

A novel approach to assess distribution trends from fisheries survey data

2

Jock C Currie^{1-4*}, James T Thorson⁵, Kerry J Sink^{1,2}, Lara J Atkinson^{3,4}, Tracey P Fairweather⁶,
4 Henning Winkler⁶

¹ Marine Program, South African National Biodiversity Institute, Private Bag X7, Claremont, 7735, South Africa

6

² Institute for Coastal and Marine Research, Nelson Mandela University, PO Box 77000, Port Elizabeth, 6031, South Africa

8

³ Egagasini Node, South African Environmental Observation Network, Private Bag X2, Roggebaai, 8012, South Africa

10

⁴ Biological Sciences Department & Marine Research Institute, University of Cape Town, Private Bag, Rondebosch, 7701, South Africa

12

⁵ Habitat and Ecosystem Process Research program, Alaska Fisheries Science Center, National Marine Fisheries Service, NOAA, 7600 Sand Point Way NE, Seattle, WA 98115

14

⁶ Fisheries Branch, Department of Agriculture, Forestry and Fisheries, Private Bag X2, Roggebaai, 8012, South Africa

Abstract

16

18

20

22

24

26

28

30

32

34

36

Climate change and fishery impacts modify the spatial distribution of marine species. Understanding and predicting changes in distribution is important for adaptation by fishers and the management of fishery resources and biodiversity. However, identifying such trends is challenging given the variability inherent in trawl survey data. We apply a novel two-step approach to identify fish distribution trends from trawl surveys. First, species-specific average locations (mean latitude and longitude centre of gravity) and extent (effective area occupied) were estimated within a spatio-temporal delta modelling framework. The resulting time series and associated variance estimates were then passed to a multivariate Bayesian state-space model to estimate average trends over the study period. We applied this two-stage approach to three decades (1986-2016) of demersal trawl research survey data from the Agulhas Bank of South Africa to quantify distributional changes in 44 commonly caught fishes (chondrichthyans and teleosts). Across the entire assemblage, average trends showed a westward (alongshore) shift in location and a reduction in the extent of populations. At the species level, six taxa showed a location trend towards the west or south-west, and three shifted towards the east or north-east. The area occupied by species showed two taxa that had a decreasing trend in spatial extent and one species that was expanding. The mean westward and contracting trends of the assemblage were interpreted as likely signals of climate forcing, whereas the eastward shift of three species may be linked to fishing impacts. A lack of knowledge of subsurface oceanographic changes in the region challenges interpretation of the distribution changes and is identified as a research priority. We recommend additional research regarding causal drivers of distribution shifts, specifically to attribute observed changes to climate, fishing, and inter-annual environmental variability.

38

Keywords

40

Distribution trend, spatio-temporal model, trawl surveys, South Africa

42

* Corresponding author

44

Email: jockcurrie@gmail.com

Marine Program, South African National Biodiversity Institute, Private Bag X7, Claremont, 7735,

South Africa

46 **1. Introduction**

47 A common theme in marine ecology is the dynamic nature of populations in space and time.
48 Distribution changes, persistent beyond seasonal or short-term population variability, could modify
49 gene flow, species interactions and ecosystem functions and result in socio-economic impacts
50 (Barange et al., 2014; Blamey et al., 2015; Ortega-Cisneros et al., 2018; Pecl et al., 2017). Spatial
51 management of fisheries and biodiversity has become a common approach because impacts and
52 potential interventions tend to be spatially structured. Therefore, identifying and understanding
53 shifts in the distribution of marine fauna can contribute important information to resource and
54 biodiversity management, as well as helping to address climate change adaptation and mitigation in
55 fishing communities.

56 Fishing pressure and anthropogenic climate change are expected to be amongst the dominant
57 drivers of spatial changes in marine populations (Bell et al., 2015; Genner et al., 2010; Hilborn et
58 al., 2003). Fishing impacts may translate to changes in distribution via localised density reduction
59 or extirpation (Ferretti et al., 2013; Hilborn et al., 2003), via range contraction/expansion
60 from/towards modified habitats (Bell et al., 2015; Thorson et al., 2016b), or via the truncation of
61 ages in species that have age-specific distributions (Bell et al., 2015). The effects of anthropogenic
62 climate change may be more gradual than many fishing impacts, yet are often widespread and most
63 likely difficult to reverse. Marine species have responded to temperature changes by adjusting their
64 location, depth, or both (e.g., Dulvy et al., 2008; Edwards and Richardson, 2004; Engelhard et al.,
65 2011; Pinsky et al., 2013). Besides their direct effects, both fishing and climate may influence
66 distributions indirectly via species interactions or changing habitats (Doney et al., 2012; Kaiser et
67 al., 2000).

68 Demersal trawl surveys are a feature of long-term fisheries research and monitoring in many
69 marine jurisdictions. The accumulation of decades of comparable data across regional spatial scales
70 and near-annual frequencies invites interrogation of multi-year or decadal changes in species
71 distributions with increasingly effective statistical tools and computational powers. For example,
72 previous research has calculated the centroid of sampling data and compared the relationship
73 between this centroid and proposed mechanisms for distribution shifts (Engelhard et al., 2011; e.g.
74 Pinsky et al., 2013). Recent progress in geostatistical models has enabled estimation of population
75 centroids while controlling for random variation in sampling location and characterizing uncertainty
76 in the centroid estimates (Thorson et al., 2016a). These advances help discriminate between
77 sampling variation and biological variation in distributions.

78 In South Africa, government-led trawl surveys have supported a wide range of demersal
79 research (e.g., Atkinson et al., 2011; Kirkman et al., 2013; Payne et al., 1987; Rademeyer et al.,
80 2008; Roel and Butterworth, 2000; Yemane et al., 2010, 2005). The distributions of species and
81 assemblages have been characterised from these data (e.g., Badenhorst and Smale, 1991; Pecquerie
82 et al., 2004; Smale et al., 1993). However, few studies have examined temporal changes in spatial
83 distributions, although Yemane et al. (2014) investigated changes in the spatial and depth
84 distributions of trawl-caught species on the west coasts of Angola, Namibia and South Africa. Their
85 results suggest that over half of the 54 species assessed on the South African west coast have
86 modified their distribution. Regional distribution changes of key ecosystem components were also
87 studied by Watermeyer et al. (2016), who found evidence that some species appeared to follow a
88 late-1990s eastward shift of small pelagic fish (Fairweather et al., 2006; van der Lingen et al.,
89 2006). Using trawl survey data from 1998 to 2012, Jansen et al. (2016) detailed the stock structure,
90 distribution and migration patterns of shallow-water hake (*Merluccius capensis*) across the south
91 coast Agulhas Bank and the west coasts of South Africa and Namibia. Despite these efforts, much
92 further work is needed to identify and understand potential distribution changes of demersal fauna,
93 to provide meaningful advice to fishers and managers of marine resources and biodiversity.

94 The Agulhas Bank has supported trawl fisheries for 120 years (Lees, 1969). However,
95 distribution changes of demersal fish have received almost no attention there. The bank consists of a
96 broad shelf that extends up to 250 km beyond Africa's southernmost coastline. Warm Agulhas

98 Current waters bound its eastern and southern edge, while the cool Benguela upwelling region
99 stretches northwards from the Bank's western side. One might, therefore, expect a warming signal
100 in demersal waters to result in species shifting westwards. However, the oceanography of the bank
101 is complex, with characteristics of both an upwelling system and a temperate shallow shelf
102 (Hutchings et al., 2009). The depth contours over much of the Bank orientate predominantly south-
103 west to north-east. If loyal to a depth stratum, species shifting westwards would likely shift
104 southwards and those moving eastwards would tend to shift northwards.

104 In this work, we used a novel combination of statistical methods to estimate distributional trends
105 of species and assemblages from three decades of trawl survey data on the Agulhas Bank. The two
106 metrics investigated were 'centre of gravity' as a measure of a population's average location and
107 'effective area occupied' as a measure of its extent. These were predicted using a species
108 distribution function that was estimated within a geostatistical model (Thorson et al., 2015b). The
109 underlying model can efficiently reconstruct variation in population density given highly-variable
110 biomass sampling data and account for variation arising from changes in survey design or random
111 variation in sampled locations (Thorson et al., 2016a, 2015b). Given the predicted metric time
112 series, univariate and multivariate state-space models were applied to estimate trend components for
113 individual species and assemblages of demersal taxa. The state-space models effectively identify
114 longer-term signals while dealing with autocorrelation and the year-to-year 'process error' typical
115 of annual trawl surveys. This framework was employed using three decades of research trawl
116 survey data from the Agulhas Bank to identify and quantify distributional changes of demersal fish.
117 Although comparable (resolution and period) fishing effort and hydrographic data were not
118 available to include in the statistical framework, their potential role is discussed with interpretations
119 of observed distributional changes.

120 2. Material and methods

121 2.1. Study area and data preparation

122 The Agulhas Bank forms the shelf extension of the southern tip of Africa. It narrows abruptly
123 on the western side and more gradually to the east, following the shape of the coastline curving
124 northward (Fig. 1). Although resembling a temperate shallow shelf, the influence of oceanic forcing
125 from the Agulhas Current, seasonal coastal upwelling and South Atlantic waters on its western
126 margins complicate its hydrographic structure (Hutchings et al., 2009). Waters over the Bank tend
127 to be well stratified (Largier et al., 1992; Swart and Largier, 1987), decoupling surface temperature
128 dynamics from subsurface signals. Demersal waters tend to be well oxygenated, except for central
129 inshore areas where seasonal coastal upwelling can drive high productivity and result in lower
130 dissolved oxygen concentrations (Roberts, 2005). A high turbidity 'nepheloid layer' is characteristic
131 of inshore bottom waters that overlie muddy sediments (Zoutendyk and Duvenage, 1989). The
132 central and eastern parts of the Bank are covered by the south-coast surveys employed here.

133 Demersal trawl survey data and commercial trawl effort data for the Agulhas Bank were
134 obtained from the South Africa's Department of Agriculture, Forestry and Fisheries (DAFF). The
135 survey data were collected during annual stratified random surveys on the continental shelf. Initially
136 both autumn and spring surveys were conducted. However, the spring surveys were effectively
137 discontinued after 2008. The data used here span the period 1986-2016 and were bounded by
138 longitudes 20° and 27° E. Prior to 2011, the latitudinal bounds of the survey area were from the
139 coastline to the 500 m isobath, whereas sampling was occasionally extended to 1,000 m depth
140 thereafter. Trawl stations beyond 500 m depth were omitted from these analyses. A summary of
141 data used in analyses is provided in Table A1 (Appendix A).

142 Commonly caught taxa were chosen for analyses by summing occurrences by taxon, ranking
143 them from highest to lowest and selecting 80% of cumulative occurrence records. Small pelagic fish
144 (*Engraulis encrasicolus*, *Etrumeus whiteheadi*, *Sardinops sagax*) were removed as they are unlikely
145 to be effectively sampled by demersal trawl surveys. Invertebrate catches were also excluded,
146 focussing analyses on the remaining 44 teleost and chondrichthyan taxa. Trawl samples retained for

analyses had a duration between 20 and 35 minutes, a towing speed of 3-3.5 knots and did not suffer net damage or other disruptions that may have influenced the catch.

Most of the survey data were collected by the government research vessel, RS *Africana*. However, in 2000 the survey was performed using the RV *Dr Fridtjof Nansen* and in 2014-2016 commercial trawl vessels were used to conduct the annual research surveys. During the survey period a change in trawl gear also took place, as detailed by Leslie (2008) and Atkinson et al. (2011). In 2004, the old trawl gear was replaced with a new net, trawl doors and foot-rope. However, the old gear was again employed in 2006 and 2010 (Table A1, Appendix A). Although they were of similar design and size, these gear changes likely affected the selectivity for some species (Leslie, 2008). The trawl gear used on board the RV *Dr Fridtjof Nansen* (in 2000) provides a third set of gear that likely had different selectivity to both other sets (Axelsen and Johnsen, 2015). In addition to the potential effect of gear changes, there were some inconsistencies in the depth (and therefore spatial) coverage of surveys. Whereas most surveys extended to depths of 500 m or more, the spring surveys of 1990 to 1995 were limited to ≤ 200 m. The impact of such spatial and gear changes were considered in analyses as described below.

