

DOUBLE OR NOTHING: PLASTICITY IN REPRODUCTIVE OUTPUT IN THE CHILIPEPPER ROCKFISH
(*SEBASTES GOODEI*)

Lyndsey S. Lefebvre^{1,2,^A}, Sabrina G. Beyer^{1,2}, David M. Stafford^{1,2}, Neosha S Kashef^{1,2}, Edward J. Dick², Susan M. Sogard², and John C. Field²

¹ Cooperative Institute for Marine Ecosystems and Climate, Institute of Marine Sciences, University of California Santa Cruz

² Fisheries Ecology Division

Southwest Fisheries Science Center

National Marine Fisheries Service

National Oceanographic and Atmospheric Administration

110 McAllister Way, Santa Cruz, CA 95060

Lyndsey S. Lefebvre: Lyndsey.Lefebvre@noaa.gov

Sabrina G. Beyer: Sabrina.Beyer@noaa.gov

David M. Stafford: David.Stafford@noaa.gov

Neosha S. Kashef: Neosha.Kashef@noaa.gov

Edward J. Dick: Edward.Dick@noaa.gov

Susan M. Sogard: Susan.Sogard@noaa.gov

John C. Field: John.Field@noaa.gov

Corresponding author:

Lyndsey S. Lefebvre

^A Current address:

Integrated Statistics

Under contract with:

Northeast Fisheries Science Center, NMFS, NOAA

166 Water St.

Woods Hole, MA 02543

1 **ABSTRACT**

2 An understanding of the reproductive biology of a species is fundamental to successful management
3 of fish stocks. Rockfish (*Sebastes* spp.) have complex reproduction, being viviparous and generally
4 late to mature, often with extended adolescent periods characterized by abortive maturation events.
5 Furthermore, whereas the majority of *Sebastes* species in the California Current region produce one
6 brood of larvae annually, several are known to produce more than one, though no stock assessments
7 have yet considered the impact multiple brooding may have on population spawning potential for
8 these species. We documented abortive maturation and examined the prevalence and size-dependent
9 and regional patterns of multiple brooding using macroscopic evaluation and detailed histological
10 analysis of ovaries from a model species, chilipepper (*S. goodei*), collected off Central and Southern
11 California. We modeled the size-related maternal effect on the probability of multiple brooding, and
12 quantified size-dependent fecundity relationships. Our results indicate that the most robust
13 estimation of reproductive output, as a function of the fecundity-length relationship, is improved for
14 chilipepper when multiple brooding is incorporated, due to the greater probability of additional
15 broods, and thus greater spawning potential, in larger females.

16

17 **Keywords:** Reproductive potential, viviparity, multiple brooding, fecundity, maternal effects

18 **1. INTRODUCTION**

19 An understanding of reproductive potential, as well as the drivers and causes of plasticity (i.e.
20 variability) in reproductive traits, is fundamental to successful management of fish stocks. The
21 historical assumption that total egg production is proportional to the spawning biomass of a stock
22 has repeatedly been shown to be incorrect when species exhibit strong maternal effects, as
23 exemplified in rockfishes (*Sebastodes* spp.; Dick 2009; Beyer et al. 2015). Maternal size- and age-
24 dependent traits, such as increased relative fecundity (eggs per g of maternal somatic weight) or
25 spawning frequency (number of spawning events in a season) with increasing size or age, are evident
26 in a variety of species with varying reproductive strategies (see reviews by Fitzhugh et al. 2012 and
27 Hixon et al. 2014). In these cases, accounting for these maternal effects when estimating
28 reproductive output in stock assessments is more appropriate than using spawning stock biomass
29 (Spencer and Dorn 2013; He et al. 2015).

30 Rockfishes—a speciose genus of great commercial and recreational importance throughout
31 the California Current region—display strong maternal effects, with larger, older females
32 contributing disproportionately to production in terms of both offspring quantity and quality
33 (Sogard et al. 2008; Stafford et al. 2014; Dick et al. 2017). Rockfishes are generally long-lived, slow-
34 growing, and late to mature, with several species showing prolonged adolescent periods during
35 which small, young individuals may experience “false starts” to reproduction (abortive maturation;
36 Nichol and Pikitch 1994; Conrath and Knoth 2013; Lefebvre and Field 2015). All *Sebastodes* species are
37 live-bearers, with gestation periods ranging from one to two months (Love et al. 2002). Although
38 the majority of species produce one brood of larvae annually, several have long been known to be
39 capable of producing multiple broods in a given reproductive season (Moser 1967a; Love et al.
40 1990). The extent to which abortive maturation and multiple brooding occur is not well studied, and
41 the mechanisms driving these two phenomena are not well understood; however, both may affect

42 reproductive reference points used in stock assessments (age- or size-at-maturity and reproductive
43 output, respectively).

