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Abstract

The California Current System (CCS) has two independent seasonal modes of
upwelling variability, summer and winter, driven by different atmospheric
processes. The variability of upwelling winds during winter is particularly
important as strong, episodic events, driven by atmospheric teleconnections with
the equatorial Pacific that are active in this season, impact ecological systems along
the west coast of North America. Given the importance of upwelling seasonality to
ecosystem function, we hypothesize that the Benguela Current System (BCS) shows
similar independent seasonal modes of upwelling variability. To test this hypothesis,
compare modes of variability between systems, and investigate potential drivers,

we use an upwelling index derived from NCEP2 wind data (1979-2014) for the
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northern, southern, and Agulhas Bank areas of the BCS. In the northern and
southern BCS, only one mode of upwelling variability is observed: year-round in the
north and during the austral spring and summer (October through April) in the
south. The Agulhas Bank region shows two modes of seasonal variability. Based on
this 35-year dataset, summer upwelling modes in both the CCS and BCS appear to
have similar decadal-scale variability. The other modes of variability (winter mode
in the CCS and the non-seasonal second mode in the BCS) are correlated with year-
to-year variability in the positioning of regional oceanic high-pressure systems. The
leading mode of upwelling variability in the Agulhas Bank region, in the austral
summer/fall, is highly correlated with sea level pressure as well as sea surface
temperature in the equatorial Pacific, in a spatial and seasonal pattern (boreal
winter) resembling the El Nifio-Southern Oscillation. Across the CCS, modes of
upwelling variability are similar to one another, while modes differ between regions
in the BCS. This difference could lead to regional mismatches in favorable ecological
conditions. In contrast with the spatially synchronous winter variability influencing
the entire CCS ecosystem, substantial regional variation in the BCS may have strong
effects on ecosystem functions, especially for species (e.g., small pelagic fish) that

migrate between the Agulhas Bank and other areas of the BCS.

Keywords
Upwelling Variability, Benguela Upwelling System, California Upwelling System,
Upwelling Seasonality
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Introduction

Seasonality is a ubiquitous feature of mid- and high-latitude terrestrial and
aquatic ecosystems. In the coastal marine realm, in addition to changes in day
length, seasons are often best characterized by changes in winds, stratification, and
water temperature. In the major Eastern Boundary Upwelling Ecosystems (EBUE)
of the world (California, Humboldt, Canary [Spain to northwestern Africa], and
Benguela Currents), alongshore, upwelling-favorable winds generally peak in the
warm season, but within these systems, a seasonal cycle may be less evident at
lower latitudes (Chavez and Messié, 2009). Upwelling systems are
disproportionately important to society as they cover a small percentage of the
world’s oceans, yet produce a significant portion of the globe’s capture fisheries
(Mann, 2000; Rykaczewski and Checkley, 2008). Understanding the seasonal
dynamics of winds and the upwelling process that brings cold nutrient-rich waters
to the surface to stimulate food web dynamics is therefore of great significance.

Long-term observational and modeling studies of the California Current

System (CCS) have revealed large-scale variability in the seasonality of winds that is
of key importance to regional ecology. In the CCS, upwelling-favorable winds
exhibit variability that occurs in two distinct seasonal modes (Black et al., 2011), the
first of which is a summer mode dominated by decadal-scale variability and an
increasing linear trend in the northern CCS during the last several decades
(Sydeman et al, 2014). The other is a winter mode dominated by higher-frequency
variability driven by the positioning and strength of the North Pacific High (NPH)
and teleconnections to the El Nifio Southern-Oscillation (ENSO). Biological
processes respond differently to these modes of upwelling variability, some of
which track the winter pattern and others track the summer pattern. As interannual
variability in the winter mode is especially pronounced, it has a strong
synchronizing effect across trophic levels from copepod community composition to
rockfish (Sebastes) growth, to seabird reproductive success (Wells et al., 2008; Black
etal, 2011; Thompson et al.,, 2012; Garcia-Reyes et al., 2013b; Black et al., 2014).

Given the biological importance of seasonal upwelling winds in the CCS and the
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sensitivity of these processes to global warming, we sought to explore if other major
upwelling ecosystems in the world are similarly structured.