2.2. Measures of mean location and extent

Potential changes in the distribution of trawl-caught fauna were assessed using their mean centre of distribution, hereafter referred to as 'centre of gravity'. This has commonly been calculated as an abundance-weighted average of sample coordinates (e.g. Engelhard et al., 2011; Fairweather et al., 2006; Hiddink et al., 2015; Perry et al., 2005; Pinsky et al., 2013). Thorson et al. (2016a) showcased a method that calculates the centre of gravity from a species distribution function that is estimated within a geostatistical model framework. One of the main advantages of doing so, rather than using catch rates to calculate spatial metrics, is that results benefit from the underlying statistical model's ability to account for changes in sampling design (Thorson et al., 2016a). Unbalanced sampling effort in space and time, or changes in sampling gear or strategy, can for example be accounted for in the design of the model (Grüss et al., 2017; Thorson et al., 2016a).

Using the species distribution function, the weighted centre of gravity was calculated at model-predicted locations. For example, the calculation of latitudinal centre of gravity for each year t was:

$$\overline{\text{Latitude}}(t) = \frac{\sum_{s=1}^{n_s} a(s) * \hat{d}(s,t) * \text{Latitude}(s)}{\sum_{s=1}^{n_s} a(s) * \hat{d}(s,t)} \quad (1)$$

where n_s was the number of grid cells defined in the model, abundance at grid cell s was a product of its area $a(s)$ and its predicted density for that year $\hat{d}(s,t)$, while $\text{Latitude}(s)$ represented the corresponding cell latitude. The same calculation was applied to longitudes to gain the east-west centre of gravity.

The spatial extent of a population was investigated using a measure of 'effective area occupied' (Thorson et al., 2016b). Calculated for each year t , it represents the geographic area (h_t ; km^2) that would be required to contain the total population biomass (b_t ; kg) at its average population density (m_t ; kg· km^{-2}), as predicted from the species distribution function:

$$h_t = \frac{b_t}{m_t} \quad (2)$$

This simple measure of area occupied does not require parameters to be defined a priori (e.g. $X\%$ of the population), the value of which could affect results (Thorson et al., 2016b supplementary material). It is also not biased by sampling areas of zero or very low density (Thorson et al., 2016b supplementary material).

We estimated the species distribution function using a geostatistical delta-generalised linear mixed model (geoGLMM) from Thorson et al. (2016a). Developed to estimate abundance indices from trawl surveys (Thorson et al., 2015b), it models fish catches as a function of location and time. This is achieved using a delta approach, whereby the probability of encounters (non-zero catch) and the expected density when encountered, are modelled separately (Aitchison, 1955; Lo et al., 1992). Spatially correlated errors are assumed for both parts of the model and the spatial variation is

decomposed into two components; one that is constant among years and another that varies, thereby accounting for changes in spatial distribution over time (Thorson et al., 2016a). As the centre of gravity and effective area metrics are estimated within the geoGLMM, their standard error incorporates estimation uncertainty of model parameters. The mathematical structure of the geoGLMM is documented by Thorson et al. (2015b).

We modelled the positive catches (kg) using a gamma distribution, whereas the probability of encounters assumed a Bernoulli process. Swept area, calculated as the drag distance multiplied by the width of the trawl net, was included as an offset in the model. The geoGLMM was based on a 2.5 by 2.5 minute spatial grid. A spatial resolution of 500 'knots' was specified to define the localities within the polygon mesh at which spatio-temporal functions were solved.

The geoGLMM with outputs of effective area and centre of gravity were calculated using the R package *SpatialDeltaGLMM* (Thorson et al., 2015b; https://github.com/nwfsc-assess/geostatistical_delta-GLMM). It uses the Template Model Builder package (TMB; Kristensen et al., 2016) to implement the Laplace approximation of marginal likelihoods of fixed effects while integrating across all random effects (Skaug and Fournier, 2006). Potential bias in the calculation of nonlinear functions of fixed and random effects was avoided by applying the 'epsilon' bias-correction in TMB (Thorson and Kristensen, 2016).

The geoGLMM framework did not estimate a depth covariate within the model. Although considered, this was not done due to the fact that depths may vary substantially within areas resolved by the model grid cells (approximately 17.5 km² per grid cell in the study area). Johnson et al. (this issue) show that failing to include covariates that account for spatial variation in the geoGLMM (e.g., depth) results in little degradation of estimates of abundance indices or spatial distribution metrics. Estimation of mean depths external to the model was attempted, using standardised catch samples and their depth measurements (as in Dulvy et al., 2008; Engelhard et al., 2011; Yemane et al., 2014). However, substantial bias (including a deepening trend in the autumn time series) was present in the survey data (Fig. A1, Appendix A), precluding such methods.

2.3. Trend estimates by state-space models

Trends were estimated from the centre of gravity and effective area time series using a Bayesian state-space model framework (Winker et al., 2018). This involved composing the series of observations into two parts: 1) a state process which models the dynamics of unobserved state variables (e.g., the 'true' centre of gravity) and 2) a stochastic observation process or error that is conditional on the underlying state (Simmons et al., 2015).

The unknown 'true' population-level response was treated as the state variable that follows a Markovian process (Gilks et al., 1995). The value of the current year ($\mu_{t,i}$) was assumed to be dependent on its value in the previous year ($\mu_{t-1,i}$), an underlying trend component (β) and a process error term ($\eta_{t,i}$) that incorporates variation among years via a random normal walk with mean zero and an estimable variance σ_i^2 . The state process equation was defined as

$$\log(\mu_{t,i}) = \log(\mu_{t-1,i}) + \beta + \eta_{t,i}, \quad \eta_{t,i} \sim N(0, \sigma_i^2) \quad (3)$$

and the observation error equation as

$$\log(\hat{y}_{t,i}) = \log(\mu_{t,i}) + \epsilon_{t,i}, \quad \epsilon_{t,i} \sim N(0, SE_{t,i}^2) \quad (4)$$

where $\hat{y}_{t,i}$ represents the centre of gravity or effective area values predicted using the species distribution function and $\epsilon_{t,i}$ is the observation error that is normally distributed with mean zero and variance equal to the square of the standard error ($SE_{t,i}$) from the predictions of the species distribution function. The subscripts denote years t and species i , where $i = 1$ for a single species or $i = \{1, 2, \dots, N\}$ for the combined set of N species. In this way, the underlying trend β represents an estimate of the average rate of change over the time series, accounting for both observation error (the variance associated with the centre of gravity or effective area estimate) and process error (a measure of the year-to-year variability among estimates).

244 Before being passed to the state-space model, time series were normalised by their mean value
245 for the entire period. In the case of single-species trend estimates, both spring and autumn values
246 were normalised by the mean of autumn, so as to preserve differences between the seasons when
combined on one plot.

247 Non-informative priors were used for model parameters so that inference would be based
248 primarily on information contained in the data. An inverse-gamma distribution with scale and shape
249 parameters set to 0.001 was used as a prior for the process variance (Chaloupka and Balazs, 2007).
250 Expected values for the first year ($\mu_{1,i}$) were drawn from a flat normal distribution with mean equal
251 to $\hat{y}_{t,i}$ and standard deviation of 10^6 . The prior used for the trend (β) was a flat normal distribution
252 with a mean of zero and a standard deviation of 10^6 .

253 The joint posterior probability distributions were estimated using Markov Chain Monte Carlo
254 (MCMC) simulations implemented in the JAGS software (Plummer, 2003). The model formulation
255 was passed to JAGS using the R package 'jagsUI' (Kellner, 2016), which uses functions from the
256 'rjags' package (Plummer et al., 2016).

257 Each state-space model was run using 50,000 MCMC iterations, removing the first 5,000
258 iterations as 'burn-in' and thereafter sampling every fifth iteration to construct the posterior
259 distribution. The median and 95% credibility intervals (2.5th and 97.5th percentiles) were used to
260 visualise the model prediction in plots. To assess the probability that the estimated trend component
261 was different from zero (i.e., had a positive or negative slope), its posterior distribution was used as
262 a bootstrap sample to calculate equal-tail p-values as per MacKinnon (2009). A positive
263 longitudinal centre of gravity trend indicated an eastward movement, while for latitudes it signified
264 a northward shift. Negative centre of gravity trends signified westward and southward shifts,
respectively.

265 Analyses were repeated on subsets of data that excluded changes in sampling methods to assess
266 whether emerging trends might be affected by potential sampling bias. A set of analyses was
267 repeated on the spring survey data while omitting samples with mean depth >200 m to examine
268 whether a potential depth bias might affect results. Analyses were also repeated on data restricted to
269 the 'old trawl gear' and the RS *Africana* to examine whether observed trends might be caused by
270 changes in vessel or gear. As this curtailed time series contained far fewer data than the original
271 analysis, a loss of statistical power was expected and trends were visually assessed rather than using
272 the statistical thresholds applied to the entire dataset.

274 2.4 Changes in commercial trawl effort

275 Spatial and temporal changes in commercial trawling effort were investigated to provide context
276 of demersal fisheries impacts for the interpretation of distributional changes. These data consisted
277 of the number of trawl hauls reported annually on a grid with 20 minute spatial resolution. Although
278 coordinates of trawls were recorded from 2004 onwards, previously only the grid cell was recorded
279 and analyses were therefore applied at the grid resolution. Data were available from 1983 to 2015.

280 The spatial distribution of cumulative commercial trawl pressure in recent decades was mapped
281 as the mean number of trawl hauls recorded in each commercial trawl grid cell between 1983 and
282 2015. Change in effort over time was assessed by regressing the number of trawl tows against years
283 in each grid cell. To reduce the chances of type II errors in applying linear fits to potentially non-
284 linear patterns and to reduce the influence of isolated years with unusually large effort records, we
285 binned the data into averages of 5-year periods before applying the regression. A slope different
286 from zero ($p \leq 0.05$) was inferred as evidence of an increase (positive slope) or decrease (negative
slope) in commercial effort over time.

287 Trawl effort (number of trawls over time) was also examined for the entire study area, covering
288 most of the Agulhas Bank, and two smaller areas in the western and eastern inshore parts of the
289 study area respectively. The inshore areas were chosen as six commercial grid cells covering areas
adjacent to the coastline. The western inshore area stretches between Cape Infanta and the first grid

292 cell to the east of Mossel Bay. The eastern inshore area extended from Port Alfred westward to
293 between Cape St. Francis and Port Elizabeth.

294 **3. Results**

295 A multivariate trend estimated for the full 44-taxa fish assemblage identified a westward
296 longitudinal shift in the mean location in the autumn survey time series (Table 1; Fig. 2). Although
297 the trend was significant ($p < 0.01$), the median effect was small ($-0.26 \text{ km} \cdot \text{year}^{-1}$). The spring survey
298 series and the latitudinal centre of gravity changes were also negative (westwards and southwards,
299 respectively), but lacked statistical evidence to suggest they were different from zero.

300 The mean extent (effective area) of the trawl-caught fish assemblage indicated a significant
301 reduction for both autumn and spring survey series (Table 1; Fig. 3). The estimated reduction in
302 spatial extent was similar for both seasons (close to $-60 \text{ km}^2 \cdot \text{year}^{-1}$), even though the periods
303 covered by the autumn and spring surveys differed (Table A1, Appendix A). The mean shift in the
304 trawl-caught assemblage is the integrated signal of different responses from individual taxa, which
305 are outlined below.

306 Ten of the 44 investigated taxa showed evidence of a trend in distribution during the three
307 decades assessed. Nine taxa shifted their average location, while three changed their spatial extent
308 (Table 1). The remaining 34 species did not show statistical evidence of a trend in their spatial
309 distribution, even though some shorter-term variations and non-significant trajectories were visually
310 apparent. The latitude and longitude centre of gravity estimates were in most cases highly
311 correlated, with a tendency for greater variability (and trend estimates) in the east-west longitude
312 axis. Due to the orientation of the coastline and the tendency for species to maintain their depth,
313 westward centre of gravity changes were usually associated with southward shifts and eastward
314 changes with northward shifts.

