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Abstract 5 

The Hawaii-based longline fishery targeting bigeye tuna and swordfish is the most economically 6 

important fishery in Hawaii. An improved understanding of the distribution of swordfish within 7 

this fishery and how it changes in response to environmental conditions is critical for predicting 8 

potential climate change impacts to the fishery. The multi-species Vector-Autoregressive Spatio-9 

Temporal (VAST) model was used to estimate abundance and density of swordfish within the 10 

Hawaii-based longline fishing grounds. Swordfish and bigeye tuna catch per unit effort were 11 

used in a spatial dynamics factor analysis to help estimate swordfish density in time periods 12 

when the swordfish fishery was closed. Although the model was unable to account fully for the 13 

significant changes in fishery regulations in 2000, it provided quantified estimates of swordfish 14 

density and distribution and information on how those distributions may change in response to 15 

environmental variables. Swordfish density center of gravity was found to correlate with the 16 

Southern Oscillation Index (SOI) averaged during the swordfish spawning season (April – July), 17 

with densities centered further north and east during positive SOI (cooler sea temperatures) and 18 

further south and west during negative SOI (warmer sea temperatures). 19 
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1. Introduction 26 

Broadbill swordfish (Xiphias gladius) inhabit the Pacific Ocean between 50°N and 50°S. They 27 

are an economically important species and have supported large-scale longline fishing operations 28 

in the Atlantic, Pacific, and Indian Oceans. Adult swordfish are believed to move to foraging 29 

grounds along frontal boundaries and coastal boundary currents after spawning, although data on 30 

swordfish movements and spatial structure are limited(Bigelow et al., 1999; Dewar et al., 2011; 31 

Seki et al., 2002). There are often major challenges studying highly migratory species’ stock 32 

structure and migratory patterns as these types of investigations are expensive and difficult to 33 

implement across the species’ possible range. Some electronic tagging of swordfish has been 34 

undertaken to better understand both their vertical and horizontal movements (Abecassis et al., 35 

2012; Dewar et al., 2011) and some genetic studies have attempted to identify swordfish stock 36 

structure (Lu et al., 2016).However, significant uncertainty remains in our understanding of 37 

North Pacific swordfish seasonal movements and density in space.  38 

Fishery-dependent data are often used to help understand swordfish distribution 39 

(Ichinokawa and Brodziak, 2010) as fisheries often provide data over a much larger area of the 40 

distribution than it would be possible to sample in a fishery-independent survey. These data are 41 

not without their own unique challenges. While valuable for assessing the spatio-temporal 42 

relationships between abundance and environmental variables, fishery-dependent data have less 43 

power for discriminating spatial patterns in encounter rates than fishery-independent data 44 

(Pennino et al., 2016). Also, fishery-dependent data can be constrained or biased due to fishing 45 

regulations and misreported catches (Pennino et al., 2016). Placing observers on board 46 

commercial fishing vessels can reduce some of the drawbacks of fishery-dependent data by 47 

ensuring reported catch is more accurate. Additionally, distribution can be correlated with 48 

environmental factors such as sea surface temperature, oceanographic fronts, the mixed layer 49 

depth, the oxygen minimum zone, and climatological indices which can encompass multiple 50 

changes in the environment (Abecassis et al., 2012; Bigelow et al., 1999; Chang et al., 2013; 51 

Dewar et al., 2011; Gilman et al., 2007; Howell et al., 2008; Prince and Goodyear, 2006; Seki et 52 

al., 2002). 53 

North Pacific swordfish are caught primarily by the Japanese, Taiwanese, and U.S. 54 

longline fisheries (Bigelow et al., 1999). The majority of the North Pacific catch comes from the 55 

western Pacific associated with the Kuroshio Current (Sakagawa, 1989). However, the shallow-56 

set sector of the Hawaii-based longline fishery targets swordfish. Domestic U.S. longline vessels 57 

have been operating in the Hawaii Exclusive Economic Zone since the 1920s, primarily targeting 58 

tunas (Boggs and Ito, 1993). Vessels began targeting swordfish in the early 1990s, and the fleet 59 

accounted for 40% of the total U.S. swordfish catch in 2012. 60 

Observers were first placed onboard Hawaii-based longline vessels in 1994.There have 61 

been several changes to the reporting regulations since its implementation in 1994 (Pacific 62 