44 Mass atresia events, the arresting of development and subsequent resorption of the leading
45 cohort of vitellogenic oocytes, are known to occur in continental slope and deep dwelling rockfishes,
46 which tend to have the slowest growth and greatest longevity within the *Sebastes* genus (Nichol and
47 Pikitch 1994; Conrath and Knoth 2013; Lefebvre and Field 2015). Most of these mass atresia events
48 appeared to be abortive maturation (as opposed to skip spawning), as most females were below the
49 length or age at 95% maturity (L_{95}). Abortive maturation, as defined here and by Ramsay and
50 Whitthames (1996), is the occurrence of the resorbing type spawning omission (Rideout et al. 2005),
51 in which mass atresia occurs in females that have not previously reproduced. Although these females
52 are physiologically mature, they are functionally immature as they are not yet contributing to
53 production. Alternately, mass atresia in females that have reproduced in previous years represents
54 skip spawning (Rideout et al. 2005). Further complexity in the reproductive traits of some rockfishes
55 is the presence of an extended adolescent period, which is characterized by abortive maturation
56 events or by oocyte development arrested at the oil vacuole stage (first secondary growth stage
57 oocyte) for one or more years (Hannah and Parker 2007; Lefebvre and Field 2015). Maturity ogives,
58 or more appropriately spawning ogives, can better account for the consequences of abortive
59 maturation, extended adolescence, and skip spawning by designating such individuals as functionally
60 immature, which results in shifts of the ogive to larger, older individuals (Hannah and Parker 2007;
61 Lefebvre and Field 2015).

62 The phenomenon of multiple brooding in rockfishes was initially noted by Moser (1967a)
63 and MacGregor (1970) in bocaccio (*S. paucispinis*), speckled rockfish (*S. ovalis*), and starry rockfish (*S.*
64 *constellatus*). Multiple broods were macroscopically identified in ovaries containing fertilized eggs
65 (primary brood) by the presence of developing oocytes (the eventual secondary brood), as well as in

66 ovaries with developing oocytes (the eventual secondary brood) with entrained larvae from the
67 primary brood that had failed to be extruded from the ovary during parturition (larval release).
68 Multiple brooding has since been documented in more than a dozen *Sebastodes* species (Table 1) with
69 primarily southerly distributions in the Southern California Bight. It was generally believed to be
70 uncommon north of Point Conception, CA (Echeverria 1987; Love et al. 2002). The Southern
71 California Bight, a region extending from Point Conception, California, to Punta Eugenia, Baja
72 California, Mexico, is characterized by warmer, more variable and less productive conditions relative
73 to more northern waters of the California Current, where stronger, more predictable seasonal
74 upwelling occurs (Parrish et al. 1981; Checkley and Barth 2009). The mechanisms driving and
75 allowing for the production of multiple broods are not fully understood, nor are the limits to the
76 number of broods produced by a given species annually, though macroscopic evaluations have
77 suggested as many as three broods in some individuals (Kashef, unpublished data).

78 Moser (1967a) and all other authors to more recently document multiple brooding have
79 noted the need to account for the phenomenon in any accurate assessment of fecundity in
80 rockfishes. Both Moser (1967b) and MacGregor (1970) noted that secondary broods were recruited
81 from reserve oocytes after the eggs of primary broods had been fertilized, suggesting an
82 indeterminate fecundity pattern rather than the determinate fecundity pattern typical of *Sebastodes*
83 (Love et al. 2002). In fish with determinate fecundity, annual fecundity is fixed prior to any spawning
84 activity, whereas in fish with an indeterminate fecundity pattern, fecundity is not set prior to
85 spawning and is the product of the number of reproductive events throughout the season and the
86 fecundity of each batch (Murua and Saborido-Rey 2003). In a comparison between brood fecundity
87 estimates in chilipepper and speckled rockfish, Beyer et al. (2015) found that secondary broods were
88 nearly as fecund as primary broods. If fecundity in chilipepper is indeterminate, then multiple
89 brooding females could be doubling (or more, if more than two broods are produced) their annual

90 reproductive output compared to single brooding females. It is particularly important to account for
91 multiple brooding if the likelihood of producing two (or more) broods is size-dependent. Ralston
92 and MacFarlane (2010) observed a higher frequency of multiple brooding in larger versus smaller
93 female bocaccio; however, they also recognized that the challenges associated with false negatives
94 precluded an effective accounting of the phenomenon in defining a fecundity function. If multiple
95 brooding is size-dependent, the strength of the fecundity-size relationship would increase, resulting
96 in a further departure from the assumption of egg production being proportional to spawning stock
97 biomass (Dick et al. 2017). Fecundity-size relationships, which account for the disproportional
98 reproductive contribution of larger females, have been incorporated in over half (12 of 21) of recent
99 rockfish stock assessments on the U.S. West Coast (He et al. 2015). Additionally, a recent meta-
100 analysis provided the basis to account for size-dependent fecundity for all species, regardless of the
101 available data (Dick et al. 2017). The effect of multiple brooding females, however, has not yet been
102 considered in any rockfish stock assessment, and could substantially alter the relationship between
103 fecundity and size or age.