In this work, we hypothesize that similar patterns and drivers of upwelling-
favorable winds are found in the Benguela Current System (BCS). While upwelling
in both systems is driven by the pressure gradient between ocean high- and
continental thermal low-pressure atmospheric systems, each EBUE has unique
regional characteristics that could lead to unique properties of upwelling variability.
The most important differences between these systems include i) the strong
coupling of equatorial and North Pacific climate variability (Di Lorenzo et al., 2013)
without an apparent analog in the South Atlantic (Chang et al,, 2006); and ii) the
presence of the warm and remotely driven Agulhas Current that bounds the
poleward extent of the BCS in contrast to the subarctic, cold current (the North
Pacific Current) that bounds the poleward extent of the CCS. The BCS is also more
subtropical in reach, extending from 17° to 35°S, whereas the CCS stretches from
about 30° to 48°N. Another difference is that the CCS coastline is oriented north to
southeast while the BCS coastline is meridional, capped by a prominent zonal shift
at Cape Agulhas along the southwestern coast of South Africa. In both systems,
coastal upwelling is concentrated at capes and headlands in upwelling “cells”
(Checkley and Barth, 2009; Kirkman et al., 2016), by winds that vary in synoptic -
days to weeks - time scales (Risien et al., 2004; Garcia-Reyes et al., 2014). In the CCS,
upwelling-favorable winds are most persistent in the summer (Dorman and Winant,
1995; Garcia-Reyes and Largier, 2012), when the North Pacific High is stable and
extends along the entire system (Schroeder et al,, 2013). In contrast, the South
Atlantic High seasonal migration is small as the African continent ends at 34.5°N. As
aresult, the southern Benguela region is subjected to the influence of fronts and
other mesoscale features leading to significant synoptic variability year-round
(Risien et al,, 2004).

To test if upwelling-favorable winds in the BCS occur in two distinct winter
and summer modes of variability like in the CCS, attributable to the influence of

regional climate forcing, we conducted a statistical decomposition of daily wind
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fields at the regional scale in each system, from 1979 through 2014, and related the
derived indicators of upwelling-favorable winds to atmospheric drivers, particularly
the oceanic high-pressure systems. Resolving the similarities and differences in the
seasonal variability of upwelling in the BCS and CCS is important to understanding
and predicting potential changes to EBUE ecosystem productivity relative to long-

term climate change.

Data & Methods

Study Region - In both the Benguela and California Current systems three
regions are defined (Table 1, Figure 1). In the CCS: northern, central, and southern
California regions, and in the BCS: northern and southern Benguela and Agulhas
Bank regions - although the latter is not generally considered to be part of the BCS
upwelling system, it has a large influence on the southern Benguela oceanographic
and ecological conditions and therefore is included in this analysis. The BCS
northern boundary was chosen at 14.75°S, fully covering the average location of the
Angola Front (~17°S, Hutchings et al, 2009). See the Supplemental Material for a
comparison of data from two definitions of the Northern Benguela region: one
including and one excluding the Angola Front. In the following analyses, we used

similar data and methodology in both systems to facilitate comparison.
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Figure 1. Maps of the California and Benguela Current Systems, indicating the
regions of study and the center location of each NCEP2 data grid point (stars). Insets
show the climatology of CUI for each region in each system.
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PC1 (Eigen- PC2 (Eigen-
System/Region Latitude range | value/explained | value/explained
variance) variance)
California System
Northern 38.75-46.25°N 2.15 /18% 2.05/17%
Central 33.75-38.75°N 2.38/20% 1.93 / 16%
Southern 28.75-33.75°N 2.07 /17% 1.84 / 15%
Benguela System
Northern 14.75-28.75°S 791/ 66% 0.88/ 7%
Southern 28.75-36.25°S 2.59 / 22% 1.62 / 14%
Agulhas Bank 18.25-28.25°E* 2.44 / 20% 1.73 /14 %

Table 1. Latitudinal range and statistics of the principal component analysis
(eigenvalues and explained variance) of the cumulative positive upwelling index
(CUI) for each region in the California and Benguela systems. *Longitude range for
Agulhas Bank.

Data.