Islands Regional Office, 2017). These changes have resulted in challenges when standardizing 63 

longline catch per unit effort (CPUE) data for the Hawaii-based fishery because it can be 64 

difficult to account for changes in catchability due to management regulations (Campbell, 2004) 65 

and it can be difficult to include all factors that affect catchability into a standardization (Wilberg 66 

et al., 2009). These regulations have included changes in hook type from J-hooks to circle hooks 67 

(Pacific Islands Regional Office, 2017), which has been shown to lead to changes to CPUE for 68 

billfish on pelagic longlines (Pacheco et al., 2011; Prince et al., 2002). Additionally, the 69 

expansion of the Papahanaumokuakea Marine National Monument in 2016 and the periodic 70 

closures due to protected species interactions (Pacific Islands Regional Office, 2018) can also 71 



impact catchability because catchability can change seasonally and between areas (Walters, 72 

2003; Ye and Mohammed, 1999).Currently, catch-per-unit effort data are standardized as three 73 

different fleets: one deep-set fleet from 1995–present and two shallow-set fleets from 1994–2000 74 

and 2005-present (Sculley et al., 2018b) to account for the changes in operations due to targeting 75 

and management regulations. However, incorporating three fleets instead of one into a stock 76 

assessment model increases the number of parameters needed to be estimated for the fishery, 77 

which could decrease the precision of the model results. 78 

The multi-species Vector-Autoregressive Spatio-Temporal model (VAST) developed by 79 

Thorson and Barnett (2017) has the potential to eliminate some of the challenges presented with 80 

standardizing the Hawaiian swordfish CPUE data. VAST simultaneously estimates spatio-81 

temporal variation in density for multiple species by applying a delta model to estimate the 82 

probability of encounter and catch rate given a positive encounter for a particular location, taxon, 83 

and time-step (Thorson and Barnett, 2017). Generally, the fishing area for bigeye tuna is further 84 

south than that for swordfish; however, there is considerable overlap. We use the dissimilarities 85 

between the expected probability of encounter and catch rate between swordfish and bigeye tuna 86 

to account for the differences in gear settings. By doing so, it may be possible to use the entire 87 

set of data to produce a CPUE time series including predicted abundance during the closure of 88 

the swordfish fishery and fill in the time-period of swordfish relative abundance using only the 89 

deep-set data that is currently excluded from the CPUE standardization used in the assessment. 90 

Furthermore, a spatial model can help better quantify the distribution of swordfish within the 91 

Hawaii-based longline fishing grounds and provide information on how the distribution may be 92 

changing over time and in response to environmental conditions. This work will apply the multi-93 

species VAST model to the Hawaii-based longline observer dataset and discuss the distribution 94 

and relative density of swordfish around Hawaii, the reliability and challenges of obtaining an 95 

annual index of relative abundance for the fishery, and how the distribution of swordfish changes 96 

in response to climatological conditions. 97 

2.Methods 98 

2.1 Data 99 

The Hawaii-based longline fleet fishes primarily between the equator and 35°N latitude 100 

and 180° W and 125° W longitude. It targets swordfish within and near the Sub-Tropical 101 

Convergence Zone north of Hawaii in the winter and late spring (DeMartini et al., 102 

2007).Swordfish are believed to spawn around the Hawaiian Islands from April – July, and small 103 

young-of-the-year swordfish are caught in September and October (Demartini et al., 104 

2000).Swordfish catch peaked in 1993, with almost 6,000 mt landed in Hawaii but has since 105 

declined to only around 1,000 mt in 2016 (Ito and Childers, 2018).  106 

In the Hawaii longline fishery, swordfish are targeted in the shallow set fishery sector 107 

(<15 hooks per float) and as bycatch in the tuna-targeting, deep-set fishery sector (≥15 hooks per 108 

float, Ito and Childers, 2018). The number of permitted vessels in the Hawaii-based longline 109 

fishery was capped in 1994 to 168 licenses, and the number of vessels targeting swordfish each 110 

year decreased from around 100 in the 1990s and has been around 30 since 2000 (Ito and 111 

