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Understanding and tracking how ecosystems resgoaoldanging environments is an ongoing
challenge. Marine ecosystems in the North Pacifppsrt productive fisheries and diverse
ecosystem services, and they are subject to la@e-environmental, human, and ecological
perturbations. Ichthyoplankton time-series fromsth ecosystems may provide an important
indicator of lower trophic level dynamics and eaieyn functioning. Here we present a
spatiotemporal analysis using data from three desatiichthyoplankton surveys in the Gulf of
Alaska to investigate temporal patterns in indicatdf species richness, Shannon diversity, and
synchrony. Then we use Dynamic Factor AnalysisAPt6 synthesize the ichthyoplankton
assemblage with two dominant trends. We relatditbdiversity indices and DFA trends to
local and regional climate indices in the NorthiRac We find evidence for increased
temperatures driving increased species richnesisglaanges in synchrony coincident with
shifting assemblage composition and the 1988/188®me shift. Shannon diversity was largely
driven by the dominance of larval walleye polloGaflus chalcogrammus). Correlations
between climate drivers and DFA trends suggestthigainfluence of basin scale drivers (North
Pacific Gyre Oscillation and the Pacific Decadat{lstion) was stronger than the influence of
local-scale drivers like regional sea surface temaipee. Our work demonstrates the potential
value of ichthyoplankton surveys to provide indaratof climate-driven ecosystem variability
and long-term ecological change.

Keywords

Gulf of Alaska, ichthyoplankton, biodiversity, symony, walleye pollock, climate, ecosystem
indicators
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Understanding how species, communities, and eaasgstespond to changing
environments and how to track those responses nsragundamental challenge. In marine
ecosystems, for example, changes in fishing, ciratd oceanographic conditions can have a
range of biological consequences from no effestitong cascading effects that propagate
through a food web (Hunt et al., 2011). A key pdrthis challenge is the complexity of
biophysical systems, and one way to reduce therdimeality is to focus on ecological
indicators that can track shifts in community staue or the physical environment (Coll et al.,
2016). For example, indicators of biodiversity eoenmonly proposed because they integrate
across biotic scales, rely on data derived fromtigiel species, and can represent shifts in the
status of groups of species, community vulneraésljtspecies loss, the adaptive capacities of
species and ecosystems, and ecosystem complegitstalnility (Coll et al., 2016; Kershner et
al., 2011; Longo et al., 2015).

While biodiversity metrics provide insight on thatsis of an assemblage or community
at a point in time, synchrony metrics describe Ipmpulation abundances or biomasses fluctuate
through time with respect to each other (Michellet1999). Synchrony can reflect the extent to
which the response to a stochastic, exogenoustpfactor is coincident among species, or it
can represent the intensity, strength, and coherehtophic interactions (Liebhold et al., 2004).
Large-scale forcing events have been shown toasersynchrony with coincident changes
observed across species (Cottingham et al., 208itt, R008; Tilman, 1996; Vasseur and
Gaedke, 2007), potentially destabilizing systemsitifying community response. The
consequences of a perturbation can be ephemergiptarily driving the community out of a

stable configuration, or enduring, forcing the sysinto a new stable state. Previous research
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has shown that effects of small-scale forcing evemy be temporary (Duffy-Anderson et al.,
2006; Frost et al., 2006; Mittelbach et al., 20@@)jle large-scale events can have effects that
persist over several decades (Beaugrand et ak; Zabeffer et al., 2001; Walsh et al., 2015;
Walther et al., 2002).

One of the largest marine ecosystems in the wohldrevthe interactions between climate
forcing, species interactions, and ecosystem eesié have been studied extensively is the Gulf
of Alaska (GOA). As a high-latitude system, the GBAusceptible to climate-mediated
environmental variation and rapid changes in pdmrand community structure. Extensive
sampling of the marine environment has occurredesihe early 1980s, providing important
time series that can be used to evaluate effedsaddal-scale regime shifts. The most well-
known shift occurred in 1976/1977 characterize@Iphase shift of the Pacific Decadal
Oscillation (PDO), the first mode of variability sea surface temperature in the North Pacific
Ocean, from a negative to positive value (Mantuhltdare, 2002). This shift was accompanied
by an intensified Aleutian Low (AL) pressure systeroean warming, increased circulation, and
increased stratification that persisted for ovey tlecades. A second regime shift occurred in
1988/1989, driven by a strong polar vortex and wehKOverland et al., 1999; Yasunaka and
Hanawa, 2002) that lowered ocean temperatures aalemed overall circulation. Unlike the
well-characterized PDO-driven regime shift of 19857, the 1988/1989 shift was not described
by PDO variability. Instead, a shift in the NoRhcific Gyre Oscillation (NPGO), which
describes the second mode of variability of SSTratates to the gyre circulation and chemical
and biological properties in GOA, characterized tigigime (Bond et al., 2003; Di Lorenzo et al.,

2008; Kilduff et al., 2015). This second shiftsed awareness of the complex and dynamic
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relationships between the major (physical) atmosplad oceanographic forcing variables,
beyond the PDO. A third regime shift in 2007/2008s less well described but is potentially
important. A recent comprehensive examination igolw and Mueter (2014) described the
2007/2008 shift as a transition to a PDO-negatifGO-positive state, featuring lower ocean

temperatures and changing circulation.

Other large-scale climate drivers may also coreehdth variability in the GOA. The
Multivariate El Nifio/Southern Oscillation Index (MEEombines sea level pressure, winds, sea
surface temperature, air temperatures, and clossliaeross the tropical Pacific (Wolter and
Timlin, 1998, 1993). The North Pacific Index (NElBscribes sea level pressure over the area
30N-65N, 160E-140W (Trenberth and Hurrell, 1994)e TGOA is typically a downwelling
system and the relaxation of that downwelling edadb Ekman transport driven by wind stress,

which could affect cross-shelf transport.