Cumulative Upwelling Index - Following Lamont et al. (this issue), the
monthly Cumulative Upwelling Index (CUI) was calculated as sum of daily positive
Ekman transport, as a proxy to upwelling in both systems. Daily Ekman transport
values were calculated from daily surface alongshore winds using the NCEP-DOE
Reanalysis 2 data set (NCEP2, http://www.esrl.noaa.gov/psd/, June 2016;
Kanamitsu et al.,, 2002), following Bakun (1973), from the period January 1979 to
December 2014. This calculation places emphasis on upwelling by avoiding any
situation in which negative Ekman transport values (downwelling) could cancel
positive values within the same month, as would occur if means had been applied.
CUI values at each NCEP2 grid point along the coast were then averaged by region
(Table 1, Figure SM3). Each regional time series was linearly detrended to remove
potential trends that may obscure the seasonal modes of variability in these

relatively short time series (Sydeman et al., 2014; Lamont et al,, this issue). The
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NCEP2 dataset was chosen over other longer reanalysis datasets because it provides
the most consistent, up-to-date, high temporal frequency across both systems (Kent
etal, 2013; Lamont et al,, this issue).

Atmospheric data - To investigate potential drivers of the seasonal modes of
variability, we compared the derived upwelling-favorable wind modes to indices
that track variability in the magnitude and positioning of the mid-latitude oceanic
high-pressure systems (OHPS) the driving force of winds in these systems (Garcia-
Reyes et al.,, 2013a): North Pacific High (hereafter NPH) for the CCS and South
Atlantic High (hereafter SAH) for the BCS. These indices were calculated from
NCEP2 sea level pressure (SLP) data, following the methodology of Schroeder et al.
(2013). From the SLP climatology, 1020 and 1018 hPa isobars were selected to
delimit the NPH and the SAH, respectively (the SAH has, on average, lower SLP
values). For each season, the mean SLP of all points within this isobar was
calculated as an index of magnitude, while position (NPHx, NPHy, SAHx, SAHy) was
calculated as the average latitude and longitude of each point inside the isobar
weighted by its SLP value. In addition, we compared modes of wind variability with
SLP and sea surface temperature (SST) fields from Met Office Hadley Center
observations datasets (HadISST 1° and HadSLP2 5°, respectively;
http://metoffice.gov.uk, November 2016; Rayner et al., 2003; Allan and Ansell, 2006).

Methodology

All of the time series, including the global SLP and SST data, were linearly
detrended for comparison with CUI data. Within each region, Principal Component
Analysis (PCA) was performed on monthly-averaged CUI anomaly time series,
following the methods of Black et al. (2011). Each detrended time series was
normalized and then redistributed in a matrix with 12 columns corresponding to
each month and 36 rows corresponding to each year. We used two main criteria to
identify seasonal modes: i) a clear and coherent pattern of high principal component
(PC) monthly coefficients and high autocorrelation spanning a few consecutive
months, and ii) a significant (p < 0.05) rank correlation between the PC and at least

one seasonal mean of CUIL. Seasons were defined in quarterly (3-month) periods



191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221

Garcia-Reyes et al.

with January-March as winter for the California Current, and July-September as
winter for Benguela Current. This second criteria not only serves as an indicator of
the physical interpretation of the PC, but also tests its validity as a unique PC when
PC1 and PC2 have similar eigenvalues. In addition, explained variance (eigenvalues)
of the principal components was considered when selecting the relevant mode of
variability. These criteria identified strong seasonal modes of variability and helped
exclude modes driven by a few extreme values in the data.

To explore potential drivers of the modes of variability within and across
systems, we: i) cross-correlated the modes scores (time series) within and across
the California and Benguela systems, and ii) correlated the modes scores (time
series) with indices of the OHPS (NPH, SAH), SLP, and SST data fields. For (ii), three-
month (seasonal) averages of monthly data (OHPS, SLP or SST) were calculated and
then lag-correlated (rank correlation, p < 0.05) by season with the modes scores.
We also investigated covariability in upwelling between systems. For this we
performed a cross-wavelets analysis on modes across systems as well as a PCA of
the summer upwelling modes across both systems. This resultant PC (PCupwelling)

was also correlated to SLP and SST fields.

