

1 **A comparison of modes of upwelling-favorable wind variability in the
2 Benguela and California current ecosystems**

3

4 Marisol García-Reyes^{a,*}, Tarron Lamont^{b,c}, William J. Sydeman^{a,d}, Bryan A. Black^e,
5 Ryan R. Rykaczewski^f, Sarah Ann Thompson^a, Steven J. Bograd^g

6

7 ^a Farallon Institute, 101 H St. Suite Q, Petaluma, CA 94952, USA

8 ^b Oceans & Coasts Research Branch, Department of Environmental Affairs, Private
9 Bag X4390, Cape Town, 8000, South Africa

10 ^c Marine Research Institute and Department of Oceanography, University of Cape
11 Town, Private Bag X3, Rondebosch, 7701, South Africa

12 ^d Bodega Marine Laboratory, University of California, Davis, P.O. Box 247, Bodega
13 Bay, CA 94923, USA

14 ^e Marine Science Institute, University of Texas, Port Aransas, TX, USA

15 ^f Department of Biological Sciences & Marine Science Program, University of South
16 Carolina, Columbia, SC, USA

17 ^g Environmental Research Division, Southwest Fisheries Science Center, NOAA,
18 Monterey, California, USA

19 * Corresponding author e-mail: marisolgr@faralloninstitute.org

20

21 **Abstract**

22 The California Current System (CCS) has two independent seasonal modes of
23 upwelling variability, summer and winter, driven by different atmospheric
24 processes. The variability of upwelling winds during winter is particularly
25 important as strong, episodic events, driven by atmospheric teleconnections with
26 the equatorial Pacific that are active in this season, impact ecological systems along
27 the west coast of North America. Given the importance of upwelling seasonality to
28 ecosystem function, we hypothesize that the Benguela Current System (BCS) shows
29 similar independent seasonal modes of upwelling variability. To test this hypothesis,
30 compare modes of variability between systems, and investigate potential drivers,
31 we use an upwelling index derived from NCEP2 wind data (1979-2014) for the

32 northern, southern, and Agulhas Bank areas of the BCS. In the northern and
33 southern BCS, only one mode of upwelling variability is observed: year-round in the
34 north and during the austral spring and summer (October through April) in the
35 south. The Agulhas Bank region shows two modes of seasonal variability. Based on
36 this 35-year dataset, summer upwelling modes in both the CCS and BCS appear to
37 have similar decadal-scale variability. The other modes of variability (winter mode
38 in the CCS and the non-seasonal second mode in the BCS) are correlated with year-
39 to-year variability in the positioning of regional oceanic high-pressure systems. The
40 leading mode of upwelling variability in the Agulhas Bank region, in the austral
41 summer/fall, is highly correlated with sea level pressure as well as sea surface
42 temperature in the equatorial Pacific, in a spatial and seasonal pattern (boreal
43 winter) resembling the El Niño-Southern Oscillation. Across the CCS, modes of
44 upwelling variability are similar to one another, while modes differ between regions
45 in the BCS. This difference could lead to regional mismatches in favorable ecological
46 conditions. In contrast with the spatially synchronous winter variability influencing
47 the entire CCS ecosystem, substantial regional variation in the BCS may have strong
48 effects on ecosystem functions, especially for species (e.g., small pelagic fish) that
49 migrate between the Agulhas Bank and other areas of the BCS.

50

51

52 **Keywords**

53 Upwelling Variability, Benguela Upwelling System, California Upwelling System,
54 Upwelling Seasonality

55

56 **Introduction**

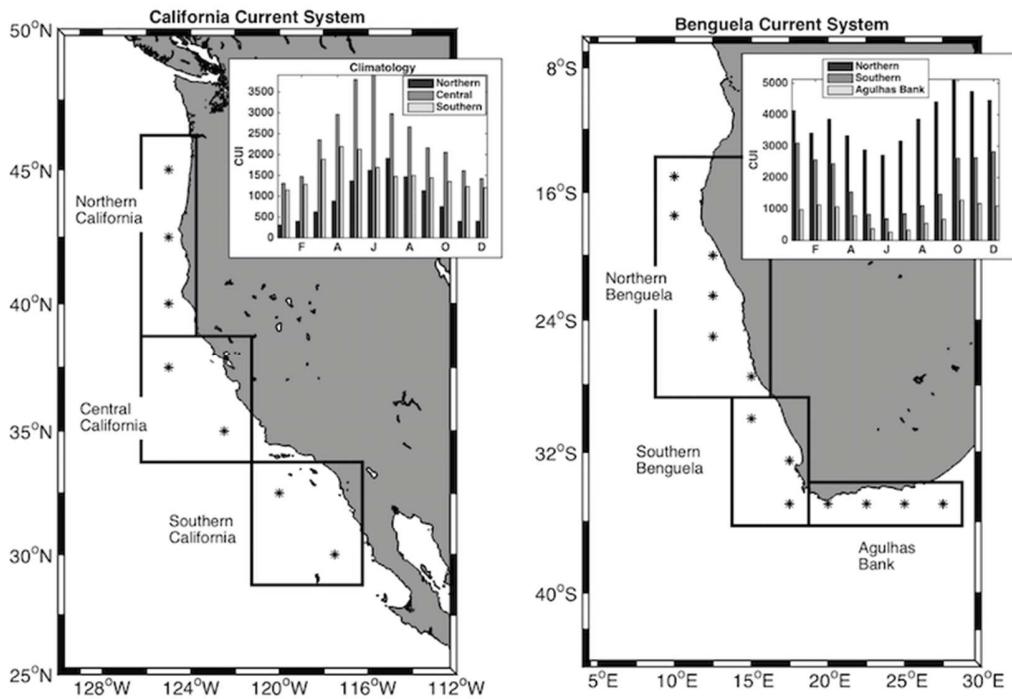
57 Seasonality is a ubiquitous feature of mid- and high-latitude terrestrial and
58 aquatic ecosystems. In the coastal marine realm, in addition to changes in day
59 length, seasons are often best characterized by changes in winds, stratification, and
60 water temperature. In the major Eastern Boundary Upwelling Ecosystems (EBUE)
61 of the world (California, Humboldt, Canary [Spain to northwestern Africa], and
62 Benguela Currents), alongshore, upwelling-favorable winds generally peak in the
63 warm season, but within these systems, a seasonal cycle may be less evident at
64 lower latitudes (*Chavez and Messié, 2009*). Upwelling systems are
65 disproportionately important to society as they cover a small percentage of the
66 world's oceans, yet produce a significant portion of the globe's capture fisheries
67 (*Mann, 2000; Rykaczewski and Checkley, 2008*). Understanding the seasonal
68 dynamics of winds and the upwelling process that brings cold nutrient-rich waters
69 to the surface to stimulate food web dynamics is therefore of great significance.

70 Long-term observational and modeling studies of the California Current
71 System (CCS) have revealed large-scale variability in the seasonality of winds that is
72 of key importance to regional ecology. In the CCS, upwelling-favorable winds
73 exhibit variability that occurs in two distinct seasonal modes (*Black et al., 2011*), the
74 first of which is a summer mode dominated by decadal-scale variability and an
75 increasing linear trend in the northern CCS during the last several decades
76 (*Sydeman et al., 2014*). The other is a winter mode dominated by higher-frequency
77 variability driven by the positioning and strength of the North Pacific High (NPH)
78 and teleconnections to the El Niño Southern-Oscillation (ENSO). Biological
79 processes respond differently to these modes of upwelling variability, some of
80 which track the winter pattern and others track the summer pattern. As interannual
81 variability in the winter mode is especially pronounced, it has a strong
82 synchronizing effect across trophic levels from copepod community composition to
83 rockfish (*Sebastes*) growth, to seabird reproductive success (*Wells et al., 2008; Black
et al., 2011; Thompson et al., 2012; García-Reyes et al., 2013b; Black et al., 2014*).
85 Given the biological importance of seasonal upwelling winds in the CCS and the

86 sensitivity of these processes to global warming, we sought to explore if other major
87 upwelling ecosystems in the world are similarly structured.

88 In this work, we hypothesize that similar patterns and drivers of upwelling-
89 favorable winds are found in the Benguela Current System (BCS). While upwelling
90 in both systems is driven by the pressure gradient between ocean high- and
91 continental thermal low-pressure atmospheric systems, each EBUE has unique
92 regional characteristics that could lead to unique properties of upwelling variability.
93 The most important differences between these systems include i) the strong
94 coupling of equatorial and North Pacific climate variability (*Di Lorenzo et al., 2013*)
95 without an apparent analog in the South Atlantic (*Chang et al., 2006*); and ii) the
96 presence of the warm and remotely driven Agulhas Current that bounds the
97 poleward extent of the BCS in contrast to the subarctic, cold current (the North
98 Pacific Current) that bounds the poleward extent of the CCS. The BCS is also more
99 subtropical in reach, extending from 17° to 35°S, whereas the CCS stretches from
100 about 30° to 48°N. Another difference is that the CCS coastline is oriented north to
101 southeast while the BCS coastline is meridional, capped by a prominent zonal shift
102 at Cape Agulhas along the southwestern coast of South Africa. In both systems,
103 coastal upwelling is concentrated at capes and headlands in upwelling “cells”
104 (*Checkley and Barth, 2009; Kirkman et al., 2016*), by winds that vary in synoptic -
105 days to weeks - time scales (*Risien et al., 2004; García-Reyes et al., 2014*). In the CCS,
106 upwelling-favorable winds are most persistent in the summer (*Dorman and Winant,*
107 *1995; García-Reyes and Largier, 2012*), when the North Pacific High is stable and
108 extends along the entire system (*Schroeder et al., 2013*). In contrast, the South
109 Atlantic High seasonal migration is small as the African continent ends at 34.5°N. As
110 a result, the southern Benguela region is subjected to the influence of fronts and
111 other mesoscale features leading to significant synoptic variability year-round
112 (*Risien et al., 2004*).

113 To test if upwelling-favorable winds in the BCS occur in two distinct winter
114 and summer modes of variability like in the CCS, attributable to the influence of
115 regional climate forcing, we conducted a statistical decomposition of daily wind


116 fields at the regional scale in each system, from 1979 through 2014, and related the
117 derived indicators of upwelling-favorable winds to atmospheric drivers, particularly
118 the oceanic high-pressure systems. Resolving the similarities and differences in the
119 seasonal variability of upwelling in the BCS and CCS is important to understanding
120 and predicting potential changes to EBUE ecosystem productivity relative to long-
121 term climate change.

122

123 **Data & Methods**

124 *Study Region* - In both the Benguela and California Current systems three
125 regions are defined (Table 1, Figure 1). In the CCS: northern, central, and southern
126 California regions, and in the BCS: northern and southern Benguela and Agulhas
127 Bank regions - although the latter is not generally considered to be part of the BCS
128 upwelling system, it has a large influence on the southern Benguela oceanographic
129 and ecological conditions and therefore is included in this analysis. The BCS
130 northern boundary was chosen at 14.75°S, fully covering the average location of the
131 Angola Front (~17°S, *Hutchings et al., 2009*). See the Supplemental Material for a
132 comparison of data from two definitions of the Northern Benguela region: one
133 including and one excluding the Angola Front. In the following analyses, we used
134 similar data and methodology in both systems to facilitate comparison.

