administration’s Alaska Fisheries Science Center (AFSC), taxonomic 146 

identifications were verified, and all data were archived in a relational database housed at the 147 

AFSC (also available online from the Ichthyoplankton Information System 148 

http://access.afsc.noaa.gov/ichthyo/index.cfm).  149 

Environmental and Biological Indices 150 

We used large-scale climate indices and spatially targeted descriptors of the physical 151 

environment in our study region to investigate the influence of environmental indices on 152 

ichthyoplankton (Tab. 1). We calculated a local temperature index from satellite monthly mean 153 
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temperatures within the study area.  We also calculated a local sea level index from tide gauge 154 

data from the closest station to the study area that had complete data over the study years 155 

(Seldovia).  In all cases, we used data from the first half of the year (Jan-June) to represent the 156 

period during which most species spawned and ichthyoplankton were collected. 157 

The presence and abundance of early life stages may reflect the status or abundance of 158 

adult life stages during spawning (Koslow and Wright, 2016). To account for this, we used 159 

spawning stock biomasses (SSB) of three of the most abundant species, pollock, Pacific cod 160 

(Gadus macrocephalus), and arrowtooth flounder (Atheresthes stomias), from the 2015 GOA 161 

stock assessments to represent these potential biological drivers (A’Mar and Palsson, 2015; Dorn 162 

et al., 2015; Spies and Turnock, 2015). We lagged SSB by one year such that SSB was a 163 

predictor for the following spring’s ichthyoplankton data. 164 

Index Description Source Reference 

PDO Pacific Decadal Oscillation: 
Average of monthly anomalies 
from Jan thru June, 1981-2013 

http://jisao.washington.edu/pd
o/PDO.latest 

(Mantua et al., 1997) 

NPGO North Pacific Gyre Oscillation: 
Average of monthly anomalies 
from Jan thru June, 1981-2013 

http://www.o3d.org/npgo/npgo
.php 

(Di Lorenzo et al., 2008) 

MEI Multivariate ENSO Index: 
Average of bimonthly values from 
Jan thru June, 1981-2013 

http://www.esrl.noaa.gov/psd/
enso/mei/table.html 

(Wolter and Timlin, 1998, 
1993) 

NPI North Pacific Index: Average of 
bimonthly values from Jan thru 
June, 1981-2013 

https://climatedataguide.ucar.e
du/sites/default/files/climate_i
ndex_files/npindex_monthly.a
scii 

(Trenberth and Hurrell, 
1994) 

SST Sea Surface Temperature: average 
of monthly means from Jan thru 
June, 1982-2013, subsetted to 
90% quantiles of lat-long of 
ichthyoplankton data 

http://www.esrl.noaa.gov/psd/
data/gridded/data.noaa.oisst.v2
.html 

(Reynolds et al., 2002) 

Upwelling Upwelling index: average of 
monthly anomalies from Jan thru 

http://www.pfeg.noaa.gov/pro
ducts/PFELData/upwell/month
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June, 1981-2013, from station at 
60°N 149°W  

ly/upanoms.mon 

MSL Mean Sea Level: average of 
monthly mean water level from 
Jan thru June, 1981-2013, from 
Seldovia, AK (9455500) 

https://tidesandcurrents.noaa.g
ov/inventory.html?id=9455500 

 

POLL Pollock spawning stock biomass, 
1981-2013 

 (Dorn et al., 2015) 

PCOD Pacific cod spawning stock 
biomass, 1981-2013 

 (A’Mar and Palsson, 2015) 

ARR Arrowtooth flounder spawning 
stock biomass, 1981-2013 

 (Spies and Turnock, 2015) 

 165 

Table 1. Environmental and biological variables investigated to explain temporal variation in 166 

ichthyoplankton assemblage 167 
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168 
Figure 1. Map of historical ichthyoplankton sampling for EcoFOCI using plankton nets in the 169 

Gulf of Alaska (1972 – 2013). Points show all sampled locations over all years.  Blue points 170 

were those locations included in the present analyses, representing the 90 percent quantiles of the 171 

tow locations. 172 

Ichthyoplankton index standardization  173 
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We applied spatiotemporal index standardization methods to account for spatiotemporal 174 

variability in sampling effort and autocorrelation. Though these methods are increasingly used in 175 

fisheries (Shelton et al., 2014; Thorson et al., 2015), to our knowledge this is the first time they 176 

have been applied to larval fish data or sampling of smaller organisms. These methods extend 177 

generalized linear mixed models to include spatial random effects, and have been shown to 178 

substantially reduce bias and uncertainty compared to traditional strata-based estimators 179 

(Thorson et al., 2015). Because ichthyoplankton densities are commonly zero-inflated, we 180 

applied models in a delta-generalized linear model (GLM) framework, fitting one statistical 181 

model to presence-absence data to describe variability in occurrence, and a second model to 182 

density data to describe variability in positive catch rates (Maunder and Punt, 2004; Pennington, 183 