Results
Modes of variability

As expected, the CCS shows two seasonal modes of upwelling-favorable wind
variability, which are similar in all regions. PCA loadings (monthly coefficients) are
shown in Figure 2, scores are shown in Figure SM6, and the eigenvalues and
explained variances are given in Table 1. The leading mode of variability (PC1) is
focused on winter and early spring (Figure 2a) for the northern and central regions,
and winter and spring for the southern region. These leading PCs correlate the
strongest with winter CUI (Figure 3), especially in the north, while the southern
region PC1 also correlates well with spring. In the CCS, the central region PC1 is the
strongest (explains 20% of the variability). The second principal component (PC2)
has a somewhat similar seasonal pattern in all CCS regions: central and northern

California PC2 show a seasonal signature focused on spring and summer, while
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southern California PC2 is focused only in spring, all coincident with the

climatological peak of upwelling in these regions (Inset in Figure 1). However, both

central and southern California PC2 modes are weaker than in the north, as

evidenced by lower eigenvalues and lower correlations to seasonal CUI In the

northern region, eigenvalues for PC1 and PC2 are similar, prompting the question:

are both PCs the same (degenerate)? However, the significant correlation of each PC

with different seasons of CUI values indicates that they are indeed different PCs and

independent of each other. In the southern region, the PC2 time series has weak

autocorrelation across adjacent months (Figure SM4).
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Figure 3. Rank correlations between modes of variability (PCs time series) and
seasonal means of CUI for each system and each region. Only significant (p < 0.05)
correlations are shown, and all values are positive to facilitate comparison. No
adjustment for autocorrelation was performed.

The BCS has greater differences between regions in seasonal modes of
upwelling than the CCS. The northern and southern Benguela regions exhibit only
one mode of upwelling variability. The northern Benguela PC1 is strong, capturing
two thirds of the variability in CUI (Table 1), but shows no seasonality. This is
evidenced by the strong autocorrelation across months (Figure SM5), the fact that
PC1 coefficients are similar in each month of the year (Figure 2c, blue), as are the

correlations between PC1 and the seasonal CUI averages (Figure 3). The second

11
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principal component (PC2) is weak, explaining only 7% of the variance, with a
dominant coefficient in February but weak correlations with seasonal CUI. The
southern Benguela also shows only one mode that explains 22% of the variability
but is focused (and correlated to CUI) in the austral summer (D]JF), the peak of the
upwelling season in this region (Figure 1). The second mode, though with a winter
signature (peak correlations with August and September in Figure 2d), is not
significantly correlated with winter CUI (Figure 3). The Agulhas Bank region has
two independent seasonal modes of variability: PC1 loads from summer to mid-
winter and correlates significantly with fall CUI averages (Figure 3). The second PC
is focused in spring (October-December) and has a significant and strong correlation
with spring CUI averages, although with a low eigenvalue and weak autocorrelation
(mode highly focused in spring).

In summary, the northern and central California and the Agulhas Bank
regions show two independent seasonal modes of variability. In the CCS, PC1 is
dominant in winter-early spring and PC2 in spring-summer, while in the Agulhas
Bank region PC1 dominates in summer-fall and PC2 prevails in spring. Southern
California shows a strong PC1 in winter-spring, but a less clearly defined second
mode, correlated with spring CUL In the BCS, modes of variability are different
among regions: northern Benguela shows no seasonal modes of variability, but one
annual mode, while the southern Benguela shows one mode of seasonal variability
that captures the upwelling season.

There is some coherence in modes across the study region, though it is not
always consistent. In the CCS, PC1 scores are significantly correlated only between
the northern and central regions (p = 0.71, p < 0.001, Figure SM5). PC2 scores also
covary across the central and northern regions (p = 0.74, p < 0.001), but they are not
significantly correlated with the southern region. Central and northern California
PC2 have a decadal pattern not observed in the southern California PC2 or in PC1 for
any region. In the BCS, the only significant correlations, although weak, are between
the northern and southern PC1s (p = 0.36, p < 0.05), as well as the southern
Benguela and Agulhas Bank PC2s (p = 0.44, p < 0.01).