135

136

137 Figure 1. Maps of the California and Benguela Current Systems, indicating the
138 regions of study and the center location of each NCEP2 data grid point (stars). Insets
139 show the climatology of CUI for each region in each system.
140

System/Region	Latitude range	PC1 (Eigen-value/explained variance)	PC2 (Eigen-value/explained variance)
California System			
Northern	38.75-46.25°N	2.15 / 18%	2.05 / 17%
Central	33.75-38.75°N	2.38 / 20%	1.93 / 16%
Southern	28.75-33.75°N	2.07 / 17%	1.84 / 15%
Benguela System			
Northern	14.75-28.75°S	7.91 / 66%	0.88 / 7%
Southern	28.75-36.25°S	2.59 / 22%	1.62 / 14%
Agulhas Bank	18.25-28.25°E*	2.44 / 20%	1.73 / 14 %

141

142 Table 1. Latitudinal range and statistics of the principal component analysis
 143 (eigenvalues and explained variance) of the cumulative positive upwelling index
 144 (CUI) for each region in the California and Benguela systems. *Longitude range for
 145 Agulhas Bank.

146

147 *Data.*

148 Cumulative Upwelling Index – Following Lamont et al. (*this issue*), the
 149 monthly Cumulative Upwelling Index (CUI) was calculated as sum of daily positive
 150 Ekman transport, as a proxy to upwelling in both systems. Daily Ekman transport
 151 values were calculated from daily surface alongshore winds using the NCEP-DOE
 152 Reanalysis 2 data set (NCEP2, <http://www.esrl.noaa.gov/psd/>, June 2016;
 153 *Kanamitsu et al., 2002*), following Bakun (1973), from the period January 1979 to
 154 December 2014. This calculation places emphasis on upwelling by avoiding any
 155 situation in which negative Ekman transport values (downwelling) could cancel
 156 positive values within the same month, as would occur if means had been applied.
 157 CUI values at each NCEP2 grid point along the coast were then averaged by region
 158 (Table 1, Figure SM3). Each regional time series was linearly detrended to remove
 159 potential trends that may obscure the seasonal modes of variability in these
 160 relatively short time series (*Sydeman et al., 2014; Lamont et al., this issue*). The

161 NCEP2 dataset was chosen over other longer reanalysis datasets because it provides
162 the most consistent, up-to-date, high temporal frequency across both systems (*Kent*
163 *et al., 2013; Lamont et al., this issue*).

164 Atmospheric data – To investigate potential drivers of the seasonal modes of
165 variability, we compared the derived upwelling-favorable wind modes to indices
166 that track variability in the magnitude and positioning of the mid-latitude oceanic
167 high-pressure systems (OHPS) the driving force of winds in these systems (*García-*
168 *Reyes et al., 2013a*): North Pacific High (hereafter NPH) for the CCS and South
169 Atlantic High (hereafter SAH) for the BCS. These indices were calculated from
170 NCEP2 sea level pressure (SLP) data, following the methodology of Schroeder et al.
171 (2013). From the SLP climatology, 1020 and 1018 hPa isobars were selected to
172 delimit the NPH and the SAH, respectively (the SAH has, on average, lower SLP
173 values). For each season, the mean SLP of all points within this isobar was
174 calculated as an index of magnitude, while position (NPHx, NPHy, SAHx, SAHy) was
175 calculated as the average latitude and longitude of each point inside the isobar
176 weighted by its SLP value. In addition, we compared modes of wind variability with
177 SLP and sea surface temperature (SST) fields from Met Office Hadley Center
178 observations datasets (HadISST 1° and HadSLP2 5°, respectively;
179 <http://metoffice.gov.uk>, November 2016; *Rayner et al., 2003; Allan and Ansell, 2006*).

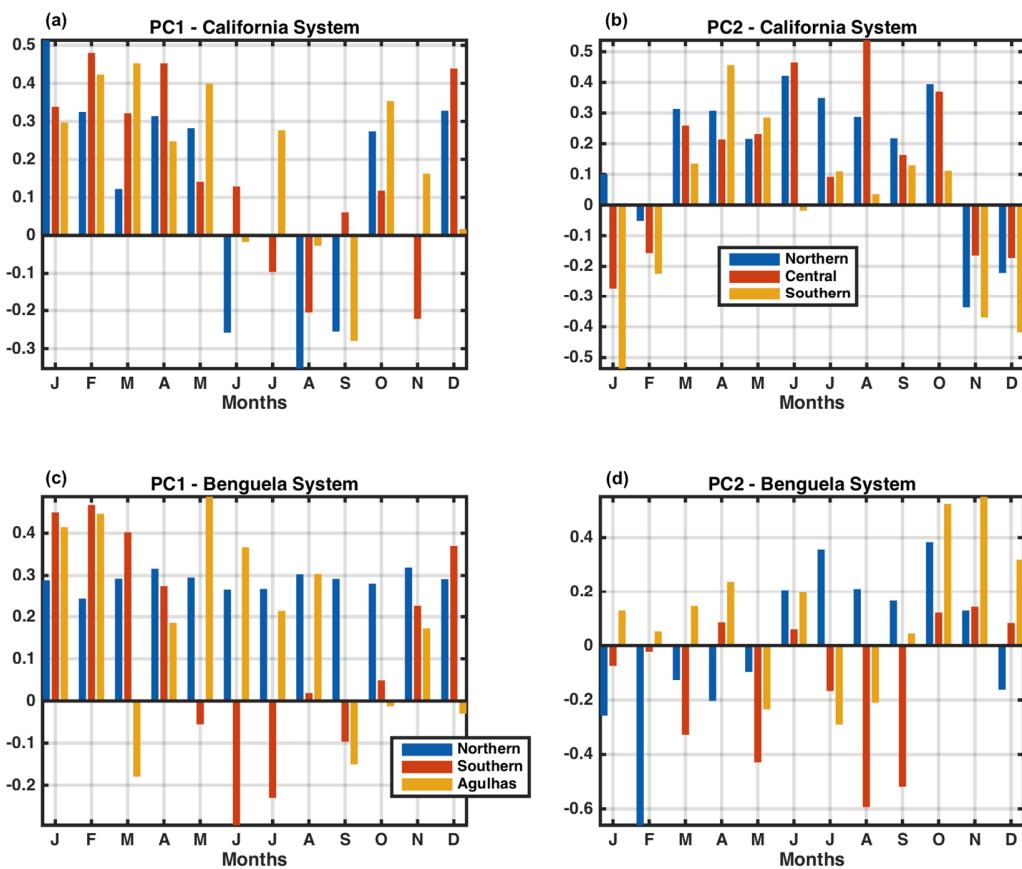
180 *Methodology*

181 All of the time series, including the global SLP and SST data, were linearly
182 detrended for comparison with CUI data. Within each region, Principal Component
183 Analysis (PCA) was performed on monthly-averaged CUI anomaly time series,
184 following the methods of Black et al. (2011). Each detrended time series was
185 normalized and then redistributed in a matrix with 12 columns corresponding to
186 each month and 36 rows corresponding to each year. We used two main criteria to
187 identify seasonal modes: i) a clear and coherent pattern of high principal component
188 (PC) monthly coefficients and high autocorrelation spanning a few consecutive
189 months, and ii) a significant ($p < 0.05$) rank correlation between the PC and at least
190 one seasonal mean of CUI. Seasons were defined in quarterly (3-month) periods

191 with January-March as winter for the California Current, and July-September as
192 winter for Benguela Current. This second criteria not only serves as an indicator of
193 the physical interpretation of the PC, but also tests its validity as a unique PC when
194 PC1 and PC2 have similar eigenvalues. In addition, explained variance (eigenvalues)
195 of the principal components was considered when selecting the relevant mode of
196 variability. These criteria identified strong seasonal modes of variability and helped
197 exclude modes driven by a few extreme values in the data.

198 To explore potential drivers of the modes of variability within and across
199 systems, we: i) cross-correlated the modes scores (time series) within and across
200 the California and Benguela systems, and ii) correlated the modes scores (time
201 series) with indices of the OHPS (NPH, SAH), SLP, and SST data fields. For (ii), three-
202 month (seasonal) averages of monthly data (OHPS, SLP or SST) were calculated and
203 then lag-correlated (rank correlation, $p < 0.05$) by season with the modes scores.
204 We also investigated covariability in upwelling between systems. For this we
205 performed a cross-wavelets analysis on modes across systems as well as a PCA of
206 the summer upwelling modes across both systems. This resultant PC ($PC_{upwelling}$)
207 was also correlated to SLP and SST fields.

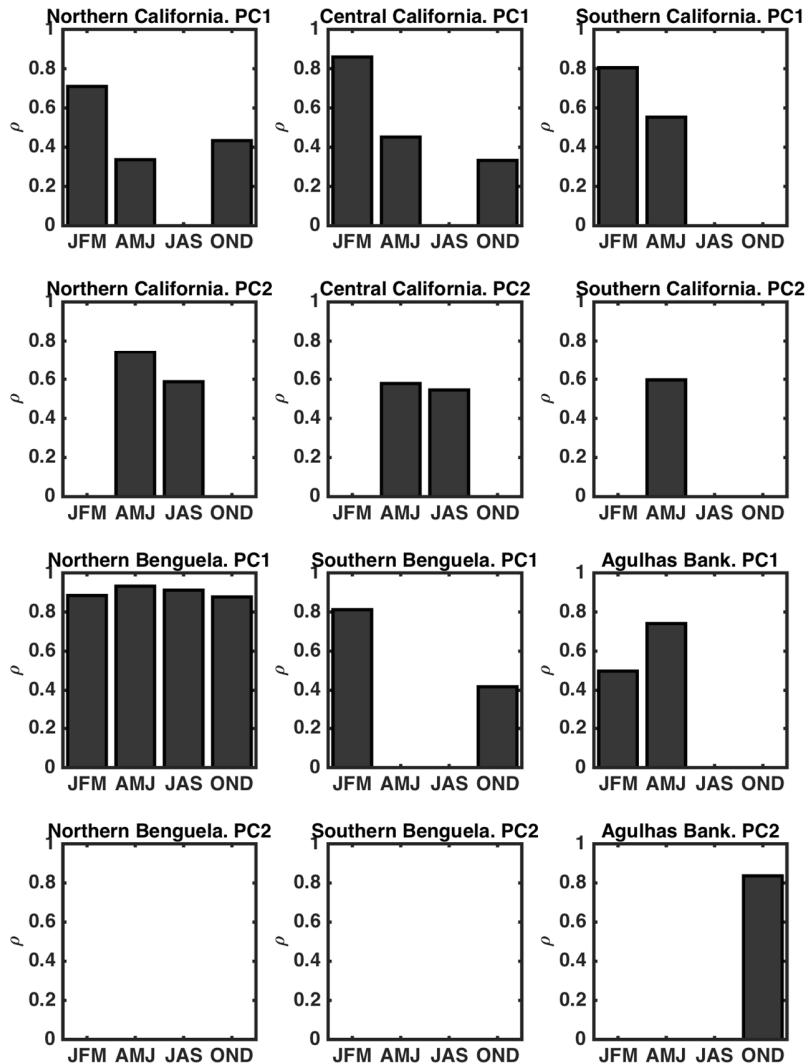
208


209 **Results**

210 *Modes of variability*

211 As expected, the CCS shows two seasonal modes of upwelling-favorable wind
212 variability, which are similar in all regions. PCA loadings (monthly coefficients) are
213 shown in Figure 2, scores are shown in Figure SM6, and the eigenvalues and
214 explained variances are given in Table 1. The leading mode of variability (PC1) is
215 focused on winter and early spring (Figure 2a) for the northern and central regions,
216 and winter and spring for the southern region. These leading PCs correlate the
217 strongest with winter CUI (Figure 3), especially in the north, while the southern
218 region PC1 also correlates well with spring. In the CCS, the central region PC1 is the
219 strongest (explains 20% of the variability). The second principal component (PC2)
220 has a somewhat similar seasonal pattern in all CCS regions: central and northern
221 California PC2 show a seasonal signature focused on spring and summer, while

southern California PC2 is focused only in spring, all coincident with the climatological peak of upwelling in these regions (Inset in Figure 1). However, both central and southern California PC2 modes are weaker than in the north, as evidenced by lower eigenvalues and lower correlations to seasonal CUI. In the northern region, eigenvalues for PC1 and PC2 are similar, prompting the question: are both PCs the same (degenerate)? However, the significant correlation of each PC with different seasons of CUI values indicates that they are indeed different PCs and independent of each other. In the southern region, the PC2 time series has weak autocorrelation across adjacent months (Figure SM4).