1983). Estimation was conducted separately for each species as latent Gaussian Markov random 184 

fields in the R package INLA (Rue et al., 2009; Ruiz-Cárdenas et al., 2012). Following previous 185 

work with Gaussian processes models and marine organisms, we modeled the spatial correlation 186 

between locations with a Matérn covariance function (Ono, 2014; Ward et al., 2015). 187 

We focused our modeling efforts on the most abundant 40 species in the ichthyoplankton 188 

surveys (1981-2013), representing 90% of occurrences in the dataset (Tab. 2). Preliminary 189 

analyses showed that including additional species beyond the top 40 resulted in poor 190 

convergence of the standardization method, and therefore we chose 40 species as a cut-off. In 191 

some cases, species were aggregated to the genus level due to interannual variation in taxonomic 192 

resolution or to include taxa that would have otherwise been dropped due to lower species-193 

specific occurrences. Spatially, surveys are most often concentrated in Shelikof Strait and 194 

Shelikof Sea Valley, though more recent efforts have expanded the sampling to the north or east 195 
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sides of Kodiak Island (Fig. 1).  To reduce the influence of infrequently sampled locations, we 196 

restricted samples to the core sampling area, defined as those 20 x 20 km grids contained within 197 

the 90% quantiles of all grids sampled. 198 

Table 2.  Top 40 most commonly occurring species collected from ichthyoplankton sampling 199 

1981-2013.  Percent occurrence calculated as number of tows in which each species was 200 

observed over all records and all years. 201 

Family Species Name Common Name 
Percent 
Positive 
Tows 

Clupeidae Clupea pallasi Pacific herring 0.468 

Bathylagidae Leuroglossus schmidti Northern smoothtongue 0.844 

 Bathylagus pacificus Slender blacksmelt 0.353 

Osmeridae Mallotus villosus capelin 0.293 

Myctophidae Protomyctophum thompsoni Northern flashlight fish 0.412 

  Stenobrachius leucopsarus Northern lampfish 4.656 

Gadidae Gadus macrocephalus Pacific cod 6.477 

  Gadus chalcogrammus Walleye pollock 11.216 

Scorpaenidae Sebastes spp. Rockfishes 4.881 

Hexagrammidae Ophiodon elongatus Ling cod 0.35 

  Hexagrammos spp. Greenlings 1.266 

Cottidae Icelinus spp. Sculpins 4.36 

  Myoxocephalus spp. Sculpins 0.584 

  Radulinus spp. Sculpins 1.187 

  Ruscarius meanyi Puget Sound sculpin 0.656 

  Triglops spp. Scuplins 0.178 

Agonidae Bathyagonus alascanus Gray starsnout 2.833 

  Bathyagonus infraspinatus Spinycheek starsnout 0.534 

  Podothecus acipenserinus Sturgeon poacher 0.185 

Liparidae Liparis fucensis Slipskin snailfish 1.049 

Bathymasteridae Bathymaster spp. Ronquils 8.577 

Stichaeidae Lumpenella longirostris Longsnout prickleback 0.554 

  Lumpenus maculatus Daubed shanny 1.273 

  Lumpenus sagitta Snake prickleback 0.162 

  Poroclinus rothrocki Whitebarred prickleback 1.721 
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  Anoplarchus spp. Cockscombs 2.404 

Cryptacanthodidae Cryptacanthodes aleutensis Dwarf wrymouth 2.058 

Pholididae Pholis spp.  Gunnels 3.034 

Zaproridae Zaprora silenus Prowfish 0.765 

Ammodytidae Ammodytes personatus Pacific sandlance 9.468 

Pleuronectidae Atheresthes stomias Arrowtooth flounder 2.572 

  Glyptocephalus zachirus Rex sole 1.19 

  Hippoglossoides elassodon Flathead sole 10.094 

  Hippoglossus stenolepis Pacific halibut 1.342 

  Isopsetta isolepis Butter sole 0.861 

  Lepidopsetta bilineata Southern rock sole 3.453 

  Lepidopsetta polyxystra Northern rock sole 4.762 

  Microstomus pacificus Dover sole 0.854 

  Platichthys stellatus Starry flounder 2.49 

  
Pleuronectes 
quadrituberculatus 

Alaska plaice 0.772 

 202 

We conducted Markov chain Monte Carlo sampling from the approximate posterior 203 

distribution of each delta-GLM model, and used the resulting estimates of occurrence and 204 

positive catch rates to generate estimates of density. We projected these estimates to the centroid 205 

of an equally spaced 2-km grid within the core survey area, and summed the estimates across 206 

grid cells to generate an annual index of abundance. Repeating this process across posterior 207 

samples allowed us to compute posterior credible intervals for the density of each species in each 208 

year. For subsequent analyses, we used the means of the posterior densities of abundance for 209 

each species in each year. Code and data to replicate the analysis is available at 210 

https://github.com/NCEAS/pfx-ichthyo. 211 

 212 

Describing temporal trends in species diversity 213 
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We estimated annual species richness and Shannon diversity indices from the standardized time 214 

series of ichthyoplankton abundances. Species richness was calculated from the presence-215 

absence model output as the sum of probabilities (pi) of presence of each species i in each year y 216 

across s species: �� = ∑ ����
��	 . Shannon diversity represents the evenness of species present. 217 

