

1
2 **Regional assessment of persistent organic pollutants in resident mussels from New Jersey**
3 **and New York estuaries following Hurricane Sandy**
4

5 Kelly L. Smalling^a, Ashok D. Deshpande^b, Heather S., Galbraith^c, Beth L. Sharack^b, DeMond
6 Timmons^b, Ronald J. Baker^a

7
8 ^aU.S. Geological Survey, New Jersey Water Science Center, Lawrenceville, NJ, United States
9

10 ^bNOAA Fisheries, NEFSC, James J. Howard Marine Sciences Laboratory at Sandy Hook, NJ,
11 United States

12 ^c U.S. Geological Survey, Leetown Science Center, Northern Appalachian Research Laboratory,
13 Wellsboro, PA, United States

14

15

16

17

18

19

20

21

22

23

24 *CORRESPONDING AUTHOR

25 Kelly L. Smalling

26 3450 Princeton Pike, Suite 110

27 Lawrenceville, NJ 08628, USA

28 P: 609-331-4850

29 F: 609-771-3915

30 ksmall@usgs.gov

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47 **ABSTRACT (150 words)**

48 Resident mussels are effective indicators of ecosystem health and have been utilized in national
49 assessment and monitoring studies for over two decades. Mussels were chosen because
50 contaminants concentrations in their tissues respond to changes in ambient environmental levels,
51 accumulation occurs with little metabolic transformation and a substantial amount of historic
52 data were available. Mussels were collected from 10 previously studied locations approximately
53 a year after Hurricane Sandy. Regionally, concentrations of polychlorinated biphenyls (PCBs)
54 and polycyclic aromatic hydrocarbons (PAHs) decreased significantly, while concentrations of
55 organochlorine pesticides (OCPs) remained unchanged, and polybrominated diphenyl ethers
56 (PBDEs) increased compared to historic concentrations. Although concentrations of PCBs, OCPs
57 and PAHs were at or near record low concentrations, long-term trends did not change after
58 Hurricane Sandy. To effectively measure storm-induced impacts it is necessary to understand
59 the factors influencing changes in mussel body burdens, have a long-term monitoring network
60 and an ability to mobilize post event.

61

62

63

64

65 Keywords: Persistent organic contaminants, mussel tissue, Hurricane Sandy, estuarine health,
66 chronology

67

68

69

70

71

72

73

74

75

76

77 **1. Introduction**

78 Bivalves are widely distributed in coastal environments and have long been used as
79 resident sentinels for assessing ecosystem health and productivity (Farrington, 1983). Resident
80 mussels in particular have been used to assess contaminant concentrations in near-shore
81 environments because they are sessile organisms that filter feed and accumulate contaminants
82 directly from the water column (Chase et al., 2001; Sericano et al., 1995). Due to the structure of
83 their digestive systems and lack of a liver-like detoxification function, mussels cannot efficiently
84 metabolize most organic contaminants, making them an ideal integrator of contaminants at the
85 local and regional scale (Baumard et al., 1998; Chase et al., 2001).

86 The National Oceanic and Atmospheric Administration's (NOAA) Mussel Watch
87 Program began in 1986 and is one of the longest and continuously running coastal monitoring
88 programs in the United States whose mission is to monitor and report the status and trends of
89 contaminants in U.S. coastal waters (Kimbrough et al., 2008). The data generated from the
90 Mussel Watch program has helped characterize the environmental impacts of contaminants (new
91 and legacy) throughout the coastal US (Kimbrough et al., 2008; Kimbrough et al., 2009) and has
92 been useful in the interpretation of potential local and regional impacts from events such as
93 hurricanes, oil spills and other disasters (Soriano et al., 2006; Lauenstein and Kimbrough, 2007;
94 Johnson et al., 2009; Apeti et al., 2011).

95 Hurricane Sandy caused widespread damage to coastal New Jersey and New York in
96 October, 2012. The resulting disturbances from the storm were considered possible threats to
97 vulnerable coastal ecosystems due to the potential remobilization of contaminants from disturbed
98 bottom sediment as well as inputs from compromised infrastructure (Buxton et al., 2013).
99 Certain anthropogenic hydrophobic contaminants can be stored for extended periods in bottom

100 sediments and resuspension can reintroduce them into the water column, making them more
101 bioavailable for uptake by bottom-dwelling aquatic organisms. Mussels used as sentinel
102 organisms to assess ecosystem health, are filter feeders that can provide an integrated biotic
103 perspective on storm induced impacts of contaminants. For example, resuspension of bottom
104 sediment following an event has the potential to increase the availability of contaminants thus
105 altering the contaminant body burden of resident mussels. Conversely, storms can have a
106 scouring effect on bottom sediments in some estuarine environments, removing adsorbed
107 contaminants from system, and possibly decreasing mussel body burdens. Bivalves have shown
108 a diverse response to contaminant exposure, including decreased immune response (increase
109 susceptibility to parasites), decreased recruitments, and mortality (Bushek et al., 2007; Weis et
110 al., 1994) which could ultimately result in population declines.

111 In the United States, studies to assess the impacts of storms on contaminants from an
112 ecological health perspective tend to be localized and limited to strong hurricanes such has
113 Hurricanes Katrina and Rita in the Gulf of Mexico (Johnson et al., 2009; Apeti et al., 2011).
114 Although these studies are regionally limited, the results and conclusions are relevant and
115 comparable to other regions and events. To characterize the potential effects of Hurricane Sandy
116 on contaminant redistribution and bioavailability, mussels were chosen to compare body burden
117 residues post-Sandy to trends generated by the Mussel Watch Program pre-Sandy similar to
118 other studies (Johnson et al., 2009; Apeti et al., 2011). Filter feeders such as mussels are ideal
119 because contaminant concentrations in their tissues quickly respond to changes in ambient
120 environmental levels, accumulation occurs with very little metabolic transformation and over 20
121 years of historical data for the study area are available for many persistent organic pollutants of
122 interest (Kimbrough et al., 2008; Kimbrough et al., 2009).

123 The objective of the study was to assess the impacts of Hurricane Sandy on the
124 distribution of persistent organic pollutants in mussels. Two mussel species (*Mytilus edulis* and
125 *Geukensia demissa*) were collected throughout the storm-impacted area, the shells were thin-
126 sectioned and aged and the tissues were analyzed for polychlorinated biphenyls (PCBs),
127 polybrominated diphenyl ethers (PBDEs), polycyclic aromatic hydrocarbons (PAHs) and
128 organochlorine pesticides (OCPs). Local and regional data after Hurricane Sandy were compared
129 to long-term trends generated for these contaminants over the past 20 years by the Mussel Watch
130 Program. A subset of the mussels collected were aged to determine if the size class available had
131 survived Hurricane Sandy and if the age classes were similar in order to conduct a regional
132 comparison. Understanding the persistence and accumulation of contaminants in mussel tissue
133 will help scientists further assess the impacts to ecosystem health and establish a new baseline
134 for tissue-bound contaminants in the aftermath of a major coastal storm.

135

136 **2. Methods**

137 *2.1 Study area and sample collection*

138 The study area consisted of estuaries adjacent to lands in New Jersey and New York that
139 were inundated by the storm surge from Hurricane Sandy (Fig 1). Sampling locations were
140 selected on the basis of the availability of pre-Hurricane Sandy tissue data (Kimbrough et al.,
141 2008) in order to facilitate a comparison of contaminant data after the storm to a 20 year record.
142 Resident blue mussels (*Mytilus edulis*) and ribbed mussels (*Geukensia demissa*) were collected
143 from 10 NOAA Mussel Watch locations (Fig 1, Table 1) along the New Jersey and New York
144 coastline from December 2013 to April 2014 using previously published methods (Lauenstein
145 and Cantillo, 1993a). At each sampling site, approximately 100 individual mussels were

146 collected from 2 to 3 stations approximately 25 meters (m) apart. Mussels ranging in length
147 from 20 to 80 mm, depending on species and the availability of mussels at each site, were
148 collected by hand, rinsed with seawater to remove any residual debris, and placed in 5-gallon
149 buckets. Only mussels with tightly closed shells were collected. All mussels were collected from
150 rocks, jetties, and marsh sediment near the shoreline. Blue mussels were collected from 8 of the
151 10 sites, ribbed mussels were collected from 3 of the 10 sites and both species were collected
152 from the Jamaica Bay, NY (HRJB) site (Table 1).

153 After collection, the mussels were placed in two separate 1-gallon Ziploc bags using
154 gloved hands (50 mussels per bag). The bags were labeled A and B, representing replicate
155 samples which consisted of 50 randomly pooled mussels from the 2–3 stations at each site. All
156 samples were placed in a cooler on ice, transported back to the laboratory, and stored frozen at -
157 20 °C prior to processing and analysis.

158 In the laboratory, mussels were thawed, and the shells were opened using a methanol
159 rinsed spatula. The tissue was removed with methanol rinsed forceps and placed into a 500-mL
160 clean, baked amber jar. Each 500-mL jar represented a composite tissue sample (~50
161 individuals) from a single replicate composite sample collected from one location. The tissue
162 samples were frozen at -20 °C and shipped on ice to the NOAA Northeast Fisheries Science
163 Center James J. Howard Marine Sciences Laboratory at Sandy Hook, NJ for analysis. Forty to
164 80 randomly selected shells of various sizes were washed to remove excess tissue and debris,
165 placed in 1-gallon Ziploc bags and shipped to the LSC Northern Appalachian Research
166 Laboratory (LSC-NARL), PA for chronology.

167

168 *2.2 Mussel shell chronology*

169 Mussel shells were measured from the umbo through the longest axis of the mussel using
170 digital calipers and were embedded in EpoThin epoxy resin (Buehler, Lake Bluff, Illinois).
171 Embedded shells were sectioned through the umbo, again through the longest axis, using an
172 Allied TechCut4 diamond blade saw (Allied, Rancho Dominguez, California). Blue mussel
173 sections were mounted to standard microscope slides, and ribbed mussel shells were mounted on
174 either standard slides or custom 12- x 4-cm glass slides using Devcon 2-ton epoxy (Devcon,
175 Solon, Ohio). Once mounted, shells were sectioned again to a thickness of approximately 0.25
176 mm. Mounted sections were sanded using a graded sandpaper (320 grit, 600 grit, 800 grit) and
177 polished with 1- μ m polycrystalline diamond suspension (Allied, Rancho Dominguez, Calif.),
178 followed by a 0.04- μ m colloidal silica suspension (Allied, Rancho Dominguez, Calif.). Slides
179 were stained in Mutvei's solution (1% acetic acid 25% gluteraldehyde mixed with alcian blue)
180 for 50 min at 37 °C. Annuli were enumerated by teams of at least three people until consensus
181 was reached using a dissecting microscope at 65x. Digital photographs were taken of each slide
182 and annotated (Lutz, 1976).