231

232

Figure 2. Loadings (coefficients) of the Principal Component Analysis for monthly cumulative upwelling index (CUI) for the different California and Benguela System regions.

236

237

238 Figure 3. Rank correlations between modes of variability (PCs time series) and
 239 seasonal means of CUI for each system and each region. Only significant ($p < 0.05$)
 240 correlations are shown, and all values are positive to facilitate comparison. No
 241 adjustment for autocorrelation was performed.

242

243 The BCS has greater differences between regions in seasonal modes of
 244 upwelling than the CCS. The northern and southern Benguela regions exhibit only
 245 one mode of upwelling variability. The northern Benguela PC1 is strong, capturing
 246 two thirds of the variability in CUI (Table 1), but shows no seasonality. This is
 247 evidenced by the strong autocorrelation across months (Figure SM5), the fact that
 248 PC1 coefficients are similar in each month of the year (Figure 2c, blue), as are the
 249 correlations between PC1 and the seasonal CUI averages (Figure 3). The second

250 principal component (PC2) is weak, explaining only 7% of the variance, with a
251 dominant coefficient in February but weak correlations with seasonal CUI. The
252 southern Benguela also shows only one mode that explains 22% of the variability
253 but is focused (and correlated to CUI) in the austral summer (DJF), the peak of the
254 upwelling season in this region (Figure 1). The second mode, though with a winter
255 signature (peak correlations with August and September in Figure 2d), is not
256 significantly correlated with winter CUI (Figure 3). The Agulhas Bank region has
257 two independent seasonal modes of variability: PC1 loads from summer to mid-
258 winter and correlates significantly with fall CUI averages (Figure 3). The second PC
259 is focused in spring (October-December) and has a significant and strong correlation
260 with spring CUI averages, although with a low eigenvalue and weak autocorrelation
261 (mode highly focused in spring).

262 In summary, the northern and central California and the Agulhas Bank
263 regions show two independent seasonal modes of variability. In the CCS, PC1 is
264 dominant in winter-early spring and PC2 in spring-summer, while in the Agulhas
265 Bank region PC1 dominates in summer-fall and PC2 prevails in spring. Southern
266 California shows a strong PC1 in winter-spring, but a less clearly defined second
267 mode, correlated with spring CUI. In the BCS, modes of variability are different
268 among regions: northern Benguela shows no seasonal modes of variability, but one
269 annual mode, while the southern Benguela shows one mode of seasonal variability
270 that captures the upwelling season.

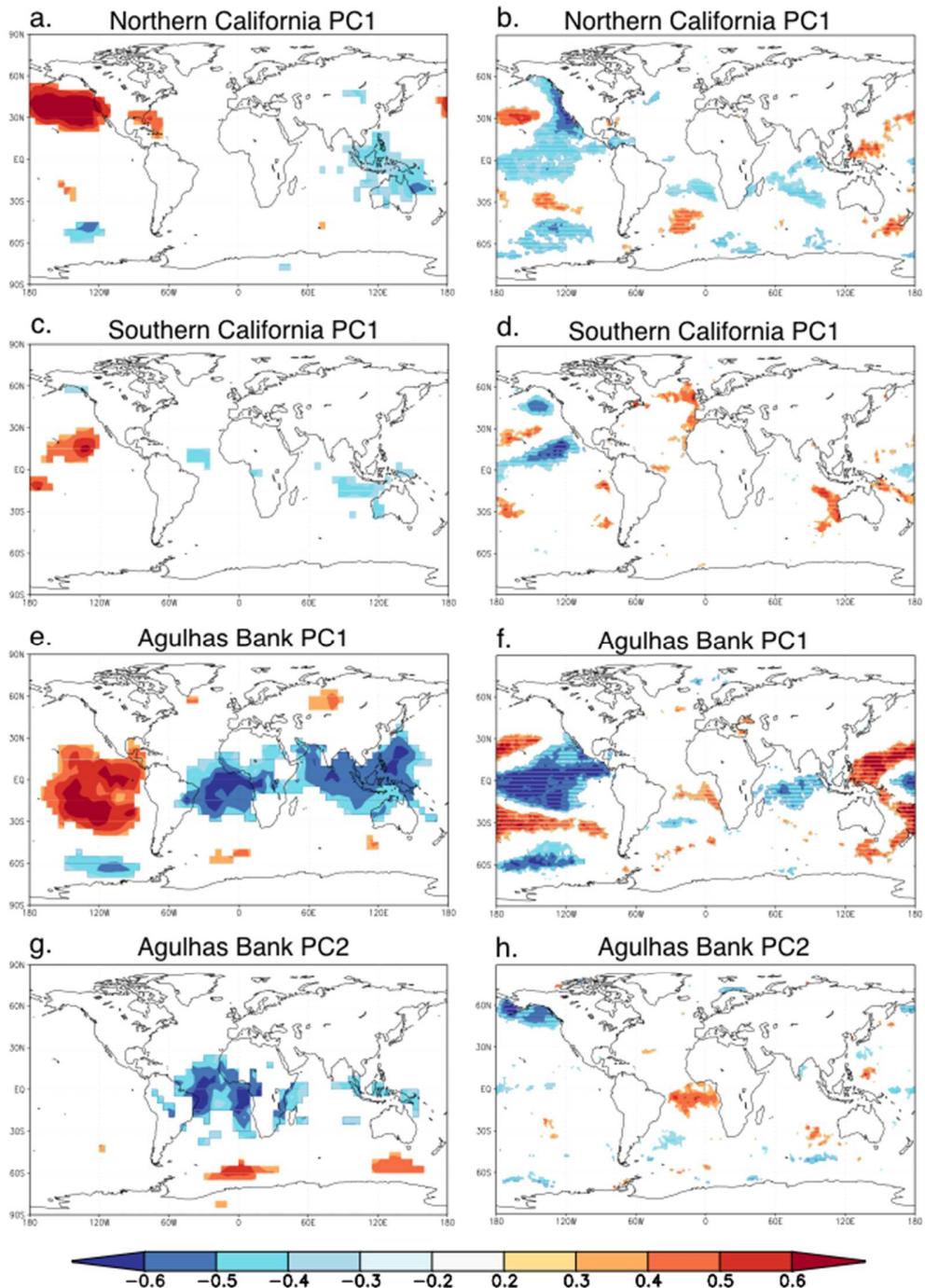
271 There is some coherence in modes across the study region, though it is not
272 always consistent. In the CCS, PC1 scores are significantly correlated only between
273 the northern and central regions ($\rho = 0.71$, $p < 0.001$, Figure SM5). PC2 scores also
274 covary across the central and northern regions ($\rho = 0.74$, $p < 0.001$), but they are not
275 significantly correlated with the southern region. Central and northern California
276 PC2 have a decadal pattern not observed in the southern California PC2 or in PC1 for
277 any region. In the BCS, the only significant correlations, although weak, are between
278 the northern and southern PC1s ($\rho = 0.36$, $p < 0.05$), as well as the southern
279 Benguela and Agulhas Bank PC2s ($\rho = 0.44$, $p < 0.01$).

280

281 *Drivers of modes of variability*

282 Modes of variability (PCs) correlate moderately with the magnitude and
283 location of the OHPS, except for the southern Benguela PC1 and southern California
284 PC2, which do not consistently correlate with any measure of the OHPS (Table 2).
285 The strongest and most consistent relationships with OHPS occur for the California
286 winter modes (PC1), especially in the northern and central regions. Notably, the
287 CCS (PC1) and BCS (PC2) share the same seasonality (January-March) in their
288 correlations with OHPS magnitude.

289


290

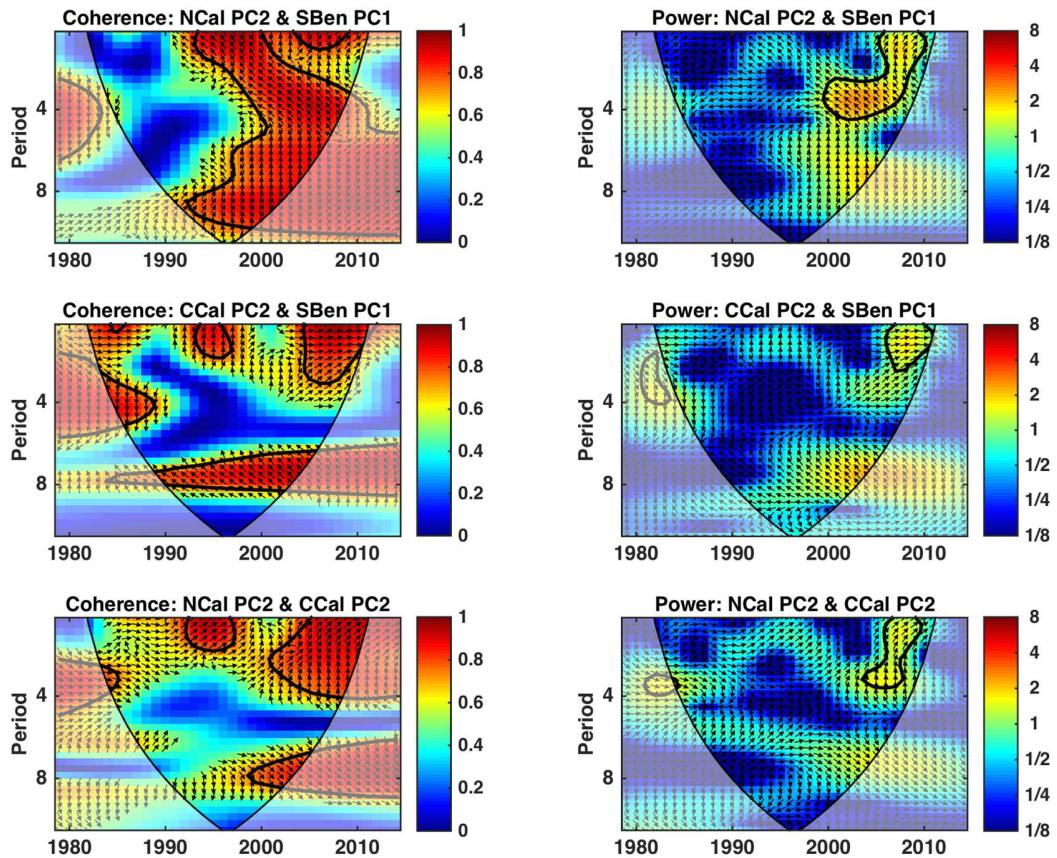
System/Region/Mode	Magnitude	Latitude	Longitude
California PC1			
<i>Northern California</i>	0.64 (Jan-Mar)	0.53 (Jan-Mar)	-0.40* (Jul-Sep)
<i>Central California</i>	0.70 (Jan-Mar)	0.53 (Jan-Mar)	-0.38* (Jul-Sep)
<i>Southern California</i>	0.36* (Jan-Mar)	-0.57 (Oct-Dec)	-
California PC2			
<i>Northern California</i>	0.39* (Apr-Jun)	-0.41* (Oct-Dec)	-
<i>Central California</i>	-	-0.38* (Oct-Dec)	-
<i>Southern California</i>	-	-	-
Benguela PC1			
<i>Northern Benguela</i>	-	-	-0.42* (Jul-Sep)
<i>Southern Benguela</i>	-	-	-
<i>Agulhas Bank</i>	-0.38* (Jul-Sep)	-0.56 (Jan-Mar)	0.37* (Jan-Mar)
Benguela PC2			
<i>Northern Benguela</i>	-0.43 (Jan-Mar)	-	0.44 (Oct-Dec)
<i>Southern Benguela</i>	-0.33* (Jan-Mar)	-0.44 (Oct-Dec)	-
<i>Agulhas Bank</i>	-0.49 (Apr-Jun)	-0.51 (Oct-Dec)	-