Childers, 2018). Due to interactions with protected sea turtles, the shallow-set swordfish fishery 112 

was closed from February 2001 to May 2004 due to interactions with protected sea turtles 113 

(Gilman et al., 2007). During this time, many vessels targeting swordfish began targeting tuna. A 114 

second closure occurred from March to December 2006 when the Hawaii-based shallow-set 115 

longline swordfish fishery reached the annual limit for interactions with loggerhead sea turtles 116 

(NMFS, 2017). Shorter closures have occurred periodically since 2006 (Ito and Childers, 2018). 117 



The Pacific Islands Regional Observer Program (PIROP) provides detailed set-by-set 118 

data on the Hawaii-based longline fishery including catch in numbers of fish and a variety of 119 

operational variables, including: location as latitude and longitude, vessel ID, hooks per float, 120 

total number of hooks set, type of bait used, and time longlines were set. The data are collected 121 

following the procedures outlined in the PIROP observer manual (Pacific Islands Regional 122 

Office, 2017). There have been several changes to the reporting regulations in PIROP since its 123 

onset in 1994 (Pacific Islands Regional Office, 2017). Observer coverage varied significantly 124 

prior to 2000, with observer coverage between 3.3 and 10.4 % for the entire fishery (NMFS, 125 

2017). Starting in 2001, the observer program had a target of 20% observer coverage on deep-set 126 

longline vessels and mandatory 100% observer coverage on shallow-set longline vessels. The 127 

data are generally considered high quality since swordfish and bigeye tuna are typically not 128 

misidentified by the observers (Walsh, 2000). Observers are placed on board deep-set longline 129 

vessels using a randomized statistical survey design that helps ensure the data collected are an 130 

unbiased representation of the fishing activities of the deep-set sector. 131 

Data were extracted from the PIROP database on 10 October 2017 for this analysis. Data 132 

were filtered so that there were at least three vessels fishing within a 1°x1° square for 133 

confidentiality. Data were not spatially aggregated prior to analysis but used on a set-by-set basis 134 

because data aggregation has been shown to decrease the performance of spatio-temporal models 135 

(Thorson et al., 2017a).There were 686,760 total swordfish and bigeye tuna CPUE data points 136 

from almost 350,000 sets. 137 

The environmental variables used in the standardization were obtained from publicly 138 

available datasets. The Southern Oscillation Index (SOI) and the Pacific Decadal Oscillation 139 

Index (PDO) were monthly region-wide indices (NOAA NCDC, 2017). Both indices were 140 

averaged for the swordfish spawning season, April – July. It is believed that swordfish spawn in 141 

Hawaiian waters and migrate there from regions where abundance is much higher, primarily the 142 

western Pacific (Sakagawa, 1989). The monthly el Niño Southern Oscillation (ENSO) index 143 

from region 3.4, the Oceanic Niño Index (ONI) was obtained from the NOAA Climate 144 

Prediction Center (NOAA NCEP CPC, 2017). Bigeye tuna vulnerability to longline gear has 145 

been shown to correlate with ENSO events as the overlap between their preferred habitat and the 146 

depth of the hooks set changes (Howell and Kobayashi, 2006).Lunar illumination data consisted 147 

of values between 0 and 1 that measured the proportion of the moon illuminated above Hawaii. It 148 

can be used as a proxy to indicate the lunar stage with 0 indicating a new moon and 1 indicating 149 

a full moon (US Naval Observatory, 2017). Swordfish CPUE has been shown to be highest 150 

during full moon events, potentially because swordfish are visual predators and more nocturnal 151 

illumination may make them more vulnerable to longline gear (Bigelow et al. 1999). 152 

2.2 Vector-Autoregressive Spatio-Temporal (VAST) model 153 

Relative abundance and density of swordfish were estimated using a multi-species VAST model 154 

(version 4.1.0) developed by James Thorson in Template Model Builder (TMB) version 1.7.13 155 

via R version 3.3.4 (Kristensen et al., 2016; R Core Team, 2017; Thorson and Barnett, 2017; 156 