183

184 *2.3 Mussel Tissue Extraction and Analysis*

185 Composite mussel tissue samples were analyzed for 4 classes of select persistent organic
186 pollutants including PCBs, PBDEs, PAHs and OCPs using previously published methods
187 (Deshpande et al., 2013; Deshpande and Dockum, 2013). Analytical methods utilized in this
188 study were similar to those conducted previously by the Mussel Watch Program (Lauenstein and
189 Cantillo, 1993b; Lauenstein and Cantillo, 1998; Kimbrough et al., 2007). Briefly, individual
190 whole freeze-dried tissue composites were pulverized in a blender with diatomaceous earth,
191 extracted with dichloromethane (DCM) using a Soxhlet (18 hours) and reduced under nitrogen

192 gas. Prior to extraction, recovery surrogates DBOFB, Ronnel, PCB 198, d₈-naphthalene, d₁₀-
193 acenaphthene, d₁₂-benzo[a]pyrene and d₁₂-pyrene, and 6-F-PBDE 47 were added to each tissue
194 sample. The bulk polar interfering compounds of biological origin were removed from the target
195 analytes using florisil/silica/alumina glass column chromatography. Following initial clean-up,
196 twenty percent by volume of the extract was used for the gravimetric lipid determination. Lipids
197 and other interferences were removed using high performance liquid chromatography column
198 (Phenogel 10, 600-mm x 21.20-mm, 100 pore size, 10-μm particle size; Phenomenex, Torrance,
199 California). Prior to lipid removal by HPLC, 1,2,3-trichlorobenzene (TBZ) and PCB 192 were
200 added to the samples. HPLC fractions containing the target analytes were collected, solvent-
201 exchanged to hexane, concentrated to less than 1 ml and each final extract was split into three
202 vials for the analysis of (1) PAHs, (2) PCBs and OCPs and (3) PBDEs.

203 Target analytes were analyzed using an Agilent 6890 GC coupled to an Agilent 5973 MS
204 operating in SIM mode. PAHs, PCB congeners and OCPs were analyzed using a DB-5 0.25 mm
205 ID x 60-m capillary column. PBDE congeners were analyzed by using a Restek 1614 0.25 mm x
206 15-m PBDE column. Analyte concentrations are expressed as ng/g on a dry weight basis.
207 Reporting limits (RLs) for PAHs, PCBs, OCPs and PBDEs ranged from 0.5 to 3.2 ng/g dry
208 weight.

209

210 *2.4 Quality Assurance/quality control*

211 A comprehensive set of quality assurance/quality control (QA/QC) parameters were
212 analyzed with the environmental samples and included laboratory blanks, field replicates and
213 standard reference materials. If compounds were detected in the laboratory blanks above the RLs
214 the environmental samples were censored based on the following criteria: if the environmental

215 concentration was less than 3 times the blank value then that value was changed to a non-detect
216 and not reported, if the environmental concentration was greater than 3 times the blank value
217 then the reported concentration was coded with an 'E' and if the environmental concentration is
218 greater than 10 times the blank value than the actual concentration is reported without censoring.
219 One laboratory blank was analyzed with the batch of mussel samples. No PCBs or OCPs were
220 detected in the laboratory blank at greater than the RLs. Two PBDEs, PBDE 49+71 and 99,
221 were detected in the laboratory blank at greater than the RLs. Recovery surrogates were added to
222 each sample to measure method performance. For PCBs and OCPs, mean recoveries with
223 standard deviations of 1,2,3-TCB, DBOFB, Ronnel, PCB 192 and PCB 198 were $97 \pm 25\%$, $70 \pm$
224 11% , $75 \pm 22\%$, $117 \pm 20\%$ and $90 \pm 11\%$, respectively. For PAHs, mean recoveries with
225 standard deviations of d₈-naphthalene, d₁₀-acenaphthene, d₁₂-benzo[a]pyrene and d₁₂-pyrene were
226 $44 \pm 19\%$, $61 \pm 8\%$, $58 \pm 15\%$ and $68 \pm 7\%$, respectively. For PBDEs, mean recovery with
227 standard deviation of 6-F-PBDE47 was $101 \pm 18\%$. The percent recoveries based on NIST
228 certified values for PAHs, PCBs, PBDEs and OCPs in SRM 1947c (Organics in Mussel Tissue)
229 ranged from 50 to 132% with a median of 79%, from 52 to 139% with a median of 84%, from 71
230 to 115% with a median of 105% and from 63 to 118% with a median of 77%. All environmental
231 data was considered of acceptable quality based on project QA/QC data as well as the QA/QC
232 criteria supported by the Mussel Watch Program (Kimbrough et al., 2007).

233

234 *2.5 Historical data retrieval and statistical analysis*

235 Data from the Mussel Watch Program in the study area prior to Hurricane Sandy were
236 compiled to examine the ecological impacts of the storm in a historical context (Smallling et al.,
237 2015). Over 20 years of Mussel Watch Program data for PCB, PAHs and OCPs were available

238 from 1985-2012. For PBDEs the only data available were from 2004 and 2008. Mussel tissues
239 in the current study were analyzed for a suite of organic contaminants including 53 PAHs and
240 alkylated PAHs, 34 PCBs, 24 OCPs and 28 PBDEs (Smallling et al., 2015). However, to
241 compare trends in contaminant concentrations to previous studies (Kimbrough et al., 2008;
242 Johnson et al., 2009) a subset of compounds was used for all statistical analyses (Table 2).

243 Nonparametric methods were used to evaluate trends in contaminant concentrations in
244 composite mussel-tissue samples from the 10 sites. Nonparametric methods are commonly
245 applied when analyzing biological and other environmental data, as it eliminates the need to
246 assume that specific distributions, such as normal or log-normal apply to the data (Helsel and
247 Hirsch, 2002). The two-sample Wilcoxon test was used to compare pre- to post-Sandy total
248 concentrations of contaminant groups (PCBs, DDTs, chlordanes, dieldrins, PBDEs, low-
249 molecular-weight PAHs, high-molecular-weight PAHs, and total PAHs). Where the p-value
250 (probability of no difference between the distributions of pre-and post-Sandy samples) was
251 ≤ 0.05 , a statistically significant change in median concentrations was indicated. A negative Z-
252 statistic value indicated a decrease in the median concentration after Sandy, and a positive value
253 indicated an increase. Spearman's rank correlation coefficient (rho) was used to test for trends in
254 concentrations of contaminant groups over time at each site. Significant increasing or decreasing
255 trends are indicated by p-values ≤ 0.05 , and the value of rho indicates the slope (rate) of increase
256 or decrease in concentration over time. The application S-Plus (TIBCO Software Inc., Palo Alto,
257 CA) was used for all statistical analysis.

258 A von-Bertalanffy growth model was fitted to the length at age data using the
259 'fishmethods' package in R (R core team, 2015). Due to a targeted size range for field sampling,
260 the program could not converge on a model solution. Instead, a quadratic equation was fitted to

261 length-at-age data using SigmaPlot v. 12.5. Deviations from the model were compared among
262 sites using a nonparametric Kruskal-Wallis test with IBM SPSS Statistics v. 20.0.0.2 software.
263 Pairwise post hoc tests were also completed with SPSS to assess among site differences in
264 growth rates.

265

266 **3. Results and Discussion**

267 *3.1 Age of resident mussels*

268 In an attempt to understand the ecological impacts of Hurricane Sandy, 10 Mussel Watch
269 sampling locations along the New Jersey and New York coastline were reoccupied about 15-17
270 months after the storm. The standard Mussel Watch Program sample protocol suggests a size
271 range of 50-80 mm to avoid large discrepancies in age for site comparisons and a more robust
272 trend analysis (Lauenstein and Cantillo, 1993a). However, following Hurricane Sandy
273 populations consisted of much smaller mussels (< 50 mm) at many of the sites making it
274 impossible to collect enough in the recommended size range. Therefore, the individual age of a
275 subset of mussels at all sites were evaluated by thin-sectioning of the shells to determine if the
276 mussels collected had survived Hurricane Sandy and if there were regional differences in
277 populations resulting from the storm. Mussel size and age varied by species and collection site
278 (Table 3). Blue mussels were generally smaller (range 23.2 to 63.0 mm) than ribbed mussels
279 (range 28.9 to 86.3 mm). Age ranges were similar with blue mussels ranging from 4 to 13 years
280 and ribbed mussels ranging from 3 to 12 years, indicating that ribbed mussels have higher
281 growth rates than blue mussels. The age and size of the mussels sampled during the current
282 study are consistent with life histories of these species along the Atlantic Coast. Adult ribbed
283 mussels can live for more than 15 years, grow to nearly 10 cm in length and can be found in

284 numbers over 1,500 per m² (Coen et al. 1997; Brousseau, 1984). Ribbed mussels have the ability
285 to reattach if dislodged, providing this species with more opportunities to respond to disturbance.
286 The longevity of blue mussels is more dependent on locality and habitat. In the lower intertidal
287 zone, few individuals are likely to survive more than 2-3 years due to intense predation and
288 disturbances, whereas high intertidal zone populations are composed of numerous year classes
289 (Seed, 1969) and have been reported to reach 18-24 years of age (Thiesen, 1973).