291 Table 2. Rank correlations (ρ) between modes of upwelling variability in the
 292 California Current System (CCS) and Benguela Current System (BCS) and the
 293 magnitude and position (latitudinal and longitudinal) of the regional ocean high-
 294 pressure systems. Seasons with the highest significant correlations ($p < 0.01$, * for p
 295 < 0.05) are shown in parentheses.
 296

297 To further explore the source of the variability in the modes of upwelling, we
 298 calculated correlations between the scores of the modes and SLP and SST fields. The
 299 summer modes of variability (northern California PC2, central California PC2, and
 300 southern Benguela PC1) are not well correlated with SLP fields except in the
 301 subpolar regions (Figure SM7). SST correlations are even less significant, but all
 302 modes do have positive correlations with a small region in the north Atlantic (Figure
 303 SM7). The winter modes of the three California regions are all significantly
 304 correlated with North Pacific SLP in a region around the climatological location of

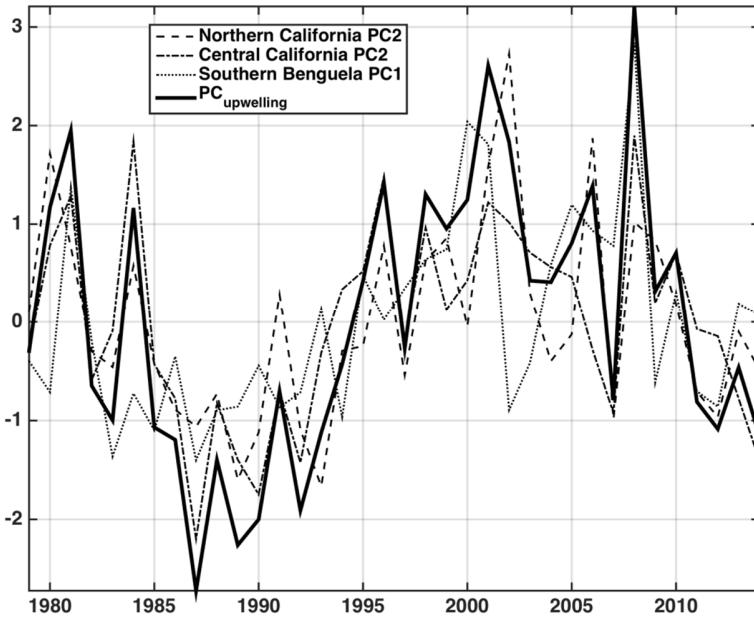
305 the NPH (Figure 4). Correlations for central California PC1 are similar to those for
306 northern California PC1,(data not shown). The northern and central California PC1s
307 correlate with northeast Pacific SST in an arc pattern that resembles the Pacific
308 Decadal Oscillation (PDO, *Mantua and Hare, 2002*), and the southern California PC1
309 correlates with a band in the tropical eastern Pacific (Figure 4). The Agulhas Bank
310 PC1 is highly correlated to equatorial conditions, largely in the Pacific, suggesting
311 sensitivity to ENSO. A significant and positive correlation with seasonal averages of
312 the Southern Oscillation Index (SOI, not shown) confirms the influence of ENSO on
313 the Agulhas Bank first mode of upwelling variability.

314


315 Figure 4. Rank correlations between seasonal upwelling modes of variability and 3-
 316 month average sea level pressure (HadSLP2) and SST fields (HadISST1) ($p < 0.05$
 317 shown) for the period 1979-2014. Northern California PC1 with (a) Jan.-Mar. SLP
 318 and (b) Jan.-Mar. SST; Southern California PC1 with (c) Feb.-Apr. SLP and (d) Feb.-
 319 Apr. SST; Agulhas Bank PC1 with (e) Jan.-Mar. SLP and (f) Feb.-Apr. SST; and
 320 Agulhas Bank PC2 with (g) Jun.-Aug. SLP and (h) May-Jul. SST.
 321

322

323 *Shared variability in upwelling modes between systems*


324 In comparing modes across systems, there are 4 significant correlations:
325 Agulhas Bank PC1 and central California PC2 ($\rho = 0.34$); southern Benguela PC2
326 with southern California PC2 ($\rho = 0.35$), northern California PC2 and southern
327 Benguela PC1 ($\rho = 0.34$), and central California PC2 with southern Benguela PC1 (ρ
328 = 0.36). Thus, the majority of coherence was between summer wind modes. To
329 explore the periodicity of shared variability, we performed a cross-wavelets analysis
330 (Figure 5), which shows covariability among the three summer PCs, particularly at
331 periods around 8 years with the greatest power later in the study period. It also
332 shows covariability at 1- to 2-year periods, particularly after 1990. Notably, the
333 northern California and southern Benguela summer modes show strong
334 covariability in most frequencies from the early 1990s to the end of the record. A
335 PCA of the three summer modes (Figure 6; $PC_{upwelling}$) explains 66% of the variability
336 in the upwelling modes, largely due to shared decadal-scale variability. Loadings for
337 $PC_{upwelling}$ are 0.59 for northern California PC2, 0.64 for central California PC2 and
338 0.49 for southern Benguela PC1. The correlations of $PC_{upwelling}$ with SLP and SST
339 fields show a similar signature as the individual summer modes (Figure SM7,
340 bottom): positive correlations over in the Arctic and Greenland, and negative
341 correlations with northeast Africa and eastern Europe. With respect to SST,
342 negative correlations also occur over the North Atlantic. It is worth noting that
343 similar correlations occur when other SLP and SST datasets are used (Figure SM8).

344

345

346 Figure 5. Cross-wavelet analysis between summer upwelling modes: northern
 347 California PC2 (NCal), central California PC2 (CCal), and southern Benguela PC1
 348 (SBen). Left plots show the cross-wavelet coherence and right plots show the power.
 349

350

351 Figure 6. First PC ($PC_{upwelling}$) of the summer upwelling modes (heavy black line):
 352 northern and central California PC2 and southern Benguela PC1.

353

354

355 Discussion

356 Consistent with findings of Black et al. (2011; 2014), we found two
 357 independent seasonal modes of wind variability in the CCS. In the northern and
 358 southern Benguela, however, only one mode of variability was derived, which is
 359 year-round in the north and spans the peak of the upwelling season (summer) in the
 360 south. Notably, the Agulhas Bank region has two upwelling modes, one focused on
 361 fall and another on spring. Seasonal modes are more coherent across regions in the
 362 CCS than the BCS. The CCS is best characterized by a winter mode and a spring
 363 and/or summer mode depending on the region, whereas the BCS is best
 364 characterized by an annual mode, a summer mode, and fall and spring modes.

365 In both systems, although not in all regions, there are seasonal modes of
 366 variability that represent the primary upwelling season. In the southern Benguela,
 367 this is the leading mode of variability, while in the northern and central California it
 368 is the second mode. In the most equatorward regions, northern Benguela and

369 southern California, upwelling occurs all year, which could explain the lack of
370 seasonal modes in the northern Benguela and lack of strong seasonality in southern
371 California.

372 The summer upwelling modes (northern and central California PC2 and
373 southern Benguela PC1) have similar patterns of decadal variability. Although the
374 length of the NCEP2 dataset is not optimal for characterizing decadal variability, the
375 observed decadal variability in the summer modes is consistent with the variability
376 of the summer upwelling mode presented by Black et al. (2011); this mode is
377 characterized by low values in the late 1980s that increase through the 1990s and
378 decrease again in the late 2000s. Similar decadal variability in summer upwelling
379 has also been reported by Mendelssohn and Schwing (2002) and Macias et al. (2012)
380 for the CCS, and Narayan et al. (2010) and Blamey et al. (2012) for the BCS. Jarre et
381 al. (2015) suggested that decadal variability observed in the BCS summer upwelling
382 is related to the variability in the latitudinal position of the SAH. In our analysis,
383 summer upwelling correlates with the magnitude and position of the OHPS in the
384 northern and central CCS, and in the northern and Agulhas Bank regions of the BCS.
385 However, due to the short length of the time series and removal of long-term trends,
386 this correlation is attributable mainly to inter-annual variability. A cross-wavelet
387 analysis between summer modes and summer latitudinal position of the OHPS
388 shows coherence only for the central California summer mode (PC2) and the NPHy
389 at decadal time scales (not shown). Unfortunately, for these relatively low
390 frequencies, the significance of the results is limited by the length of the time series
391 (cone of influence). However, the entirety of our analysis does indicate that the
392 magnitude and location of the OHPS are important to summer upwelling. This is of
393 importance for forecasting future patterns of summer upwelling considering that
394 global circulation models (Rykaczewski et al., 2015; Wang et al., 2015) suggest global
395 climate change will shift the latitude of the four OHPS poleward.

396 Shared patterns in the summer upwelling modes across the BCS and CCS
397 represent only 10-15% of the total variability in the CUI time series, but it does
398 suggest that global-scale processes may influence upwelling-favorable winds in
399 these EBUE. The cross-wavelets power analysis suggests that this shared variability

400 operates largely on decadal scales and it is more tightly coupled in recent decades.
401 The 1- to 2-year variability observed in the cross-wavelets, however, is less stable
402 over time and may reflect random processes. Investigating the forcing of this
403 covariability is beyond the scope of this paper, however, $PC_{upwelling}$ positively
404 correlates to SLP and SST fields in the Arctic and Greenland, and negatively in west
405 Africa/Europe. A similar correlation pattern occurs when using multiple SLP
406 datasets (Figure SM8), which suggests that this result is not an artifact of the NCEP2
407 dataset. There is however, no immediate explanation for these correlation fields.