Thorson et al., 2017a). VAST estimates abundance using two models, one for the encounter rate 157 

and one for the positive catches. The configuration used in this analysis is a delta-lognormal 158 

generalized linear mixed model, which estimates the probability of encounter and positive 159 

catches from CPUE data. To increase computational speed, VAST estimates encounter 160 

probabilities and abundances for the spatial random effects fields at around 1,000 “knots”. These 161 

knots were distributed equally throughout the data by applying a k-means clustering algorithm to 162 

the set of locations of all the samples (Thorson et al., 2017a). The density of the area around each 163 



knot with a maximum radius of 150 km was then estimated from the delta-lognormal model (Fig. 164 

1). The delta-lognormal GLMM (DL-GLMM) estimates relative density by breaking down the 165 

catch information into two components: encounter probabilities p and positive catch rates r. The 166 

formulation for the model is fully described in Thorson and Barnett (2017) and summarized here. 167 

The spatio-temporal variation in encounter probability p(si, ci, ti) uses a logit-linked linear 168 

predictor in the form of: 169 

 
logit[p(si, ci, ti)] = γp(ci, ti)+εp(si, ci, ti) + δp(ci, vi) 

(1) 

where γp(ci, ti) is the intercept for encounter probability for each taxon c and time t, εp(si, ci, ti) is 170 

the approximate spatio-temporal variation in encounter probability in logit-space, and δp(ci, vi) is 171 

the random vessel effect vifor the ith sample when catching taxon ci. The expected catch rates for 172 

each species encounter r(si, ci, ti) is estimated using a log-linked linear predictor in the form of:  173 

 
log[r(si, ci, ti)] = γr(ci, ti)+εr(si, ci, ti) + δr(ci, vi) 

(2) 

where γr(ci, ti) is the intercept for expected catch rates for each taxon c and time t, εr(si, ci, ti) is 174 

the approximate spatio-temporal variation in expected catch rates in log-space, and δr(ci, vi) is the 175 

random vessel effect v (Thorson and Barnett, 2017). The VAST model specifies a probability 176 

distribution for the spatio-temporal variation (ε) using a three-dimensional Gaussian process 177 

(equation 4 in Thorson and Barnett 2017). Due to the nature of the fishery, geometric anisotropy 178 

was minimal and not included in the final model. The intercept and coefficient for spatial 179 

temporal variation were estimated as annual fixed effect parameters and correlation between 180 

species was estimated for both spatial and spatio-temporal components of the encounter rates and 181 

positive catches models.  182 

The multispecies model estimated the correlation between bigeye tuna and swordfish 183 

using a spatial dynamic factor analysis that estimates a low-rank approximation to the spatial 184 

distribution of multiple species simultaneously (Thorson et al., 2017a). When many species are 185 

included, this provides the advantage of reducing the number of dimensions in the model. 186 

However, with only two species, the primary advantage is to use the correlations between species 187 

distribution to estimate relative abundance in time-periods when the shallow-set sector was 188 

closed. This used a combination of factors less than or equal to the number of species to explain 189 

the unobserved spatial (ω) and spatio-temporal (ε) variation for the two components of the delta 190 

model (Thorson et al. 2015b, Eqns 5–7): the probability of a positive encounter and the positive 191 

catch rates. For this analysis, a maximum of two factors was used to explain each of the four 192 

spatial and spatial-temporal parameters. In addition, several catchability covariates were included 193 

in both components of the DL-GLMM to help account for variance in the CPUE data, which was 194 

not due to variance in relative abundance.  195 

Several covariates were tested: quarter, month, time at which a set was started, hooks per 196 

float, set type (tuna, billfish, or mixed), lunar illumination, and bait type. Of these, only lunar 197 

illumination and set type resulted in converged models and were included in both components of 198 

the final model. In addition, vessel, identified as the commercial fishing license number, was 199 

included as a random effect that did not vary temporally. Parameters were estimated by 200 

maximizing the marginal likelihood of the fixed effects: the intercept parameters for each 201 

species, the covariation among species, and the included covariates while treating the spatio-202 

temporal variation, the vessel effect, and catchability variation as random effects using a Laplace 203 

approximation (Thorson and Barnett, 2017). The final model was checked for convergence, and 204 

diagnostics were run to evaluate model fit. VAST provides a variety of outputs including an 205 



annual index of abundance, a map of relative density, QQ plots, center of gravity estimates, 206 