315 Of the nine taxa that indicated a trend in their centre of gravity ($p \leq 0.1$), six shifted towards the
316 west or south over time and three towards the east or north. Several remaining taxa showed
317 westward trajectories that were not significant, likely contributing towards the assemblage-wide
318 trend reported above. For ease of interpretation and display, three different response patterns were
319 identified from the species trends in average location:

- 320 1. The first group of taxa showed evidence of a trend towards the west (and/or south). This
321 response is illustrated by the example of slime skate (*Dipturus pullo punctatus*; Fig. 4), but
322 also included Agulhas sole (*Austroglossus pectoralis*), thornback skate (*Raja straeleni*) and
323 ribbon fish (*Lepidopus caudatus*).
- 324 2. The second response pattern consisted of taxa that showed an eastward (or northward) shift
325 in location. This group consisted of white stumpnose (*Rhabdosargus globiceps*; Fig. 5),
326 lesser sandshark (*Acroteriobatus annulatus*) and kob (*Argyrosomus* spp.).
- 328 3. The third response pattern represented a trend along one axis (e.g. north-south) but lacked
329 evidence of a corresponding trajectory in the orthogonal axis (e.g. east-west). Such
330 distributional changes indicate directional shifts that likely crossed depth contours, which
331 are predominantly southwest-to-northeast in direction. Bluntnose spiny dogfish (*Squalus*
332 *acutipinnis*) showed a southward shift without a corresponding westward movement (Fig. 6)
333 and Cape horse mackerel (*Trachurus capensis*) showed a westward, but no southward, trend
334 in their average location. The former suggests an increase in the population's depth
distribution and the latter a decrease.

335 Only three taxa showed statistical evidence of a trend in effective area, of which one was
336 increasing (*Gonorynchus gonorynchus*) and two were decreasing (*Dipturus pullo punctatus*,
337 *Trachurus capensis*; Table 1; Fig. 4).

338 The distribution of commercial trawling pressure and its change over time were investigated as
339 a potential explanation of observed distribution changes. Certain shallow grounds ($\leq 100 \text{ m}$)
340 experienced relatively high trawling pressure over the study period, including Cape Infanta to
Mossel Bay, the central Agulhas Bank and an inshore area between Port Elizabeth and Port Alfred

342 (Fig. 7). Deeper offshore grounds where effort was concentrated includes the Chalk Line grounds
344 south of Port Elizabeth and Cape St. Francis, and the southern and southwestern edge of the
346 Agulhas Bank (Fig. 7). These deeper margins have experienced an increase in the number of
348 commercial trawls per year, with an exception of the southwestern edge of the Bank. In contrast,
350 many of the remaining areas of the Bank, including some of the heavily-fished inshore grounds,
352 showed decreasing numbers of commercial trawls per year (Fig. 7).

354 The number of trawls recorded over the entire survey area declined during the study period,
356 most notably from 2008 onwards (Fig. 8a). In the western inshore areas (Cape Infanta to Mossel
358 Bay), effort remained relatively high between the 1980s and 2004, after which it sharply declined
360 (Fig. 8b). In eastern inshore areas (near Port Elizabeth and Bird Island), effort levels were notably
362 lower than aforementioned western areas and were in decline during most of the assessed period,
364 reaching lowest effort values in 2014 and 2015.

354 The same centre of gravity and effective area analyses were repeated on subsets of the data. The
356 first was a restriction on depths ≤ 200 m for the spring survey. The results (not shown) were
358 qualitatively the same as those of the full dataset. The second subset of data restricted to trawls
360 sampled with the old DAFF trawl gear (see Methods) gave mixed results. The general westward
362 (and southward) location trend seen for the full dataset was not evident (Fig. A3, Appendix A).
364 However, the decreasing effective area trends seen in the full dataset remained, even though
statistical evidence of a trend different from zero remained only in the autumn time series. Of the
distributional trends identified for 10 species in the full dataset, non-significant trajectories of
similar direction were seen in the single-gear time series for all except two skate species (*D. pullopectatus* and *R. straeleni*). The 'old gear' equivalent plots of Figs. 2-6 are provided in
Appendix A (Figs. A3-A7).

4. Discussion

366 The combined use of geostatistical and Bayesian state-space models offered a robust and
368 reproducible framework to identify and quantify multi-year to decadal-scale trends from fishery
370 surveys. These methods propagate uncertainty throughout the joint estimation process and account
372 for properties of spatially stratified time series data that can be challenging to address with design-
374 based statistical approaches. These include potential spatial bias in sampling intensity, spatial and
spatio-temporal dependence in the trawl survey data, and temporal autocorrelation and random,
interannual process 'noise' during trend estimation from the predicted means. We anticipate that our
approach might be applicable for similar analyses of other marine survey datasets, including
physical and chemical hydrographic fields.

376 Of the trawl-caught fishes assessed on South Africa's Agulhas Bank, 23% showed evidence of
378 distribution trends over the three decades studied. The multivariate trends identified a mean
380 westward shift in location and decreasing extent for the assemblage as a whole (Table 1; Figs. 2, 3).
382 The magnitude of estimated trends appeared to be relatively modest in several cases, for example,
384 leading to 30-year location shifts of between 10 and 102 km. While some of the figures may seem
386 small, they need to be interpreted in terms of a population of many individuals over a large
geographic area, with many factors influencing movements and abundance fluctuations at local
388 scales. Some of the noted shifts might have little immediate ecological impact, but they represent a
directional signal for the sampled population (assemblage) as a whole, which may result in
ecological and socio-economic consequences if it continues. The small magnitude of the integrated
assemblage trends are not surprising, considering that shifts from individual taxa are frequently in
opposing directions and many species may not be changing their distribution. Besides suggesting
there may be a common driver among several taxa, further ecological interpretations of the
assemblage trends would likely require additional analysis.

390 Despite the highly significant assemblage-wide trends, relatively few species showed individual
trends. We have no evidence of meaningful bottom water changes in this region and perhaps
seasonal or interannual variability dominate longer-term trends. The complex oceanographic setting

392 of the Agulhas Bank, as well as its predominantly east-west (as opposed to poleward) orientation
394 may provide additional reasons for a lack of coherent distribution trends in the surveyed demersal
396 ecosystem. Many of the species appeared to have distributional ‘trajectories’ that lacked statistical
power to be considered significant ($p>0.1$). As the power to detect a trend is strongly dependent on
the length of its time series (Schlegel and Smit, 2016), the detection of species-level distribution
trends may increase as the survey dataset lengthens in future.

398 *4.1 Fishing and climate as potential drivers*

400 Disentangling the impact of climate change and fisheries on marine ecosystems is important to
402 building predictions of fishery responses and informing biodiversity or resource management
404 interventions. However, separating the influence of these two pressures on distribution changes
406 involves complexity, much of which may not have been measured. Ideally, relationships between
408 distributional changes and metrics of fishing intensity and climate should be assessed within the
statistical framework (e.g., Bell et al., 2015; Engelhard et al., 2014). In this case, fishing effort and
hydrographic data were not available at a comparable resolution for a substantial part of the study
period. Without their inclusion as covariates in the models, a start would be to understand their
spatio-temporal changes during the study period to guide interpretation of observed distribution
changes.

410 Whether (or how) the hydrography of Agulhas Bank demersal-zone waters might have changed
412 over recent decades has not been adequately addressed. Global trends and satellite measurements of
offshore surface waters indicate warming (Levitus et al., 2005; Rouault et al., 2009; Wu et al.,
414 2012). However, evidence from surface temperatures (Rouault et al., 2010; Schlegel et al., 2017),
current observations (Beal and Elipot, 2016) and distribution changes of coastal species (Blamey et
416 al., 2015; Bolton et al., 2012; Cockcroft et al., 2008) support the hypothesis of greater coastal or
shelf-edge upwelling on eastern and inshore parts of the Bank, implying cooler subsurface
temperatures there. Hydrographic changes in the bottom waters of this area require investigation.
Without such knowledge, interpretation of potential environmental drivers of observed distribution
418 shifts is hampered, highlighting this research gap.

420 The evolution of fishing pressures may have influenced distribution changes, for which there is
more information available (than demersal hydrographic changes). Trawling started on the Agulhas
422 Bank at the turn of the 20th century, escalated in the 1950s and peaked in the 1960s and 1970s as
catch rates declined (Griffiths et al., 2004; Payne and Punt, 1995). A notable reduction in fishing
424 effort ensued when South Africa declared a 200-nautical-mile exclusive fishing zone in 1977 and
phased out access by foreign fleets, but considerable impact had by then been exerted on Agulhas
426 Bank resources (Japp et al., 1994). While the annual number of trawl hauls has declined on the
Agulhas Bank during the study period, especially in some of the most heavily fished grounds closer
428 to shore (Figs. 7, 8), these areas remain exploited by trawling and other fishing sectors. It is not
clear whether the reduced trawl effort over shallower parts of the Agulhas Bank may have allowed a
430 measurable recovery of fished populations in those areas. Had the fish assemblage showed an
increase in spatial extent, its westward shift might have been interpreted as a recovery of
432 populations on the central Agulhas Bank, following declining trawl effort during the period
examined (Fig. 8) and reduced international trawl pressure in the years prior (Japp et al., 1994). The
434 mean decreasing spatial extent observed for the assemblage is not consistent with such an
explanation, however.

436 The evidence of a community-wide average westward trend in mean location, together with a
generally decreasing spatial extent, yet easing commercial trawl pressure over much of the sampled
438 domain (Figs. 7, 8), suggests a climate (environmental) rather than a fisheries driver. The areas that
showed an increase of trawl effort over the study period are deeper trawl grounds near the outer
440 edges of the Agulhas Bank (Fig. 8). Had observed distribution trends been concentrated (or
exaggerated) among species inhabiting those deeper areas, it might have implicated fishing pressure
as a driver, but this was not the case. Pinsky et al. (2013) found that climate velocity explained

442 distribution changes in demersal fish more effectively than taxonomic or biological characteristics.
443 Although not formally tested, our distributional trends did not appear to group species with similar
444 taxonomy or life-history strategies.

445 Contraction of the area occupied by populations likely implicates a stress acting on them (Mace
446 et al., 2008). Multiple scenarios might lead to a reducing population extent, including retraction
447 from a changing environment (e.g., Jones et al., 2010), contraction of population size towards core
448 habitat (MacCall, 1990) and excessive exploitation reducing density in certain areas (e.g., Shackell
449 et al., 2005). While trawl effort may have been easing on many parts of the Agulhas Bank,
450 cumulative impacts from other fishing sectors and climate changes may have persisted or increased.
451 Studies examining indices of fish length, population sizes, community composition or ecosystem
452 states over periods similar to that assessed here, have pointed towards increasing pressures on the
453 Agulhas Bank (Yemane et al., 2008) or the broader southern Benguela region (Blamey et al., 2015;
454 Coll et al., 2009; Shannon et al., 2009).

455 4.2. Species-level changes

456 Species showed a variety of distributional changes, many quite different to the assemblage-wide
457 mean signal. The interpretation of such responses from individual species requires consideration of
458 several factors, which might include geographic and depth ranges, temporal changes in their
459 abundance indices, life history, behaviour, vulnerability to fishing gears and environmental or
460 habitat preferences. The discussions below highlight key findings, while we refer to the Appendix
461 and Currie (2017) for greater detail on species responses within the context of regional knowledge.

462 Contrary to the average assemblage trend, *R. globiceps*, *Argyrosomus* spp. and *A. annulatus*
463 showed distributions shifting towards the east (and north). All three taxa inhabit relatively shallow
464 coastal waters, although *R. globiceps* extends onto the central Agulhas Bank (Fig. A8, Appendix
465 A). Abundance indices and maps of their predicted density from the geoGLMM (not shown)
466 suggested that *Argyrosomus* spp. and *A. annulatus* populations have decreased in western parts of
467 the survey area, leading to the eastward trends. Conversely, the eastward location shift seen for *R.*
468 *globiceps* appears to be driven by an expansion that has been pronounced in the eastern areas near
469 Port Elizabeth (Fig. A8, Appendix A).

470 Although oceanographic forcing cannot be excluded as a causal factor, fishing pressures are
471 thought to be a more likely driver of these eastward shifts. Trawling in areas immediately east of the
472 survey domain (Port Alfred) reportedly ceased in the early 1980s and was declining before then
473 (Booth and Hecht, 1998). In addition, trawling intensity has been lower in the eastern coastal areas
474 (around Port Elizabeth) than in western inshore grounds (near Mossel Bay and Cape Infanta) and
475 has been mostly in decline since the 1990s (Fig. 8b), when the majority of the Port Elizabeth fleet
476 moved to Mossel Bay (Booth and Hecht, 1998). The western trawl grounds near Mossel Bay and
477 Cape Infanta also experienced a decrease in trawl effort, but only from the mid-2000s onwards,
478 before which trawling pressure appears to have been substantially higher than in the eastern inshore
479 areas (Fig. 8b). Thereby trawling pressures appear consistent with the eastward shift in mean
480 location of these populations. It is important to note, however, that these species are also caught by
481 line fishers, the impact of which could be contributing to observed distributional changes.