408 In contrast to summer, the winter upwelling variability modes in the three
409 CCS regions (PC1) and the southern Benguela PC2 correlate at interannual scales to
410 the magnitude and latitudinal position of the oceanic high-pressure systems. This is
411 consistent with previous results showing that winter winds are better related to the
412 OHPS variability than summer winds (García-Reyes et al., 2013a), as the OHPS tend
413 to be stable during the summer (IPCC, 2013 Fig. 2.37; Schroeder et al., 2013).

414 Furthermore, in the CCS, the winter mode is strongly correlated with regional SLP
415 and SST fields in a pattern consistent with the PDO. Additionally, some negative
416 correlation with the western equatorial Pacific SLP is observed with the northern
417 and central California winter modes, suggesting some influence from equatorial
418 atmospheric teleconnections. Previous studies have shown the influence of Pacific
419 teleconnections on northeastern Pacific atmospheric patterns, including winter
420 winds (for example, see Schwing et al., 2002).

421 However, in the south Atlantic there are no correlations with regional
422 atmospheric patterns to the degree found in the Pacific. Infrequent climate events
423 dubbed Benguela Niños occur (Shannon et al., 1986), but they have a less clear and
424 coherent atmospheric signature in the Atlantic than Pacific El Niños do in the Pacific.
425 Variability in the Indian Ocean pressure fields and the Southern Annular Mode
426 (SAM) have been reported to influence the BCS as well (Hutchings et al., 2009;
427 Reason et al., 2013), but the SST field correlations did not suggest clear influence
428 from the Indian Ocean or the Antarctic. Similarly, we did not find clear correlations
429 between the equatorial Pacific and the BCS seasonal modes (PC1), which would
430 have suggested ENSO as a driver for this leading mode. However, some moderate

431 correlations between ENSO and the second mode of variability in the BCS (not
432 shown) suggest that ENSO events do influence upwelling in the BCS as suggested by
433 other authors (Colberg et al., 2004; Rouault et al., 2010; Tim et al., 2013). It is likely
434 that because ENSO activity peaks during the Southern Hemisphere summer, which
435 is when the SAH and adjacent land pressure system are most stable and upwelling is
436 strong, only certain ENSO events show visible signatures. Rouault et al. (2010) also
437 discussed how the contrasting simultaneous impacts of ENSO and SAM could mask
438 their signatures on SSTs in the BCS.

439 Interestingly, in the results of this study, winter was identified as the leading
440 mode of variability in the CCS. Black et al. (2011), in a similar analysis based on the
441 Bakun upwelling index (Bakun, 1973), found the California winter mode to be
442 second to a summer mode of variability in the summer. In the analysis by Black et al.
443 (2011), using data from 1948 to 2010, the winter mode scores appear to be higher
444 in the latter half of the time period, which corresponds to the period of this analysis
445 (1979-2014). The lower scores (and variance) in the first half could be the reason
446 for the winter mode to be the second mode of variability in their analysis, but first in
447 ours, also suggesting increasing variability in winter upwelling (Black et al., 2014).

448 The Agulhas Bank region was included in this analysis because it is a coastal
449 upwelling area that is ecologically relevant (a spawning region for small pelagic
450 fishes) for the Benguela Current ecosystem given the transport of water masses
451 around Cape Agulhas into the BCS (Colberg et al., 2004; Boschat et al., 2013; Blamey
452 et al., 2015). Notably, its leading mode of variability occurs in the summer-fall
453 (January-June), while the peak of upwelling is in spring-summer (October-March).
454 This is most likely due to the influence of the ENSO teleconnections, as the ENSO
455 influence on zonal winds at this latitude is strongest during the austral summer and
456 subsequent season (L'Heureux and Thompson, 2006). This is supported by the
457 strong correlation found between the Agulhas Bank first mode of upwelling
458 variability with Pacific equatorial SLP in summer and fall. The Agulhas Bank second
459 mode correlations with SLP and SST fields (Figure 4) resemble a pattern related to
460 the Atlantic zonal mode (Zebiak, 1993).

461 In the CCS, the existence of two independent modes of upwelling variability
462 has important ecological implications, as each mode impacts different components
463 of the marine ecosystem. In particular, the highly variable winter upwelling and
464 associated conditions have a synchronizing effect across trophic levels in the
465 California marine ecosystem (*Black et al., 2011; Thompson et al., 2012*), which
466 extends to adjacent terrestrial species (*Black et al., 2014*). Schroeder et al. (2009)
467 proposed that winter upwelling-favorable events pre-condition the coastal
468 ecosystem by stimulating an early onset of a nutrient-rich environment (*Chavez et*
469 *al., 2011*) and primary productivity (*Holt and Mantua, 2009*). An important
470 difference between these two systems is that in the BCS there is no single seasonal
471 mode of upwelling variability that could have the synchronizing effect that winter
472 does in the CCS, although isolated extreme events might have this effect occasionally.
473 Another difference is the spatial heterogeneity in seasonal modes among regions in
474 the BCS. This could be particularly important for the southern Benguela and
475 Agulhas Bank regions since they are linked not only physically, but also biologically
476 as a number of species spend crucial parts of their lives on each side of Cape Agulhas
477 (summarized in *Hutchings et al., 2009*). Incoherent periods of favorable or
478 unfavorable conditions could occur if upwelling modes independently vary in timing
479 or magnitude between these two regions, which could affect ecosystem productivity
480 and structure of this region. Comparative analyses that consider the existence/lack
481 of synchronizing events and the in-phase/out-of-phase variability in EBUE are
482 necessary to test their importance in influencing regional to macroscale functions in
483 these ecosystems.

484

485 **Acknowledgements**

486 NCEP-DOE Reanalysis 2 data was provided by the NOAA/OAR/ESRL PSD, Boulder,
487 Colorado, USA (<http://www.esrl.noaa.gov/psd/>). The authors thank Cayley Geffen
488 for her support with the graphics. MGR, WJS, BAB, RRR, SAT, and SJB were funded
489 by the National Science Foundation award No: OCE-1434732. TL thanks the
490 Department of Environmental Affairs (DEA) and the Department of Agriculture,
491 Forestry and Fisheries (DAFF), South Africa for funding and facilities.

492 **References**

493

494 1. Allan, R., & Ansell, T. (2006). A new globally complete monthly historical gridded
495 mean sea level pressure dataset (HadSLP2): 1850-2004. *Journal of Climate*,
496 19(22), 5816-5842. doi: 10.1175/JCLI3937.1

497 2. Bakun, A. (1973). Coastal upwelling indices, west coast of North America, 1946-
498 71, *NOAA Tech. Rep. NMFS SSRF*, 671, 103 pp.

499 3. Black, B. A., Schroeder, I. D., Sydeman, W. J., Bograd, S. J., Wells, B. K., & Schwing, F.
500 B. (2011). Winter and summer upwelling modes and their biological importance
501 in the California Current Ecosystem. *Global Change Biology*, 17(8), 2536-2545.
502 doi: 10.1111/j.1365-2486.2011.02422.x

503 4. Black, B. A., Sydeman, W. J., Frank, D. C., Griffin, D., Stahle, D. W., García-Reyes,
504 M., ... & Peterson, W. T. (2014). Six centuries of variability and extremes in a
505 coupled marine-terrestrial ecosystem. *Science*, 345(6203), 1498-1502. doi:
506 10.1126/science.1253209

507 5. Blamey, L. K., Howard, J. A., Agenbag, J., & Jarre, A. (2012). Regime-shifts in the
508 southern Benguela shelf and inshore region. *Progress in Oceanography*, 106, 80-
509 95. doi: 10.1016/j.pocean.2012.07.001

510 6. Blamey, L. K., Shannon, L. J., Bolton, J. J., Crawford, R. J., Dufois, F., Evers-King, H., ...
511 & Watermeyer, K. E. (2015). Ecosystem change in the southern Benguela and the
512 underlying processes. *Journal of Marine Systems*, 144, 9-29. doi:
513 10.1016/j.jmarsys.2014.11.006

514 7. Boschat, G., Terray, P., & Masson, S. (2013). Extratropical forcing of ENSO.
515 *Geophysical Research Letters*, 40(8), 1605-1611. doi: 10.1002/grl.50229

516 8. Chang, P., Yamagata, T., Schopf, P., Behera, S. K., Carton, J., Kessler, et al. (2006).
517 Climate fluctuations of tropical coupled systems—the role of ocean
518 dynamics. *Journal of Climate*, 19(20), 5122-5174. doi: 10.1175/JCLI3903.1

519 9. Chavez, F. P., & Messié, M. (2009). A comparison of eastern boundary upwelling
520 ecosystems. *Progress in Oceanography*, 83(1), 80-96. doi:
521 10.1016/j.pocean.2009.07.032

522 10. Chavez, F. P., Messié, M., & Pennington, J. T. (2011). Marine primary production
523 in relation to climate variability and change. *Annual Review of Marine Science*, 3,
524 227-260. doi: 10.1146/annurev.marine.010908.163917

525 11. Checkley, D. M., & Barth, J. A. (2009). Patterns and processes in the California
526 Current System. *Progress in Oceanography*, 83(1), 49-64. doi:
527 10.1016/j.pocean.2009.07.028

528 12. Colberg, F., Reason, C. J. C., & Rodgers, K. (2004). South Atlantic response to El
529 Niño-Southern Oscillation induced climate variability in an ocean general
530 circulation model. *Journal of Geophysical Research: Oceans*, 109(C12). doi:
531 10.1029/2004JC002301

532 13. Di Lorenzo, E., Combes, V., Keister, J.E. & ... (2013) Synthesis of Pacific Ocean
533 climate and ecosystem dynamics. *Oceanography*, 26(4), 68-81. doi:
534 10.5670/oceanog.2013.76

535 14. Dorman, C. E., & Winant, C. D. (1995). Buoy observations of the atmosphere
 536 along the west coast of the United States, 1981-1990. *Journal of Geophysical*
 537 *Research*, 100, 16-029. doi: 10.1029/95JC00964

538 15. García-Reyes, M., & Largier, J. L. (2012). Seasonality of coastal upwelling off
 539 central and northern California: New insights, including temporal and spatial
 540 variability. *Journal of Geophysical Research: Oceans*, 117(C3). doi:
 541 10.1029/2011JC007629

542 16. García-Reyes, M., Sydeman, W. J., Black, B. A., Rykaczewski, R. R., Schoeman, D. S.,
 543 Thompson, S. A., & Bograd, S. J. (2013a). Relative influence of oceanic and
 544 terrestrial pressure systems in driving upwelling-favorable winds. *Geophysical*
 545 *Research Letters*, 40(19), 5311-5315. doi: 10.1002/2013GL057729

546 17. García-Reyes, M., Sydeman, W. J., Thompson, S. A., Black, B. A., Rykaczewski, R. R.,
 547 Thayer, J. A., & Bograd, S. J. (2013b). Integrated assessment of wind effects on
 548 central California's pelagic ecosystem. *Ecosystems*, 16(5), 722-735. doi:
 549 10.1007/s10021-013-9643-6

550 18. García-Reyes, M., Largier, J. L., & Sydeman, W. J. (2014). Synoptic-scale upwelling
 551 indices and predictions of phyto- and zooplankton populations. *Progress in*
 552 *Oceanography*, 120, 177-188. doi: 10.1016/j.pocean.2013.08.004

553 19. Holt, C. A., & Mantua, N. (2009). Defining spring transition: regional indices for
 554 the California Current System. *Marine Ecology Progress Series*, 393, 285-299. doi:
 555 10.3354/meps08147

556 20. Hutchings, L., Van der Lingen, C. D., Shannon, L. J., Crawford, R. J. M., Verheye, H.
 557 M. S., Bartholomae, C. H., ... & Fidel, Q. (2009). The Benguela Current: An
 558 ecosystem of four components. *Progress in Oceanography*, 83(1), 15-32. doi:
 559 10.1016/j.pocean.2009.07.046

560 21. IPCC (2013): Climate Change 2013: The Physical science Basis. Contribution of
 561 Working Group I to the Fifth Assessment Report of the Intergovernmental Panel
 562 on Climate Change [Stocker, T.F. et al. (eds.)]. *Cambridge University Press*,
 563 Cambridge, U.K. and New York, NY, USA. 1535pp.