In addition to being a system that has experieseséral large-scale climate shifts, the
GOA has also been the focus of long-term monitoprgggrams across multiple trophic levels in
the marine environment. A number of these datdsets been used to examine fish community
response to the climate-mediated perturbationsiteestcabove, including regime shifts
(Anderson and Piatt, 1999; Litzow, 2006; Mueter Almdcross, 2002, 2000; Shelton et al.,
2017). Though less studied (but see Boeing andyPfiderson, 2008; Doyle et al., 2009), high
resolution datasets of fish early life-history gsagnay be useful for understanding climate-
mediated impacts on fisheries. In particular,\ekiie-history stages of fishes have informed
studies on the effects of non-native species (Mesten and Bullock, 2000), stock reductions

(Hoff, 2006; Hutchings and Baum, 2005), spatiaftsi{iPerry, 2005), and restructured trophic
5
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interactions (Worm et al., 2006). One of the m@dadich surveys that has spanned multiple
climate shifts in the GOA is run by the Ecosystemd Fisheries Oceanography Coordinated
Investigations (EcoFOCI) program, which has bedlecting marine fish larvae from the
western GOA since the 1970s, and systematically @ggidded survey since the early 1980s
(McClatchie et al., 2014). These surveys are fisiependent, may provide early indicators of
future changes in the adult fish community, and eh@gcribe changes in adult species
composition, species interactions, spawning digtiam, and phenology. As such, they are

useful indicators of bottom-up forcing on overahf communities.

In this paper, we use three decades of ichthyopdandtata collected from the western
GOA to examine temporal variability in the struetwf the spring ichthyoplankton assemblage
with respect to large-scale climate regimes. Oyecailves were threefold: 1) explore temporal
trends in larval fish assemblage structure, biadityg synchrony, and pollock dominance; 2)
describe temporal trends shared among multipleéespatthe assemblage; and 3) explore
potential physical and biological drivers of pattein shared trends and diversity indices. We
use the term “larval assemblage” to refer to cadaomieg species, and the term “larval
community” to refer to groups of larvae that matermact directly or indirectly through shared

prey resources.

M ethods

| chthyoplankton sampling

Ichthyoplankton data were collected in May and Juom the western GOA by the

EcoFOCI from 1972 — 2013 (Table 1; McClatchie et2014). These surveys were conducted
6
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annually, with the exception of years 1984, 1986 2012. The historical distribution of
ichthyoplankton sampling extends along the Alaskaimnland and Peninsula on the continental
shelf from Prince William Sound southwest to Unintgliand (Fig. 1). The most intense
sampling has been in the vicinity of Shelikof Stemd Shelikof Sea Valley from mid-May
through early June. Ichthyoplankton were colledtech oblique tows from the bottom (or 100
m depth maximum) to the surface with a 60 cm diamiedbngo net (333 or 505 mm mesh) in a
standardized manner (Matarese et al., 2003). Dama hoth bongo net mesh sizes were
combined as prior analyses indicated no significififierences in ichthyoplankton catch rates
(selected species) between the two mesh sizeu@38d 505 um; Boeing and Duffy-
Anderson, 2008). Calibrated flowmeters in the netuth were used to estimate the volume of
water filtered. Samples were preserved in 5% fometlsea and returned to the laboratory for
sorting. All ichthyoplankton were sorted at thamiton Sorting and Identification Center in
Szczecin, Poland. Species were enumerated, igehtd the lowest taxonomic level possible,
and measured. Fish larvae from sorted samplesne®naed to the National Oceanic and
Atmospheric Administration’s Alaska Fisheries ScerCenter (AFSC), taxonomic
identifications were verified, and all data werelaved in a relational database housed at the
AFSC (also available online from the Ichthyoplamkioformation System

http://access.afsc.noaa.gov/ichthyo/index.cfm)

Environmental and Biological Indices

We used large-scale climate indices and spatiattyeted descriptors of the physical
environment in our study region to investigateitifience of environmental indices on
ichthyoplankton (Tab. 1). We calculated a localpenature index from satellite monthly mean

7
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temperatures within the study area. We also catledla local sea level index from tide gauge
data from the closest station to the study areiahié complete data over the study years
(Seldovia). In all cases, we used data from tts fialf of the year (Jan-June) to represent the
period during which most species spawned and idpllaykton were collected.

The presence and abundance of early life stagegeflagt the status or abundance of
adult life stages during spawning (Koslow and Wki@®16). To account for this, we used
spawning stock biomasses (SSB) of three of the almstdant species, pollock, Pacific cod
(Gadus macrocephalus), and arrowtooth floundeAtheresthes stomias), from the 2015 GOA
stock assessments to represent these potentiaglmal drivers (A’Mar and Palsson, 2015; Dorn
et al., 2015; Spies and Turnock, 2015). We lagdad By one year such that SSB was a
predictor for the following spring’s ichthyoplanktaata.