We chose the Shannon index over other diversity metrics because it is least sensitive to dominant 218 

species (Jost, 2006) and pollock is dominant in our data (Fig. 2). We calculated the Shannon 219 

index from the standardized indices of abundance: 
� = −∑ ��� log ����
��	  220 

 221 

Describing temporal trends in synchrony among species 222 

Synchrony describes the similarity or dissimilarity of a group of species fluctuations through 223 

time. Like diversity, many metrics of synchrony exist, each with strengths and weaknesses.  224 

Gross et al. (2014) recently proposed a synchrony metric based on correlations, which they 225 

showed to be less sensitive to dominant species than other metrics based on variances or 226 

coefficient of variations (CVs).  Gross’s metric represents the correlation between the biomass of 227 

each species and the total biomass of all the other species, averaged across species: � =228 

�	��∑ ���(��, ∑ ��)����  where Yi is the biomass of species i in s species. This metric varies 229 

between -1 (maximum asynchrony) and 1 (perfect synchrony), and is centered on 0 when species 230 

fluctuate independently.   231 

We calculated a time series of synchrony using a moving window approach over 11-year 232 

intervals such that the value of synchrony in 1991 represents the period over the previous 11 233 

years (1981-1991). We investigated the sensitivity of synchrony to each contributing species in 234 
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the assemblage by jackknifing each species out of the analysis one at a time and re-calculating 235 

the synchrony metric.  236 

 237 

Describing shared temporal trends among ichthyoplankton species 238 

We used Dynamic Factor Analysis (DFA) to describe the dominant patterns or trends in the 239 

standardized ichthyoplankton data. DFA is a multivariate approach for time series data (Zuur et 240 

al., 2003). Similar to a principal components analysis, DFA decomposes multivariate data into a 241 

smaller number of components that describe the dominant patterns in the data.  In DFA, the 242 

shared trends and loadings of each species on each trend are estimated.  We performed the DFA 243 

using the MARSS package in R (Holmes et al., 2014, p. 201) on the standardized 244 

ichthyoplankton time-series after rescaling each species by subtracting its mean and dividing by 245 

its standard deviation across all years.  AICc was used to determine the most parsimonious 246 

model. We considered DFA models with 1-4 trends, and diagonal covariance matrices with 247 

either equal or unequal elements. Missing values from years without surveys were treated as 248 

NAs. Rotated trends and loadings were calculated using a varimax rotation (Zuur et al., 2003).  249 

We describe the proportion of variation explained by the best-fit DFA model using the residuals 250 

from the model prediction and means of the standardized indices such that: 251 

�� = 1 −
∑(����� ! − ���"#�)�
∑( �$�"#� − ���"#�)�

 

where ����� ! is the prediction for each species in each year from the DFA model and ���"#�is the 252 

mean of the posterior of the standardized index for species i in year j. 253 

Describing structure in the ichthyoplankton assemblage 254 
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 We used hierarchical cluster analysis to group species based on their loading values on 255 

Trend 1 and Trend 2.  We determined an optimal number of clusters to represent the 40 species 256 

using the elbow method and gap statistic (Tibshirani et al., 2001).  We then explored how 257 

clusters and trends associated with a suite of documented life history traits.  We focused on traits 258 

that previous studies identified as potentially important in characterizing the GOA spring 259 

ichthyoplankton assemblage (Doyle et al., 2002).  In particular, we characterized adult habitat, 260 

spawn timing, larval duration, and species distribution (Table 3).    261 

Exploring potential physical and biological drivers of biodiversity and shared trends 262 

Given the documented climate regime shifts in the GOA, we used moving window cross 263 

correlation analysis to explore if and how correlations between ichthyoplankton diversity metrics 264 

and trends and environmental indices varied over time. There are many examples of 265 

nonstationary interactions between environmental/biological indices and fish populations in 266 

Alaska ecosystems (Ciannelli et al., 2012; Duffy-Anderson et al., 2005; Litzow and Ciannelli, 267 