290 Among-site variability in growth rates of ribbed mussels have been noted by other studies
291 and these differences have been attributed to shore level, temperature, salinity, tidal/current
292 exposure, quantity and quality of food sources and stress from contaminants (Seed 1980;
293 Bertness and Grosholz 1985; Franz 1993; Franz and Tanacredi 1993). Typical age-growth
294 relationships for blue mussels are asymptotic, resulting in decreases in absolute and relative
295 growth rates as the mussel ages (Sukhotin and Portner, 2001). In the current study, there was a
296 significant quadratic relationship between length and age for both blue mussels ($r^2=0.19$,
297 $p<0.0001$) and ribbed mussels ($r^2=0.42$, $p=0.0002$), supporting these previously described
298 patterns. Among-site differences in their deviations from the global growth model were also
299 detected for both species (blue mussel: $H=42.34$, $p<0.001$; ribbed mussel: $H=15.62$, $p<0.001$).
300 Specifically, blue mussels collected from the BIBL site had significantly higher deviations from
301 the growth model than all of the other sites (i.e., mussels here were younger than expected based
302 on their size). A similar pattern was observed in ribbed mussels for the HRJB site, which also
303 experienced greater positive deviations from the growth model relative to the other sites. There
304 was no relationship between latitude (site) and blue mussel length ($r^2=0.25$, $p=0.10$) or age
305 ($r^2=0.32$, $p=0.07$), likely because of the narrow spatial scale of this study. Despite some
306 variations in growth rates among sites, primarily limited to two locations, the size class sampled

307 during the previous study allows for regional comparison of contaminant tissue concentrations
308 after Hurricane Sandy.

309

310 *3.2 Persistent organic pollutants*

311 At each site, trends prior to Hurricane Sandy (1985-2012) for all compound classes listed
312 in Table 2 were compared to new trends after the storm (Table A1). Regionally, historic
313 concentrations pre- and post-Hurricane Sandy were compared for all compound classes to
314 understand the ecological impacts of the storm (Table 2). Although 2 different species were
315 collected throughout the study area, their tissue concentrations are comparable and contaminant
316 profiles and bioaccumulation potential are similar between blue and ribbed mussels. Other
317 studies have noted after 28 days of exposure a steady-state condition was achieved for both
318 species and PCB concentrations and congener profiles were statistically comparable between the
319 species (Bergen et al., 1993; Nelson et al., 1995).

320

321 *3.2.1 Comparison to pre-hurricane Sandy trends*

322 Concentrations of PCBs, OCPs and PAHs in mussels collected about a year after
323 Hurricane Sandy were compared to long-term site-specific, regional and national trends
324 generated by the Mussel Watch Program (Kimbrough et al., 2008). At the current time, not
325 enough data for PBDEs are available for a trend analysis. For PCBs, 80% of the sites had total
326 PCB concentrations that were below the lowest value reported by the Mussel Watch Program for
327 the same site, and some were an order of magnitude lower in 2014 compared to the available pre-
328 Sandy data (Fig 2). PCBs at 2 sites, Fire Island (LIFI) and Gardiners Bay (LIGB) were detected
329 above the lowest value, but below the site-specific 20 year median values. Overall, the trends

330 observed at each site for total PCBs did not change following Hurricane Sandy. A decreasing
331 trend in total PCBs before and after the storm was observed at 7 of the 10 sites sampled (Table
332 A1). A similar decreasing trend in PCB concentrations nationally has also been reported by the
333 Mussel Watch Program including significant decreases throughout the Northeast over the past 20
334 years (Kimbrough et al., 2008). No change in PCB concentrations were observed in the
335 Hudson/Raritan Estuary (HRRB), Fire Island Inlet (LIFI) and Gardiners Bay (LIGB). The
336 Hudson/Raritan Estuary remains heavily contaminated with PCBs attributed to previous
337 industrial activity is one of the most contaminated estuaries in the country (Ayers and Rod, 1986)
338 and sediments in the estuary will continue to be a source of PCBs and other contaminants into
339 the future. However, any resuspension of contaminated sediment from the Hudson/Raritan
340 Estuary was not evident in mussels collected a year after the storm (Fig 2).

341 As stated previously, 24 OCPs were analyzed in the current study but many of these
342 compounds were detected infrequently and significant historic data are not available. For these
343 reasons, total OCP concentrations reported in the current study consisted of the sum of total
344 DDTs, total chlordanes and total dieldrins similar to those OCPs reported by the Mussel Watch
345 Program during their trend analysis (Kimbrough et al., 2008). Concentrations of total OCPs
346 varied by site, however, OCPs at 50% of the sites were below the lowest previously observed
347 value, 30% were below the median reported values and concentrations at 20% of the sites were
348 above the historical median value (Fig 3A). OCP concentrations at Fire Island (LIFI) were close
349 to the maximum reported value and concentrations of total DDTs and chlordanes increased in
350 2014 by a factor of 2 compared to the 20 years prior to Hurricane Sandy (Table A1). Post
351 Hurricane Sandy total DDT concentrations were less than the site-specific median values at 70%
352 of the sites (30% of the sites were below the lowest recorded value) while DDT concentrations in

353 Fire Island (LIFI) were greater in 2014 than the highest reported historic value (Fig 3B).
354 Similarly, total chlordane values in 2014 were generally low (80% of the sites were less than the
355 site specific median values), however concentrations of total chlordanes were elevated at 2 sites
356 in Long Island, Fire Island (LIFI) and Gardiners Bay (LIGB) (Fig 3C) while dieldrins (data not
357 shown) were only detected at 2 sites in the New York Bight, Shark River (NYSR) and Long
358 Branch (NYLB). A greater amount of variability was observed in the trend data for OCPs
359 following Hurricane Sandy compared to total PCBs. This variability in OCPs and increasing
360 concentrations at certain sites could suggest local sources. The increase in DDTs and chlordanes
361 after Hurricane Sandy in Long Island (LIFI and LIGB) is unexpected since pre-Sandy
362 concentrations were lower than those reported at other sites in the study area. Even though total
363 concentration increased at LIFI and LIGB in 2014, no change in trends was observed at these
364 sites. Decreasing trends in chlordanes, DDTs and dieldrins were observed in 6, 5 and 3 sites,
365 respectively both before and after Hurricane Sandy (Table A1). At several sites, after Hurricane
366 Sandy a shift to a decreasing trend was observed in samples from LIJI for chlordanes and DDTs
367 and dieldrins at HRRB. Nationally as well as throughout the Northeast, the concentrations of
368 chlordanes, DDTs and dieldrins are declining (Kimbrough et al., 2008), though concentrations at
369 some sites still remain elevated based on inputs from previous industrial and urban sources
370 throughout the region.

371 PAHs were divided into low molecular weight (LMW) compounds and high molecular
372 weight (HMW) compounds for site and regional comparisons (Table 2). Separation of PAHs by
373 molecular weight helps differentiate between petroleum (LMW) and combustion or pyrogenic
374 (HMW) sources, respectively. None of the sites sampled after Hurricane Sandy had elevated
375 concentrations of low or high molecular weight PAHs compared to the preceding 20 year record.

376 A year after Hurricane Sandy, total PAHs (sum of LMW and HMW PAHs) at 50% of the sites
377 were below the lowest recorded value (Fig 4A) while 40% of the LMW PAHs and 50% of the
378 HMW PAHs were below the lowest recorded value (Figs 4B and 4C). Based on the low
379 concentrations of LMW PAHs observed in mussel tissue a year after the storm throughout the
380 region, any oil spills that occurred as a result of Hurricane Sandy were not persistent or long-
381 lasting. No change in the total PAH trend was observed in 90% of the locations both before and
382 after Hurricane Sandy (Table A1) which is consistent with previous results (Kimbrough et al.,
383 2008).

384 Organic contaminant concentrations in mussels were low, but varied by location and
385 compound class and in most cases the overall trend did not change after the storm. Johnson et al.
386 (2009) reported similar results in which organic contaminant levels in oysters following
387 Hurricanes Katrina and Rita were near record lows but comparisons to regional trends were not
388 discussed. However, when comparing multiple storms over a 7 year period, Apeti et al. (2011)
389 reported apparent fluctuations for some contaminants but most were within their normal site-
390 specific concentrations ranges after the storms indicating no apparent shift in concentrations or
391 trends following major coastal storms.

392

393 *3.2.2 Regional differences*

394 Regional differences in concentrations for PCBs, OCPs, PAHs and PBDEs were
395 observed a year after Hurricane Sandy (Table 4). Total PCBs and total dieldrins were
396 significantly lower after the storm, while total chlordanes and DDTs were not different from the
397 20 year record. Concentrations of total chlordanes, DDTs and dieldrins have been decreasing at
398 50-75% of the sites in the Northeast based on previous trend analysis (Kimbrough et al., 2008).

399 Regionally, LMW PAHs, HMW PAHs and total PAHs were significantly lower a year after
400 Hurricane Sandy compared to the 20 year historic record (Table 4). A similar comparison was
401 conducted following Hurricanes Katrina and Rita where a decreasing regional trend was reported
402 for all organic contaminants except total PAHs and HMW PAHs (Johnson et al., 2009).
403 Following Hurricane Katrina, there were 10 major spills in Louisiana resulting in the release of 8
404 million gallons of oil throughout the Gulf of Mexico, but concentrations of LMW PAHs were
405 low, similar to the current study, indicating effects from the oil spills were not persistent.
406 However, in the Gulf of Mexico following Hurricane Katrina, pyrogenic PAHs were the
407 dominant form in sediment (Van Metre et al., 2006) and mussels (Johnson et al., 2009) which
408 explains the regional increase in total PAHs after Katrina. An extensive comparison of organic
409 contaminant concentrations after 7 major storms in the Gulf of Mexico also indicated that PCBs,
410 PAHs, HMW PAHs, DDTs and dieldrins tended to decrease while chlordanes and LMW PAHs
411 were unchanged (Apeti et al., 2011). Results from the current study are in general agreement
412 with Apeti et al. (2011) and indicate that despite local and regional differences in sources, the
413 impacts of severe storms could have characteristic and predictive patterns in the distribution of
414 organic contaminant body burdens in mussels.