Index Description Source Reference

PDO Pacific Decadal Oscillation: http://jisao.washington.edu/pd (Mantua et al., 1997)
Average of monthly anomalies  o/PDO.latest
from Jan thru June, 1981-2013

NPGO North Pacific Gyre Oscillation:  http://www.03d.org/npgo/npgo (Di Lorenzo et al., 2008)
Average of monthly anomalies .php
from Jan thru June, 1981-2013

MEI Multivariate ENSO Index: http://www.esrl.noaa.gov/psd/ (Wolter and Timlin, 1998,
Average of bimonthly values fromenso/mei/table.html 1993)
Jan thru June, 1981-2013

NPI North Pacific Index: Average of https://climatedataguide.ucar.e(Trenberth and Hurrell,
bimonthly values from Jan thru  du/sites/default/files/climate_i 1994)
June, 1981-2013 ndex_files/npindex_monthly.a
Scii
SST Sea Surface Temperature: averagétp://www.esrl.noaa.gov/psd/ (Reynolds et al., 2002)

of monthly means from Jan thru data/gridded/data.noaa.oisst.v2
June, 1982-2013, subsetted to  .html

90% quantiles of lat-long of

ichthyoplankton data

Upwelling  Upwelling index: average of http://www.pfeg.noaa.gov/pro
monthly anomalies from Jan thru ducts/PFELData/upwell/month



June, 1981-2013, from station at ly/upanoms.mon
60°N 149°W

MSL Mean Sea Level: average of https://tidesandcurrents.noaa.g
monthly mean water level from  ov/inventory.html?id=9455500
Jan thru June, 1981-2013, from
Seldovia, AK (9455500)

POLL Pollock spawning stock biomass, (Dorn et al., 2015)
1981-2013
PCOD Pacific cod spawning stock (A’Mar and Palsson, 2015)

biomass, 1981-2013

ARR Arrowtooth flounder spawning (Spies and Turnock, 2015)
stock biomass, 1981-2013

165
166 Table 1. Environmental and biological variables investigatie explain temporal variation in

167 ichthyoplankton assemblage
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Figure 1. Map of historical ichthyoplankton sampling for E€CI using plankton nets in the
Gulf of Alaska (1972 — 2013). Points show all saeddbcations over all years. Blue points

were those locations included in the present aralygpresenting the 90 percent quantiles of the
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I chthyoplankton index standardization
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We applied spatiotemporal index standardizatiorhows to account for spatiotemporal
variability in sampling effort and autocorrelatiofhough these methods are increasingly used in
fisheries (Shelton et al., 2014; Thorson et al15)0to our knowledge this is the first time they
have been applied to larval fish data or samplingntaller organisms. These methods extend
generalized linear mixed models to include spatinom effects, and have been shown to
substantially reduce bias and uncertainty compgréchditional strata-based estimators
(Thorson et al., 2015). Because ichthyoplanktorsitiess are commonly zero-inflated, we
applied models in a delta-generalized linear mg@&M) framework, fitting one statistical
model to presence-absence data to describe vésiabibccurrence, and a second model to
density data to describe variability in positivéctarates (Maunder and Punt, 2004; Pennington,
1983). Estimation was conducted separately for spehies as latent Gaussian Markov random
fields in the R package INLA (Rue et al., 2009; R@iardenas et al., 2012). Following previous
work with Gaussian processes models and marinenisrga, we modeled the spatial correlation
between locations with a Matérn covariance func{®no, 2014; Ward et al., 2015).

We focused our modeling efforts on the most abund@rspecies in the ichthyoplankton
surveys (1981-2013), representing 90% of occurieircéhe dataset (Tab. 2). Preliminary
analyses showed that including additional specég®id the top 40 resulted in poor
convergence of the standardization method, anéfibrer we chose 40 species as a cut-off. In
some cases, species were aggregated to the geslidude to interannual variation in taxonomic
resolution or to include taxa that would have othse been dropped due to lower species-
specific occurrences. Spatially, surveys are mftsha@oncentrated in Shelikof Strait and

Shelikof Sea Valley, though more recent effortsehexpanded the sampling to the north or east

11
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sides of Kodiak Island (Fig. 1). To reduce théuence of infrequently sampled locations, we

restricted samples to the core sampling area, eldfas those 20 x 20 km grids contained within

the 90% quantiles of all grids sampled.

Table2. Top 40 most commonly occurring species collefteoh ichthyoplankton sampling

1981-2013. Percent occurrence calculated as nuaflb@ws in which each species was
observed over all records and all years.

Per cent
Family Species Name Common Name Positive
Tows
Clupeidae Clupea pallasi Pacific herring 0.469
Bathylagidae Leuroglossus schmidti Northern smoothtongue 0.844
Bathylagus pacificus Slender blacksmelt 0.353
Osmeridae Mallotus villosus capelin 0.293
Myctophidae Protomyctophum thompsoni Northern flashlight fish 0.412
Senobrachius leucopsarus Northern lampfish 4.656
Gadidae Gadus macrocephalus Pacific cod 6.471
Gadus chal cogrammus Walleye pollock 11.214
Scorpaenidae Sebastes spp. Rockfishes 4.88]
Hexagrammidae | Ophiodon elongatus Ling cod 0.35
Hexagrammos spp. Greenlings 1.264
Cottidae Icelinus spp. Sculpins 4.36
Myoxaocephal us spp. Sculpins 0.584
Radulinus spp. Sculpins 1.18%
Ruscarius meanyi Puget Sound sculpin 0.696
Triglops spp. Scuplins 0.179
Agonidae Bathyagonus al ascanus Gray starsnout 2.83B
Bathyagonus infraspinatus Spinycheek starsnout 0.534
Podothecus aci penserinus Sturgeon poacher 0.185
Liparidae Liparisfucensis Slipskin snailfish 1.044
Bathymasteridae | Bathymaster spp. Ronquils 8.577
Stichaeidae Lumpenellalongirostris Longsnout prickleback 0.55¢
Lumpenus maculatus Daubed shanny 1.273
Lumpenus sagitta Snake prickleback 0.16p
Poroclinus rothrocki Whitebarred prickleback 1.721