12
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Drivers of modes of variability

Modes of variability (PCs) correlate moderately with the magnitude and
location of the OHPS, except for the southern Benguela PC1 and southern California
PC2, which do not consistently correlate with any measure of the OHPS (Table 2).
The strongest and most consistent relationships with OHPS occur for the California
winter modes (PC1), especially in the northern and central regions. Notably, the
CCS (PC1) and BCS (PC2) share the same seasonality (January-March) in their

correlations with OHPS magnitude.

13
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System/Region/Mode

Magnitude

Latitude

Longitude

California PC1

Northern California

0.64 (Jan-Mar)

0.53 (Jan-Mar)

-0.40* (Jul-Sep)

Central California

0.70 (Jan-Mar)

0.53 (Jan-Mar)

-0.38* (Jul-Sep)

Southern California

0.36* (Jan-Mar)

-0.57 (Oct-Dec)

California PC2

Northern California

0.39* (Apr-Jun)

-0.41* (Oct-Dec)

Central California

-0.38* (Oct-Dec)

Southern California

Benguela PC1

Northern Benguela

-0.42* (Jul-Sep)

Southern Benguela

Agulhas Bank

-0.38* (Jul-Sep)

-0.56 (Jan-Mar)

0.37* (Jan-Mar)

Benguela PC2

Northern Benguela

-0.43 (Jan-Mar)

0.44 (Oct-Dec)

Southern Benguela

-0.33* (Jan-Mar)

-0.44 (Oct-Dec)

Agulhas Bank

-0.49 (Apr-Jun)

-0.51 (Oct-Dec)

Table 2. Rank correlations (p) between modes of upwelling variability in the
California Current System (CCS) and Benguela Current System (BCS) and the
magnitude and position (latitudinal and longitudinal) of the regional ocean high-
pressure systems. Seasons with the highest significant correlations (p < 0.01, * for p
< 0.05) are shown in parentheses.

To further explore the source of the variability in the modes of upwelling, we

calculated correlations between the scores of the modes and SLP and SST fields. The

summer modes of variability (northern California PC2, central California PC2, and

southern Benguela PC1) are not well correlated with SLP fields except in the

subpolar regions (Figure SM7). SST correlations are even less significant, but all

modes do have positive correlations with a small region in the north Atlantic (Figure

SM7). The winter modes of the three California regions are all significantly

correlated with North Pacific SLP in a region around the climatological location of

14
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the NPH (Figure 4). Correlations for central California PC1 are similar to those for
northern California PC1,(data not shown). The northern and central California PC1s
correlate with northeast Pacific SST in an arc pattern that resembles the Pacific
Decadal Oscillation (PDO, Mantua and Hare, 2002), and the southern California PC1
correlates with a band in the tropical eastern Pacific (Figure 4). The Agulhas Bank
PC1 is highly correlated to equatorial conditions, largely in the Pacific, suggesting
sensitivity to ENSO. A significant and positive correlation with seasonal averages of
the Southern Oscillation Index (SOI, not shown) confirms the influence of ENSO on

the Agulhas Bank first mode of upwelling variability.

15
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Figure 4. Rank correlations between seasonal upwelling modes of variability and 3-
month average sea level pressure (HadSLP2) and SST fields (HadISST1) (p < 0.05
shown) for the period 1979-2014. Northern California PC1 with (a) Jan.-Mar. SLP
and (b) Jan.-Mar. SST; Southern California PC1 with (c) Feb.-Apr. SLP and (d) Feb.-
Apr. SST; Agulhas Bank PC1 with (e) Jan.-Mar. SLP and (f) Feb.-Apr. SST; and
Agulhas Bank PC2 with (g) Jun.-Aug. SLP and (h) May-]Jul. SST.
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Shared variability in upwelling modes between systems