564 22. Jarre, A., Hutchings, L., Kirkman, S. P., Kreiner, A., Tchipalanga, P., Kainge, P., ... &
 565 Lamont, T. (2015). Synthesis: climate effects on biodiversity, abundance and
 566 distribution of marine organisms in the Benguela. *Fisheries Oceanography*,
 567 24(S1), 122-149. doi: 10.1111/fog.12086

568 23. Kanamitsu, M., Ebisuzaki, W., Woollen, J., & Shi-Keng, Y. (2002). NCEP-DOE
 569 AMIP-II reanalysis (r-2). *Bulletin of the American Meteorological Society*, 83(11),
 570 1631. doi: 10.1175/BAMS-83-11-1631

571 24. Kent, E. C., S. Fangohr, and D. I. Berry (2013). A comparative assessment of
 572 monthly mean wind speed products over the global ocean. *International Journal*
 573 *of Climatology*, 33, 2520-2541. doi: 10.1002/joc.3606

574 25. Kirkman, S. P., Blamey, L., Lamont, T., Field, J. G., Bianchi, G., Huggett, J. A., ... &
 575 Lipiński, M. R. (2016). Spatial characterisation of the Benguela ecosystem for
 576 ecosystem-based management. *African Journal of Marine Science*, 38(1), 7-22.
 577 doi: 10.2989/1814232X.2015.1125390

578 26. Lamont, T., M. García-Reyes, S. J. Bograd, C.D. van der Lingen, W. J. Sydeman (*in*
 579 *press, this issue*) Upwelling indices for comparative ecosystem studies: variability
 580 in the Benguela Upwelling System. *Journal of Marine Sciences*.

581 27. L'Heureux, M. L., & Thompson, D. W. J. (2006). Observed relationship between
 582 the El Niño-Southern Oscillation and the extratropical zonal-mean circulation.
 583 *Journal of Climate*, 19, 276-287. doi: 10.1175/JCLI3617.1

584 28. Mann, K.H. (2000) *Ecology of Coastal Waters, With Implications for Management*,
 585 Blackwell Sci., Malden, Mass.

586 29. Mantua, N. J., & Hare, S. R. (2002). The Pacific decadal oscillation. *Journal of*
 587 *Oceanography*, 58(1), 35-44. doi: 10.1023/A:1015820616384

588 30. Macias, D., Landry, M. R., Gershunov, A., Miller, A. J., & Franks, P. J. (2012).
 589 Climatic control of upwelling variability along the western North-American coast.
 590 *Plos One*, 7(1), e30436. doi: 10.1371/journal.pone.0030436

591 31. Mendelssohn, R., & Schwing, F. B. (2002). Common and uncommon trends in SST
 592 and wind stress in the California and Peru-Chile current systems. *Progress in*
 593 *Oceanography*, 53(2), 141-162. doi: 10.1016/S0079-6611(02)00028-9

594 32. Narayan, N., Paul, A., Mulitza, S., & Schulz, M. (2010). Trends in coastal upwelling
 595 intensity during the late 20th century. *Ocean Science*, 6(3), 815-823. doi:
 596 10.5194/os-6-815-2010

597 33. Rayner, N. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexander, L. V., Rowell, D.
 598 P., ... & Kaplan, A. (2003). Global analyses of sea surface temperature, sea ice, and
 599 night marine air temperature since the late nineteenth century. *Journal of*
 600 *Geophysical Research: Atmospheres*, 108(D14), 4407. doi:
 601 10.1029/2002JD002670

602 34. Reason, C. J. C., Florenchie, P., Rouault, M., & Veitch, J. (2006). Influences of large
 603 scale climate modes and Agulhas system variability on the BCLME region. *Large*
 604 *Marine Ecosystems*, 14, 223-238. doi: 10.1016/S1570-0461(06)80015-7

605 35. Risien, C. M., Reason, C. J. C., Shillington, F. A., & Chelton, D. B. (2004). Variability
 606 in satellite winds over the Benguela upwelling system during 1999–
 607 2000. *Journal of Geophysical Research: Oceans*, 109(C3). doi:
 608 10.1029/2003JC001880

609 36. Rouault, M., Pohl, B., & Penven, P. (2010). Coastal oceanic climate change and
 610 variability from 1982 to 2009 around South Africa. *African Journal of Marine*
 611 *Science*, 32(2), 237-246. doi: 10.2989/1814232X.2010.501563

612 37. Rykaczewski, R. R., & Checkley, D. M. (2008). Influence of ocean winds on the
 613 pelagic ecosystem in upwelling regions. *Proceedings of the National Academy of*
 614 *Sciences*, 105(6), 1965-1970. doi: 10.1073/pnas.0711777105

615 38. Rykaczewski, R. R., Dunne, J. P., Sydeman, W. J., García-Reyes, M., Black, B. A., &
 616 Bograd, S. J. (2015). Poleward displacement of coastal upwelling-favorable
 617 winds in the ocean's eastern boundary currents through the 21st century.
 618 *Geophysical Research Letters*, 42(15), 6424-6431. doi: 10.1002/2015GL064694

619 39. Schroeder, I. D., Sydeman, W. J., Sarkar, N., Thompson, S. A., Bograd, S. J., &
 620 Schwing, F. B. (2009). Winter pre-conditioning of seabird phenology in the
 621 California Current. *Marine Ecology Progress Series*, 393, 211-223. doi:
 622 10.3354/meps08103

623 40. Schroeder, I. D., Black, B. A., Sydeman, W. J., Bograd, S. J., Hazen, E. L., Santora, J. A.,
 624 & Wells, B. K. (2013). The North Pacific High and wintertime pre-conditioning of
 625 California current productivity. *Geophysical Research Letters*, 40(3), 541-546.
 626 doi: 10.1002/grl.50100

627 41. Shannon, L. V., Boyd, A. J., Brundrit, G. B., & Taunton-Clark, J. (1986). On the
 628 existence of an El Niño-type phenomenon in the Benguela system. *Journal of*
 629 *Marine Research*, 44(3), 495-520. doi: 10.1357/002224086788403105

630 42. Schwing, F. B., Murphree, T., & Green, P. M. (2002). The evolution of oceanic and
 631 atmospheric anomalies in the northeast Pacific during the El Niño and La Niña
 632 events of 1995–2001. *Progress in Oceanography*, 54(1), 459-491. doi:
 633 10.1016/S0079-6611(02)00064-2

634 43. Sydeman, W. J., García-Reyes, M., Schoeman, D. S., Rykaczewski, R. R., Thompson,
 635 S. A., Black, B. A., & Bograd, S. J. (2014). Climate change and wind intensification
 636 in coastal upwelling ecosystems. *Science*, 345(6192), 77-80. doi:
 637 10.1126/science.1251635

638 44. Thompson, S. A., Sydeman, W. J., Santora, J. A., Black, B. A., Suryan, R. M.,
 639 Calambokidis, J., ... & Bograd, S. J. (2012). Linking predators to seasonality of
 640 upwelling: using food web indicators and path analysis to infer trophic
 641 connections. *Progress in Oceanography*, 101(1), 106-120. doi:
 642 10.1016/j.pocean.2012.02.001

643 45. Tim, N., Zorita, E., & Hünicke, B. (2015). Decadal variability and trends of the
 644 Benguela upwelling system as simulated in a high-resolution ocean
 645 simulation. *Ocean Science*, 11(3), 483. doi: 10.5194/os-11-483-2015

646 46. Wang, D., Gouhier, T. C., Menge, B. A., & Ganguly, A. R. (2015). Intensification and
 647 spatial homogenization of coastal upwelling under climate change. *Nature*,
 648 518(7539), 390-394. doi: 10.1038/nature14235

649 47. Wells, B. K., Field, J. C., Thayer, J. A., Grimes, C. B., Bograd, S. J., Sydeman, W. J., ... &
 650 Hewitt, R. (2008). Untangling the relationships among climate, prey and top
 651 predators in an ocean ecosystem. *Marine Ecology Progress Series*, 364, 15-29. doi:
 652 10.3354/meps07486

653 48. Zebiak, S. E. (1993) Air-sea interaction in the equatorial Atlantic region. *Journal*
 654 *of Climate*, 6(8), 1567-1586.

655
 656

1

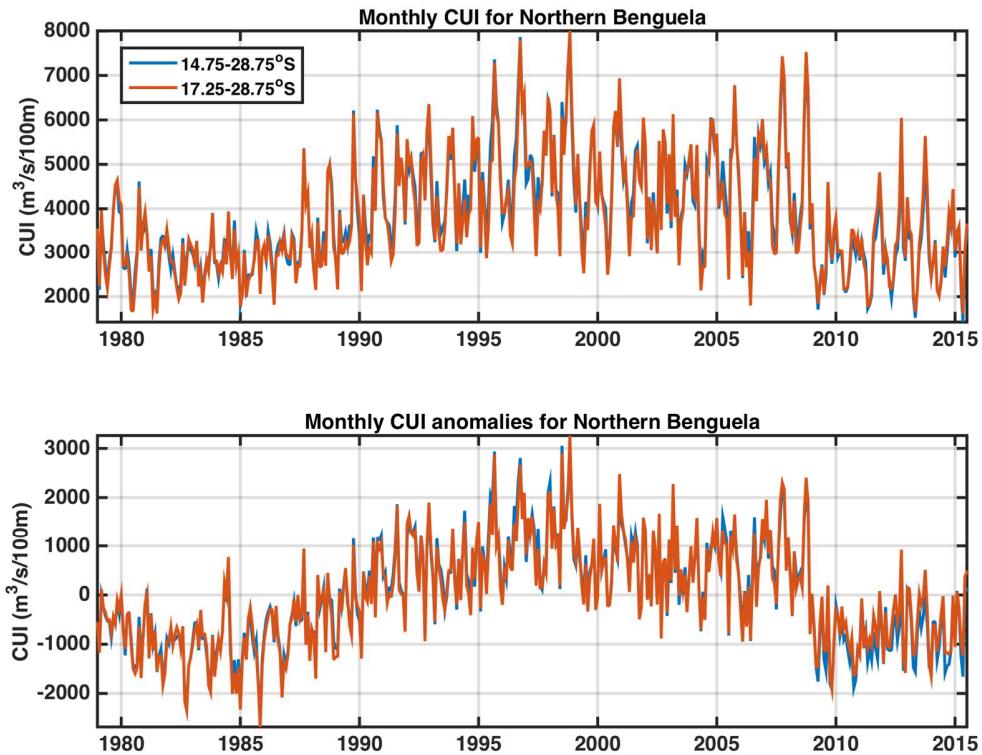
1 **Supplemental Material**

2

3 **A comparison of modes of upwelling variability in the Benguela and California**
4 **current ecosystems**