12
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Anoplarchus spp. Cockscombs 2.404
Cryptacanthodidag Cryptacanthodes aleutensis Dwarf wrymouth 2.058
Pholididae Pholis spp. Gunnels 3.034
Zaproridae Zaprora silenus Prowfish 0.765
Ammodytidae Ammodytes personatus Pacific sandlance 9.468
Pleuronectidae Ather esthes stomias Arrowtooth flounder 2.572
Glyptocephalus zachirus Rex sole 1.19
Hippogl ossoides elassodon Flathead sole 10.094
Hippogl ossus stenolepis Pacific halibut 1.342
| sopsetta isolepis Butter sole 0.861
Lepidopsetta bilineata Southern rock sole 3.453
Lepidopsetta polyxystra Northern rock sole 4.762
Microstomus pacificus Dover sole 0.854
Platichthys stellatus Starry flounder 2.49
glggr?ﬂj et():(teresulatus Alaska plaice 0.772

We conducted Markov chain Monte Carlo sampling ftbeapproximate posterior
distribution of each delta-GLM model, and usedrémilting estimates of occurrence and
positive catch rates to generate estimates of feW8e projected these estimates to the centroid
of an equally spaced 2-km grid within the core syrarea, and summed the estimates across
grid cells to generate an annual index of abundaRepeating this process across posterior
samples allowed us to compute posterior crediltervals for the density of each species in each
year. For subsequent analyses, we used the me#ms mdsterior densities of abundance for
each species in each year. Code and data to replieaanalysis is available at

https://github.com/NCEAS/pfx-ichthyo.

Describing temporal trends in species diversity

13
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We estimated annual species richness and Shanvensitly indices from the standardized time
series of ichthyoplankton abundances. Speciesegswas calculated from the presence-
absence model output as the sum of probabiliig®{ presence of each specias each yeay
acrosss speciesR,, = Y.;_; p;,,- Shannon diversity represents the evenness oiespg@sent.

We chose the Shannon index over other diversityicsdbecause it is least sensitive to dominant
species (Jost, 2006) and pollock is dominant indata (Fig. 2). We calculated the Shannon

index from the standardized indices of abundatge= —Y;_; a;, log a;,

Describing temporal trends in synchrony among species

Synchrony describes the similarity or dissimilaofya group of species fluctuations through

time. Like diversity, many metrics of synchrony &xieach with strengths and weaknesses.
Gross et al. (2014) recently proposed a synchroetyicrbased on correlations, which they
showed to be less sensitive to dominant speciesdtieer metrics based on variances or
coefficient of variations (CVs). Gross’s metripresents the correlation between the biomass of

each species and the total biomass of all the sfhezies, averaged across specjes:
G) Yicor(Y;, YY) whereY; is the biomass of speciem s species. This metric varies

between -1 (maximum asynchrony) and 1 (perfectlaymy), and is centered on 0 when species
fluctuate independently.

We calculated a time series of synchrony using simgovindow approach over 11-year
intervals such that the value of synchrony in 183dresents the period over the previous 11

years (1981-1991). We investigated the sensitfityynchrony to each contributing species in

14
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the assemblage by jackknifing each species odteoéhalysis one at a time and re-calculating

the synchrony metric.

Describing shared temporal trends among ichthyoplankton species

We used Dynamic Factor Analysis (DFA) to descrhiimdominant patterns or trends in the
standardized ichthyoplankton data. DFA is a muttate approach for time series data (Zuur et
al., 2003). Similar to a principal components asslyDFA decomposes multivariate data into a
smaller number of components that describe the mmmbipatterns in the data. In DFA, the
shared trends and loadings of each species onmregchare estimated. We performed the DFA
using the MARSS package in R (Holmes et al., 2p¢1201) on the standardized
ichthyoplankton time-series after rescaling eadtis by subtracting its mean and dividing by
its standard deviation across all years. AlCc wsed to determine the most parsimonious
model. We considered DFA models with 1-4 trendd, @iagonal covariance matrices with
either equal or unequal elements. Missing valuas fyears without surveys were treated as
NAs. Rotated trends and loadings were calculatedywsvarimax rotation (Zuur et al., 2003).
We describe the proportion of variation explaingdhe best-fit DFA model using the residuals

from the model prediction and means of the stangeddndices such that:

d b
T(rEred — yghey?

R?=1-—+=2
Z(YjObS _ Yic]ng)z

whereYi’]?red is the prediction for each species in each yeanfihe DFA model ani5"is the

mean of the posterior of the standardized indespecies in yeatr;.

Describing structure in the ichthyoplankton assemblage

15
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We used hierarchical cluster analysis to grougisgebased on their loading values on
Trend 1 and Trend 2. We determined an optimal rexrabclusters to represent the 40 species
using the elbow method and gap statistic (Tibshieaal., 2001). We then explored how
clusters and trends associated with a suite ofrdeated life history traits. We focused on traits
that previous studies identified as potentially artpnt in characterizing the GOA spring
ichthyoplankton assemblage (Doyle et al., 2008)pdrticular, we characterized adult habitat,
spawn timing, larval duration, and species distidu(Table 3).
Exploring potential physical and biological drivers of biodiversity and shared trends