effective area estimates, residual plots, and plots of the density CVs. 207 

Within the VAST framework, variables are included as either a catchability variable 208 

changes the proportion of the fish that are caught or a density variable that affects the density of 209 

the fish in an area. All of the variables included in the VAST model are catchability variables, 210 

however, it can be difficult to identify if some environmental variables affect catchability, 211 

density, or both. Therefore, we did a post-hoc correlation exploration of the environmental 212 

variables ONI, SOI, and PDO to see if they were correlated to swordfish distribution. We ran a 213 

simple linear regression on the Easting and Northing components of the estimated center of 214 

gravity and estimated effective area for swordfish for each of the three environmental variables 215 

and calculated the correlation coefficients for each.  216 

3. Results 217 

The distribution of annual swordfish density showed high densities in the northernmost latitudes 218 

of the Hawaii-based longline fishing grounds (Fig. 1), and much lower densities around the 219 

Hawaiian Islands (Fig. 2). Abundance appeared to be highest at the start of the swordfish fishery 220 

(1995–2000) and decreased after 2000 (Fig. 3). Since 2005, the relative abundance trend appears 221 

to be relatively stable. Model diagnostics suggested the model converged, with good fits and 222 

some minor patterning in the residuals (Supplemental Fig. S1–S4). Standardized residuals for 223 

abundance around each knot were also relatively small, the majority between 2 and -2, and no 224 

apparent trend (Supplemental Fig. S5). Relative abundance appeared to be well estimated, with 225 

small CVs around most of the knots except for some locations to the far east and south, which 226 

marked the edges of the main fishing grounds and had the fewest data points. Also, CVs around 227 

estimates of abundance increased between 2001 and 2004, which coincided with the shutdown of 228 

the shallow-set fishery (Supplemental Fig. S6). Estimated coefficients for lunar illumination and 229 

set type were significant and the confidence intervals (C.I.) did not cross zero for both the 230 

encounter probability (mean 0.12, C.I. 0.10 – 0.14 and mean 2.52, C.I. 2.48-2.56) and the 231 

positive catch rates (mean 0.064, C.I. 0.070-0.057 and mean 1.49, C.I. 1.47-1.50, respectively).  232 

The spatial dynamic factor analysis used two factors to explain the unobserved spatial 233 

and spatio-temporal variations between swordfish and bigeye tuna abundance. Correlation 234 

between these two species was strongly positive for both the encounter probability and positive 235 

catch rate spatial variability, and not correlated for the spatio-temporal variability (Fig. 4).  236 

The center of gravity and effective area covered by swordfish in the Hawaii-based 237 

longline fishing grounds was highly variable and without consistent trend in the area or in the 238 

east-west component (Fig. 5). Comparison of these time series with some major climatological 239 

indices, however, suggested that there was a correlation between the center of gravity of 240 

swordfish abundance and the average SOI during the swordfish spawning season, April–July 241 

(Fig. 6). There did not appear to be any correlation between the center of gravity and the PDO or 242 

the ONI (Supplemental Figs S7–S10). The SOI was more strongly correlated with the latitudinal 243 

location of the swordfish center of gravity (ρ = 0.42) than the longitudinal location of the 244 

swordfish center of gravity (ρ = 0.35, Fig. 7). A simple linear regression run on the center of 245 

gravity time series with SOI as an explanatory variable was statistically significant for the 246 

longitudinal component (R2= 0.17, p = 0.05) but not for the latitudinal component (R2 = 0.12, p = 247 

0.11). Generally, swordfish were found further to the east and north during periods of positive 248 

SOI, which is associated with cooler waters and La Niña conditions and further to the east and 249 

south during periods of negative SOI which is associated with warmer waters and El Niño 250 

conditions (NOAA NCDC, 2017). 251 



4. Discussion 252 

We attempted to produce estimates of swordfish abundance from the Hawaii-based longline 253 

fishery using the spatial dynamic factors estimated between swordfish and bigeye tuna catches to 254 

account for periods when the shallow-set sector was closed or fishermen recorded sets as mixed 255 

targeting (which occurred prior to the closure; (He et al., 1997). This had the advantage of using 256 

the complete data set and estimating abundance for years when the fishery was entirely or 257 

partially closed. While there are still some clear trends in the data which correlate to before and 258 

after the fishery closure and regulation changes in 2000, the density of swordfish within the 259 