482 The strong correlations between latitudinal and longitudinal variability seen amongst the
483 majority of taxa are not surprising, considering the predominantly south-west to north-east depth
484 contours over most of the study area. A trend in average latitude, without evidence of a longitudinal
485 change, points to a changing depth distribution. This pattern was seen for *S. acutipinnis*. A bias in
486 sampling depths over time (Fig. A1, Appendix A) precluded estimation of a depth trend directly.
487 However, peak *S. acutipinnis* catches appeared to shift deeper by about 30 m between the first and
488 last five years of trawl survey data (Fig. A2, Appendix A), supporting the geographic evidence of a
489 population moving into deeper water. Yemane et al. (2014) documented this species (then referred
490 to as *S. megalops*; Viana and de Carvalho, 2016) shifting to greater depths on the South African
491 west coast. Although species identification issues could affect results (Appendix A), we expect the

492 majority of Agulhas Bank catches to have been *S. acutipinnis* (Viana et al., 2017) and that the
493 deepening trend may be true for this species.

494 *4.3. Future work*

495 The identification of trends leads to many hypotheses and potential expansions of this work. As
496 the spatial resolution of the geoGLMM models increase, the inclusion of a depth covariate may
497 provide additional insight to spatial responses of species. When available, an obvious next step to
498 isolating potential drivers of distribution shifts would be to incorporate fishing effort and
499 hydrographic data into the statistical framework (e.g., Bell et al., 2015). Models that integrate such
500 information when estimating densities (e.g., Kristensen et al., 2014; Thorson et al., 2017, 2015a)
501 may provide valuable tools to understand and attribute causal impacts. Exploring species traits and
502 which parts of the assemblage have responded in similar ways (Kleisner et al., 2016) might help
503 understand the causes and where the most pronounced changes have taken place. The use of the
504 recently developed multivariate VAST package (Thorson and Barnett, 2017) could also help
505 understand the dynamics of certain species or groups of taxa better by taking into account the
506 correlation among their size classes or individual species.

507 Another improvement might be to add a seasonal component to the geoGLMM, allowing the
508 use of all data within one model. Although not implemented at the time of this work, seasonal
509 models would enable explicit assessment of differences in distribution between or among seasons.
510 The substantial proportion (25%) of taxa that appeared to have disparate distributions between the
511 two survey seasons points to the importance of considering seasonal variation in studies and
512 management decisions. Another benefit of a seasonal model would be to estimate distributions for
513 seasons in which surveys were not conducted. Seasonal models might also be useful when
514 integrating fishery and survey data into a single spatio-temporal model, especially in cases where
515 surveys are conducted predominantly during a single season, yet fisheries operate over a broader
516 period in each year.

517 **5. Conclusions**

518 Understanding the distributional dynamics of marine species is important to inform
519 management of ocean spaces. This is especially pertinent as the ocean become more crowded with
520 new industries looking to harness the blue economy and when climate change and/or fishing
521 impacts influence where marine taxa live. Our approach to identify potential distributional trends
522 from trawl surveys provides an improved statistical framework over methods typically used in the
523 past. We hope it will stimulate further development of methods that characterise trends and patterns
524 within the spatio-temporal structure and variability typical of such datasets.

525 The identification of ecological trends and development of their climate impact predictions
526 hinges on the availability of multi-decadal, ecological time series such as the trawl surveys analysed
527 here. Such time series enable increasingly powerful (distributional and abundance) assessments of
528 species and ecosystems, allowing their trajectories to be measured against historically-informed
529 targets. The continuation of such standardised surveys is vital to improved understanding and
530 management of ocean spaces in South Africa and globally.

531 **Acknowledgements**

532 Kristin Kleisner, Lewis Barnett and two anonymous reviewers are thanked for useful comments
533 that improved the manuscript. The Department of Agriculture, Forestry and Fisheries: Branch:
534 Fisheries Management are acknowledged for the use of their data. Funding support is acknowledged
535 from the Claude Leon Foundation, the National Research Foundation, including its Professional
536 Development Programme, SAEON (South African Environmental Observation Network), the
537 African Coelacanth Ecosystem Programme (ACEP) Deep Secrets Project, and from the Climate
538 Change Division at SANBI (South African National Biodiversity Institute). The funders had no role
539 in the study design, analysis, interpretation, writing or submission process. Computations were

542 performed using facilities provided by the University of Cape Town's ICTS High Performance Computing team (<http://hpc.uct.ac.za>).

Declarations of interest: none

544

References

546 Aitchison, J., 1955. On the distribution of a positive random variable having a discrete probability
mass at the origin. *J. Am. Stat. Assoc.* 50, 901–908.
548 <https://doi.org/10.1080/01621459.1955.10501976>

548 Atkinson, L.J., Leslie, R.W., Field, J.G., Jarre, A., 2011. Changes in demersal fish assemblages on
550 the west coast of South Africa, 1986–2009. *Afr. J. Mar. Sci.* 33, 157–170.

552 Axelsen, B.E., Johnsen, E., 2015. An evaluation of the bottom trawl surveys in the Benguela
552 Current Large Marine Ecosystem. *Fish. Oceanogr.* 24, 74–87.
<https://doi.org/10.1111/fog.12079>

554 Badenhorst, A., Smale, M.J., 1991. The distribution and abundance of seven commercial trawlfish
from the Cape south coast of South Africa, 1986–1990. *South Afr. J. Mar. Sci.* 11, 377–393.
556 <https://doi.org/10.2989/025776191784287565>

558 Barange, M., Merino, G., Blanchard, J.L., Scholtens, J., Harle, J., Allison, E.H., Allen, J.I., Holt, J.,
558 Jennings, S., 2014. Impacts of climate change on marine ecosystem production in societies
dependent on fisheries. *Nat. Clim. Change* 4, 211–216. <https://doi.org/10.1038/nclimate2119>

560 Beal, L.M., Eliot, S., 2016. Broadening not strengthening of the Agulhas Current since the early
1990s. *Nature*. <https://doi.org/10.1038/nature19853>

562 Bell, R.J., Richardson, D.E., Hare, J.A., Lynch, P.D., Fratantoni, P.S., 2015. Disentangling the
564 effects of climate, abundance, and size on the distribution of marine fish: an example based
on four stocks from the Northeast US shelf. *ICES J. Mar. Sci. J. Cons.* 72, 1311–1322.
<https://doi.org/10.1093/icesjms/fsu217>

566 Blamey, L.K., Shannon, L.J., Bolton, J.J., Crawford, R.J.M., Dufois, F., Evers-King, H., Griffiths,
568 C.L., Hutchings, L., Jarre, A., Rouault, M., Watermeyer, K.E., Winker, H., 2015. Ecosystem
change in the southern Benguela and the underlying processes. *J. Mar. Syst.* 144, 9–29.
<https://doi.org/10.1016/j.jmarsys.2014.11.006>

570 Bolton, J., Anderson, R., Smit, A., Rothman, M., 2012. South African kelp moving eastwards: the
572 discovery of *Ecklonia maxima* (Osbeck) Papenfuss at De Hoop Nature Reserve on the south
coast of South Africa. *Afr. J. Mar. Sci.* 34, 147–151.
<https://doi.org/10.2989/1814232X.2012.675125>

574 Booth, A.J., Hecht, T., 1998. Changes in the Eastern Cape demersal inshore trawl fishery between
1967 and 1995. *South Afr. J. Mar. Sci.* 19, 341–353.
576 <https://doi.org/10.2989/025776198784126971>

578 Chaloupka, M., Balazs, G., 2007. Using Bayesian state-space modelling to assess the recovery and
harvest potential of the Hawaiian green sea turtle stock. *Ecol. Model.* 205, 93–109.
<https://doi.org/10.1016/j.ecolmodel.2007.02.010>

580 Cockcroft, A., van Zyl, D., Hutchings, L., 2008. Large-scale changes in the spatial distribution of
South African West Coast rock lobsters: an overview. *Afr. J. Mar. Sci.* 30, 149–159.
582 <https://doi.org/10.2989/AJMS.2008.30.1.15.465>

584 Coll, M., Shannon, L.J., Yemane, D., Link, J.S., Ojaveer, H., Neira, S., Jouffre, D., Labrosse, P.,
Heymans, J.J., Fulton, E.A., Shin, Y.-J., 2009. Ranking the ecological relative status of
exploited marine ecosystems. *ICES J. Mar. Sci. J. Cons.* fsp261.
586 <https://doi.org/10.1093/icesjms/fsp261>

588 Currie, J.C., 2017. Historical baselines and a century of change in the demersal fish assemblages on
South Africa's Agulhas Bank (PhD thesis). University of Cape Town, South Africa.

590 Doney, S.C., Ruckelshaus, M., Duffy, J.E., Barry, J.P., Chan, F., English, C.A., Galindo, H.M.,
Grebmeier, J.M., Hollowed, A.B., Knowlton, N., Polovina, J., Rabalais, N.N., Sydeman,
W.J., Talley, L.D., 2012. Climate Change Impacts on Marine Ecosystems. *Annu. Rev. Mar.*
592 *Sci.* 4, 11–37. <https://doi.org/10.1146/annurev-marine-041911-111611>

594 Dulvy, N.K., Rogers, S.I., Jennings, S., Stelzenmüller, V., Dye, S.R., Skjoldal, H.R., 2008. Climate
 596 Edwards, M., Richardson, A.J., 2004. Impact of climate change on marine pelagic phenology and
 598 Engelhard, G.H., Pinnegar, J.K., Kell, L.T., Rijnsdorp, A.D., 2011. Nine decades of North Sea sole
 600 and plaice distribution. *ICES J. Mar. Sci. J. Cons.* 68, 1090–1104.
<https://doi.org/10.1093/icesjms/fsr031>

602 Engelhard, G.H., Righton, D.A., Pinnegar, J.K., 2014. Climate change and fishing: a century of
 604 shifting distribution in North Sea cod. *Glob. Change Biol.* 20, 2473–2483.
<https://doi.org/10.1111/gcb.12513>

606 Fairweather, T.P., van der Lingen, C.D., Booth, A.J., Drapeau, L., van der Westhuizen, J.J., 2006. Indicators of sustainable fishing for South African sardine *Sardinops sagax* and anchovy
 608 *Engraulis encrasicolus*. *Afr. J. Mar. Sci.* 28, 661–680.
<https://doi.org/10.2989/18142320609504215>

610 Ferretti, F., Osio, G.C., Jenkins, C.J., Rosenberg, A.A., Lotze, H.K., 2013. Long-term change in a meso-predator community in response to prolonged and heterogeneous human impact. *Sci. Rep.* 3, 1057. <https://doi.org/10.1038/srep01057>

612 Genner, M.J., Sims, D.W., Southward, A.J., Budd, G.C., Masterson, P., Mchugh, M., Rendle, P.,
 614 Southall, E.J., Wearmouth, V.J., Hawkins, S.J., 2010. Body size-dependent responses of a marine fish assemblage to climate change and fishing over a century-long scale. *Glob. Change Biol.* 16, 517–527. <https://doi.org/10.1111/j.1365-2486.2009.02027.x>

616 Gilks, W.R., Richardson, S., Spiegelhalter, D., 1995. *Markov Chain Monte Carlo in Practice*. CRC Press.

618 Griffiths, C., van Sittert, L., Best, P., Brown, A., Clark, B., Cook, P., Crawford, R., David, J.,
 620 Davies, B., Griffiths, M., Hutchings, K., Jerardino, A., Kruger, N., Lamberth, S., Leslie, R.,
 Melville-Smith, R., Tarr, R., van der Lingen, C., 2004. Impacts of human activities on marine animal life in the Benguela. *Oceanogr. Mar. Biol. Annu. Rev.* 42, 303–392.

622 Grüss, A., Thorson, J.T., Sagarese, S.R., Babcock, E.A., Karnauskas, M., Walter, J.F., Drexler, M.,
 624 2017. Ontogenetic spatial distributions of red grouper (*Epinephelus morio*) and gag grouper (*Mycteroperca microlepis*) in the U.S. Gulf of Mexico. *Fish. Res.* 193, 129–142.
<https://doi.org/10.1016/j.fishres.2017.04.006>

626 Hiddink, J.G., Burrows, M.T., García Molinos, J., 2015. Temperature tracking by North Sea benthic invertebrates in response to climate change. *Glob. Change Biol.* 21, 117–129.