415 Because of the limited historic PBDE dataset available for the study area prior to
416 Hurricane Sandy no trend analyses could be conducted. The three most ubiquitous congeners, 47,
417 99 and 100 were detected in 100% of the samples (Smallling et al., 2015) and were used to
418 compare tissue concentrations throughout the region. Total PBDE concentrations after
419 Hurricane Sandy ranged from 16.5 to 285 ng/g dry weight (Smallling et al. 2015). Unlike the
420 general decrease observed for PAHs, PCBs and OCPs, total PBDE concentrations at all sites
421 after Hurricane Sandy were higher than those observed between 2004 and 2008 (Fig 5). In

422 bluefish sampled in the summer following Hurricane Sandy, PBDE concentrations were
423 significantly lower in the study area compared to previous studies with young of year bluefish
424 (Smalling et al. 2016, this volume). The conflicting results between mussels and bluefish could
425 be a direct result of differences in sampling locations, life history and/or PBDE bioavailability.
426 Along the coast of New Jersey, PBDE concentrations in mussel tissue were only slightly higher
427 than pre-Sandy concentrations. However, total PBDEs in the Hudson/Raritan Estuary (HRRB,
428 HRJB), Long Island Sound (LIFI, LIGB) and Moriches Bay (MBTH) were 5 to 100 times higher
429 in 2014 compared to results reported previously (Fig 5). Regionally, total PBDE concentrations
430 were significantly higher after Hurricane Sandy compared to data generated between 2004 and
431 2008 (Table 4). Increasing trends in PBDE concentrations have been observed at selected sites
432 nationally between the late 1990s and mid-2000s (Kimbrough et al., 2009). PBDEs are
433 distributed widely in the marine environment and potential sources include atmospheric transport
434 (Strandberg et al., 2001), urban runoff, industrial point sources and sewage outfalls (Litten et al.,
435 2003; de Wit, 2002; Song et al., 2006). PBDEs have the potential to biomagnify, and
436 concentrations in marine food webs have increased substantially since the 1970s (Kimbrough et
437 al., 2009). In the aftermath of Hurricane Sandy, over ten billion gallons of untreated or partially
438 treated wastewater were released into the coastal environment from numerous waste water
439 treatment plants (WWTP) failures (Kenward et al., 2013). Elevated concentrations of PBDEs are
440 found in municipal sewage which is evidence of an increased threat to the environment from
441 land based sources (Song et al., 2006; de Wit, 2002). Many of the mussel sites experiencing
442 significantly higher PBDE concentrations post-Sandy were not in areas impacted by the largest
443 WWTP failures and thus it is difficult to determine based on the limited pre-storm data if the
444 increase is related to WWTP failures or a representation of an increasing trend in total PBDE

445 concentrations regionally. Regardless, PBDE concentrations along the New Jersey and New
446 York coastlines have increased over the last 5 years and continued monitoring is necessary to
447 understand the ecosystem effects of these ubiquitous contaminants on marine biota. The data
448 generated by the current study cannot distinguish between a regional increase and a direct, long-
449 lasting impact from WWTP failures due to Hurricane Sandy and more information is needed to
450 understand changes in PBDE trends in mussel tissues.

451

452 *3.3 Implications to measure storm-induced impacts*

453 In the current study, mussels were collected throughout the storm-impacted area 15-17
454 months after Hurricane Sandy and the concentrations measured represent a new contaminant
455 baseline following a significant coastal disturbance. Timing between episodic events such as
456 hurricanes and mussel collection is one factor that will affect the detection of specific storm-
457 induced impacts on contaminant body burdens. For example, if a mussel population was exposed
458 to a plume of contaminated water or sediment as a result of a storm it can take up to two months
459 after the disturbance for the tissue to reestablish equilibrium with its surrounding environment
460 (Bergen et al., 1993; Nelson et al., 1995; Apeti et al., 2011), after which the body burdens returns
461 to steady state. In the current study adult mussel populations in the region also completed a
462 spawning event in spring/summer (Borrero, 1987) following the hurricane which would result in
463 a decrease of hydrophobic contaminants in the mussel tissue. Capuzzo et al. (1989) noted that a
464 decline in PCB congener concentrations in blue mussels in Buzzards Bay was correlated with
465 spawning activity and concentrations fluctuated during the late spring and early summer with a
466 marked decline occurring during the autumn. Another study noted that PCB concentration in
467 mussels tended to increase in the summer, autumn and winter and decreased strongly during

468 spring which was related directly to the spawning of gametes (Hummel et al., 1990). To
469 understand the implications of a storm or other disturbance, tissue samples should be collected
470 within 1-2 months of the disturbance to maximize the potential of recording a short-lived storm
471 induced impact. Significant routine monitoring data are also necessary to tease out the direct
472 effects of a storm in relation to normal spatial and temporal variability in contaminant body
473 burdens.

474 Regionally, concentrations of PCBs, OCPs and PAHs were significantly lower after the
475 storm; however, for most of the compound classes these concentrations during the single
476 sampling event of 2014 did not change the overall 20 year trend at each site. Johnson et al.
477 (2009) noted that the low organic contaminant concentrations in oysters following Katrina and
478 Rita could be the direct result of a reduction in bioavailability due to increased suspended
479 sediment concentrations in conjunction with a decrease in metabolic activity during the winter.
480 With the exception of PBDEs, results from the current study suggest that the low concentrations
481 in PCBs, PAHs and OCPs and no change in the overall trend observed a year after the storm are
482 more likely a result of normal temporal oscillations in contaminant body burdens which is
483 consistent with results reported by Apeti et al. (2011). A marked increase in PBDE
484 concentrations was observed particularly in locations throughout the Hudson/Raritan Estuary and
485 Long Island Sound. There are no studies to date assessing the impacts of storms on PBDE
486 concentrations and without recent monitoring data it is difficult to conclude whether this increase
487 was related to long-lasting impacts of the storm or the direct result of a steady increase in PBDE
488 concentrations in the coastal environment.

489 Contaminant body burden concentrations following storm events can be influenced by
490 storm characteristics (storm strength, surge, flooding), contaminant sources and bioavailability,

491 resuspension of bottom sediments, mussel metabolism (contaminant uptake and depuration
492 potential), as well as the timing between the storm and the sample collection. Body burdens in
493 mussels and other bivalves are influenced by contaminant bioavailability (Roesijadi 1996) which
494 is controlled by local sources (natural versus anthropogenic) as well as the strength and path of
495 the storm. Storm-induced transport of contaminants to the coastal environment occurs through
496 resuspension of bottom sediments, flooding and runoff from anthropogenic sources (DiGiacomo
497 et al. 2004; Farris et al. 2007). For a storm to cause a detectable change in contaminant body
498 burden, the event must elicit a disturbance that directly increases the bioavailable concentration
499 of the contaminants (Apeti et al., 2011). Because such an effect may be short lived, mussels must
500 be collected at the appropriate time to maximize the effectiveness of mussels as an indicator of
501 storm induced impacts. Even though direct, short-lived storm induced impacts could not be
502 determined based on the timing of collection, the information generated from the current study
503 provides a new baseline for organic contaminants in mussel tissue and highlights some
504 interesting trends, particularly with PBDEs that could be investigated in future studies.

505

506 **4. Conclusions**

507 Mussels are an ideal indicator of ecosystem's health because contaminant concentrations
508 in their tissues respond to changes in ambient environmental levels, accumulation occurs with
509 very little metabolic transformation, and nationally, over 20 years of historical data are available
510 for many of the persistent organic pollutants of interest. Mussels have been used worldwide to
511 monitor changes in contaminants in the coastal environment but results from this and other
512 studies suggest that they also have the potential to detect short and long-term impacts of episodic
513 events as well as long-term impacts of incremental (sea level rise and land-use change) changes.

514 The substantial 20 year record allows for a robust comparison of pre- and post-Sandy mussel
515 contaminant body burdens. Regionally, concentrations of total PCBs, dieldrins, and PAHs
516 (LMW and HMW) decreased, while total PBDE concentrations increased. Overall, the local and
517 regional trends for PCBs, PAHs and OCPs did not change as a result of the hurricane and any
518 decreases observed are potentially associated with normal temporal and spatial variations in body
519 burden concentrations. However, at some locations concentrations were an order of magnitude
520 lower than the pre-Sandy concentrations, indicating that the current study indeed provides a new
521 baseline in organic contaminants after a major coastal storm. A subset of shells from each site
522 was aged by thin-sectioning to determine if there were any site-specific or local differences in
523 populations. There was no relationship between length or age and latitude indicating a similar
524 distribution of ages across the sampled mussels. However, to determine if Hurricane Sandy
525 impacted mussel populations regionally, a larger cross section of available mussels would need
526 to be collected. A combination of tissue analysis, chronology and histology immediately
527 following a major event would be valuable and necessary to establish a link between
528 contaminants and the resulting ecological effects.

529

530 **Role of the Funding Source**

531 This study was funded through the Disaster Relief Appropriations Act of 2013 (PL 113-
532 2). The managers of the funding sources did not participate in the design of the study, nor the
533 interpretation or writing of the manuscript. All such decisions were solely made by the authors.

534

535 **Acknowledgments**

536 The authors would like to thank Jeffrey Pessutti and Daniel Wieczorek (NOAA Fisheries Sandy
537 Hook Laboratory, New Jersey) as well as Irene Fisher, Kaitlin Colella (USGS) who all made
538 significant contributions to the sample collection efforts. We thank Peter Straub (Stockton
539 College) for assistance with freeze drying of mussel tissue samples. We also thank Carrie
540 Blakeslee, Jeffrey Cole, Lisa Sumner and Sophie Weaver (USGS) for assistance with mussel
541 thin-section preparation. Any use of trade, firm, or product names is for descriptive purposes
542 only and does not imply endorsement by the U.S. Government.

543

544 **Appendix A. Supplementary material**

545 Supplementary material associated with this article can be found, in the online version, at
546 PANGAEA

547

548 **References**

549 Apeti, D.A., Lauenstein, G.G., Christensen, J.D., Johnson, E.W., Mason, A. 2011. Assessment of
550 coastal storm impacts on contaminant body burdens of oysters collect from the Gulf of Mexico.
551 Environ. Monit. Assess. 181, 399-418

552

553 Ayers, R.U., Rod, S.R., 1986. Patterns of pollution in the Hudson-Raritan Basin. Environment.
554 28, 39-43.

555

556 Baumard P., Budzinski H., Garrigues P., Sorbe J.C., Burgeot T., Bellocq J. 1998.
557 Concentrations of PAHs (Polycyclic Aromatic Hydrocarbons) in various marine organisms in
558 relation to those in sediments and to trophic level. Mar. Pollut. Bull. 36, 951-960.

559

560 Bergen, B.J., W.G. Nelson and R.J. Pruell. 1993. The bioaccumulation of PCB congeners by
561 blue mussels (*Mytilus edulis*) deployed in New Bedford Harbor, Massachusetts. Environ.
562 Toxicol. Chem. 12, 1671-1681.