2007) and other ecosystems as well (Deyle et al., 2013; Myers, 1998; Ottersen et al., 2013; Stige 268 

et al., 2013). Often, fish populations seemingly respond to certain dominant variables for a 269 

period of time, and then the dominant variables shift. This can be caused by changes in the 270 

magnitude of environmental variables, indirect or interacting effects, and shifts in ecosystem 271 

state (e.g., Stige et al., 2013; Sugihara et al., 2012).  Here, we used a moving window cross-272 

correlation analysis, combining output of the DFA model with potential environmental drivers. 273 

We calculated Pearson correlation coefficients between each environmental driver and the two 274 

DFA trends and two diversity indices over an 11-year moving window.  Ninety percent 275 

confidence intervals were calculated using the Pyper-Peterman correction for autocorrelated data 276 
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(Pyper and Peterman, 1998).  We investigated different lengths of moving windows and found 277 

the results to be generally robust to window length. 278 

 279 

Results 280 

Temporal trends in diversity and synchrony 281 

The diversity and synchrony indices from 1981 to 2013 illustrated shifts in the 282 

probability of occurrence and abundance of species (Fig. 2). They also highlight the variable role 283 

of pollock in structuring the ichthyoplankton community. Species richness gradually increased 284 

over three decades (Fig. 2, upper panel), driven by increased probabilities of occurrence of warm 285 

water associated species in the GOA in later years (Lepidopsetta polyxystra, Ophiodon 286 

elongatus, Platichthys stellatus, and Sebastes spp., a complex which is primarily comprised of 287 

Pacific ocean perch, Sebastes alutus, in spring collections, Appendix A).  The Shannon diversity 288 

index exhibited strong negative correlation with the proportion of larval pollock observed in the 289 

survey (Fig. 2, middle panel).  Shannon diversity increased during the 1980s, but dropped 290 

between 1988 and 1989, coincident with the 1988/1989 regime shift in the GOA. Shannon 291 

diversity was relatively low during the 1990s (except for 1994 when pollock abundance was 292 

low). Higher diversity occurred between 1998-2005 (except 2000 when pollock abundance was 293 

high), but then declined, with a minimum observed in 2013 (when pollock abundance was very 294 

high).   295 

The time series of synchrony also shows evidence of abrupt shifts, and reflects the 296 

dominant role of pollock in the ichthyoplankton assemblage, particularly in the early years of 297 

these data.  Pollock clearly drives the overall synchrony index through the early 1990s 298 
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(difference between blue and gray lines, Fig. 2, lower panel). Removing the effect of pollock, the 299 

other ichthyoplankton species were independent to weakly asynchronous during this period (blue 300 

line, synchrony values of 0 to -0.2).  Synchrony shifted to positive values in the mid-1990s, in 301 

metrics with and without pollock, indicating that pollock and rest of the assemblage fluctuated in 302 

similar ways from the 1990s to 2013.  This positive shift in synchrony coincided with the 303 

1988/1989 regime shift in the GOA, reduced dominance of pollock in the samples, and higher 304 

Shannon diversity. Synchrony over 2003-2013 dropped as numbers of pollock larvae in the 305 

assemblage increased dramatically in 2013. 306 

 307 
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 308 

Figure 2. Ichthyoplankton assemblage dynamics between 1981-2013.  Top panel shows species 309 

richness. Middle panel shows Shannon diversity (lines) and the proportion of total sampled 310 

larvae that were pollock (bars). Bottom panel shows synchrony within an 11-year moving 311 

window (x-value is midpoint of the window), where each black line represents synchrony with 312 

one species left out of the assemblage. Heavy gray line shows synchrony with all species and the 313 
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blue line shows synchrony without pollock. Vertical red lines indicate years of regime shifts in 314 

the GOA, and shaded red areas in bottom panel indicate the moving windows that include the 315 

years of the regime shifts. 316 

 317 

Constructing shared temporal trends among ichthyoplankton species  318 

We fit 8 potential DFA models to describe shared trends among ichthyoplankton, and model 319 

selection with AICC revealed the best model was a two-trend model with an equal variance-320 

covariance matrix (Appendix C).  The model with the next lowest AICC value was nearly 20 321 

units higher, thus we did not consider any other candidate models. The best fit model explained 322 

28 percent of the total variation. 323 

The best-fit model had two shared trends that described the dynamics of the 324 

ichthyoplankton assemblage over 1981-2013 (Fig. 3).  Trend 1 showed moderate-to- low 325 

amplitude until the mid-1990s (most values between 0 and -1 SD of the mean).  From 1996 - 326 

2010 Trend 1 was generally positive, with a peak in 2001.  But, two years in the 2000s (2007-327 

2008) were very low (-2 SD below the mean). The most recent years of Trend 1 were close to the 328 

mean.  Trend 2 declined from a peak (+3 SD) in 1981 to its lowest value in 1996 (-3 SD). By 329 

2000, Trend 2 increased to the mean and has exhibited multi-year fluctuations through 2013, 330 

with low values in 2006 and 2007.   331 
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 332 