5

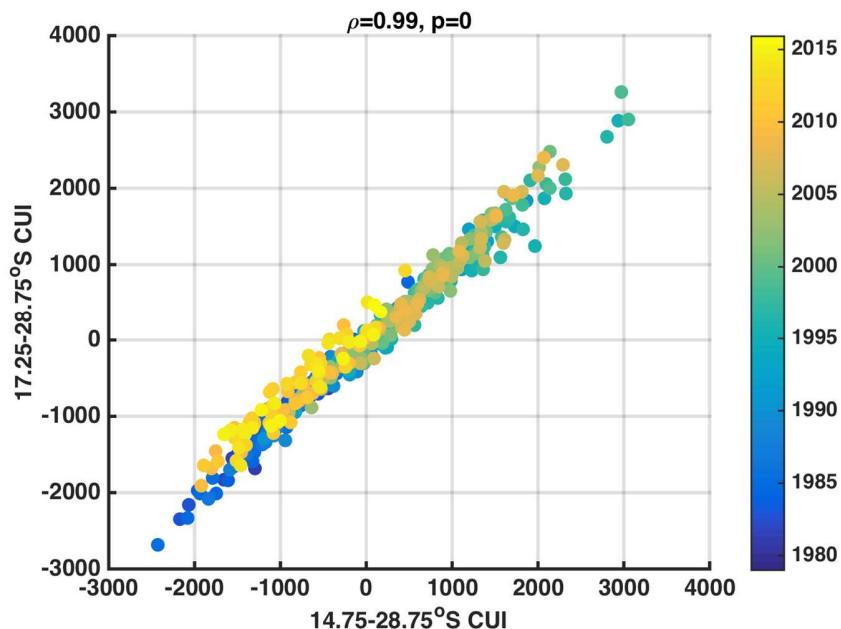
6 Marisol García-Reyes*, Tarron Lamont, William J. Sydeman, Bryan A. Black, Ryan R.
7 Rykaczewski, Sarah Ann Thompson, Steven J. Bograd.


8 * Corresponding author e-mail: marisolgr@faralloninstitute.org

9

10

11 The northern border of the Benguela Current System is located, on average, around
12 17°S (*Hutching et al., 2009*), the location of the Angola Front. Due to the data set
13 grid cell distribution, the northern points are located at 14.75°S and 17.25°S. In this
14 analysis we chose to include the cell grid that spans to 14.75°S to capture the full
15 variability of the northern boundary of the Benguela system. A comparison between
16 the regional averages of monthly CUI for the Northern Benguela region including
17 (spans to 14.75°S) and excluding the northern most grid cell (17.25°S) showed only
18 minimal differences between the magnitude and variability of the CUI (Figure SM1).
19 The difference between both regional averages is, on average, about 1% of the CUI
20 magnitude, and their regional monthly anomalies (as well as the monthly data) are
21 tightly correlated ($\rho = 0.99$, $p < 0.0001$, Figure SM2). Given the similarities between
22 these time series with different regional ranges, we chose to use the one that spans
23 to 14.75°S since it covers times when the Angola Front is located north of its
24 average location, therefore consistently including the entire BCS northern areas.


25

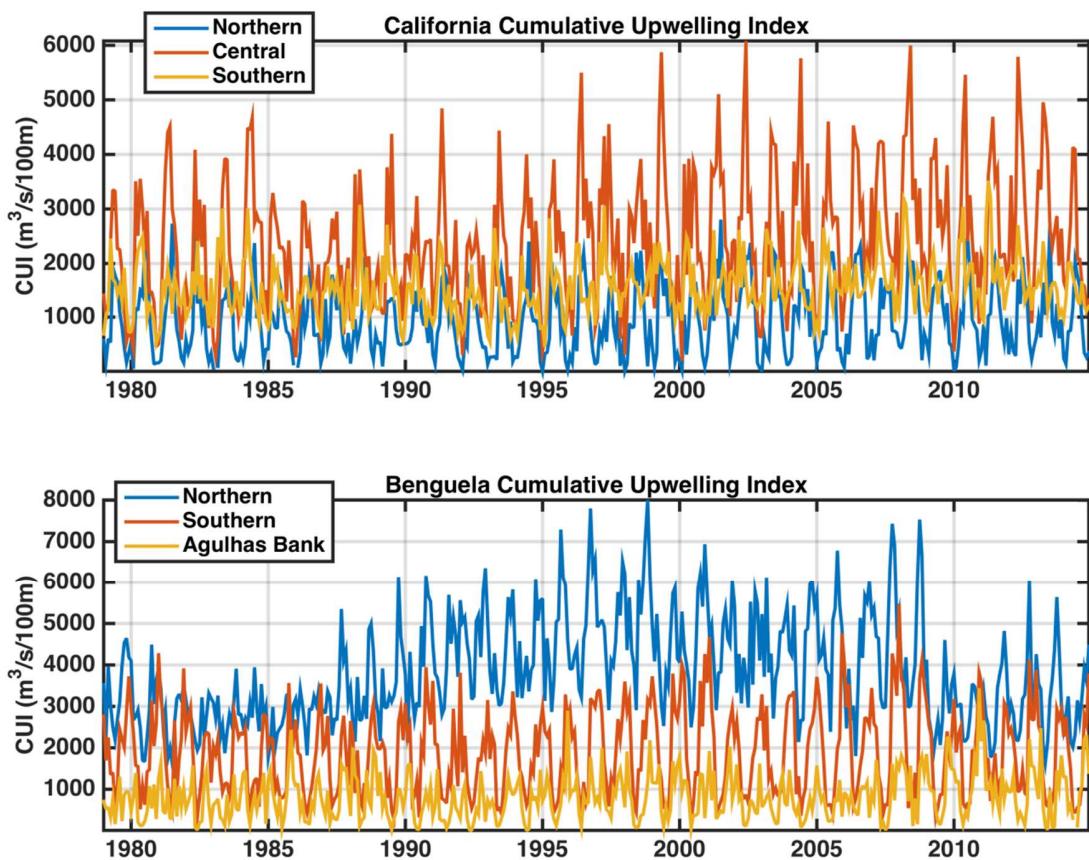
26

27 Figure SM1. Time series of monthly CUI (top) and monthly CUI anomalies (bottom)
28 for the Northern Benguela region including the grid cell centered in 16°S (blue), and
29 excluding that grid cell (red).

30

31

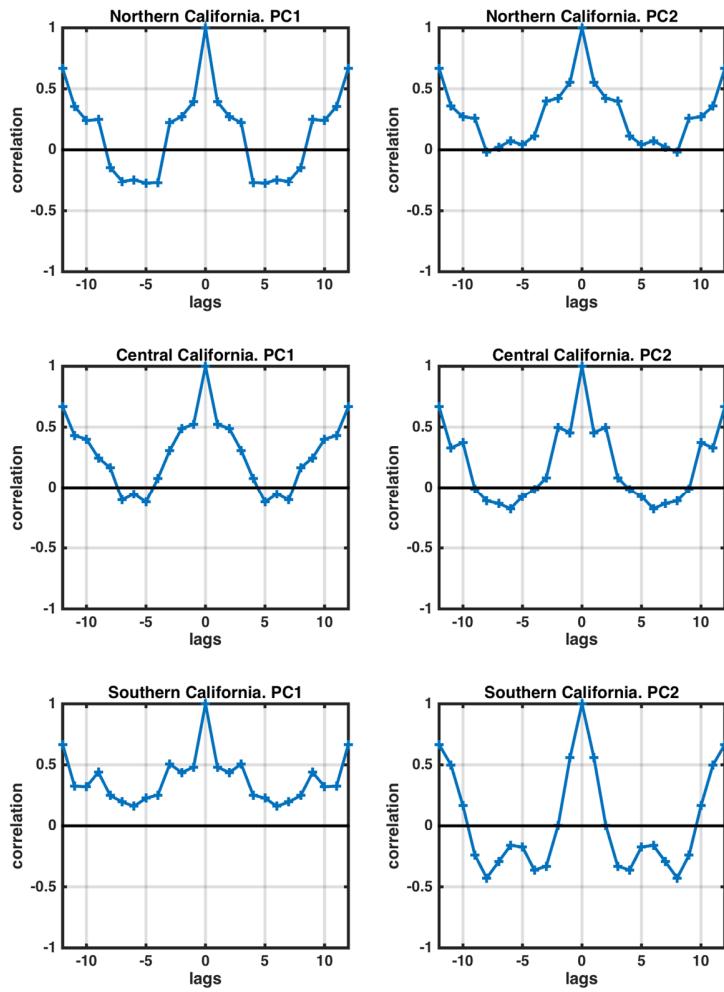
32 Figure SM2. Scatterplot of monthly CUI anomalies for the Northern Benguela region


33 including the grid cell centered in 16°S (x-axis) and excluding that grid cell (y-axis).

34 Ranked correlation coefficient and significance are shown at the top ($p<0.0001$).

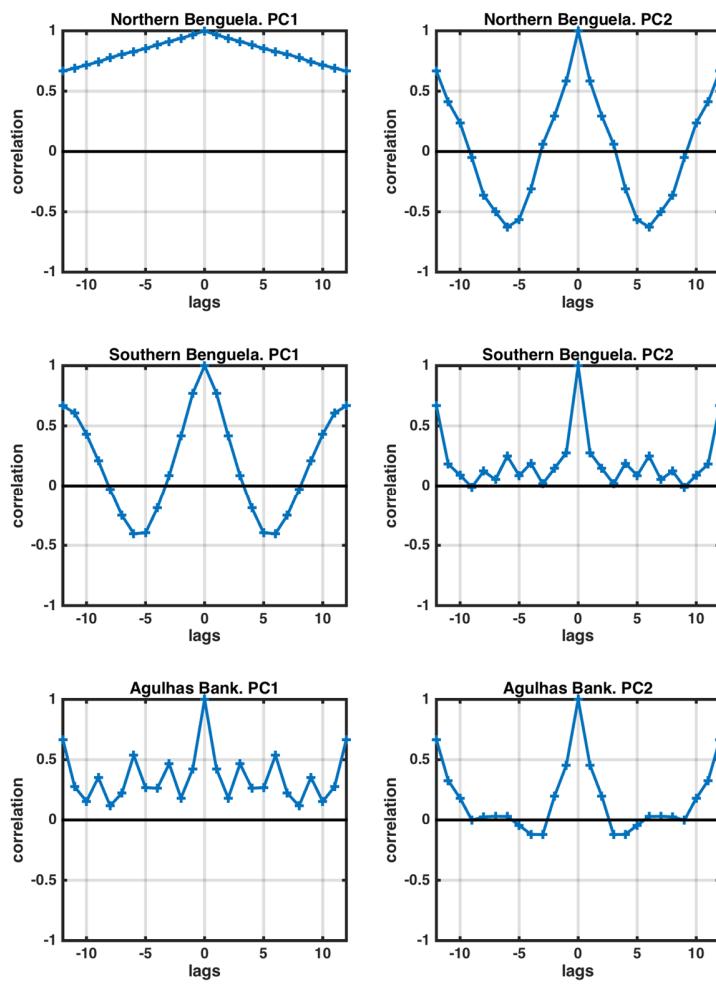
35 Colors indicate the date. CUI anomalies units are $\text{m}^3/\text{s}/100 \text{ m}$.