563

564 Bertness, M.D., Grosholz, E. 1985. Population dynamics of the ribbed mussel, *Geukensia*
565 *demissa*: the costs and benefits of an aggregated distribution. Oecologia (Berl) 67, 192-204

566

567 Borrero, F.J. 1987. Tidal height and gametogenesis: reproductive variation among populations of
568 *Geukensia demissa*. Biol. Bull. 173, 160-168.

569
570 Brousseau, D.J. 1984. Age and growth rate determinations for the Atlantic ribbed mussel,
571 *Geukensia demissa* Dillwyn (Bivalvia: Mytilidae). *Estuar. Coast.* 7, 233-241
572
573 Bushek, D., Heidenreich, M., Porter, D. 2007. The effects of several common anthropogenic
574 contaminants on proliferation of the parasitic oyster pathogen *Perkinsus marinus*. *Mar. Environ.*
575 *Res.* 64, 535-540.
576
577 Buxton, H.T., Andersen, M.E., Focazio, M.J., Haines, J.W., Hainly, R.A., Hippe, D.J.,
578 Sugarbaker, L.J. 2013. Meeting the science needs of the Nation in the wake of Hurricane
579 Sandy—A U.S. Geological Survey science plan for support of restoration and recovery: U.S.
580 Geological Survey Circular 1390, 26 p. [Also available at <http://pubs.usgs.gov/circ/1390/>]
581
582 Capuzzo, J.M., J.W. Farrington, P. Rantamaki, C.H. Clifford, B.A. Lancaster, D.F. Leavitt and
583 X. Jia. 1989. The relationship between lipid composition and seasonal differences in the
584 distribution of PCBs in *Mytilus edulis*. *Mar. Environ. Res.* 28, 259-264.
585
586 Chase, M.E., Jones, S.H., Hennifar, P., Sowles, J., Harding, G.C.H., Freeman, K., Wells, P.G.,
587 Krahforst, C., Coombs, K., Crawford, R. Pederson, J. Taylor, D. 2001. Gulfwatch: Monitoring
588 Spatial and Temporal Patterns of Trace Metal and Organic Contaminants in the Gulf of Maine
589 (1991-1997) with the Blue Mussel, *Mytilus edulis*. *Mar. Pollut. Bull.* 42(6), 490-504.
590
591 Coen L.D., Knott D.M., Wenner, E.L., Hadley N.H., Ringwood, A.H. 1997. Intertidal oyster reef
592 studies in South Carolina: design, sampling and experimental focus for evaluating habitat value
593 and function. Pages 131-156, In: MW Luckenbach, Mann R, and JA Wesson (eds.), *Oyster Reef*
594 *Habitat Restoration: A Synopsis and Synthesis of Approaches*. Virginia Institute of Marine
595 Science Press. Gloucester Point, Virginia
596
597 de Wit, C.A. 2002. An overview of brominated flame retardants in the environment.
598 *Chemosphere* 46(5), 583-624.
599
600 Deshpande, A.D., Dockum, B.W., Cleary, T., Farrington, C., Wieczorek, D. 2013.
601 Bioaccumulation of polychlorinated biphenyls and organochlorine pesticides in young-of-the-
602 year bluefish (*Pomatomus saltatrix*) in the vicinity of a Superfund Site in New Bedford Harbor,
603 Massachusetts, and in the adjacent waters. *Mar. Pollut. Bull.* 72(1), 146-164.
604
605 Deshpande, A.D., Dockum, B.W. 2013. Polybrominated diphenyl ether congeners in the young-
606 of-the-year bluefish, *Pomatomus saltatrix*, from several nursery habitats along the US Atlantic
607 coastline. *Mar. Pollut. Bull.* 77, 237-250.
608
609 DiGiacomo, P. M., Washburn, L., Holt, B., Jones, B. H. 2004. Coastal pollution in southern
610 California observed by SAR imagery: Stormwater plume, wastewater plumes and natural
611 hydrocarbon seeps. *Mar. Pollut. Bull.* 49, 1013-1024.
612
613 Farrington, J. W. 1983. Bivalves as sentinels of coastal chemical pollution: the Mussel (and
614 oyster) Watch. *Oceanus* 26 (2), 18-29.

615
616 Farris, G. S., Smith, G. J., Crane, M. P., Demas, C. R., Robbins, L. L., Lavoie, D. L. Eds. 2007.
617 Science and the storms-the USGS response to the hurricanes of 2005. U.S. Geological Survey
618 Circular, 1306 (283), 201–206.
619
620 Franz, D.R. 1993. Allometry of shell and body weight in relation to shore level in the intertidal
621 bivalve *Geukensia demissa* (Bivalvia: Mytilidae). *J. Exp. Mar. Biol. Ecol.* 174:193-207.
622
623 Franz, D.R., Tanacredi, J.T. 1993. Variability in growth and age structure among populations of
624 ribbed-mussels, *Geukensia demissa* (Dillwyn) (Bivalvia: Mytilidae), in Jamaica Bay, New York
625 (Gateway NRA). *Veliger* 36, 220-227.
626
627 Helsel, D.R. Hirsch, R.M. 2002. Statistical Methods in Water Resources Techniques of Water
628 Resources Investigations, Book 4, chapter A3. U.S. Geological Survey. 522 pages.
629
630 Hummel, H., Bogaards, R.H., Nieuwenhuize, J., de Wolf, L., Van Liere, J.M. 1990. Spatial and
631 seasonal differences in the PCB content of the mussel *Mytilus edulis*. *Sci. Total. Environ.* 92,
632 155-163.
633
634 Johnson, W. E., Kimbrough, K. L., Lauenstein, G. G., Christensen, J. 2009. Chemical
635 contamination assessment of Gulf of Mexico oysters in response to hurricanes Katrina and Rita.
636 *Environ. Monit. Assess.* 150, 211–225.
637
638 Kenward, A., Yawitz, D., and Raja, U., 2013, Sewage overflows from Hurricane Sandy:
639 Princeton, N.J., Climate Central, accessed December 2, 2013, at
640 <http://www.climatecentral.org/pdfs/Sewage.pdf>.
641
642 Kimbrough, K. L., Lauenstein, G. G., and Johnson, W. E. 2007. Organic contaminant analytical
643 methods of the national status and trends program: Update 2000–2006. NOAA Technical
644 Memorandum NOS NCCOS 30.
645
646 Kimbrough, K. L., Johnson, W.E., Lauenstein, G.G., Christensen, J.D., Apeti, D.A. 2008. An
647 assessment of two decades of contaminant monitoring in the Nation’s Coastal Zone: Silver
648 Spring, Md., National Oceanic and Atmospheric Administration Technical Memorandum NOS
649 NCCOS 74. 105 p.
650
651 Kimbrough, K. L., Johnson, W.E., Lauenstein, G.G., Christensen, J.D., Apeti, D.A. 2009. An
652 assessment of polybrominated diphenyl ethers (PBDEs) in sediments and bivalves of the U.S.
653 Coastal Zone: Silver Spring, Md. National Oceanic and Atmospheric Administration Technical
654 Memorandum NOS NCCOS 94. 87 p.
655
656 Lauenstein, G.G. Kimbrough, K.L. 2007. Chemical contamination of the Hudson-Raritan
657 Estuary as a result of the attack on the World Trade Center: Analysis of polycyclic aromatic
658 hydrocarbons and polychlorinated biphenyls in mussels and sediments. *Mar. Pollut. Bull.* 54,
659 284-294.
660

661 Lauenstein, G. G., Harmon, M.M., Gottholm, B. 1993a. National Status and Trends Program:
662 Monitoring site descriptions (1984-1990) for the National Mussel Watch and Benthic
663 Surveillance Projects: Silver Spring, Md., National Oceanic and Atmospheric Administration
664 Technical Memorandum NOS ORCA 70, 358 p.

665 Lauenstein, G. G., and Cantillo, A. Y. 1993b. Sampling and analytical methods of the National
666 Status and Trends Program National Benthic Surveillance and Mussel Watch Projects 1984–
667 1992: Comprehensive descriptions of trace organic analytical methods, Volume IV NOAA
668 Technical Memorandum NOS ORCA 71, Silver Spring, MD.

669

670 Lauenstein, G. G., and Cantillo, A. Y. 1998. Sampling and Analytical Methods of the National
671 Status and Trends ProgramMusselWatch Project: 1993–1996 Update, NOAA
672 TechnicalMemorandum ORCA 130, Silver Spring, MD.

673

674 Litten, S., McChesney, D.J., Hamilton, M.C., Fowler, B. 2003. Destruction of the World
675 Trade Center and PCBs, PBDEs, PCDD/Fs, PBDD/Fs, and chlorinated biphenylenes in water,
676 sediment, and sewage sludge. Environ. Sci. Technol. 37, 5502-5510.

677

678 Lutz, R.A. 1976. Annual growth patterns in the inner shell layer of *Mytilus edulis* L. J. Mar. Biol.
679 Assoc. UK 56, 723–73.

680

681 Nelson, W.G., Bergen, B.J., Cobb, D.J. 1995. Comparison of PCB and trace metal
682 bioaccumulation in the blue mussel, *Mytilus edulis*, and the ribbed mussel, *Modiolus demissus*,
683 in New Bedford Harbor, Massachusetts. Environ. Toxicol. Chem. 14(3), 513-521.

684

685 Roesijadi, G. 1996. Environmental factors: Response to metals. In V. S. Kennedy, R. I. E.
686 Newell, & A. F. Eble (Eds.), Easter oyster *Crassostrea virginica* (pp. 515–537). College Park:
687 Maryland Sea Grant College.

688

689 R Core Team (2015). R: A language and environment for statistical computing. R Foundation for
690 Statistical Computing, Vienna, Austria. URL <http://www.R-project.org/>.

691

692 Sericano, J. L., Wade, T. L., Jackson, T. J., Brooks, J. M., Tripp, B. W., Farrington, J. W., Mee,
693 L. D., Readman, J. W., Villeneuve, J. P. Goldberg, E. D. 1995. Trace organic contamination in
694 the Americas: an overview of the US National Status and Trends and the International 'Mussel
695 Watch' programs. Mar. Pollut. Bull. 31, 214–225.