Figure 3. Common Trends 1 (a) and 2 (b) estimated from Dynamic Factor Analysis on 40 333 

species of ichthyoplankton from 1981 to 2013.   334 

Describing structure in the ichthyoplankton assemblage 335 

The cluster analysis of species loadings on the trends revealed four groups that 336 

characterized ichthyoplankton assemblage structure (Fig. 4, Tab. 3).  Cluster 1 contained species 337 

loading negatively on Trend 2 that increased over the 1980s and 1990s (11 species, Fig. 4).  338 

Many of these species, but not all, occupy waters over the slope as adults and spawn in winter 339 

(Tab. 3).  Species loading strongly positive on Trend 2 and weak to positive on Trend 1 formed 340 

another cluster (Cluster 2), which also included species that did not load strongly on either trend.  341 

Some of these species experienced substantial declines in biomass in the 1980s and 1990s 342 

(Bathymaster spp. and Lumpenella longirostris). The species in Cluster 2 did not appear to share 343 

life history traits (Tab. 3). The third cluster included species loading positively on Trend 1 and 344 

weakly on Trend 2 (|loading| <0.2) that generally increased in abundance after 1996 (Appendices 345 
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B-C). Of the eight species in that cluster (Fig. 4), several were either warm-water associated or 346 

had more southern ranges (e.g., Lepidopsetta bilineata, Sebastes spp. (Pacific ocean perch), 347 

Ophiodon elongatus, Tab. 3) and/or showed increasing trends in adult biomass over this same 348 

period (Pacific ocean perch). Species in cluster 3 were generally spring spawning with demersal 349 

eggs and occupying benthic shelf habitat as adults.  Cluster 4 contained 14 species that loaded 350 

strongly negative on Trend 1, indicating a decrease in abundance after the early 1990s.  These 351 

decreasing species included some species that are cold-water associated or have more northern 352 

ranges (e.g. Lepidopsetta polyxystra) and/or species where adult abundance has also declined in 353 

recent years (e.g. pollock). Most species in Cluster 4 occupied shelf or nearshore benthic habitat 354 

as adults (Tab. 3). 355 

 356 
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Figure 4. Loadings of ichthyoplankton species on DFA Trend 1 (x-axis) and Trend 2 (y-axis).  357 

Label shading is proportional to the log-scaled mean abundance of each species across all years. 358 

Point colors indicate clusters identified by hierarchical cluster analysis.  Species abbreviations 359 

described in Table 3. 360 

Table 3. Life history traits of ichthyoplankton assemblage and clusters identified from cluster 361 

analysis 362 

Species Abbv Adult 
Habitat 

Adult 
bathymetric 

Spawn 
timing 

Egg 
Ecology 

Larval 
duration 
(months) 

Range Cluster 

Anoplarchus.spp. An.sp benthic nearshore spring demersal 3 northern 1 

Icelinus.spp. Ic.sp benthic nearshore spring demersal NA northern 1 

Platichthys.stellatus Pl.st benthic slope late spring pelagic 2 southern 1 

Stenobrachius.leucopsarus St.le pelagic slope spring pelagic 8 both 1 

Atheresthes.stomias At.st benthic slope winter pelagic 5 both 1 

Microstomus.pacificus Mi.pa benthic slope spring pelagic 8 southern 1 

Bathyagonus.alascanus Ba.al benthic shelf spring demersal 3 both 1 

Leuroglossus.schmidti Le.sc pelagic slope winter pelagic 3 northern 1 

Protomyctophum.thompsoni Pr.th pelagic slope winter pelagic 8 both 1 

Bathylagus.pacificus Ba.pa pelagic slope winter pelagic 3 both 1 

Zaprora.silenus Za.si benthic slope spring demersal 4 northern 1 

Bathymaster.spp. Ba.sp benthic shelf late spring demersal 5 both 2 

Hippoglossoides.elassodon Hi.el benthic slope early spring pelagic 4 northern 2 

Glyptocephalus.zachirus Gl.za benthic slope spring pelagic 8 southern 2 

Clupea.pallasi Cl.pa pelagic nearshore, 
shelf 

late spring demersal 3 southern 2 

Lumpenella.longirostris Lu.lo benthic shelf spring demersal 3 northern 2 

Bathyagonus.infraspinatus Ba.in benthic shelf spring demersal 3 both 2 

Sebastes.spp. Se.sp benthic slope spring live bearing 5 both 3 

Isopsetta.isolepis Is.is benthic nearshore, 
shelf 

early spring pelagic 2 southern 3 

Lepidopsetta.bilineata Le.bi benthic shelf late spring demersal 4 southern 3 

Cryptacanthodes.aleutensis Cr.al benthic shelf spring demersal 3 both 3 

Poroclinus.rothrocki Po.ro benthic shelf spring demersal 4 both 3 

Radulinus.spp. Ra.sp benthic shelf spring demersal NA southern 3 

Liparis.fucensis Li.fu benthic shelf late spring demersal 2 both 3 
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Ruscarius.meanyi Ru.me benthic shelf spring demersal 3 southern 3 