104 Chilipepper was chosen as a model species to explore the effect of multiple brooding on
105 fecundity estimates due to the relatively high abundance and healthy status of the stock, and the
106 relative ease of capture. Chilipepper is a continental shelf dwelling species distributed along the west
107 coast of North America and is most common from Cape Mendocino, California, to northern Baja
108 California, Mexico. Multiple brooding has been documented in this species off Southern and, less
109 frequently, Central California (Beyer et al. 2015).

110 The objectives of this study were to 1) document the occurrence of what might be
111 considered atypical ovarian development, such as abortive maturation, prolonged adolescence, and
112 skip spawning; 2) determine the prevalence of and regional and size-related patterns related to
113 multiple brooding; and 3) model how fecundity estimates and fecundity-length relationships change

114 when accounting for multiple brooding. Furthermore, the implications of the plasticity in
115 reproductive strategy in chilipepper and other multiple brooding rockfish species are considered in
116 terms of potential changes in environmental conditions.

117 **2. MATERIALS AND METHODS**

118 **2.1 SAMPLE COLLECTION AND PROCESSING**

119 Female chilipepper were collected via rod-and-reel onboard chartered recreational and
120 commercial fishing vessels in Central (near Cordell Bank and off Half Moon Bay) and Southern
121 (Santa Barbara Channel) California waters (Fig. 1). Samples were collected during the 2013-14, 2014-
122 15, and 2015-16 reproductive seasons (September to March), with samples collected in January,
123 February, and March attributed to the previous calendar year's cohort. Processing protocols
124 followed Beyer et al. (2015) and are briefly summarized here. Fish were stored on ice and processed
125 within 24 hours of capture. Fish were weighed (g) and measured (fork length [FL], mm), the sagittal
126 otoliths were removed for age analysis, and the liver was removed and weighed (g). All ovaries were
127 removed, weighed (g), and assigned a macroscopic development stage according to Beyer et al. 2015
128 (Table 2), with a “pre-vitellogenic” stage added between the immature and vitellogenic stages to
129 account for a distinct transitional stage (observed in females initiating development for their first
130 reproductive event as well as mature females initiating development for the start of the reproductive
131 season). Ovaries with evidence of multiple brooding were macroscopically identified and recorded as
132 either having evidence of an upcoming brood (vitellogenic oocytes co-occurring with fertilized eggs
133 or eyed-larvae) or a previous brood (evidenced by developing vitellogenic oocytes, fertilized eggs, or
134 eyed-larvae with either the ovary having a loose appearance with excess ovarian fluid and blood or
135 residual, degrading eyed-larvae). Two weighed subsamples (0.5-1.0 g) of eggs or larvae were collected
136 from ovaries with vitellogenic oocytes or developing embryos and fixed in 10% neutral buffered
137 formalin for fecundity analyses.

138 **2.2 HISTOLOGICAL ANALYSIS**

139 For histological analysis, a small portion of ovarian tissue was collected from the middle of
140 one ovarian lobe, placed in a tissue cassette, and fixed in 10% neutral buffered formalin for a

141 minimum of one week before being stored in 70% ethanol (n=581; limited collections from
142 macroscopically staged immature and spent ovaries). Tissue from ovaries with fertilized eggs or
143 eyed-larvae was rinsed prior to placement in tissue cassettes in an effort to reduce the number of
144 loose eggs and larvae present in the section, which obstructed the viewing of ovigerous tissue.
145 Ovarian tissue samples selected for histological analyses were processed according to standard
146 paraffin embedding and hematoxylin-eosin staining techniques (Humason 1972).

147 Histological sections were examined at 40-250x magnification using a compound
148 microscope and were read blindly (no size, age, or macroscopic stage data provided). Each ovary
149 was assigned an ovarian phase based on the stage of the leading oocyte cohort, incidence and state
150 of atresia, and presence and number of stages of postovulatory follicle complexes (POF; Table 2).
151 Ovarian phases were developed from observations of 565 chilipepper histological sections (all
152 macroscopic stages of development) from this and other studies (Field et al. 2016). Ovarian phases
153 utilized standard terminology suggested by Brown-Peterson et al. (2011) and were based on
154 descriptions of teleost oocyte development in Wallace and Selman (1981) and *Sebastes* oocyte and
155 ovarian development in Shaw et al. (2012) and Lefebvre and Field (2015), with modifications to
156 account for abortive maturation, skip spawning, and multiple brooding. Stages of atresia were based
157 on Hunter and Macewicz (1985). In addition to ovarian phase, all stages of oocytes present were
158 recorded, and diameters (μm) of the largest oocyte in five fields-of-view were measured using an
159 ocular micrometer and the mean recorded (mean maximum oocyte diameter). The incidence of
160 alpha atresia of advancing oocytes was assigned as low (0-5%), moderate (>5-25%), high (>25-50%),
161 or mass (>50%) in ovaries in the developing and spawning capable phases. Ovaries with mass
162 atresia, a thin ovarian wall, and no evidence of a previous parturition were classified into the abortive
163 maturation subphase (Table 2). Qualitative assessment of the ovarian wall thickness (thin or thick