696

697 Seed, R., 1969. The ecology of *Mytilus edulis* L. (Lamellibranchiata) on exposed rocky shores
698 Growth and mortality. Oecologia, 3, 317-350.

699

700 Seed, R. 1980. Shell growth and form in Bivalvia. In: Rhoads DC, Lutz RA (eds) Skeletal
701 growth of aquatic organisms.

702

703 Song, M., Chu, S., Letcher, R.J., Seth, R. 2006. Fate, partitioning, and mass loading of
704 polybrominated diphenyl ethers (PBDEs) during the treatment processing of municipal sewage.
705 Environ. Sci. Technol. 40, 6241-6246.

706

707 Smalling, K.L., Deshpande, A.D., Blazer, V.S., Galbraith, H., Dockum, B.W., Romanok, K.M.,
708 Colella, K., Deetz, A.C., Fisher, I.J., Imbrigiotta, T.E., Sharack, B.L., Sumner, L., Timmons, D.,
709 Trainor, J., Wieczorek, D., Reilly, T.J., Samson, J., Focazio, M.J. 2015. Chemical and ancillary
710 data associated with young of year bluefish (*Pomatomus saltatrix*) and mussel (*Mytilus edulis*
711 and *Geukensia demissa*) tissue collected after Hurricane Sandy in band estuaries of New Jersey
712 and New York, 2013. U.S. Geological Survey Data Series 956, 18 p.

713

714 Smalling, K.L., Deshpande, A.D., Blazer, V.S., Dockum, B.W., Timmons, D., Sharack, B.L.,
715 Baker, R.J., Samson, J., Reilly, T.J. 2016. Young of year bluefish (*Pomatomus saltatrix*) as a
716 bioindicator of estuarine health: Establishing a persistent organic pollutant baseline post-
717 Hurricane Sandy for selected estuaries in New Jersey and New York. Mar. Pollut. Bull. X, XXX-
718 XXX.

719

720 Soriano, J.A., Viñas, L., Franco, M.A., González, J.J., Ortiz, L., Bayona, J.M., Albaigés, J. 2006.
721 Spatial and temporal trends of petroleum hydrocarbons in wild mussels from the Galician coast
722 (NW Spain) affected by the Prestige oil spill. Sci. Tot. Environ. 370, 80-90.

723

724 Strandberg, B., N. G. Dodder, I. Basu, and R. A. Hites. 2001. Concentrations and spatial
725 variations of polybrominated diphenyl ethers and other organohalogen compounds in Great
726 Lakes air. Environ. Sci Technol. 35, 1078-1083.

727

728 Sukhotin A.A., Pörtner H.O. 2001. Age-dependence of metabolism in mussels *Mytilus edulis*
729 (L.) from the White Sea. J. Exp. Mar. Biol. Ecol. 257, 53–72.

730

731 Thiesen, B.F. 1973. The growth of *Mytilus edulis* L. (Bivalvia) from Disko and Thule district,
732 Greenland. Ophelia, 12, 59-77.

733

734 Weis, P., Weis, J. S., Couch, J., Daniels, C., Chen, T. 1994. Pathological and genotoxicological
735 observation in oysters (*Crassostrea virginica*) living on chromated copper arsenate (CCA)-
736 treated wood. Mar. Environ. Res. 39, 275–278.

737

738 Van Metre, P. C., Horowitz, A. J., Mahler, B. J., Foreman, W. T., Fuller, C. C., Burkhardt, M. R.,
739 et al. 2006. Effects of Hurricanes Katrina and Rita on the chemistry of bottom sediments in Lake
740 Pontchartrain, Louisiana, USA. Environ. Sci. Technol. 40, 6894–6902.

741

742

743 **Figure Captions**

744 Figure 1. Location of mussel sampling sites in the Hurricane Sandy impacted area along the New
745 Jersey and New York coastlines. Ten historic National Oceanic and Atmospheric
746 Administration Mussel Watch sites were re-occupied approximately 1 year after the hurricane.

747

748 Figure 2. Total polychlorinated biphenyl (PCB) concentrations (ng/g dry weight) measured in
749 mussel tissue after Hurricane Sandy by site. *Stars* indicate concentrations after Hurricane Sandy;
750 *boxes* summarize the historic Mussel Watch data (1985-2012). The top and bottom of each box
751 represent the interquartile range (25th and 75th percentile), the black lines represent the maximum
752 and minimum values and the solid circles are considered outliers. For site location information
753 refer to Table 1 and Fig. 1.