In comparing modes across systems, there are 4 significant correlations:
Agulhas Bank PC1 and central California PC2 (p = 0.34); southern Benguela PC2
with southern California PC2 (p = 0.35), northern California PC2 and southern
Benguela PC1 (p = 0.34), and central California PC2 with southern Benguela PC1 (p
= 0.36). Thus, the majority of coherence was between summer wind modes. To
explore the periodicity of shared variability, we performed a cross-wavelets analysis
(Figure 5), which shows covariability among the three summer PCs, particularly at
periods around 8 years with the greatest power later in the study period. It also
shows covariability at 1- to 2-year periods, particularly after 1990. Notably, the
northern California and southern Benguela summer modes show strong
covariability in most frequencies from the early 1990s to the end of the record. A
PCA of the three summer modes (Figure 6; PCupweling) explains 66% of the variability
in the upwelling modes, largely due to shared decadal-scale variability. Loadings for
PCupwelling are 0.59 for northern California PC2, 0.64 for central California PC2 and
0.49 for southern Benguela PC1. The correlations of PCupweling with SLP and SST
fields show a similar signature as the individual summer modes (Figure SM7,
bottom): positive correlations over in the Arctic and Greenland, and negative
correlations with northeast Africa and eastern Europe. With respect to SST,
negative correlations also occur over the North Atlantic. It is worth noting that

similar correlations occur when other SLP and SST datasets are used (Figure SM8).
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Figure 6. First PC (PCupweliing) of the summer upwelling modes (heavy black line):
northern and central California PC2 and southern Benguela PC1.

Discussion

Consistent with findings of Black et al. (2011, 2014), we found two
independent seasonal modes of wind variability in the CCS. In the northern and
southern Benguela, however, only one mode of variability was derived, which is
year-round in the north and spans the peak of the upwelling season (summer) in the
south. Notably, the Agulhas Bank region has two upwelling modes, one focused on
fall and another on spring. Seasonal modes are more coherent across regions in the
CCS than the BCS. The CCS is best characterized by a winter mode and a spring
and/or summer mode depending on the region, whereas the BCS is best
characterized by an annual mode, a summer mode, and fall and spring modes.

In both systems, although not in all regions, there are seasonal modes of
variability that represent the primary upwelling season. In the southern Benguela,
this is the leading mode of variability, while in the northern and central California it

is the second mode. In the most equatorward regions, northern Benguela and
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southern California, upwelling occurs all year, which could explain the lack of
seasonal modes in the northern Benguela and lack of strong seasonality in southern
California.

The summer upwelling modes (northern and central California PC2 and
southern Benguela PC1) have similar patterns of decadal variability. Although the
length of the NCEP2 dataset is not optimal for characterizing decadal variability, the
observed decadal variability in the summer modes is consistent with the variability
of the summer upwelling mode presented by Black et al. (2011); this mode is
characterized by low values in the late 1980s that increase through the 1990s and
decrease again in the late 2000s. Similar decadal variability in summer upwelling
has also been reported by Mendelssohn and Schwing (2002) and Macias et al. (2012)
for the CCS, and Narayan et al. (2010) and Blamey et al. (2012) for the BCS. Jarre et
al. (2015) suggested that decadal variability observed in the BCS summer upwelling
is related to the variability in the latitudinal position of the SAH. In our analysis,
summer upwelling correlates with the magnitude and position of the OHPS in the
northern and central CCS, and in the northern and Agulhas Bank regions of the BCS.
However, due to the short length of the time series and removal of long-term trends,
this correlation is attributable mainly to inter-annual variability. A cross-wavelet
analysis between summer modes and summer latitudinal position of the OHPS
shows coherence only for the central California summer mode (PC2) and the NPHy
at decadal time scales (not shown). Unfortunately, for these relatively low
frequencies, the significance of the results is limited by the length of the time series
(cone of influence). However, the entirety of our analysis does indicate that the
magnitude and location of the OHPS are important to summer upwelling. This is of
importance for forecasting future patterns of summer upwelling considering that
global circulation models (Rykaczewski et al., 2015; Wang et al., 2015) suggest global
climate change will shift the latitude of the four OHPS poleward.

Shared patterns in the summer upwelling modes across the BCS and CCS
represent only 10-15% of the total variability in the CUI time series, but it does
suggest that global-scale processes may influence upwelling-favorable winds in

these EBUE. The cross-wavelets power analysis suggests that this shared variability
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operates largely on decadal scales and it is more tightly coupled in recent decades.
The 1- to 2-year variability observed in the cross-wavelets, however, is less stable
over time and may reflect random processes. Investigating the forcing of this
covariability is beyond the scope of this paper, however, PCypweliing positively
correlates to SLP and SST fields in the Arctic and Greenland, and negatively in west
Africa/Europe. A similar correlation pattern occurs when using multiple SLP
datasets (Figure SM8), which suggests that this result is not an artifact of the NCEP2
dataset. There is however, no immediate explanation for these correlation fields.