628 Hilborn, R., Branch, T.A., Ernst, B., Magnusson, A., Minte-Vera, C.V., Scheuerell, M.D., Valero, J.L., 2003. State of the World's Fisheries. *Annu. Rev. Environ. Resour.* 28, 359–399.
<https://doi.org/10.1146/annurev.energy.28.050302.105509>

630 Hutchings, L., van der Lingen, C.D., Shannon, L.J., Crawford, R.J.M., Verheyen, H.M.S.,
 632 Bartholomae, C.H., van der Plas, A.K., Louw, D., Kreiner, A., Ostrowski, M., Fidel, Q.,
 634 Barlow, R.G., Lamont, T., Coetzee, J., Shillington, F., Veitch, J., Currie, J.C., Monteiro, P.M.S., 2009. The Benguela Current: An ecosystem of four components. *Prog. Oceanogr.* 83, 15–32. <https://doi.org/10.1016/j.pocean.2009.07.046>

636 Jansen, T., Kristensen, K., Kainge, P., Durholtz, D., Strømme, T., Thygesen, U.H., Wilhelm, M.R.,
 638 Kathena, J., Fairweather, T.P., Paulus, S., Degel, H., Lipinski, M.R., Beyer, J.E., 2016. Migration, distribution and population (stock) structure of shallow-water hake (*Merluccius capensis*) in the Benguela Current Large Marine Ecosystem inferred using a geostatistical population model. *Fish. Res.* 179, 156–167. <https://doi.org/10.1016/j.fishres.2016.02.026>

640 Japp, D.W., Sims, P., Smale, M.J., 1994. A review of the fish resources of the Agulhas Bank. *South Afr. J. Sci.* 90, 123–134.

642 Jones, S.J., Lima, F.P., Wethey, D.S., 2010. Rising environmental temperatures and biogeography:
 644 poleward range contraction of the blue mussel, *Mytilus edulis* L., in the western Atlantic. *J. Biogeogr.* 37, 2243–2259. <https://doi.org/10.1111/j.1365-2699.2010.02386.x>

646 Kaiser, M.J., Ramsay, K., Richardson, C.A., Spence, F.E., Brand, A.R., 2000. Chronic fishing
 648 disturbance has changed shelf sea benthic community structure. *J. Anim. Ecol.* 69, 494–503.
<https://doi.org/10.1046/j.1365-2656.2000.00412.x>

648 Kellner, K., 2016. jagsUI: A Wrapper Around “rjags” to Streamline “JAGS” Analyses.
<https://cran.r-project.org/web/package=jagsUI>

650 Kirkman, S.P., Yemane, D., Kathena, J., Mafwila, S.K., Nsiangango, S.E., Samaai, T., Axelsen, B.,
 652 Singh, L., 2013. Identifying and characterizing demersal fish biodiversity hotspots in the
 Benguela Current Large Marine Ecosystem: relevance in the light of global changes. *ICES J. Mar. Sci. J. Cons.* 70, 943–954. <https://doi.org/10.1093/icesjms/fst040>

654 Kleisner, K.M., Fogarty, M.J., McGee, S., Barnett, A., Fratantoni, P., Greene, J., Hare, J.A., Lucey,
 656 S.M., McGuire, C., Odell, J., Saba, V.S., Smith, L., Weaver, K.J., Pinsky, M.L., 2016. The
 effects of sub-regional climate velocity on the distribution and spatial extent of marine
 658 species assemblages. *PLOS ONE* 11, e0149220.
<https://doi.org/10.1371/journal.pone.0149220>

660 Kristensen, K., Nielsen, A., Berg, C.W., Skaug, H., Bell, B.M., 2016. TMB: Automatic
 662 differentiation and Laplace approximation. *J. Stat. Softw.* 70, 1–21.

662 Kristensen, K., Thygesen, U.H., Andersen, K.H., Beyer, J.E., 2014. Estimating spatio-temporal
 dynamics of size-structured populations. *Can. J. Fish. Aquat. Sci.* 71, 326–336.
<https://doi.org/10.1139/cjfas-2013-0151>

664 Largier, J.L., Chapman, P., Peterson, W.T., Swart, V.P., 1992. The western Agulhas Bank:
 666 circulation, stratification and ecology. *South Afr. J. Mar. Sci.* 12, 319–339.
<https://doi.org/10.2989/02577619209504709>

668 Lees, R., 1969. *Fishing for Fortunes: The Story of the Fishing Industry in Southern Africa and the Men who Made it*. Purnell & Sons.

670 Leslie, R., 2008. Abundance trends for bycatch species taken in the demersal fishery (No. MCM/2008/MAR/SWG-DEM/10), DAFF Demersal Scientific Working Group Report. Cape Town.

672 Levitus, S., Antonov, J., Boyer, T., 2005. Warming of the world ocean, 1955–2003. *Geophys. Res. Lett.* 32, L02604.

674 Lo, N.C., Jacobson, L.D., Squire, J.L., 1992. Indices of relative abundance from fish spotter data based on delta-lognormal models. *Can. J. Fish. Aquat. Sci.* 49, 2515–2526.
<https://doi.org/10.1139/f92-278>

676 MacCall, A.D., 1990. *Dynamic geography of marine fish populations*. Washington University Press, Washington.

680 Mace, G.M., Collar, N.J., Gaston, K.J., Hilton-Taylor, C., Akçakaya, H.R., Leader-Williams, N.,
 682 Milner-Gulland, E. j., Stuart, S.N., 2008. Quantification of extinction risk: IUCN’s system for classifying threatened species. *Conserv. Biol.* 22, 1424–1442.
<https://doi.org/10.1111/j.1523-1739.2008.01044.x>

684 MacKinnon, J.G., 2009. Bootstrap hypothesis testing, in: Belsley, D.A., Kontogiorges, E. (Eds.), *Handbook of Computational Econometrics*. Wiley, Chippingham, pp. 183–213.

686 Ortega-Cisneros, K., Yokwana, S., Sauer, W., Cochrane, K., Cockcroft, A., James, N.C., Potts,
 688 W.M., Singh, L., Smale, M., Wood, A., Pecl, G., 2018. Assessment of the likely sensitivity to climate change for the key marine species in the southern Benguela system. *Afr. J. Mar. Sci.* 40, 279–292. <https://doi.org/10.2989/1814232X.2018.1512526>

690 Payne, A.I.L., Punt, A.E., 1995. Biology and fisheries of South African Cape hakes (*M. capensis* and *M. paradoxus*), in: Alheit, J., Pitcher, T.J. (Eds.), *Hake, Chapman & Hall Fish and Fisheries Series*. Springer Netherlands, pp. 15–47. https://doi.org/10.1007/978-94-011-1300-7_2

Payne, A.I.L., Rose, B., Leslie, R.W., 1987. Feeding of hake and a first attempt at determining their trophic role in the South African west coast marine environment. *South Afr. J. Mar. Sci.* 5, 471–501. <https://doi.org/10.2989/025776187784522667>

Pecl, G.T., Araújo, M.B., Bell, J.D., Blanchard, J., Bonebrake, T.C., Chen, I.-C., Clark, T.D., Colwell, R.K., Danielsen, F., Evengård, B., Falconi, L., Ferrier, S., Frusher, S., Garcia, R.A., Griffis, R.B., Hobday, A.J., Janion-Scheepers, C., Jarzyna, M.A., Jennings, S., Lenoir, J., Linnetved, H.I., Martin, V.Y., McCormack, P.C., McDonald, J., Mitchell, N.J., Mustonen, T., Pandolfi, J.M., Pettorelli, N., Popova, E., Robinson, S.A., Scheffers, B.R., Shaw, J.D., Sorte, C.J.B., Strugnell, J.M., Sunday, J.M., Tuanmu, M.-N., Vergés, A., Villanueva, C., Wernberg, T., Wapstra, E., Williams, S.E., 2017. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. *Science* 355, eaai9214. <https://doi.org/10.1126/science.aai9214>

Pecquerie, L., Drapeau, L., Fréon, P., Coetzee, J.C., Leslie, R.W., Griffiths, M.H., 2004. Distribution patterns of key fish species of the southern Benguela ecosystem: an approach combining fishery-dependent and fishery-independent data. *Afr. J. Mar. Sci.* 26, 115–139. <https://doi.org/10.2989/18142320409504053>

Perry, A.L., Low, P.J., Ellis, J.R., Reynolds, J.D., 2005. Climate change and distribution shifts in marine fishes. *Science* 308, 1912–1915. <https://doi.org/10.1126/science.1111322>

Pinsky, M.L., Worm, B., Fogarty, M.J., Sarmiento, J.L., Levin, S.A., 2013. Marine taxa track local climate velocities. *Science* 341, 1239–1242. <https://doi.org/10.1126/science.1239352>

Plummer, M., 2003. JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling, in: Hornik, K., Leisch, F., Zeileis, A. (Eds.), *Proceedings of the 3rd International Workshop on Distributed Statistical Computing*. Vienna, Austria.

Plummer, M., Stukalov, A., Denwood, M., 2016. rjags: Bayesian Graphical Models using MCMC. <https://cran.r-project.org/package=rjags>

Rademeyer, R., Butterworth, D., Plagányi, É., 2008. Assessment of the South African hake resource taking its two-species nature into account. *Afr. J. Mar. Sci.* 30, 263–290. <https://doi.org/10.2989/AJMS.2008.30.2.7.557>

Roberts, M.J., 2005. Chokka squid (*Loligo vulgaris reynaudii*) abundance linked to changes in South Africa's Agulhas Bank ecosystem during spawning and the early life cycle. *ICES J. Mar. Sci.* 62, 33–55. <https://doi.org/10.1016/j.icesjms.2004.10.002>

Roel, B.A., Butterworth, D.S., 2000. Assessment of the South African chokka squid *Loligo vulgaris reynaudii*: Is disturbance of aggregations by the recent jig fishery having a negative impact on recruitment? *Fish. Res.* 48, 213–228. [https://doi.org/10.1016/S0165-7836\(00\)00186-7](https://doi.org/10.1016/S0165-7836(00)00186-7)

Rouault, M., Penven, P., Pohl, B., 2009. Warming in the Agulhas Current system since the 1980's. *Geophys. Res. Lett.* 36, L12602. <https://doi.org/10.1029/2009GL037987>

Rouault, M., Pohl, B., Penven, P., 2010. Coastal oceanic climate change and variability from 1982 to 2009 around South Africa. *Afr. J. Mar. Sci.* 32, 237–246.

Schlegel, R.W., Oliver, E.C.J., Wernberg, T.W., Smit, A.J., 2017. Nearshore and offshore co-occurrence of marine heatwaves and cold-spells. *Prog. Oceanogr.* 12.