Given the documented climate regime shifts in tli¥AGwe used moving window cross
correlation analysis to explore if and how coriielas between ichthyoplankton diversity metrics
and trends and environmental indices varied onee.tiThere are many examples of
nonstationary interactions between environmentaliigical indices and fish populations in
Alaska ecosystems (Ciannelli et al., 2012; Duffydarson et al., 2005; Litzow and Ciannelli,
2007) and other ecosystems as well (Deyle et @L.32Myers, 1998; Ottersen et al., 2013; Stige
et al., 2013). Often, fish populations seemingBpend to certain dominant variables for a
period of time, and then the dominant variablef.shhis can be caused by changes in the
magnitude of environmental variables, indirectraeracting effects, and shifts in ecosystem
state (e.g., Stige et al., 2013; Sugihara et @lL22 Here, we used a moving window cross-
correlation analysis, combining output of the DFAdal with potential environmental drivers.
We calculated Pearson correlation coefficients betweach environmental driver and the two
DFA trends and two diversity indices over an 11rymaving window. Ninety percent

confidence intervals were calculated using the RAsterman correction for autocorrelated data
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(Pyper and Peterman, 1998). We investigated éififtdengths of moving windows and found

the results to be generally robust to window length

Results
Temporal trendsin diversity and synchrony

The diversity and synchrony indices from 1981 t@20lustrated shifts in the
probability of occurrence and abundance of spd€iis 2). They also highlight the variable role
of pollock in structuring the ichthyoplankton commity. Species richness gradually increased
over three decades (Fig. 2, upper panel), driveim¢rgased probabilities of occurrence of warm
water associated species in the GOA in later ygamdopsetta polyxystra, Ophiodon
elongatus, Platichthys stellatus, andSebastes spp., a complex which is primarily comprised of
Pacific ocean percl&ebastes alutus, in spring collections, Appendix A). The Shannovedsity
index exhibited strong negative correlation with giroportion of larval pollock observed in the
survey (Fig. 2, middle panel). Shannon diversityeéased during the 1980s, but dropped
between 1988 and 1989, coincident with the 1988 188ime shift in the GOA. Shannon
diversity was relatively low during the 1990s (epictor 1994 when pollock abundance was
low). Higher diversity occurred between 1998-208%cept 2000 when pollock abundance was
high), but then declined, with a minimum observe@013 (when pollock abundance was very
high).

The time series of synchrony also shows evidenabfpt shifts, and reflects the
dominant role of pollock in the ichthyoplankton asblage, particularly in the early years of

these data. Pollock clearly drives the overalckyany index through the early 1990s
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(difference between blue and gray lines, Fig. @elopanel). Removing the effect of pollock, the
other ichthyoplankton species were independentegakly asynchronous during this period (blue
line, synchrony values of 0 to -0.2). Synchroniftel to positive values in the mid-1990s, in
metrics with and without pollock, indicating thatdlfpck and rest of the assemblage fluctuated in
similar ways from the 1990s to 2013. This posistét in synchrony coincided with the
1988/1989 regime shift in the GOA, reduced domieasicpollock in the samples, and higher
Shannon diversity. Synchrony over 2003-2013 drogsedumbers of pollock larvae in the

assemblage increased dramatically in 2013.
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Figure 2. Ichthyoplankton assemblage dynamics between 288B- Top panel shows species
richness. Middle panel shows Shannon diversitefljrand the proportion of total sampled
larvae that were pollock (bars). Bottom panel shewschrony within an 11-year moving
window (x-value is midpoint of the window), wheraoh black line represents synchrony with
one species left out of the assemblage. Heavylgraghows synchrony with all species and the
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blue line shows synchrony without pollock. Verticadl lines indicate years of regime shifts in
the GOA, and shaded red areas in bottom panelateltbe moving windows that include the

years of the regime shifts.

Constructing shared temporal trends among ichthyoplankton species

We fit 8 potential DFA models to describe shareadis among ichthyoplankton, and model
selection with AlG revealed the best model was a two-trend model antbqual variance-
covariance matrix (Appendix C). The model with tiext lowest Al¢ value was nearly 20
units higher, thus we did not consider any othedaate models. The best fit model explained
28 percent of the total variation.

The best-fit model had two shared trends that desetithe dynamics of the
ichthyoplankton assemblage over 1981-2013 (Fig.T3&nd 1 showed moderate-to- low
amplitude until the mid-1990s (most values betw@amd -1 SD of the mean). From 1996 -
2010 Trend 1 was generally positive, with a peaRdA1. But, two years in the 2000s (2007-
2008) were very low (-2 SD below the mean). Thetmesent years of Trend 1 were close to the
mean. Trend 2 declined from a peak (+3 SD) in 188ts lowest value in 1996 (-3 SD). By
2000, Trend 2 increased to the mean and has eathititlti-year fluctuations through 2013,

with low values in 2006 and 2007.
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Figure 3. Common Trends 1 (a) and 2 (b) estimated from Dyodactor Analysis on 40
species of ichthyoplankton from 1981 to 2013.
Describing structure in the ichthyoplankton assemblage

The cluster analysis of species loadings on thelreevealed four groups that
characterized ichthyoplankton assemblage stru¢kige 4, Tab. 3). Cluster 1 contained species
loading negatively on Trend 2 that increased owerlt980s and 1990s (11 species, Fig. 4).
Many of these species, but not all, occupy watees the slope as adults and spawn in winter
(Tab. 3). Species loading strongly positive onntir& and weak to positive on Trend 1 formed
another cluster (Cluster 2), which also includeelcsgs that did not load strongly on either trend.
Some of these species experienced substantiahdsdh biomass in the 1980s and 1990s
(Bathymaster spp. andLumpenella longirostris). The species in Cluster 2 did not appear to share
life history traits (Tab. 3). The third cluster inded species loading positively on Trend 1 and

weakly on Trend 2 (|loading| <0.2) that generailyreased in abundance after 1996 (Appendices
21