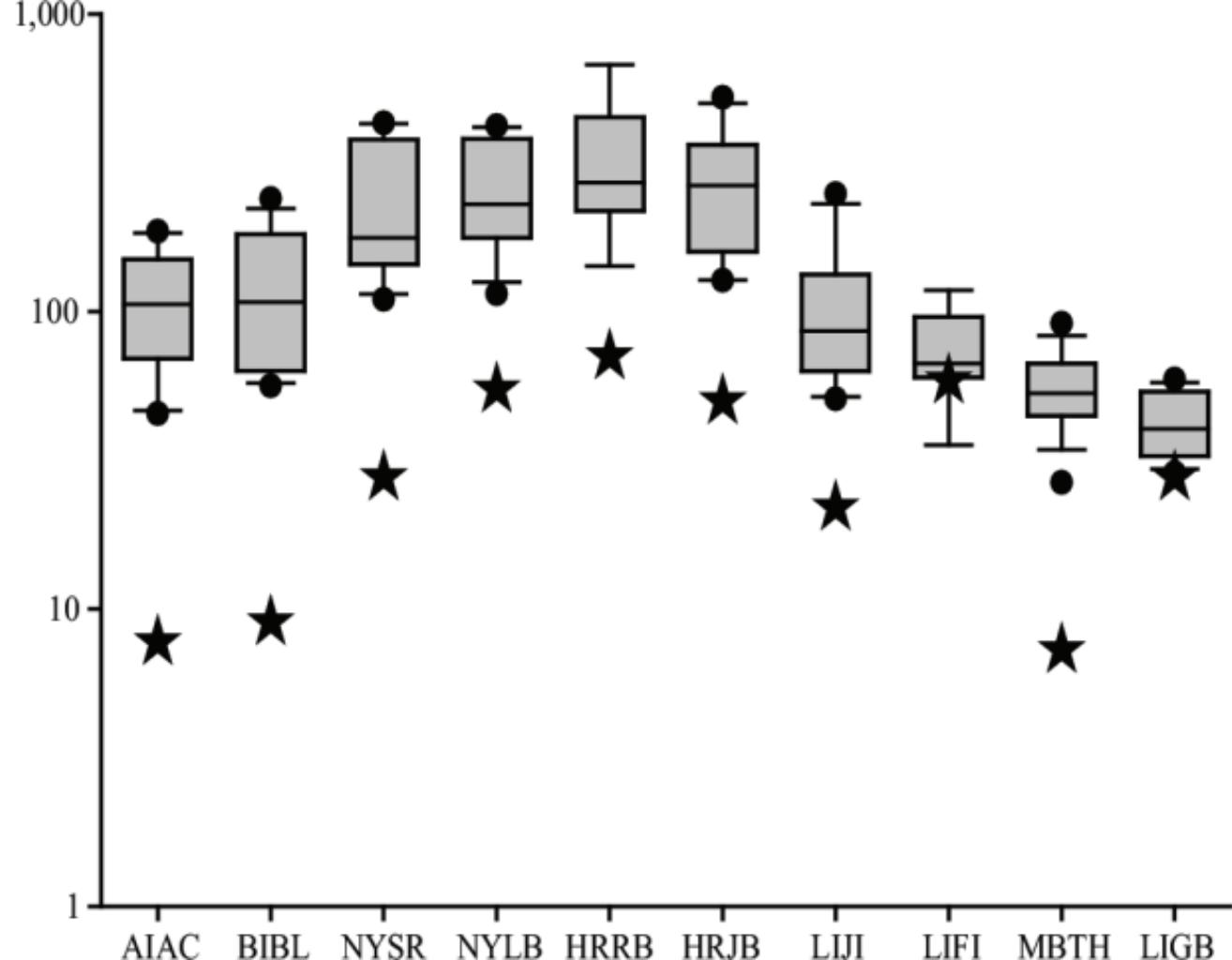
754

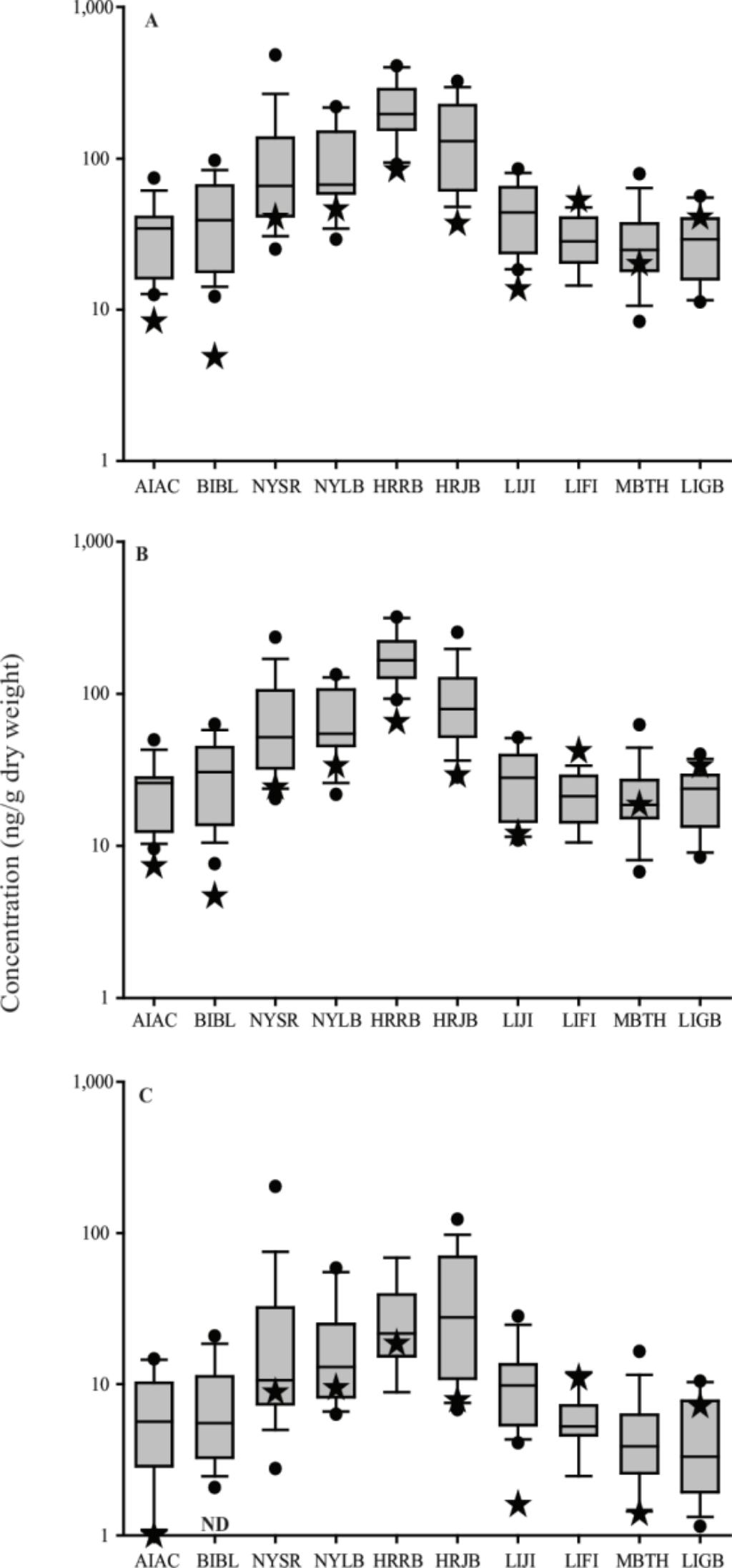
755 Figure 3. Concentrations (ng/g dry weight) of A) total organochlorine pesticides, B) total DDTs
756 and C) total chlordanes in mussel tissue collected after Hurricane Sandy by site *Stars* indicate
757 concentrations after Hurricane Sandy; *boxes* summarize the historic Mussel Watch data (1985-
758 2012). The top and bottom of each box represent the interquartile range (25th and 75th
759 percentile), the black lines represent the maximum and minimum values and the solid circles are
760 considered outliers. ND, not detected. For site location information refer to Table 1 and Fig. 1.

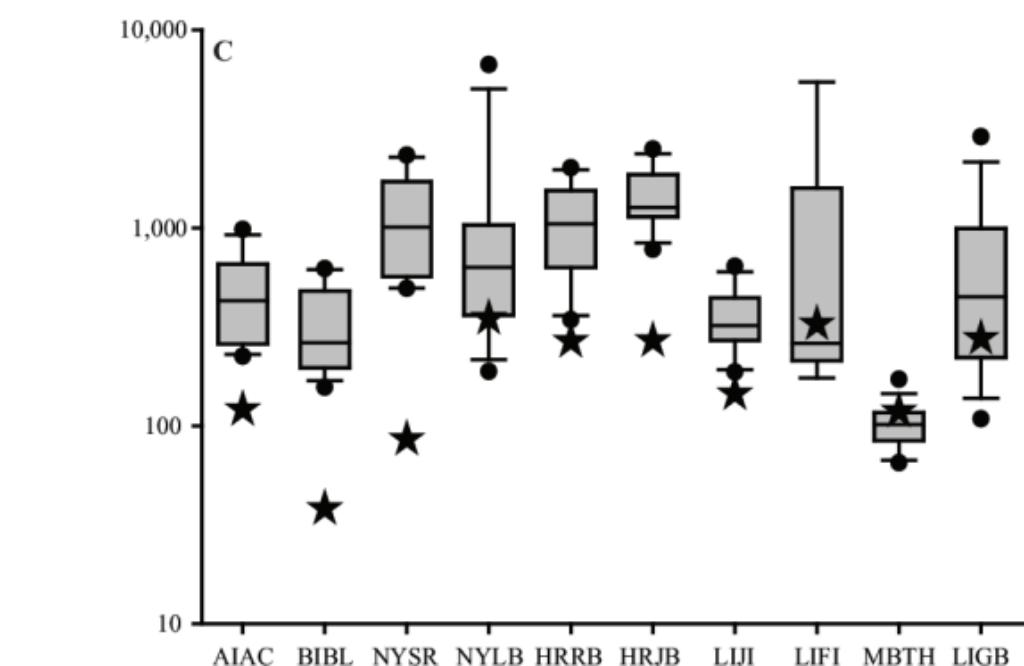
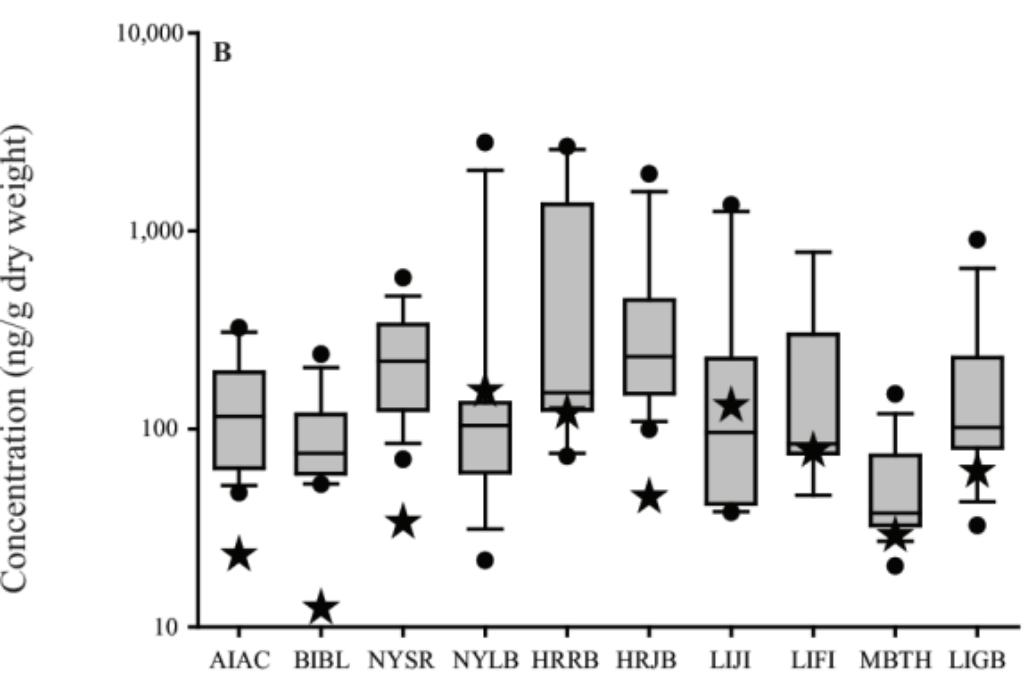
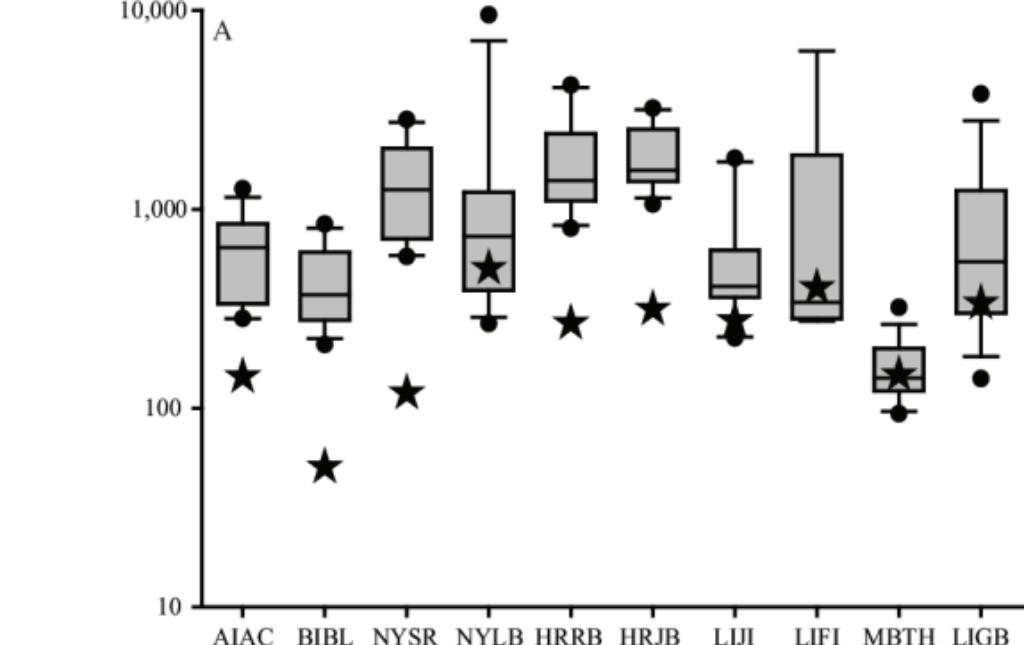
761

762 Figure 4. Concentrations (ng/g dry weight) of A) total polycyclic aromatic hydrocarbons
763 (PAHs), B) low molecular weight PAHs and C) high molecular weight PAHs in mussel tissue
764 collected after Hurricane Sandy by site *Stars* indicate concentrations after Hurricane Sandy;
765 *boxes* summarize the historic Mussel Watch data (1988-2012). The top and bottom of each box
766 represent the interquartile range (25th and 75th percentile), the black lines represent the maximum
767 and minimum values and the solid circles are considered outliers. For site location information
768 refer to Table 1 and Fig. 1.

769


770 Figure 5. Total polybrominated diphenyl ether (PBDE) concentrations (ng/g dry weight) in
771 mussel tissue after Hurricane Sandy by site. *Stars* indicate concentrations after Hurricane Sandy
772 and open circles represent historic Mussel Watch data (1996, 2003-2008). Two stars in 2014 are
773 representative of replicate samples analyzed at the site. For site location information refer to
774 Table 1 and Fig. 1.