Schlegel, R.W., Smit, A.J., 2016. Climate change in coastal waters: time series properties affecting trend estimation. *J. Clim.* 29, 9113–9124. <https://doi.org/10.1175/JCLI-D-16-0014.1>

Shackell, N.L., Frank, K.T., Brickman, D.W., 2005. Range contraction may not always predict core areas: an example from marine fish. *Ecol. Appl.* 15, 1440–1449. <https://doi.org/10.1890/04-0642>

Shannon, L.J., Coll, M., Neira, S., 2009. Exploring the dynamics of ecological indicators using food web models fitted to time series of abundance and catch data. *Ecol. Indic.* 9, 1078–1095. <https://doi.org/10.1016/j.ecolind.2008.12.007>

Simmons, R.E., Kolberg, H., Braby, R., Erni, B., 2015. Declines in migrant shorebird populations from a winter-quarter perspective. *Conserv. Biol.* 29, 877–887. <https://doi.org/10.1111/cobi.12493>

744 Skaug, H.J., Fournier, D.A., 2006. Automatic approximation of the marginal likelihood in non-
745 Gaussian hierarchical models. *Comput. Stat. Data Anal.* 51, 699–709.
746 <https://doi.org/10.1016/j.csda.2006.03.005>

748 Smale, M.J., Roel, B.A., Badenhorst, A., Field, J.G., 1993. Analysis of the demersal community of
749 fish and cephalopods on the Agulhas Bank, South Africa. *J. Fish Biol.* 43, 169–191.
750 <https://doi.org/10.1111/j.1095-8649.1993.tb01186.x>

752 Swart, V.P., Largier, J.L., 1987. Thermal structure of Agulhas Bank water. *South Afr. J. Mar. Sci.*
753 5, 243–252. <https://doi.org/10.2989/025776187784522153>

754 Thorson, J.T., Barnett, L.A., 2017. Comparing estimates of abundance trends and distribution shifts
755 using single-and multispecies models of fishes and biogenic habitat. *ICES J. Mar. Sci.*

756 Thorson, J.T., Ianelli, J.N., Munch, S.B., Ono, K., Spencer, P.D., 2015a. Spatial delay-difference
757 models for estimating spatiotemporal variation in juvenile production and population
758 abundance. *Can. J. Fish. Aquat. Sci.* 72, 1897–1915. <https://doi.org/10.1139/cjfas-2014-0543>

759 Thorson, J.T., Jannot, J., Somers, K., 2017. Using spatio-temporal models of population growth and
760 movement to monitor overlap between human impacts and fish populations. *J. Appl. Ecol.*
761 54, 577–587. <https://doi.org/10.1111/1365-2664.12664>

762 Thorson, J.T., Kristensen, K., 2016. Implementing a generic method for bias correction in statistical
763 models using random effects, with spatial and population dynamics examples. *Fish. Res.*
764 175, 66–74. <https://doi.org/10.1016/j.fishres.2015.11.016>

765 Thorson, J.T., Pinsky, M.L., Ward, E.J., 2016a. Model-based inference for estimating shifts in
766 species distribution, area occupied and centre of gravity. *Methods Ecol. Evol.* 7, 990–1002.
767 <https://doi.org/10.1111/2041-210X.12567>

768 Thorson, J.T., Rindorf, A., Gao, J., Hanselman, D.H., Winker, H., 2016b. Density-dependent
769 changes in effective area occupied for sea-bottom-associated marine fishes. *Proc. R. Soc. B
770 Biol. Sci.* 283, 20161853. <https://doi.org/10.1098/rspb.2016.1853>

771 Thorson, J.T., Shelton, A.O., Ward, E.J., Skaug, H.J., 2015b. Geostatistical delta-generalized linear
772 mixed models improve precision for estimated abundance indices for West Coast
773 groundfishes. *ICES J. Mar. Sci. J. Cons.* fsu243. <https://doi.org/10.1093/icesjms/fsu243>

774 van der Lingen, C.D., Shannon, L.J., Cury, P., Kreiner, A., Moloney, C.L., Roux, J.-P., Vaz-Velho,
775 F., 2006. Resource and ecosystem variability, including regime shifts, in the Benguela
776 Current System, in: Shannon, V., Hempel, G., Malanotte-Rizzoli, P., Moloney, C., Woods,
777 J. (Eds.), *Large Marine Ecosystems, Benguela - Predicting a Large Marine Ecosystem*.
778 Elsevier, pp. 147–184. [https://doi.org/10.1016/S1570-0461\(06\)80013-3](https://doi.org/10.1016/S1570-0461(06)80013-3)

779 Viana, S.T. de F., de Carvalho, M.R., 2016. Redescription of *Squalus acutipinnis* Regan, 1908, a
780 valid species of spiny dogfish from southern Africa (Chondrichthyes: Squaliformes:
781 Squalidae). *Copeia* 104, 539–553. <https://doi.org/10.1643/CI-14-217>

782 Viana, S.T. de F.L., Lisher, M.W., Carvalho, M.R. de, 2017. Two new species of short-snouted
783 dogfish sharks of the genus *Squalus* Linnaeus, 1758, from southern Africa (Chondrichthyes:
784 Squaliformes: Squalidae). *Mar. Biodivers.* 1–28. <https://doi.org/10.1007/s12526-017-0673-8>

785 Watermeyer, K.E., Hutchings, L., Jarre, A., Shannon, L.J., 2016. Patterns of distribution and spatial
786 indicators of ecosystem change based on key species in the southern Benguela. *PLOS ONE*
787 11, e0158734. <https://doi.org/10.1371/journal.pone.0158734>

788 Winker, H., Carvalho, F., Kapur, M., 2018. JABBA: Just Another Bayesian Biomass Assessment.
789 *Fish. Res.* 204, 275–288. <https://doi.org/10.1016/j.fishres.2018.03.010>

790 Wu, L., Cai, W., Zhang, L., Nakamura, H., Timmermann, A., Joyce, T., McPhaden, M.J.,
791 Alexander, M., Qiu, B., Visbeck, M., Chang, P., Giese, B., 2012. Enhanced warming over
792 the global subtropical western boundary currents. *Nat. Clim. Change* 2, 161–166.
793 <https://doi.org/10.1038/nclimate1353>

794 Yemane, D., Field, J.G., Leslie, R.W., 2010. Spatio-temporal patterns in the diversity of demersal
fish communities off the south coast of South Africa. *Mar. Biol.* 157, 269–281.
<https://doi.org/10.1007/s00227-009-1314-y>

796 Yemane, D., Field, J.G., Leslie, R.W., 2008. Indicators of change in the size structure of fish
communities: A case study from the south coast of South Africa. *Fish. Res.* 93, 163–172.
<https://doi.org/10.1016/j.fishres.2008.03.005>

798 Yemane, D., Field, J.G., Leslie, R.W., 2005. Exploring the effects of fishing on fish assemblages
800 using abundance biomass comparison (ABC) curves. *ICES J. Mar. Sci.* 62, 374–379.
<https://doi.org/10.1016/j.icesjms.2005.01.009>

802 Yemane, D., Kirkman, S.P., Kathena, J., N'siangango, S.E., Axelsen, B.E., Samaai, T., 2014.
804 Assessing changes in the distribution and range size of demersal fish populations in the
Benguela Current Large Marine Ecosystem. *Rev. Fish Biol. Fish.* 24, 463–483.
<https://doi.org/10.1007/s11160-014-9357-7>

806 Zoutendyk, P., Duvenage, I.R., 1989. Composition and biological implications of a nepheloid layer
over the inner Agulhas Bank near Mossel Bay, South Africa. *Trans. R. Soc. South Afr.* 47,
808 187–197. <https://doi.org/10.1080/00359198909520162>

810 **Tables**

Table 1. Centre of gravity (COG) and effective area results for 44 species and all taxa combined. The first six columns show trend estimates ($\text{km} \cdot \text{year}^{-1}$ or $\text{km}^2 \cdot \text{year}^{-1}$). Bold figures indicate evidence of trends different from zero ($p \leq 0.1$). Underlined figures identify those with $p \leq 0.05$. Bold r^2 values in right-most columns identify species lacking significant correlation ($p > 0.05$) between longitudinal and latitudinal COG time series.

Taxa	Longitudinal COG		Latitudinal COG		Effective area		Correlation r^2 E-N	
	Autumn	Spring	Autumn	Spring	Autumn	Spring	Autumn	Spring
All taxa	<u>-0.26</u>	-0.16	-0.04	-0.01	<u>-61.87</u>	<u>-58.35</u>	NA	NA
<i>Acroteriobatus annulatus</i>	0.95	-0.05	0.35	0.00	-151.67	-173.73	1.00	0.87
<i>Argyrosomus</i> spp.	1.32	1.78	0.32	0.37	-140.86	-119.81	0.97	0.53
<i>Argyrozonaa argyrozona</i>	-0.03	-1.15	-0.12	-0.54	58.70	-52.85	0.51	0.22
<i>Arnoglossus capensis</i>	0.12	0.26	0.10	0.23	-274.45	-277.47	0.16	0.77
<i>Austroglossus pectoralis</i>	-0.71	<u>-2.61</u>	-0.04	0.50	-89.24	-207.65	0.42	0.84
<i>Callorhinichthys capensis</i>	0.52	-0.25	0.07	-0.17	53.95	97.02	0.61	0.37
<i>Chelidonichthys capensis</i>	-0.56	-0.14	-0.13	-0.06	-112.28	-34.31	0.67	0.25
<i>Chelidonichthys queketti</i>	0.43	0.20	-0.06	0.11	-59.21	-20.82	0.73	0.87
<i>Congiopodus spinifer</i>	-0.28	-0.11	-0.25	0.04	23.95	-259.45	0.78	0.78
<i>Congiopodus torvus</i>	-0.10	-0.18	-0.09	-0.25	-51.91	-377.07	1.00	0.97
<i>Cynoglossus zanzibarensis</i>	-0.68	0.43	-0.48	0.23	-276.16	-213.97	0.67	0.61
<i>Dasyatis chrysonota</i>	1.25	0.26	0.17	0.07	-71.18	-40.12	0.98	0.95
<i>Dipturus pullopectatus</i>	<u>-0.68</u>	-0.30	0.38	-0.24	<u>-634.69</u>	-136.54	1.00	1.00
<i>Galeichthys feliceps</i>	-0.56	1.52	-0.02	0.15	-18.22	-36.14	0.85	0.78
<i>Galeorhinus galeus</i>	-0.45	-0.12	-0.26	-0.11	-279.77	-60.09	0.54	0.03
<i>Genypterus capensis</i>	-0.49	0.88	-0.45	0.25	-109.08	-69.64	0.89	0.92
<i>Gonorynchus gonorynchus</i>	1.08	0.21	0.42	0.06	430.38	657.28	0.78	0.58
<i>Halaelurus natalensis</i>	0.25	0.29	0.19	0.16	-171.11	-141.17	0.73	0.94
<i>Haploblepharus edwardsii</i>	-0.26	-0.26	0.00	0.11	-115.35	-253.34	0.39	0.49
<i>Helicolenus dactylopterus</i>	-0.12	-0.03	-0.10	-0.02	1.03	-8.12	0.85	1.00
<i>Holohalaelurus regani</i>	-0.52	-0.06	-0.17	-0.07	-168.45	-27.72	0.62	0.98
<i>Lepidopus caudatus</i>	<u>-3.02</u>	-1.00	-1.26	-0.26	-246.54	-135.27	0.84	0.70
<i>Leucoraja wallacei</i>	-0.27	-0.33	-0.19	-0.33	-376.24	-120.79	1.00	0.90
<i>Lophius vomerinus</i>	-0.86	-0.43	-0.80	-0.30	-164.92	-116.48	0.89	0.98
<i>Merluccius capensis</i>	-0.33	-0.41	0.11	-0.28	-90.70	-19.47	0.10	0.50
<i>Merluccius paradoxus</i>	-1.64	-0.30	-0.87	-0.19	17.13	-84.53	0.99	0.99
<i>Mustelus mustelus</i>	0.70	-0.05	0.28	-0.01	-97.41	4.65	0.90	0.99
<i>Mustelus palumbes</i>	0.07	-0.10	-0.16	0.00	-66.52	107.66	0.55	0.12
<i>Myliobatis aquila</i>	-0.10	-1.57	-0.09	-0.57	3.69	263.06	0.89	0.75
<i>Pagellus natalensis</i>	0.61	-1.87	0.13	-0.43	-22.77	3.55	0.99	0.92
<i>Paracallionymus costatus</i>	-0.39	-0.73	-0.23	0.09	-68.37	13.23	0.91	0.83
<i>Pterogymnus laniarius</i>	-0.48	-0.31	-0.17	-0.09	-40.53	0.51	0.93	0.88
<i>Raja miraletus</i>	-0.86	0.52	0.14	0.24	-125.44	-166.00	0.16	0.97
<i>Raja straeleni</i>	<u>-0.94</u>	-0.87	0.51	-0.29	-537.23	-134.12	0.78	0.53
<i>Rhabdosargus globiceps</i>	1.11	1.94	0.23	0.31	139.20	157.33	0.66	0.77
<i>Rostroraja alba</i>	0.21	0.64	0.45	0.45	-310.94	-460.80	0.55	0.99
<i>Scomber japonicus</i>	-1.60	-2.20	0.31	-0.05	1204.13	388.61	0.08	0.57
<i>Scyliorhinus capensis</i>	-0.58	-0.03	-0.60	0.03	-250.88	103.55	0.84	0.50
<i>Sphoeroides pachygaster</i>	0.31	0.01	0.11	0.01	6.74	52.67	0.95	0.98
<i>Spondylisoma emarginatum</i>	0.38	0.47	0.03	-0.01	-251.94	-51.64	0.91	0.74
<i>Squalus acutipinnis</i>	-0.31	-0.46	0.76	-0.53	-57.63	12.00	0.47	0.88
<i>Thyrsites atun</i>	0.14	-1.12	0.29	-1.23	-9.07	-362.84	0.75	0.76
<i>Trachurus capensis</i>	<u>-2.61</u>	<u>-3.41</u>	0.88	-1.03	<u>-487.56</u>	-314.99	0.10	0.73
<i>Zeus capensis</i>	0.26	0.63	-0.07	0.23	-56.61	-88.06	0.90	0.76

Figure captions

Figure 1. Map indicating the western and eastern bounds of the study area, and place names referred to in text. Shelf edge approximated by the 200 m isobath. Inset shows regional location of the map.