Hawaii-based longline fishing grounds appears to be consistent with previous findings and 260 

appears to also be reliable (Bigelow et al., 1999; He et al., 1997; Polovina et al., 2001; Sculley et 261 

al., 2018b; Seki et al., 2002). 262 

In the Hawaii-based longline fishery, the largest catches occur along the Sub-Tropical 263 

Convergence Zone (STCZ) located around 25–35°N latitude (Bigelow et al., 1999; Seki et al., 264 

2002), which was the same area of high density described in the current study. This region also 265 

shifts seasonally and in response to the ENSO cycle. The STCZ shifts further to the south during 266 

el Niño events and northward during la Niña events (Howell et al., 2012; Polovina et al., 2001). 267 

This corresponds to the shift in the center of gravity of swordfish density and suggests that 268 

swordfish may be following the movement of this convergence zone. Rather than responding to 269 

the temperatures directly, it is likely that they are following their prey, as this is a highly 270 

productive region and a known area where swordfish feed (Polovina et al., 2001). 271 

Incorporating catchability covariates in the model was a challenge. Many of the 272 

operational variables, such as time the set began and the number of hooks per float, which were 273 

correlated with swordfish CPUE and have been used in more traditional delta-lognormal models 274 

for CPUE standardization, could not be included in this analysis because the model failed to 275 

converge. As a result, it was clear that there are still some catchability covariates, which were 276 

unaccounted for based upon the change in annual relative abundance for swordfish before and 277 

after the 2000 closure. Another challenge was how to incorporate environmental covariates. In 278 

traditional standardization methods, the estimate of relative abundance is extracted from the 279 

annual effect of the standardization model (Maunder and Punt, 2004), which can include 280 

explanatory variables which predict catchability and which predict abundance. VAST uses 281 

explanatory variables that predict abundance to provide density estimates but does not include 282 

catchability variables (Thorson, 2018). Therefore, in the model development users must specify 283 

if which covariate a component predicts. Environmental variables, such as mixed layer depth, sea 284 

surface temperature, and climatological indices, which were correlated with swordfish CPUE, 285 

may influence both catchability and abundance. This means that it can be challenging to know 286 

how to include these types of variables in the VAST modeling framework, and we may be losing 287 

an important explanatory variable for the trends and patterns we observed. 288 

VAST was originally developed to analyze fishery-independent data in the North Pacific 289 

Ocean and works very well with data which are collected regularly across the species’ 290 

distribution (Cao et al., 2017; Thorson et al., 2015a; Thorson et al., 2015b; Thorson et al., 2016; 291 

Thorson et al., 2017b). Work is also currently being conducted to use VAST for other highly 292 

migratory species, such as the tropical tunas and pelagic sharks. However, these data cover the 293 

majority of the distribution of the species (Kai, 2019; Xu et al., 2019). The Hawaii-based 294 

longline fishery targets a small proportion of the distribution of North Pacific swordfish and does 295 

not encompass the primary fishing grounds in the western Pacific. It is highly likely that 296 

swordfish density changes throughout the year. Therefore, annual estimates of swordfish density 297 



may not be as useful as examining seasonal densities. Estimating seasonal densities may be 298 

limited by computing power. The Hawaii-based longline set-by-set data are not large compared 299 

to other longline fleets in the Pacific Ocean. However, the number of knots used compared to the 300 

area was limited by memory limitations, and the model could take hours to days to run. A 301 

quarterly time step would increase memory requirements and may only be possible on a 302 

supercomputer or other high-performance computing system. Aggregating the data spatially 303 

would reduce some of this need, but would also reduce the performance of the spatial models 304 

(Thorson et al., 2017a). 305 

North Pacific swordfish assessments have shown periodic strong year classes, which 306 

were correlated with the spawning season SOI (Sculley et al., 2018a). It was unsurprising to find 307 

that the SOI correlated with swordfish distribution around the Hawaiian spawning grounds as 308 

well. It is possible that changes in swordfish distribution around Hawaii are driven by these 309 

strong pulses of recruitment or that the changes in recruitment strength are due to changes in 310 

swordfish distribution around Hawaii. Brodziak et al. (2010) found a strong negative correlation 311 

between swordfish recruits per spawner anomalies and the spawning season SOI (ρ = -0.55, p 312 