775

Base from U.S. Geological Survey 1:24,000 scale digital data,
Universal Transverse Mercator Zone 18N,
North American Datum of 1983 (NAD83)

Concentration (ng/g dry weight)

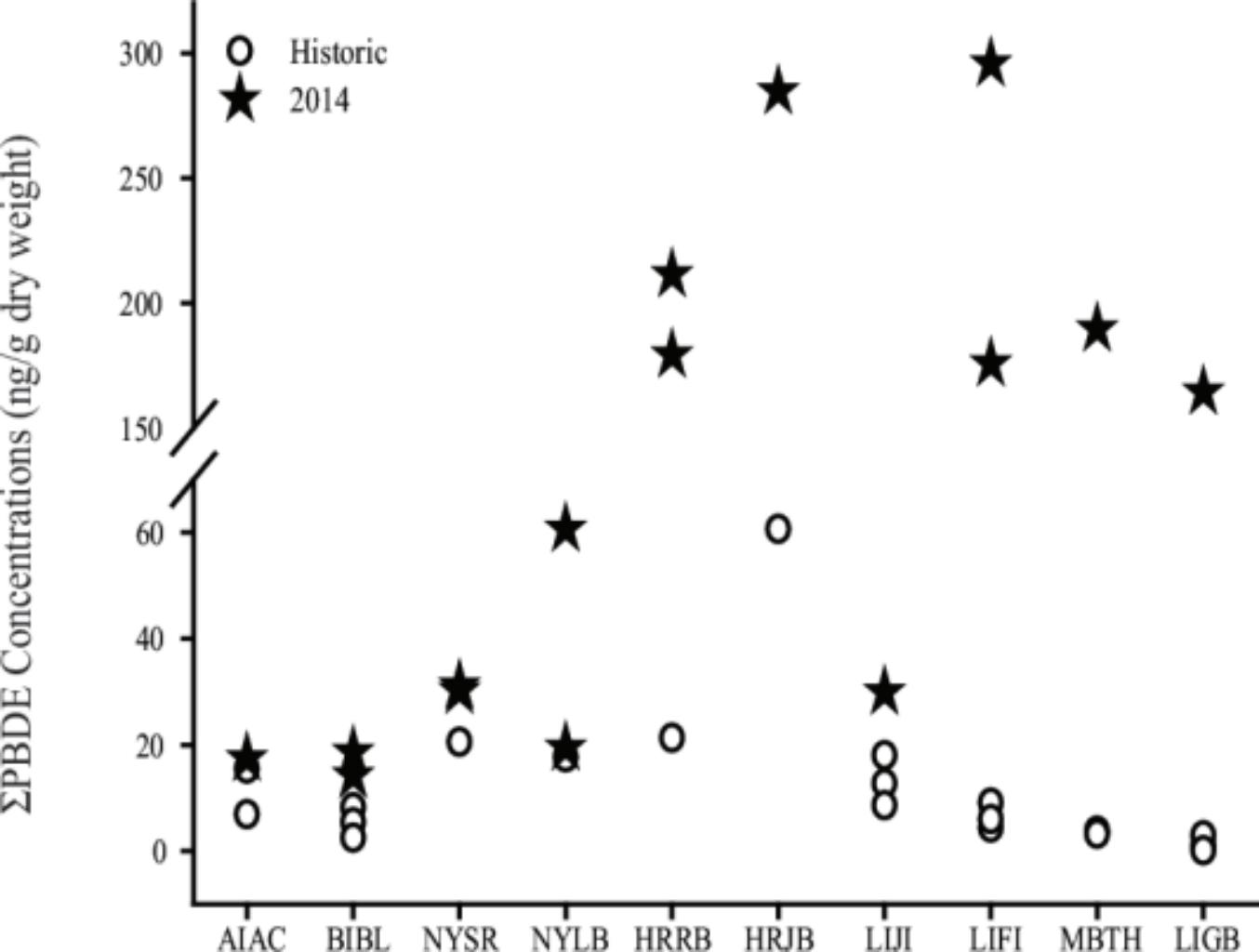


Table 1. Locations visited after Hurricane Sandy, including the species collected and the years of historic data available for PAHs, PCBs, and OCPs through the National Oceanic and Atmospheric Administrations Mussel Watch Program.

Site code	General location	Specific location	Latitude	Longitude	Sampling date	Species sampled	Historical data available ¹
AIAC	Absecon Inlet	Atlantic City	39.3672	-74.4112	01/10/2014	<i>Mytilus edulis</i>	1988-2012 (N=14)
BIBL	Barnegat Inlet	Barnegat Light	39.7617	-74.0950	12/19/2013	<i>Mytilus edulis</i>	1988-2007 (N=14)
NYSR	New York Bight	Shark River	40.1870	-74.0090	04/10/2014	<i>Mytilus edulis</i>	1986-2008 ² (N=17)
NYLB	New York Bight	Long Branch	40.2948	-73.9787	04/10/2014	<i>Mytilus edulis</i>	1986-2008 ² (N=15)
HRRB	Hudson/Raritan	Raritan Bay	40.5190	-74.1845	01/15/2014	<i>Geukensia demissa</i>	1989-2008 (N=10)
HRJB	Hudson/Raritan	Jamaica Bay	40.5667	-73.8953	01/13/2014	<i>Mytilus edulis and Geukensia demissa</i>	1986-2008 ² (N=16)
LIJI	Long Island Sound	Jones Inlet	40.6252	-73.2795	01/16/2014	<i>Geukensia demissa</i>	1989-2011 (N=12)
LIFI	Long Island Sound	Fire Island Inlet	40.5955	-73.5867	01/16/2014	<i>Mytilus edulis</i>	1986-2011 (N=9)
MBTH	Moriches Bay	Tuthill Point	40.7824	-72.7670	01/17/2014	<i>Geukensia demissa</i>	1985-2011(N=18)
LIGB	Long Island	Gardiners Bay	40.9982	-72.1162	01/27/2014	<i>Mytilus edulis</i>	1988-2011 (N=13)

PAH, polycyclic aromatic hydrocarbon; PCB, polychlorinated biphenyl; PBDE, polybrominated diphenyl ether; OCP, organochlorine pesticide

¹<http://ccma.nos.noaa.gov/about/coast/nsandt/musselwatch.aspx>.

²data for PAHs starting in 1988

Table 2. List of persistent organic contaminant classes used for data analysis and historical data comparisons. The list of analytes is similar to those used by the NOAA Mussel Watch Program for trend analysis (Kimbrough et al., 2008)

Compound Class	Individual congeners/compounds
Σ PCB (sum of 18 PCB congeners)	PCB8/5, PCB18, PCB28, PCB44, PCB52, PCB66, PCB101/90, PCB105, PCB118, PCB128, PCB138, PCB153/132/168, PCB170/190, PCB180, PCB187, PCB195/208, PCB206, PCB209
Σ PBDEs (sum of 3 PBDE congeners)	PBDE47, PBDE99, PBDE100
Σ DDTs (sum of 6 compounds)	2,4'-DDD, 2,4'-DDE, 2,4'-DDT, 4,4'-DDD, 4,4'-DDE, 4,4'-DDT
Σ Chlordanes (sum of 4 compounds)	Alpha-Chlordane, heptachlor, heptachlor-Epoxide, trans-Nonachlor
Σ Dieldrins (sum of 2 compounds)	Aldrin, dieldrin
Σ OCPs (sum of 12 compounds)	Sum of 6 DDTs, 4 chlordanes and 2 dieldrins
Σ LMW PAH (sum of 7 low molecular weight PAHs with 2 or 3 rings)	Naphthalene, biphenyl, acenaphthene, acenaphthylene, fluorene, phenanthrene, anthracene
Σ HMW PAH (sum of 12 high molecular weight PAHs with 4 or more rings)	Fluoranthene, pyrene, benz[a]anthracene, chrysene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[e]pyrene, benzo[a]pyrene, perylene, dibenz[a,h]anthracene, indeno[1,2,3-cd]pyrene, benzo[ghi]perylene
Σ PAH (sum of 19 PAH compounds)	Sum of 7 LMW PAHs with 2 or 3 rings plus the sum of 12 HMW PAHs with 4 or more rings

PAH, polycyclic aromatic hydrocarbon; PCB, polychlorinated biphenyl; PBDE, polybrominated diphenyl ether; OCP, organochlorine pesticide

Table 3. Mean length (mm) and age (Inumber of annuli) for *Mytilus edulis* (blue mussels) and *Geukensia demissa* (ribbed mussels) collected after Hurricane Sandy. Standard deviation is also included in parentheses.

Species	Site	Mean Length (SD)	Annuli (SD)	Sample Size
<i>Mytilus edulis</i>	AIAC	34.91 (3.23)	6.3 (1.1)	20
	BIBL	53.38 (4.01)	8.0 (2.0)	20
	NYSR	44.56 (6.12)	7.8 (2.5)	18
	NYLB	39.61 (5.55)	7.1 (1.7)	20
	HRJB	33.98 (5.09)	6.0 (1.4)	20
	LIFI	32.20 (3.79)	5.3 (1.1)	20
	MTBH	33.47 (2.75)	5.4 (0.8)	20
	LIGB	30.05 (2.63)	5.4 (1.0)	20
<i>Geukensia demissa</i>	HRRB	70.78 (9.8)	7.0 (2.4)	19
	HRJB	48.50 (11.8)	5.1 (2.6)	15
	LIJI	62.51 (10.4)	4.3 (1.6)	19

SD, standard deviation

Table 4. Regional comparison of mussel tissue concentrations before and after Hurricane Sandy using a two sample Wilcoxon Rank Test. Median concentrations of contaminants in mussels (ng/g dry weight) are also reported.

Compound Class	Z	p-value	2014 (Median)	Historic (Median)	Change
Σ PCB	-4.240	<0.001	27.8	115	Decrease
Σ DDTs	-1.631	0.0514	32.8	24.3	None
Σ Chlordanes	-1.854	0.0566	8.0	7.5	None
Σ Dieldrins	-3.559	<0.001	0.1	1.3	Decrease
Σ PBDEs	3.893	<0.001	102	7.8	Increase
Σ LMW PAH	-2.578	0.005	27.5	72.4	Decrease
Σ HMW PAH	-3.086	0.001	207	470	Decrease
Σ PAH	-3.679	0.001	623	272	Decrease

HMW, high molecular weight; LMW, low molecular weight; PAH, polycyclic aromatic hydrocarbon; PCB, polychlorinated biphenyl; PBDE, polybrominated diphenyl ether; OCP, organochlorine pesticide