Ophiodon.elongatus Op.el benthic shelf late winter demersal 3 southern 3 

Gadus.chalcogrammus Ga.ch benthic shelf early spring pelagic 4 both 4 

Ammodytes.personatus Am.pe pelagic nearshore, 
shelf 

late winter demersal 8 both 4 

Gadus.macrocephalus Ga.ma benthic shelf early spring demersal 3 northern 4 

Lepidopsetta.polyxystra Le.po benthic shelf early spring demersal 5 northern 4 

Lumpenus.maculatus Lu.ma benthic nearshore spring demersal 5 northern 4 

Hexagrammos.spp. He.sp benthic nearshore winter demersal 8 both 4 

Hippoglossus.stenolepis Hi.st benthic slope winter pelagic 5 northern 4 

Pleuronectes.quadrituberculatus Pl.qu benthic shelf late spring pelagic 2 northern 4 

Mallotus.villosus Ma.vi pelagic nearshore summer demersal 8 northern 4 

Pholis.spp. Ph.sp benthic nearshore late winter demersal 3 both 4 

Myoxocephalus.spp. My.sp benthic shelf spring demersal 5 northern 4 

Podothecus.acipenserinus Po.ac benthic shelf spring demersal 3 both 4 

Triglops.spp. Tr.sp benthic shelf spring demersal 3 both 4 

Lumpenus.sagitta Lu.sa benthic shelf late winter demersal 3 northern 4 

 363 

Potential physical and biological drivers of biodiversity and shared trends  364 

Our analysis of diversity revealed that ichthyoplankton species richness was negatively 365 

correlated with the PDO during one 11-year window (from 1983 to 1993), but was not correlated 366 

with any other environmental drivers over this same period (Fig. 5).  Species richness was 367 

generally positively correlated with increasing spawning stock biomass of Pacific ocean perch 368 

and arrowtooth flounder during 1981-1995. Due to declines during this same time period, species 369 

richness was negatively correlated with Pacific cod.   370 

Shannon diversity was positively correlated with the NPGO during most of the 1980s and 371 

1990s, but this correlation diminished after the 1988/1989 regime shift (characterized by the 372 

NPGO shifting negative).  During the late 1990s to 2013, Shannon diversity was negatively 373 

correlated with the NPI. Shannon diversity was also negatively correlated with lagged pollock 374 

SSB in most years after 1990, echoing the negative correlation between the proportion of larval 375 
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pollock observed in the spring survey and the Shannon diversity index (Fig 2).  SSB of the other 376 

species either increased or declined during most of the three decades, which caused inconsistent 377 

correlations with the more variable Shannon diversity time series. 378 

To guide our interpretation of the common trends from DFA, we examined correlations 379 

with environmental indices and SSB indices.  Trend 1 was positively correlated with NPGO 380 

from 1981 until 2003 (years indicate edges of moving windows, Fig. 5) with both exhibiting 381 

similar high values in 2001 and low values in the same years in the 1980s and 1990s (Figs. 3 and 382 

D2). The correlation between upwelling and Trend 1 was negative from 1987 to 1997, but 383 

switched to positive in 1996 to 2010. Mean sea level was correlated with Trend 1 from 1994 to 384 

2002. For fish time series, Trend 1 was negatively correlated with pollock and Pacific cod SSB 385 

during 1987 to 2005 and positively correlated with Pacific ocean perch during those same years. 386 

Trend 2 was positively correlated with the MEI during 1987 to 1997. Similar to Trend 1, Trend 2 387 

was negatively correlated with the upwelling anomaly from 1982-1994. For adult fish indices, 388 

both Trend 1 and 2 were correlated with adult pollock, but Trend 2 was negatively correlated in 389 

the first few years of the time-series, picking up an extreme value in 1981. In the 1980s and early 390 

1990s Trend 2 was also negatively correlated with adult Pacific ocean perch and arrowtooth 391 

flounder but positively correlated with Pacific cod. We saw no correlations between Trend 2 and 392 

any of the environmental or SSB covariates after 2006. 393 
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 394 

Figure 5.  Moving window cross correlations between environmental and spawning stock 395 

biomass variables and DFA trends and diversity indices.  Each panel shows a time series of 396 