346  B-C). Of the eight species in that cluster (Fig.s€veral were either warm-water associated or
347 had more southern ranges (elgpidopsetta bilineata, Sebastes spp. (Pacific ocean perch),

348  Ophiodon elongatus, Tab. 3) and/or showed increasing trends in adolnbiss over this same
349 period (Pacific ocean perch). Species in clusteef generally spring spawning with demersal
350 eggs and occupying benthic shelf habitat as ad@taster 4 contained 14 species that loaded
351 strongly negative on Trend 1, indicating a decréasdundance after the early 1990s. These
352 decreasing species included some species thablargvater associated or have more northern
353  ranges (e.d-epidopsetta polyxystra) and/or species where adult abundance has alfoetmn

354 recent years (e.g. pollock). Most species in Clusteccupied shelf or nearshore benthic habitat

355 as adults (Tab. 3).
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Figure 4. Loadings of ichthyoplankton species on DFA Trén@-axis) and Trend 2 (y-axis).

Label shading is proportional to the log-scaled maaundance of each species across all years.

Point colors indicate clusters identified by hietacal cluster analysis. Species abbreviations

described in Table 3.

Table 3. Life history traits of ichthyoplankton assemblagel clusters identified from cluster

analysis
Species Abbv  Adult Adult Spawn Egg Larval Range  Cluster
Habitat  bathymetric timing Ecology duration
(months)

Anoplarchus.spp. Anssp  benthic  nearshore spring demersal 3 northern 1
Icelinus.spp. Ic.sp benthic ~ nearshore spring demersal NA northern 1
Platichthys.stellatus Pl.st benthic  slope late spring pelagic 2 southern 1
Stenobrachius.leucopsarus Stle pelagic  slope spring pelagic 8 both 1
Atheresthes.stomias At.st benthic  slope winter pelagic 5 both 1
Microstomus.pacificus Mipa  benthic  slope spring pelagic 8 southern 1
Bathyagonus.alascanus Ba.al  benthic  shelf spring demersal 3 both 1
Leuroglossus.schmidti Lesc  pelagic  slope winter pelagic 3 northern 1
Protomyctophum.thompsoni Pr.th pelagic  slope winter pelagic 8 both 1
Bathylagus.pacificus Bapa pelagic  slope winter pelagic 3 both 1
Zaprora.silenus Zasi benthic  slope spring demersal 4 northern 1
Bathymaster.spp. Ba.sp  benthic  shelf late spring demersal 5 both 2
Hippoglossoides.elassodon Hi.el benthic  slope early spring  pelagic 4 northern 2
Glyptocephalus.zachirus Glza  benthic  slope spring pelagic 8 southern 2
Clupea.pallasi Clpa  pelagic  nearshore, late spring demersal 3 southern 2
Lumpenella.longirostris Lu.lo benthic 2:::; spring demersal 3 northern 2
Bathyagonus.infraspinatus Ba.in  benthic  shelf spring demersal 3 both 2
Sebastes.spp. Se.sp  benthic  slope spring live bearing 5 both 3
Isopsetta.isolepis Is.is benthic ~ nearshore, early spring  pelagic 2 southern 3
Lepidopsetta.bilineata Le.bi benthic 223: late spring demersal 4 southern 3
Cryptacanthodes.aleutensis Cral benthic  shelf spring demersal 3 both 3
Poroclinus.rothrocki Poro  benthic  shelf spring demersal 4 both 3
Radulinus.spp. Ra.sp  benthic  shelf spring demersal NA southern 3
Liparis.fucensis Li.fu benthic  shelf late spring demersal 2 both 3
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Ruscarius.meanyi Ru.me benthic  shelf spring demersal 3 southern 3
Ophiodon.elongatus Op.el  benthic  shelf late winter demersal 3 southern 3
Gadus.chalcogrammus Ga.ch  benthic  shelf early spring  pelagic 4 both 4
Ammodytes.personatus Am.pe pelagic nﬁalrfshore, late winter demersal 8 both 4
Gadus.macrocephalus Ga.ma benthic zh:If early spring  demersal 3 northern 4
Lepidopsetta.polyxystra Lepo  benthic  shelf early spring  demersal 5 northern 4
Lumpenus.maculatus Luma benthic  nearshore spring demersal 5 northern 4
Hexagrammos.spp. He.sp  benthic  nearshore winter demersal 8 both 4
Hippoglossus.stenolepis Hi.st benthic  slope winter pelagic 5 northern 4
Pleuronectes.quadrituberculatus  Pl.qu  benthic  shelf late spring pelagic 2 northern 4
Mallotus.villosus Mavi  pelagic  nearshore summer demersal 8 northern 4
Pholis.spp. Ph.sp  benthic  nearshore late winter demersal 3 both 4
Myoxocephalus.spp. My.sp  benthic  shelf spring demersal 5 northern 4
Podothecus.acipenserinus Po.ac  benthic  shelf spring demersal 3 both 4
Triglops.spp. Trsp  benthic  shelf spring demersal 3 both 4
Lumpenus.sagitta Lusa  benthic  shelf late winter demersal 3 northern 4

363

364  Potential physical and biological drivers of biodiversity and shared trends

365  Our analysis of diversity revealed that ichthyojtan species richness was negatively

366  correlated with the PDO during one 11-year windénang 1983 to 1993), but was not correlated
367 with any other environmental drivers over this sgregod (Fig. 5). Species richness was

368 generally positively correlated with increasingwpang stock biomass of Pacific ocean perch
369 and arrowtooth flounder during 1981-1995. Due tdides during this same time period, species
370 richness was negatively correlated with Pacific.cod

371 Shannon diversity was positively correlated wite MPGO during most of the 1980s and
372 1990s, but this correlation diminished after th8&/2989 regime shift (characterized by the

373  NPGO shifting negative). During the late 19902@4.3, Shannon diversity was negatively

374  correlated with the NPI. Shannon diversity was alsgatively correlated with lagged pollock

375 SSB in most years after 1990, echoing the negabuelation between the proportion of larval
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pollock observed in the spring survey and the Sbamiversity index (Fig 2). SSB of the other
species either increased or declined during moiteothree decades, which caused inconsistent
correlations with the more variable Shannon divgitsine series.