36


37

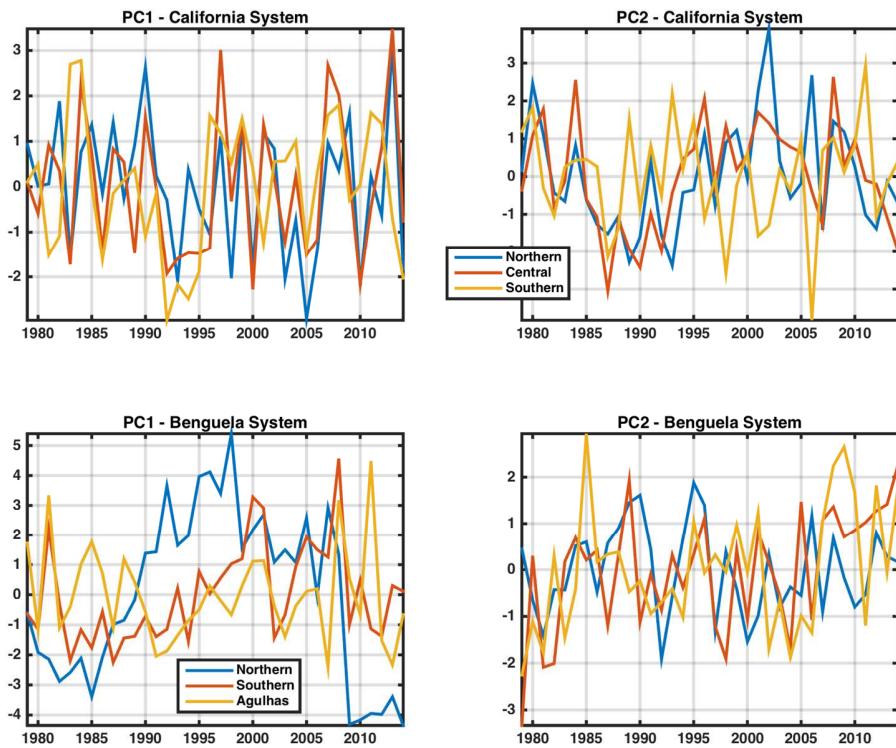
38

39 Figure SM3. Time series of monthly CUI for all regions.


40

41

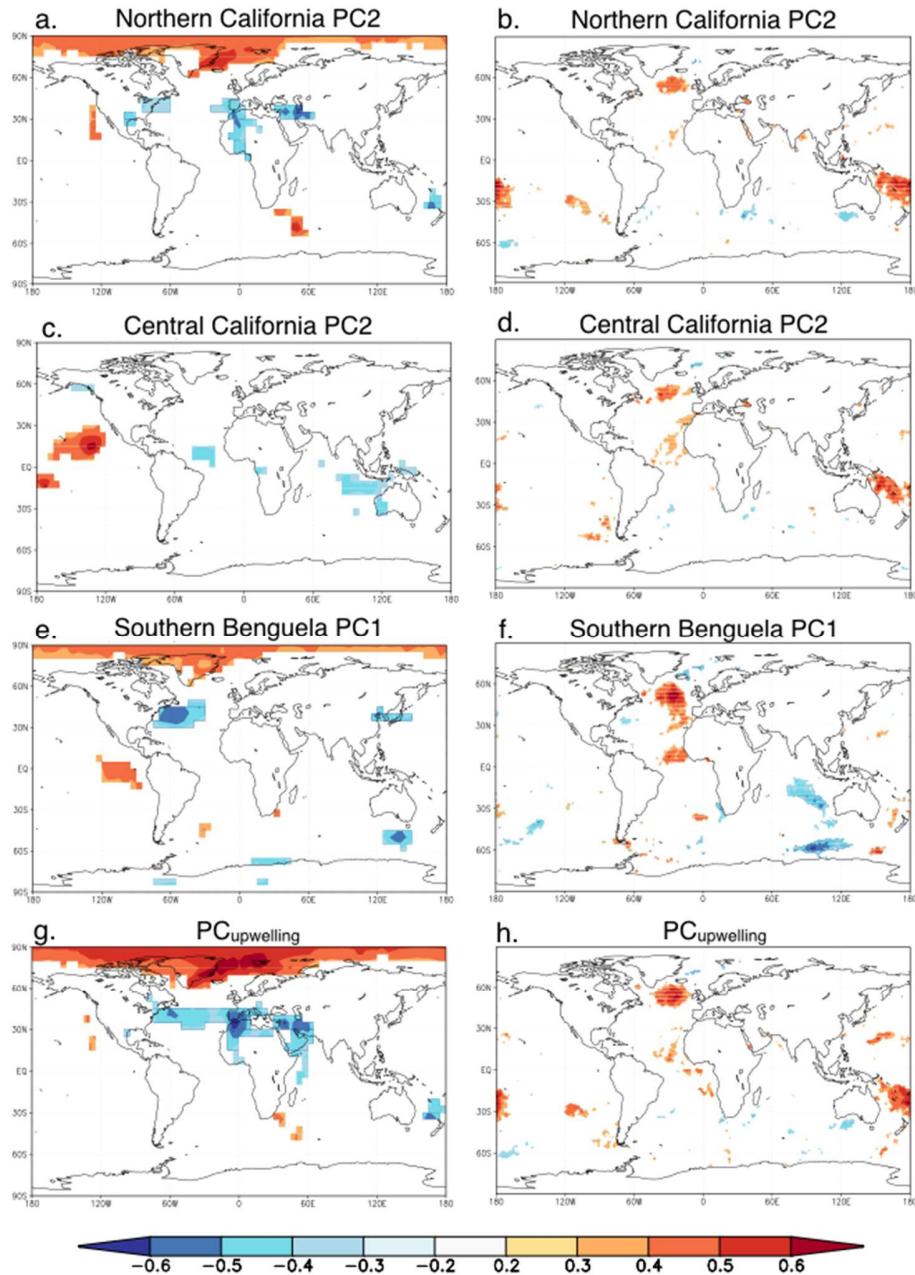
42 Figure SM4. Autocorrelation plots of modes coefficients for California.


43

44

45 Figure SM5. Autocorrelation plots of modes coefficients for Benguela.

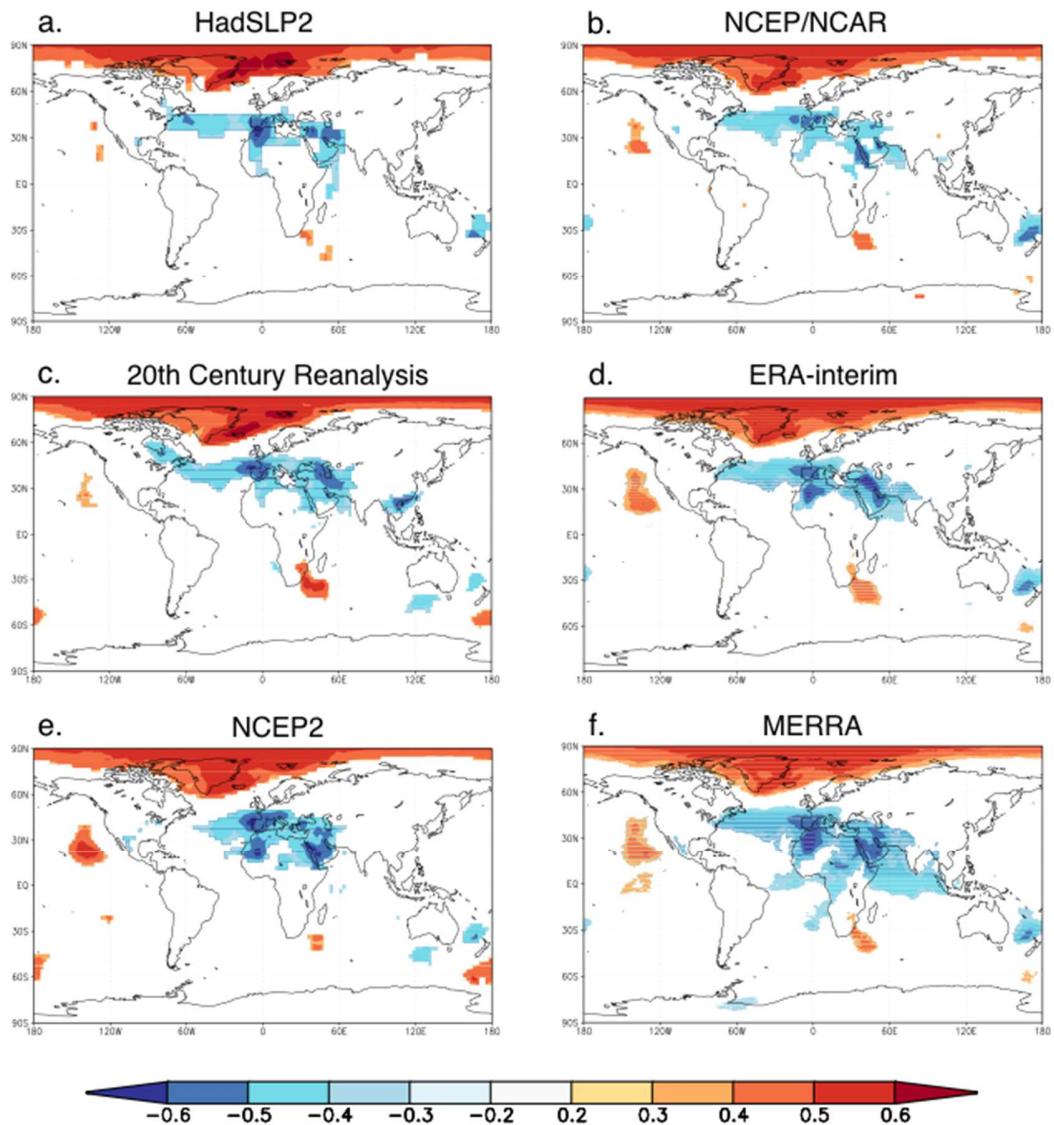
46


47

48 Figure SM6. Scores (time series) of PC for all regions in both systems.

49

50


51

52

53 Figure SM7. Rank correlations between seasonal upwelling modes of variability and
 54 3-month average sea level pressure (HadSLP2), and SST fields (HadISST1) ($p < 0.05$
 55 shown) for the period 1979-2014. Northern California PC2 and (a) Feb.-Apr. SLP,
 56 (b) Feb.-Apr. SST; central California PC2 with (c) Mar-May. SLP and (d) Feb.-Apr.
 57 SST; southern Benguela PC1 with (e) Mar.-May SLP and (f) Mar.-May SST; PC_{upwelling}
 58 with (g) Mar.-May SLP and (h) Mar.-May SST.

59

60

61 Figure SM8. Rank correlations between $PC_{upwelling}$ and March-May average sea level
 62 pressure fields ($p < 0.05$ shown) for datasets: a) HadSLP2 (1979-2014), b)
 63 NCEP/NCAR (1979-2014), c) 20th Century Reanalysis (1979-2011), d) ERA-interim
 64 (1979-2010), e) NCEP2 (1979-2014), and f) MERRA (1980-2014).