Pearson correlations (black line) with 90 percent confidence intervals that account for 397 

autocorrelation (CI, grey-shaded region) with a window length of 11 years (e.g., x-value for 1986 398 

represents years 1981 to 1991).  Red and blue points represent correlations in which the 399 

confidence intervals are greater or less than zero, respectively.  400 

Discussion 401 

Our analysis shows that ecological indicators developed from ichthyoplankton surveys 402 

are potentially useful for monitoring and assessing the effects of gradual change and abrupt shifts 403 
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in Large Marine Ecosystems. The standardized indices of probability of occurrence and 404 

abundance we estimated for the 40 ichthyoplankton species shown here represent the most 405 

precise and least biased estimates of abundance for spring ichthyoplankton in the GOA over 406 

three decades.  The biodiversity indices, synchrony, and DFA trends we developed show 407 

evidence of long-term gradual change in this ecosystem, as well as supporting evidence for 408 

abrupt shifts. These patterns were correlated with several factors: climate shifts that occurred in 409 

the North Pacific ecosystem in 1988/1989 and 2007/2008, the influence of pollock - the 410 

dominant larval species - on the co-occurring ichthyoplankton assemblage, and the assemblage 411 

response to environmental forcing events relative to the abundance of pollock.                                                                412 

Species richness and DFA Trend 1 both showed gradual changes from 1981-2013.  These 413 

trends may reflect a range shift of southern latitude species into the western GOA pursuant to 414 

overall ocean warming.  Abundances of larval southern rock sole (L. bilineata), Pacific ocean 415 

perch (S. alutus), lingcod (O. elongatus), and starry flounder (P. stellatus, Appendix B) have 416 

increased, consistent with an increase in bottom temperatures in the GOA (Fig. D2). DFA Trend 417 

1 separated some warm and cold-water associated species, which could be a leading indicator of 418 

replacement of cold water species like northern rock sole (L. polyxystra) with a warm water 419 

congeneric, southern rock sole, over time. Climate-mediated changes in ichthyoplankton 420 

phenology, distribution, and community structure have been documented in other Large Marine 421 

Ecosystems (e.g., Asch, 2015; Brodeur et al., 2008; Greve et al., 2005; Walsh et al., 2015) and 422 

erratic occurrences of adults of warm water affinity species have been documented recently in 423 

the GOA (skipjack tuna (Katsuwonus pelamis), ocean sunfish (Mola mola), thresher shark 424 

(Alopias vulpinus; J. Orsi, NOAA AFSC, personal communication).  425 
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Our results support the idea that large-scale modes of North Pacific atmospheric and 426 

oceanographic variability are important environmental drivers of the spring ichthyoplankton 427 

assemblage.  Specifically, the NPGO appeared to have greater influence than other drivers we 428 

explored.  While the PDO has received significant attention for contributing to ecosystem regime 429 

shifts in the GOA, we found stronger evidence of correlations between the spring 430 

ichthyoplankton assemblage and the NPGO over the PDO from the 1980s to the mid 2000s.  431 

Litzow and Mueter (2014) noted a similar phenomenon during the same period, which they 432 

attributed to the white noise-dominated signal of the PDO during those years.  Variations in the 433 

NPGO have been correlated to production indices, including shifts in nutrient availability and 434 

phytoplankton, zooplankton, and salmon (Oncorhyncus spp., Di Lorenzo et al., 2008; Ohlberger 435 

et al., 2016; Sydeman et al., 2013).  Our results provide further support for the influence of the 436 

NPGO on the North Pacific marine ecosystem from the 1980s to mid-2000s.  437 

Despite the dominance of the NPGO, our results cannot rule out the PDO as a potential 438 

driver of spring ichthyoplankton. Trend 1 was positively correlated with the PDO in the most 439 

recent years of data (2003-2013). Further, both DFA trends had strong anomalies in 2007/2008, 440 

the same year as the most recent PDO shift.  The absence of significant correlations with the 441 

PDO in other years may be due to the ichthyoplankton time series beginning several years after 442 

the most influential PDO regime shift of 1976/1977. It is also possible that more local indices 443 

better reflect ocean conditions most relevant to the spring ichthyoplankton assemblage, 444 

suggested by similar correlation patterns between Trend 1 and sea level, upwelling, and the PDO 445 

beginning in the mid-1990s.  While the dominance of the PDO and NPGO in the North Pacific 446 

has been described elsewhere (Bond et al., 2003; Di Lorenzo et al., 2008; Litzow and Mueter, 447 
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2014), our results demonstrate that the spring larval fish assemblage may be sensitive to the 448 

fluctuations and relative strengths of both and therefore may be useful indicators of the impacts 449 

of climate variability on lower trophic dynamics in the GOA. 450 

Observed positive correlations between Trend 1, upwelling, and some warm water-451 

affinity species may seem counterintuitive. However, “upwelling” in the GOA (a downwelling 452 

system) is more accurately a relaxation of the intense downwelling that occurs throughout 453 

winter.  The climatological upwelling index in summer is near zero (Ladd et al., 2005). 454 