Figure 2. A single trend (black line) with 95% confidence intervals (grey shading) estimated from the longitude centre of gravity time series of all 44 taxa (thin blue lines) in the autumn survey. Inset shows the density distribution of trend estimates, with the origin (zero) marked by a vertical red line and the tails beyond 5th and 95th percentiles shaded. The median trend value and the probability that zero fell within the trend distribution are shown.

Figure 3. A single trend with 95% confidence intervals (shading) estimated from the effective area time series of all 44 taxa (thin lines) in the autumn survey. Inset shows the density distribution of trend estimates, with the origin (zero) marked by a vertical line and the tails beyond 5th and 95th percentiles shaded. The median trend value and the probability that zero fell within the trend distribution are shown.

Figure 4. Estimates of longitudinal (left) and latitudinal (centre) centre of gravity, and effective area (right), shown for autumn (black/grey) and spring (blue) time series for slime skate (*Dipturus pullo punctatus*). Error bars represent standard error. Trend line and shaded 95% confidence intervals estimated by the state-space model are overlaid. Inset graphs are density distributions of trend estimates, with the origin (zero) marked by a vertical red line and the tails beyond 5th and 95th percentiles shaded. Median trend values and the probability that zero fell within the trend distributions are shown.

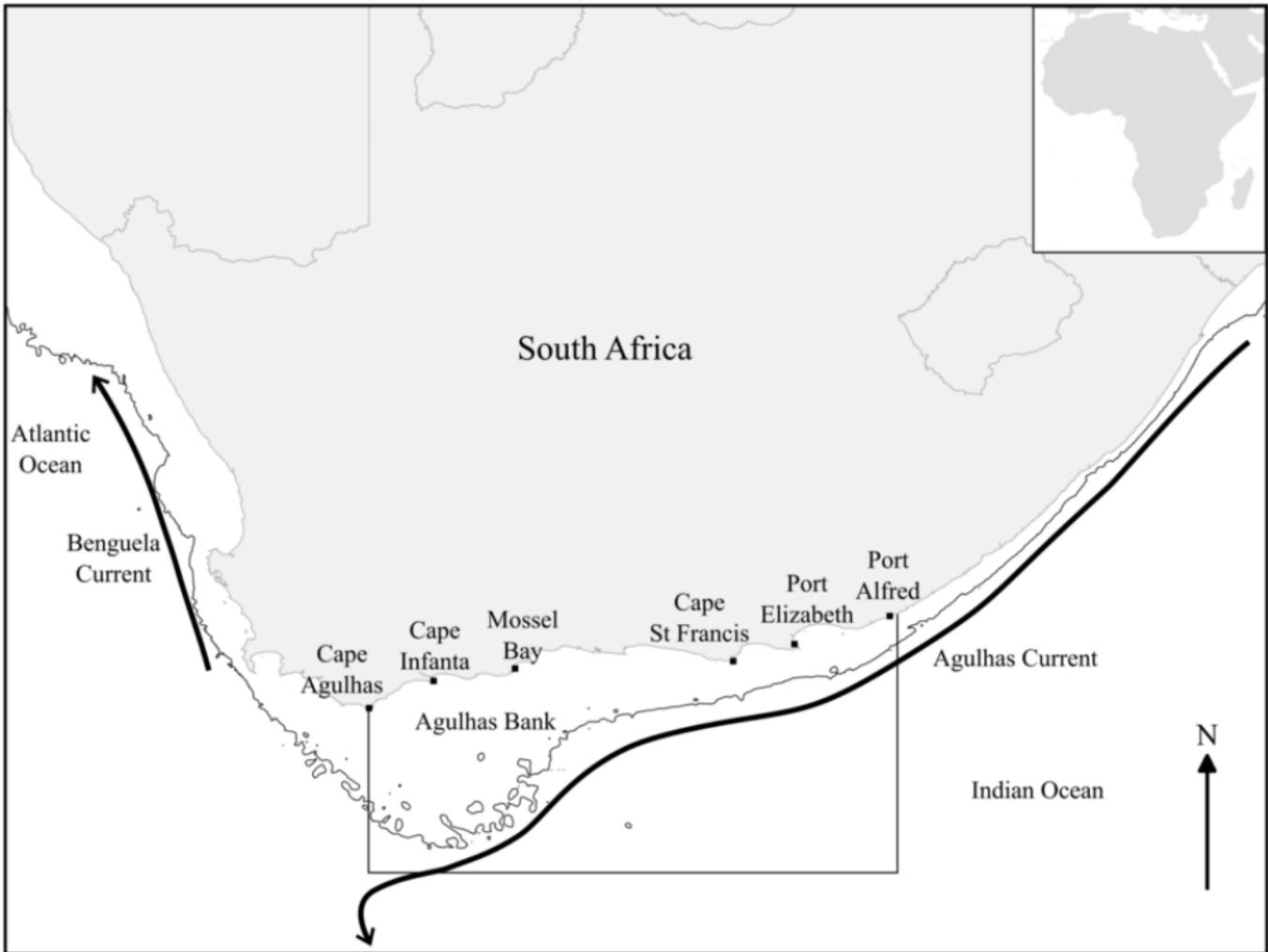
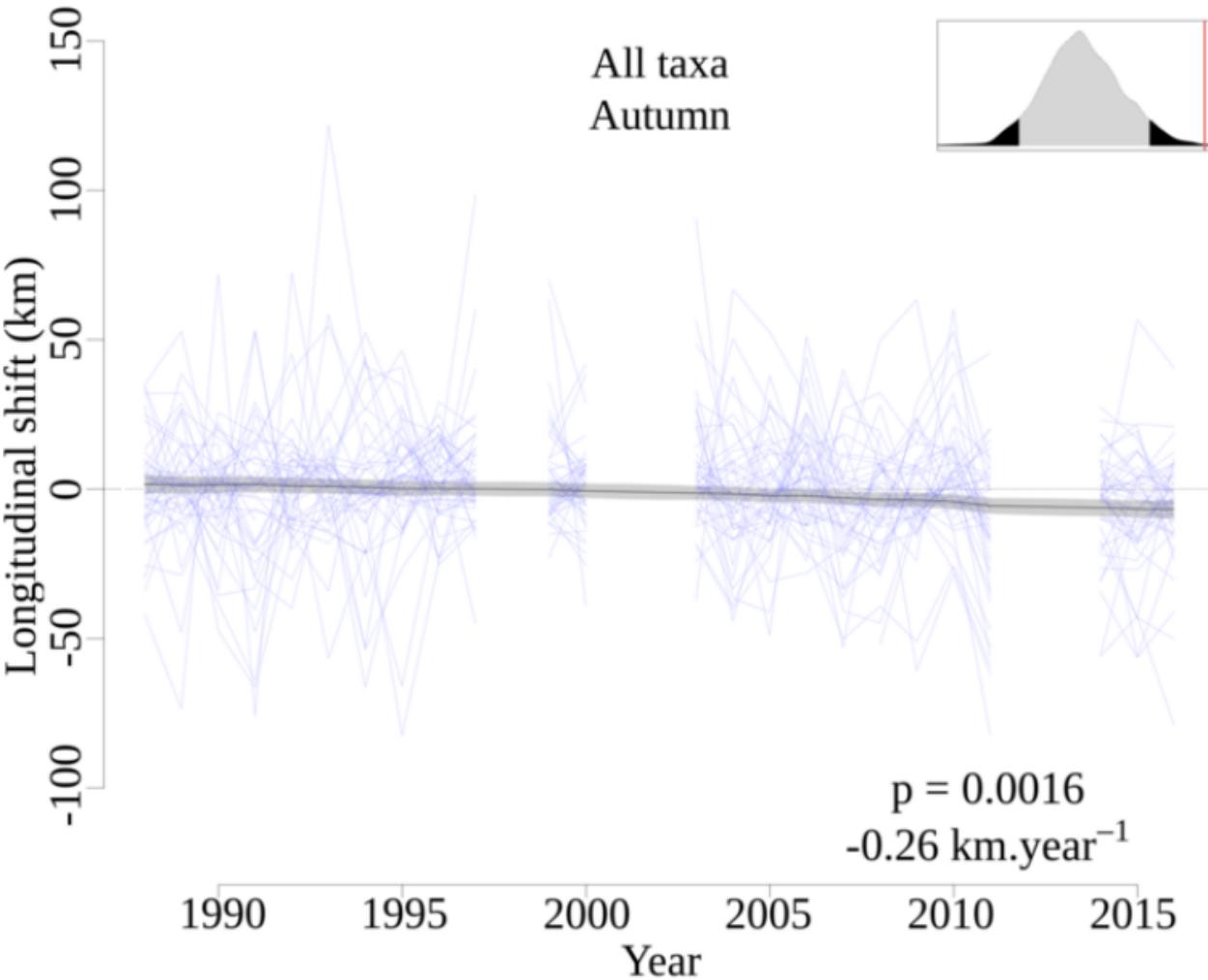
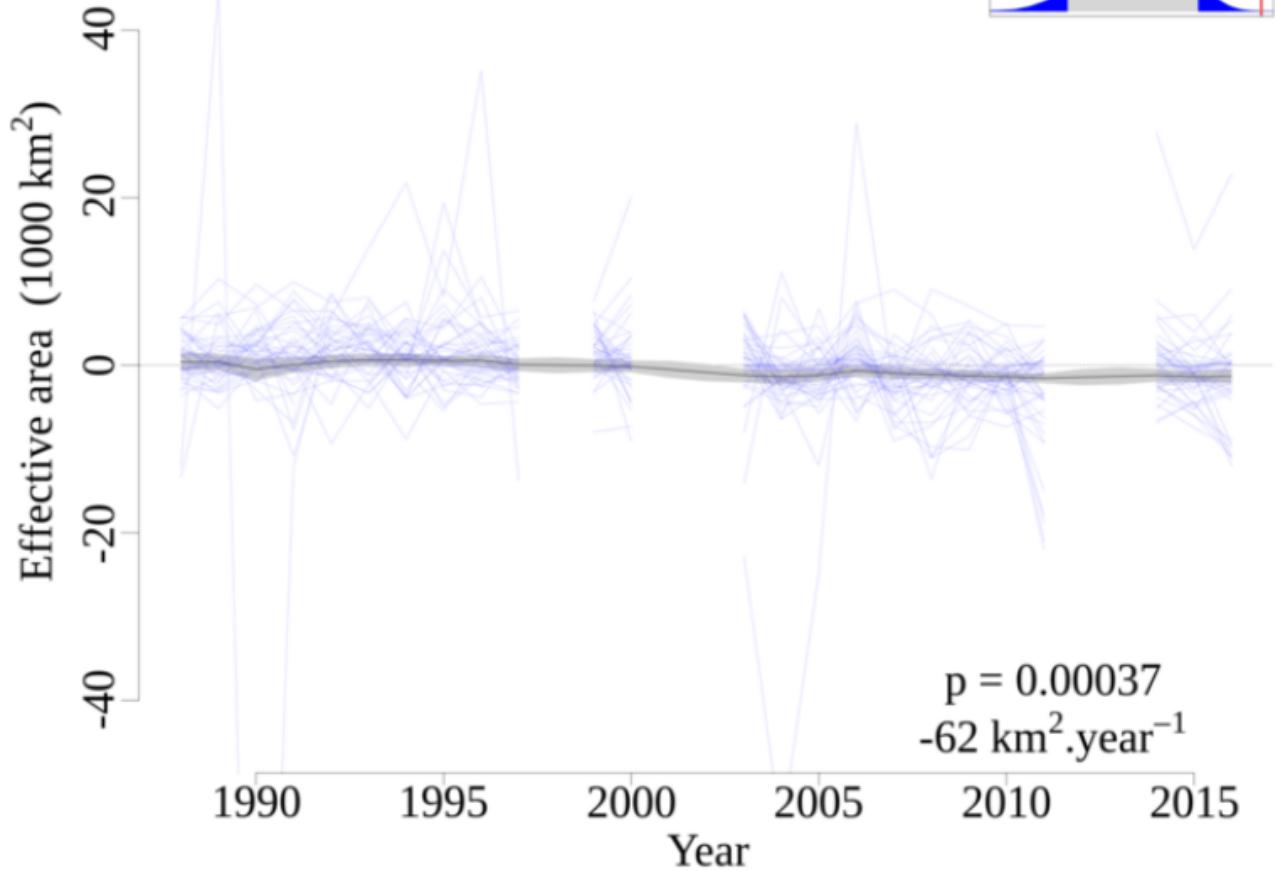

Figure 5. Estimates of longitudinal (left) and latitudinal (centre) centre of gravity, and effective area (right), shown for autumn (black/grey) and spring (blue) time series for white stumpnose (*Rhabdosargus globiceps*). Error bars represent standard error. Trend line and shaded 95% confidence intervals estimated by the state-space model are overlaid. Inset graphs are density distributions of trend estimates, with the origin (zero) marked by a vertical red line and the tails beyond 5th and 95th percentiles shaded. Median trend values and the probability that zero fell within the trend distributions are shown.