In contrast to summer, the winter upwelling variability modes in the three
CCS regions (PC1) and the southern Benguela PC2 correlate at interannual scales to
the magnitude and latitudinal position of the oceanic high-pressure systems. This is
consistent with previous results showing that winter winds are better related to the
OHPS variability than summer winds (Garcia-Reyes et al., 2013a), as the OHPS tend
to be stable during the summer (IPCC, 2013 Fig. 2.37; Schroeder et al,, 2013).
Furthermore, in the CCS, the winter mode is strongly correlated with regional SLP
and SST fields in a pattern consistent with the PDO. Additionally, some negative
correlation with the western equatorial Pacific SLP is observed with the northern
and central California winter modes, suggesting some influence from equatorial
atmospheric teleconnections. Previous studies have shown the influence of Pacific
teleconnections on northeastern Pacific atmospheric patterns, including winter
winds (for example, see Schwing et al., 2002).

However, in the south Atlantic there are no correlations with regional
atmospheric patterns to the degree found in the Pacific. Infrequent climate events
dubbed Benguela Nifios occur (Shannon et al.,, 1986), but they have a less clear and
coherent atmospheric signature in the Atlantic than Pacific El Nifios do in the Pacific.
Variability in the Indian Ocean pressure fields and the Southern Annular Mode
(SAM) have been reported to influence the BCS as well (Hutchings et al., 2009;
Reason et al,, 2013), but the SST field correlations did not suggest clear influence
from the Indian Ocean or the Antarctic. Similarly, we did not find clear correlations
between the equatorial Pacific and the BCS seasonal modes (PC1), which would

have suggested ENSO as a driver for this leading mode. However, some moderate
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correlations between ENSO and the second mode of variability in the BCS (not
shown) suggest that ENSO events do influence upwelling in the BCS as suggested by
other authors (Colberg et al, 2004; Rouault et al,, 2010; Tim et al, 2013). Itis likely
that because ENSO activity peaks during the Southern Hemisphere summer, which
is when the SAH and adjacent land pressure system are most stable and upwelling is
strong, only certain ENSO events show visible signatures. Rouault et al. (2010) also
discussed how the contrasting simultaneous impacts of ENSO and SAM could mask
their signatures on SSTs in the BCS.

Interestingly, in the results of this study, winter was identified as the leading
mode of variability in the CCS. Black et al. (2011), in a similar analysis based on the
Bakun upwelling index (Bakun, 1973), found the California winter mode to be
second to a summer mode of variability in the summer. In the analysis by Black et al.
(2011), using data from 1948 to 2010, the winter mode scores appear to be higher
in the latter half of the time period, which corresponds to the period of this analysis
(1979-2014). The lower scores (and variance) in the first half could be the reason
for the winter mode to be the second mode of variability in their analysis, but first in
ours, also suggesting increasing variability in winter upwelling (Black et al., 2014).

The Agulhas Bank region was included in this analysis because it is a coastal
upwelling area that is ecologically relevant (a spawning region for small pelagic
fishes) for the Benguela Current ecosystem given the transport of water masses
around Cape Agulhas into the BCS (Colberg et al., 2004; Boschat et al.,, 2013; Blamey
etal, 2015). Notably, its leading mode of variability occurs in the summer-fall
(January-June), while the peak of upwelling is in spring-summer (October-March).
This is most likely due to the influence of the ENSO teleconnections, as the ENSO
influence on zonal winds at this latitude is strongest during the austral summer and
subsequent season (L’Heureux and Thompson, 2006). This is supported by the
strong correlation found between the Agulhas Bank first mode of upwelling
variability with Pacific equatorial SLP in summer and fall. The Agulhas Bank second
mode correlations with SLP and SST fields (Figure 4) resemble a pattern related to