<0.001). An update of that analysis using the most recent stock assessment (ISC, 2018) showed a 313 

similar negative correlation between the SOI during the spawning season and swordfish recruits 314 

per spawning biomass during 1975–2016 (ρ = -0.43, p <0.005, Fig.8). Young-of-the-year 315 

swordfish appear in the Hawaii-based fishery in September–October of each year, based upon 316 

the pulse of 50–80cm fish caught (Sculley et al., 2017). The majority of the young-of-the-year 317 

fish are caught in the tuna-targeting deep-set fishery and appear to be spatially separate from the 318 

adults. While the adults are caught primarily around the STCZ, juvenile swordfish are caught 319 

south of the Hawaiian Islands (Sculley et al., 2017). It is possible the swordfish are moving in 320 

response to oceanographic variables, such as sea surface temperature and the location of the 321 

subtropical frontal zone during the spawning season, which could influence the success of 322 

recruitment, noting that swordfish larvae are most commonly observed in warmer waters above 323 

24°C (Nakamura, 1985). This may result in some swordfish spawning in areas with less-than-324 

ideal water temperatures for successful recruitment or in areas with too little prey for the larvae. 325 

Alternatively, the swordfish could be spawning in areas with stronger currents, which may move 326 

swordfish recruits out of the Hawaii-based longline fishing grounds and, therefore, would not 327 

appear in the fishery later that year. 328 

Highly mobile species, such as swordfish, can respond quickly to annual variation in 329 

temperature. Determining how species respond to these changes can provide insights into how 330 

they may respond to future climate change (Morley et al., 2017) and how those changes may 331 

affect the viability of the Hawaii-based longline fishery. Swordfish center of gravity was located 332 

more southerly and westerly during periods of warmer surface temperatures (negative SOI). If 333 

future sustained oceanic conditions are more similar to those observed during a negative SOI, we 334 

may expect the swordfish in the Hawaii-based fishing grounds to shift their biomass in a similar 335 

pattern. Additional work incorporating sea surface temperature, mixed layer depth, dissolved 336 

oxygen concentrations, or food quality metrics, such as phytoplankton size, would provide 337 

additional insight on how swordfish may respond to climate change. Ultimately, a better 338 

understanding on how highly migratory species respond to climate change is an important 339 

research question and could have significant economic and cultural impacts on the Hawaii-based 340 

commercial longline fishery. 341 
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Figure 1. Distribution of knots used to estimate the density of swordfish (points) and the 500 

approximate extent of the Hawaii-based fishery (box). 501 

Figure 2. Density of swordfish abundance by year in number of fish per square km. 502 

Figure 3. Estimated annual relative abundance of swordfish. Grey shading indicates the 95% 503 

confidence interval. The fishery targetting swordfish fishery was closed from 2000-2004. 504 

Figure 4. Correlation matrix for swordfish and bigeye tuna for the spatial (right) and spatio-505 

temporal (left) variance for encounter probability (component 1, top) and positive catch rate 506 

(component 2, bottom). Darker colors indicate a higher correlation. 507 

Figure 5. Center of gravity for the east-west component (top left) and north-south component 508 

(top right) and effective area (bottom left) estimates for swordfish. Grey shading indicates 95% 509 

confidence intervals. 510 

Figure 6. Normalized center of gravity (Easting, top left, Northing, top right) and effective area 511 

(bottom left) with normalized average SOI in April-July (red=positive SOI, blue=negative SOI). 512 

Figure 7. Center of gravity (Easting, top, Northing, bottom) versus SOI with linear regression 513 

(blue line) and 95% confidence intervals (grey shading). The correlation between SOI and each 514 

direction are on each plot. 515 

Figure 8. Recruits per spawning biomass versus average SOI (April-July). The blue line 516 

indicates fit to a linear regression with 95% confidence interval (dashed lines), Pearson 517 

correlation coefficient of ρ=-0.43 and p-value of P<0.001. 518 
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