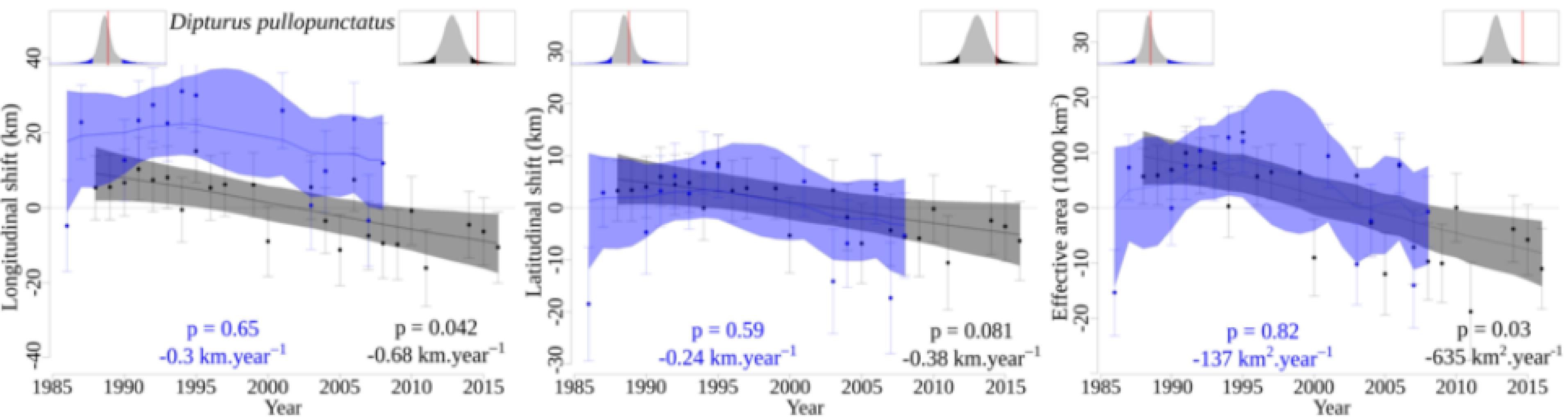
Figure 6. Estimates of longitudinal (left) and latitudinal (centre) centre of gravity, and effective area (right), shown for autumn (black/grey) and spring (blue) time series for bluntnose spiny dogfish (*Squalus acutipinnis*). Error bars represent standard error. Trend line and shaded 95% confidence intervals estimated by the state-space model are overlaid. Inset graphs are density distributions of trend estimates, with the origin (zero) marked by a vertical red line and the tails beyond 5th and 95th percentiles shaded. Median trend values and the probability that zero fell within the trend distributions are shown.

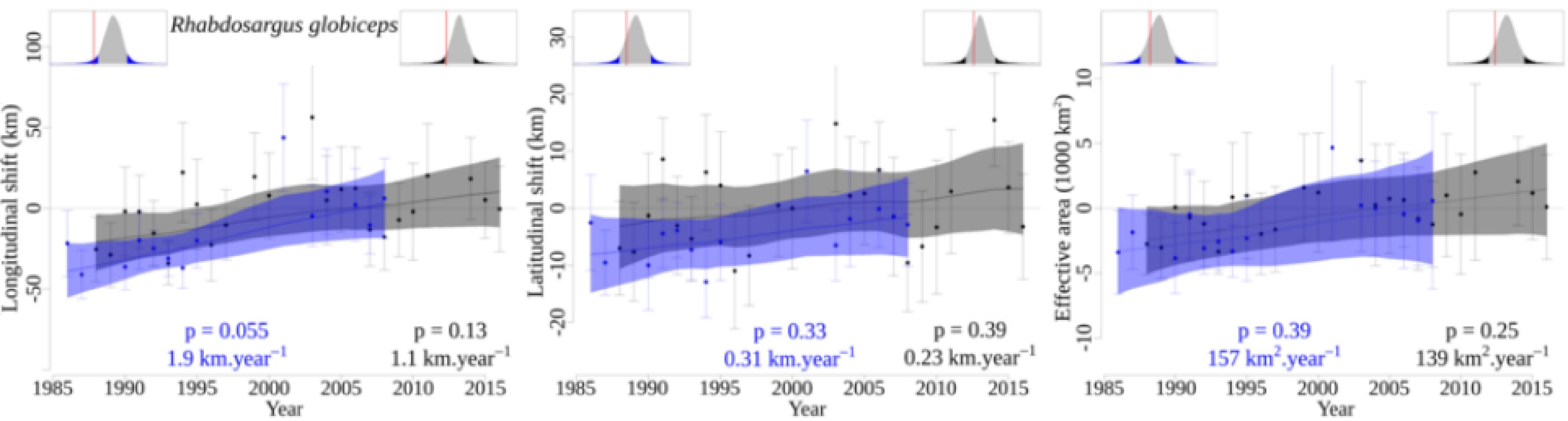

Figure 7. Agulhas Bank commercial trawl effort for the period 1983-2015 as recorded on a 20' by 20' resolution grid. Annual mean number of trawl drags are shown (shades of grey), together with

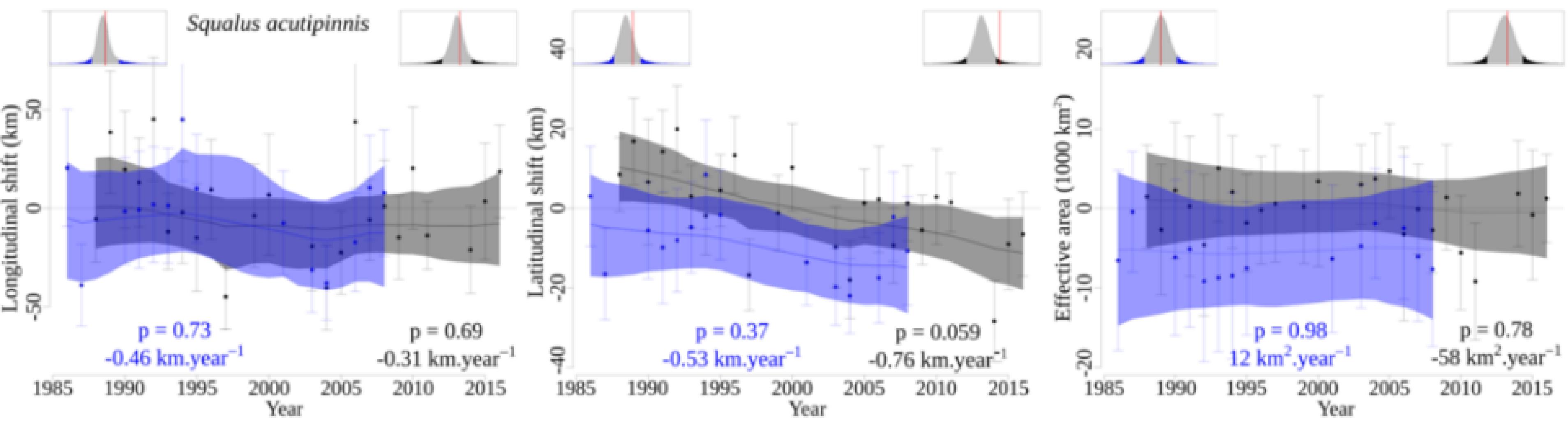
linear slopes different from zero ($p \leq 0.05$) indicating an increase (red) or decrease (blue) over time. Depth contours of -100 m, -200 m and -500 m are shown, as well as locations mentioned in the text.

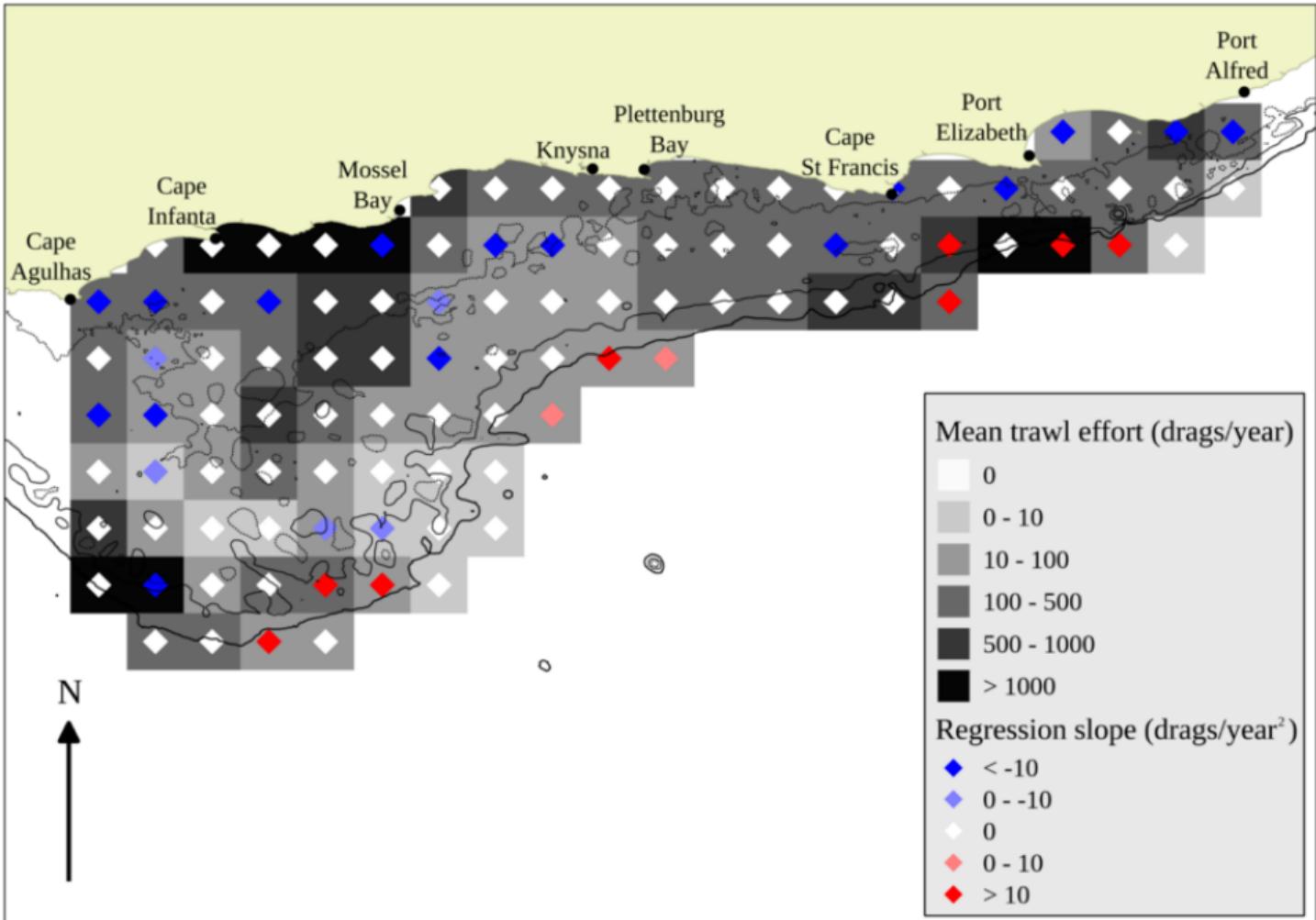
Figure 8. Commercial trawl effort recorded on the Agulhas Bank, summed for a) the entire south coast trawl survey area, and b) for six inshore grid cells in the western area (Cape Infanta to Mossel Bay) and the eastern area (Port Elizabeth to Port Alfred). Non-linear LOESS fits are included.


All taxa
Autumn




$p = 0.0016$
 $-0.26 \text{ km.year}^{-1}$


Year


All taxa
Autumn