To guide our interpretation of the common trendsfiDFA, we examined correlations
with environmental indices and SSB indices. Trémdas positively correlated with NPGO
from 1981 until 2003 (years indicate edges of mgwiindows, Fig. 5) with both exhibiting
similar high values in 2001 and low values in tame years in the 1980s and 1990s (Figs. 3 and
D2). The correlation between upwelling and Trendlas negative from 1987 to 1997, but
switched to positive in 1996 to 2010. Mean seallesas correlated with Trend 1 from 1994 to
2002. For fish time series, Trend 1 was negatigelyelated with pollock and Pacific cod SSB
during 1987 to 2005 and positively correlated vitrxific ocean perch during those same years.
Trend 2 was positively correlated with the MEI ahgril987 to 1997. Similar to Trend 1, Trend 2
was negatively correlated with the upwelling angniedm 1982-1994. For adult fish indices,
both Trend 1 and 2 were correlated with adult pid]dout Trend 2 was negatively correlated in
the first few years of the time-series, pickingarpextreme value in 1981. In the 1980s and early
1990s Trend 2 was also negatively correlated wdthitaPacific ocean perch and arrowtooth
flounder but positively correlated with Pacific cdle saw no correlations between Trend 2 and

any of the environmental or SSB covariates aft&620
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Figure5. Moving window cross correlations between envirental and spawning stock
biomass variables and DFA trends and diversitycesli Each panel shows a time series of
Pearson correlations (black line) with 90 percemifilence intervals that account for
autocorrelation (Cl, grey-shaded region) with adaw length of 11 years (e.g., x-value for 1986
represents years 1981 to 1991). Red and bluesp@ptesent correlations in which the
confidence intervals are greater or less than zespectively.
Discussion

Our analysis shows that ecological indicators dgsed from ichthyoplankton surveys

are potentially useful for monitoring and assessimgeffects of gradual change and abrupt shifts
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in Large Marine Ecosystems. The standardized isdig@robability of occurrence and
abundance we estimated for the 40 ichthyoplankpecies shown here represent the most
precise and least biased estimates of abundanseriag ichthyoplankton in the GOA over
three decades. The biodiversity indices, synchrang DFA trends we developed show
evidence of long-term gradual change in this edesysas well as supporting evidence for
abrupt shifts. These patterns were correlated sétteral factors: climate shifts that occurred in
the North Pacific ecosystem in 1988/1989 and 20Wi@2the influence of pollock - the
dominant larval species - on the co-occurring igbftankton assemblage, and the assemblage
response to environmental forcing events relativiaé abundance of pollock.

Species richness and DFA Trend 1 both showed gratlaages from 1981-2013. These
trends may reflect a range shift of southern ldatapecies into the western GOA pursuant to
overall ocean warming. Abundances of larval sautheck sole I(. bilineata), Pacific ocean
perch & alutus), lingcod ©. elongatus), and starry floundei? stellatus, Appendix B) have
increased, consistent with an increase in bottanpe&gatures in the GOA (Fig. D2). DFA Trend
1 separated some warm and cold-water associatetespehich could be a leading indicator of
replacement of cold water species like northerk smde L. polyxystra) with a warm water
congeneric, southern rock sole, over time. Clirmégliated changes in ichthyoplankton
phenology, distribution, and community structurgenbeen documented in other Large Marine
Ecosystems (e.g., Asch, 2015; Brodeur et al., 2G08ye et al., 2005; Walsh et al., 2015) and
erratic occurrences of adults of warm water affispecies have been documented recently in
the GOA (skipjack tunaKatsuwonus pelamis), ocean sunfisnola mola), thresher shark

(Alopias vulpinus; J. Orsi, NOAA AFSC, personal communication).
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Our results support the idea that large-scale mofisl®rth Pacific atmospheric and
oceanographic variability are important environnagdtivers of the spring ichthyoplankton
assemblage. Specifically, the NPGO appeared te geeater influence than other drivers we
explored. While the PDO has received significatgrdgion for contributing to ecosystem regime
shifts in the GOA, we found stronger evidence ofaations between the spring
ichthyoplankton assemblage and the NPGO over ti@ f&m the 1980s to the mid 2000s.
Litzow and Mueter (2014) noted a similar phenomedionng the same period, which they
attributed to the white noise-dominated signahaf PDO during those years. Variations in the
NPGO have been correlated to production indicetuyding shifts in nutrient availability and
phytoplankton, zooplankton, and salmon (Oncorhyrspys, Di Lorenzo et al., 2008; Ohlberger
et al., 2016; Sydeman et al., 2013). Our resutigige further support for the influence of the
NPGO on the North Pacific marine ecosystem froml@®®0s to mid-2000s.