the Atlantic zonal mode (Zebiak, 1993).
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In the CCS, the existence of two independent modes of upwelling variability
has important ecological implications, as each mode impacts different components
of the marine ecosystem. In particular, the highly variable winter upwelling and
associated conditions have a synchronizing effect across trophic levels in the
California marine ecosystem (Black et al., 2011; Thompson et al, 2012), which
extends to adjacent terrestrial species (Black et al, 2014). Schroeder et al. (2009)
proposed that winter upwelling-favorable events pre-condition the coastal
ecosystem by stimulating an early onset of a nutrient-rich environment (Chavez et
al, 2011) and primary productivity (Holt and Mantua, 2009). An important
difference between these two systems is that in the BCS there is no single seasonal
mode of upwelling variability that could have the synchronizing effect that winter
does in the CCS, although isolated extreme events might have this effect occasionally.
Another difference is the spatial heterogeneity in seasonal modes among regions in
the BCS. This could be particularly important for the southern Benguela and
Agulhas Bank regions since they are linked not only physically, but also biologically
as a number of species spend crucial parts of their lives on each side of Cape Agulhas
(summarized in Hutchings et al.,, 2009). Incoherent periods of favorable or
unfavorable conditions could occur if upwelling modes independently vary in timing
or magnitude between these two regions, which could affect ecosystem productivity
and structure of this region. Comparative analyses that consider the existence/lack
of synchronizing events and the in-phase/out-of-phase variability in EBUE are
necessary to test their importance in influencing regional to macroscale functions in

these ecosystems.
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The northern border of the Benguela Current System is located, on average, around
17°S (Hutching et al, 2009), the location of the Angola Front. Due to the data set
grid cell distribution, the northern points are located at 14.75°S and 17.25°S. In this
analysis we chose to include the cell grid that spans to 14.75°S to capture the full
variability of the northern boundary of the Benguela system. A comparison between
the regional averages of monthly CUI for the Northern Benguela region including
(spans to 14.75°S) and excluding the northern most grid cell (17.25°S) showed only
minimal differences between the magnitude and variability of the CUI (Figure SM1).
The difference between both regional averages is, on average, about 1% of the CUI
magnitude, and their regional monthly anomalies (as well as the monthly data) are
tightly correlated (p = 0.99, p < 0.0001, Figure SM2). Given the similarities between
these time series with different regional ranges, we chose to use the one that spans
to 14.75°S since it covers times when the Angola Front is located north of its

average location, therefore consistently including the entire BCS northern areas.
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Figure SM1. Time series of monthly CUI (top) and monthly CUI anomalies (bottom)

for the Northern Benguela region including the grid cell centered in 16°S (blue), and
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Figure SM2. Scatterplot of monthly CUI anomalies for the Northern Benguela region
including the grid cell centered in 16°S (x-axis) and excluding that grid cell (y-axis).
Ranked correlation coefficient and significance are shown at the top (p<0.0001).

Colors indicate the date. CUI anomalies units are m3/s/100 m.
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39  Figure SM3. Time series of monthly CUI for all regions.
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34



52

53
54
55
56
57
58

Garcia-Reyes et al.

La. Northern California PC2 b. Northern California PC2

} ’ = Vo, ’3~ wE_
P -
5%

e we [ C3 120€ 180

Central California PC2

7 i SR .

N/
)5
7

Southern Benguela PC1

B, T Sy
o L"}‘;,».\ '—-“\’i‘r’@’\;" ”‘: "f""r" 21

——

Figure SM7. Rank correlations between seasonal upwelling modes of variability and
3-month average sea level pressure (HadSLP2), and SST fields (HadISST1) (p < 0.05
shown) for the period 1979-2014. Northern California PC2 and (a) Feb.-Apr. SLP,
(b) Feb.-Apr. SST; central California PC2 with (c) Mar-May. SLP and (d) Feb.-Apr.
SST; southern Benguela PC1 with (e) Mar.-May SLP and (f) Mar.-May SST; PCupwelling
with (g) Mar.-May SLP and (h) Mar.-May SST.
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Figure SM8. Rank correlations between PCupwelling and March-May average sea level
pressure fields (p < 0.05 shown) for datasets: a) HadSLP2 (1979-2014), b)
NCEP/NCAR (1979-2014), c) 20th Century Reanalysis (1979-2011), d) ERA-interim
(1979-2010), ) NCEP2 (1979-2014), and f) MERRA (1980-2014).
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