Weakened summer winds prompt relaxation events and influxes of cold, deep, slope-origin water 455 

during those times are assumed due to observed increases in salinity at depth (Stabeno et al., 456 

2004).  Strong vertical stratification in late spring/summer can preclude mixing of on-shelf slope 457 

waters to the depths of larval occurrence (typically <50 m in late spring), and shoaling of the 458 

mixed layer depth is observed during relaxation events.  Moreover, relaxation of downwelling 459 

winds reduces the on-shelf flux of cold, basin water in the Ekman surface layer (Ladd et al. 460 

2005), which may lead to warmer water near surface during upwelling periods.  As such, it may 461 

not be so unusual to observe positive relationships between warm-affinity species and 462 

downwelling relaxation events in late spring. 463 

Both DFA trends bear resemblance to trends from a separate examination of climate-464 

biological interactions using entirely different biological datasets (Litzow and Mueter, 2014).  In 465 

that paper, the authors also examined the relationships between biological time-series data 466 

collected from the GOA (large invertebrates, groundfish recruitment, recruitment of small neritic 467 

species, salmon, and zooplankton) and leading climate indices.  Their first axis of biological 468 

variability was described by a pattern very similar to our DFA Trend 2, with a strong decline 469 
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noted from the 1970s through the 1990s, and a shift to variability afterward.  Inflection points 470 

were similar in years 2000-2011, inclusive of very low values in years 2007-2008.  Their second 471 

axis of biological variability was positive from 1980-1995, and switched to negative between 472 

1996-2008.  This pattern was similar to our DFA Trend 1. The fact that these two studies, 473 

focusing on different species and life stages, found similar trends in biological responses 474 

suggests that many components of GOA ecosystem may respond similarly to broad-scale climate 475 

forcing, or are in other ways linked. 476 

Despite the contrasting patterns of fluctuations indicated by the two DFA trends, the 477 

synchrony metric we calculated was generally positive and relatively constant across the three 478 

decades.  However, we saw asynchrony and independence during the 1980s and early 1990s 479 

when pollock were removed from the dataset.  This coincided with the highest years of pollock 480 

SSB, and many years of high proportional abundance of larval pollock (Figs. 2, D2). This pattern 481 

could be explained by several possible mechanisms.  An abundance of pollock larvae could 482 

indicate ecosystem conditions that are favorable for larval feeding and survival across species. In 483 

this case, numerous pollock indicate a hospitable environment (less limiting) that supports an 484 

array of prey types, habitat, and refuges. Such an environment could facilitate the expression of 485 

species diversity, leading to greater asynchrony across species.  In less productive years pollock 486 

abundances are low, as are abundances of other species, due to greater ecosystem constraints on 487 

resources. Synchrony under constrained conditions might be realized when ecosystem conditions 488 

are insufficient to support diversity.  Another possible explanation is that the abundance of 489 

pollock could modulate the strength of competition among the other larval fish species. Pollock 490 

are versatile zooplanktivores and numerically dominant in the system.  These qualities may allow 491 
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them to compete for resources at a level well above that of other co-occurring species. Pollock 492 

ascendancy could increase trophic interactions among other species for remaining resources, 493 

leading to dissimilar responses, variable competitive outcomes, and differential survivorship.  494 

Reduced numbers of pollock larvae in the system could alleviate competition for prey resources 495 

and homogenize responses to environmental fluctuations. How pollock abundance could 496 

intensify trophic interactions is unclear, though it has been previously-demonstrated that larval 497 

pollock grazing can have a measurable effect on zooplankton standing stock due to the sheer 498 

numbers of pollock larvae present in the system (Duffy-Anderson et al., 2002). A third 499 

possibility is that years of high pollock abundance could trigger predator-mediated apparent 500 

competition, where predators of larval pollock increase predation on abundant pollock and less 501 

abundant other species simultaneously. Of course, all samples analyzed here were collected from 502 

a relatively small geographic region (Kodiak vicinity of the western GOA), so a fourth 503 

explanation is that synchrony is reflected as similar responses to local events. Nevertheless, we 504 

demonstrated that a pronounced change in synchrony during the 1990s persisted for over a 505 

decade, suggesting long-term impacts to the plankton community as a whole. 506 

Overall, our work shows that spring ichthyoplankton in the GOA integrates signals from 507 

the physical environment and adult spawning stock biomass.  Our analyses revealed the 508 

composition of the assemblage is indicative of both gradual change and abrupt regime shifts. The 509 

biodiversity, synchrony, and DFA trends we presented are a first step towards developing 510 

ecosystem indicators from ichthyoplankton time series for the GOA.  Ichthyoplankton are an 511 

important component of the lower trophic levels of the marine food web, as such, they can 512 
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provide useful indicators of food availability, and they may also be potential leading indicators 513 

of change in marine ecosystems.  514 
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