Despite the dominance of the NPGO, our results aamnmhe out the PDO as a potential
driver of spring ichthyoplankton. Trend 1 was piesity correlated with the PDO in the most
recent years of data (2003-2013). Further, both EfEAds had strong anomalies in 2007/2008,
the same year as the most recent PDO shift. Téenabk of significant correlations with the
PDO in other years may be due to the ichthyoplanktoe series beginning several years after
the most influential PDO regime shift of 1976/19tis also possible that more local indices
better reflect ocean conditions most relevant éosibring ichthyoplankton assemblage,
suggested by similar correlation patterns betweend 1 and sea level, upwelling, and the PDO
beginning in the mid-1990s. While the dominancéhefPDO and NPGO in the North Pacific

has been described elsewhere (Bond et al., 200BpiBnzo et al., 2008; Litzow and Mueter,
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2014), our results demonstrate that the springldish assemblage may be sensitive to the
fluctuations and relative strengths of both anddftge may be useful indicators of the impacts
of climate variability on lower trophic dynamicstime GOA.

Observed positive correlations between Trend 1,alipwg, and some warm water-
affinity species may seem counterintuitive. Howevepwelling” in the GOA (a downwelling
system) is more accurately a relaxation of thensgedownwelling that occurs throughout
winter. The climatological upwelling index in surams near zero (Ladd et al., 2005).
Weakened summer winds prompt relaxation eventsrdiuwkes of cold, deep, slope-origin water
during those times are assumed due to observesbises in salinity at depth (Stabeno et al.,
2004). Strong vertical stratification in late sprisummer can preclude mixing of on-shelf slope
waters to the depths of larval occurrence (typycaiO m in late spring), and shoaling of the
mixed layer depth is observed during relaxatiomése Moreover, relaxation of downwelling
winds reduces the on-shelf flux of cold, basin watehe Ekman surface layer (Ladd et al.
2005), which may lead to warmer water near surfaceng upwelling periods. As such, it may
not be so unusual to observe positive relationdbghaeen warm-affinity species and
downwelling relaxation events in late spring.

Both DFA trends bear resemblance to trends froeparate examination of climate-
biological interactions using entirely differenblmgical datasets (Litzow and Mueter, 2014). In
that paper, the authors also examined the reldtips®etween biological time-series data
collected from the GOA (large invertebrates, grdishdrecruitment, recruitment of small neritic
species, salmon, and zooplankton) and leading tdimaices. Their first axis of biological

variability was described by a pattern very simitaour DFA Trend 2, with a strong decline
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noted from the 1970s through the 1990s, and atshiiariability afterward. Inflection points
were similar in years 2000-2011, inclusive of vy values in years 2007-2008. Their second
axis of biological variability was positive from 89-1995, and switched to negative between
1996-2008. This pattern was similar to our DFARd. The fact that these two studies,
focusing on different species and life stages, fosimilar trends in biological responses
suggests that many components of GOA ecosystenresapnd similarly to broad-scale climate
forcing, or are in other ways linked.

Despite the contrasting patterns of fluctuationsdated by the two DFA trends, the
synchrony metric we calculated was generally pesidind relatively constant across the three
decades. However, we saw asynchrony and indepeadieming the 1980s and early 1990s
when pollock were removed from the dataset. Taisaided with the highest years of pollock
SSB, and many years of high proportional abundahtaval pollock (Figs. 2, D2). This pattern
could be explained by several possible mechaniginsabundance of pollock larvae could
indicate ecosystem conditions that are favorahiéafwal feeding and survival across species. In
this case, numerous pollock indicate a hospitaime&enment (less limiting) that supports an
array of prey types, habitat, and refuges. Suchramronment could facilitate the expression of
species diversity, leading to greater asynchromgsacspecies. In less productive years pollock
abundances are low, as are abundances of otheespee to greater ecosystem constraints on
resources. Synchrony under constrained conditiagbtrbe realized when ecosystem conditions
are insufficient to support diversity. Another pitde explanation is that the abundance of
pollock could modulate the strength of competitgnong the other larval fish species. Pollock

are versatile zooplanktivores and numerically daminn the system. These qualities may allow
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them to compete for resources at a level well altoaeof other co-occurring species. Pollock
ascendancy could increase trophic interactions grotimer species for remaining resources,
leading to dissimilar responses, variable competitiutcomes, and differential survivorship.
Reduced numbers of pollock larvae in the systentdcalleviate competition for prey resources
and homogenize responses to environmental flucnstHow pollock abundance could
intensify trophic interactions is unclear, thoughas been previously-demonstrated that larval
pollock grazing can have a measurable effect oplan&ton standing stock due to the sheer
numbers of pollock larvae present in the systenffiPAnderson et al., 2002). A third

possibility is that years of high pollock abundawcoeld trigger predator-mediated apparent
competition, where predators of larval pollock emse predation on abundant pollock and less
abundant other species simultaneously. Of coulissamples analyzed here were collected from
a relatively small geographic region (Kodiak vitynof the western GOA), so a fourth
explanation is that synchrony is reflected as sinmésponses to local events. Nevertheless, we
demonstrated that a pronounced change in synclthaniryg the 1990s persisted for over a
decade, suggesting long-term impacts to the planédonmunity as a whole.

Overall, our work shows that spring ichthyoplankborthe GOA integrates signals from
the physical environment and adult spawning stecknbss. Our analyses revealed the
composition of the assemblage is indicative of lgydual change and abrupt regime shifts. The
biodiversity, synchrony, and DFA trends we presete a first step towards developing
ecosystem indicators from ichthyoplankton timeesefor the GOA. Ichthyoplankton are an

important component of the lower trophic leveldred marine food web, as such, they can
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513  provide useful indicators of food availability, atitey may also be potential leading indicators
514  of change in marine ecosystems.
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