164 based on a threshold of approximately 75 μm) and prominence of blood vessels and late stages of
165 atresia (delta and gamma) throughout ovarian lamellae were also noted.

166 To examine the prevalence of abortive maturation and adolescent females, ovarian samples
167 from all females macroscopically staged as pre-vitellogenic or resting between October and January
168 (n=66) were histologically analyzed. Previous examination of chilipepper ovaries during this time
169 period indicated a high incidence of abortive maturation in these stages of development and mass
170 atresia has not been previously observed at other stages of development (Field et al. 2016).

171 Temporal restriction of this analysis to the typical peak parturition season for chilipepper avoided
172 confusing abortive maturation with the regression of the ovary typical at the end of the season.

173 Females were classified as “adolescents” when ovaries were in the early developing or regenerating
174 histological subphases and had the following characteristics: thin ovarian wall; beta or delta atresia;
175 and a paucity of prominent blood vessels, muscle bundles, connective tissue, or melanomacrophage
176 centers.

177 For multiple brooding analyses, samples were restricted to December to January and
178 November to January in the central and southern regions, respectively. Ovarian development during
179 these time periods was expected to be sufficiently advanced to identify females producing multiple
180 broods but early enough to minimize failing to detect multiple brooding due to degradation of
181 spawning markers (POFs). Only reproductively active females (those with ovaries in the vitellogenic,
182 fertilized, and eyed-larvae macroscopic stages) were selected for analyses, as accurate detection of
183 multiple brooders decreases significantly at other stages of development. Fifty percent (or at least 15
184 if fewer than 30 fish were collected) of the reproductively active ovaries were processed for each
185 month, year, and region combination, and samples were selected to match the observed proportion
186 of macroscopically identified multiple vs. single brooding fish. To ensure sampling across the size

187 range of the collection event, fish were sorted by length, with selection for processing including the
188 smallest, largest, and every second fish.

189 Multiple brooding females identified histologically had ovaries in the partially spent phase
190 (Table 2), and had evidence of either an upcoming brood or a previous brood in addition to the
191 brood characterized by the leading cohort (Fig. 2). Upcoming broods were indicated by the presence
192 of non-atretic oocytes at the secondary vitellogenic stage or later that co-occurred with fertilized
193 eggs or eyed-larvae (Fig. 2a). Previous broods were indicated by the presence of degrading, “old”
194 POFs co-occurring with vitellogenic oocytes (Fig. 2C) or with “recent” POFs from developing
195 embryos. The distinction between “recent” and “old” POFs was based upon comparison of the two
196 stages within the same ovary (Fig. 3.). The terms are meant to reflect relative age and are not a
197 definition of a particular stage of POF degradation. As oocyte growth rates are unknown for
198 chilipepper and mass atretic events were most common with oocytes at early stages of vitellogenesis
199 (Lefebvre, unpublished data), primary vitellogenic oocytes were deemed to be too early in
200 development to be certain oogenesis and fertilization could be completed within the reproductive
201 season. Therefore, secondary vitellogenic oocytes were set as the minimum oocyte stage necessary to
202 definitively indicate development of an upcoming brood.

203 To quantify the relationship between the probability of a mature female producing a second
204 brood and maternal size, we modeled the proportion of multiple brooding chilipepper (P_{MB}) as a
205 logistic regression (0=single brooder, 1=multiple brooder), with FL as a continuous variable and
206 region (central or southern) as a categorical covariate. Model selection was determined by the Akaike
207 information criterion (AIC); delta-AIC values (best fit=0.00) and model weights were reported. Only
208 samples examined histologically were included in analyses.

209 2.3 FECUNDITY ANALYSES

210 Fecundity of each female was estimated gravimetrically by enumerating preserved oocytes or
211 developing embryos from two weighed subsamples using a stereo microscope (see Beyer et al. 2015
212 for details). The two estimates of fecundity for each female were averaged, and the coefficient of
213 variation was calculated as a measure of error. Samples were excluded from further analyses when
214 the coefficient of variation was greater than 10%. Fecundity estimates spanned the entire collection
215 time range from September to March of each reproductive season, and years were combined.

216 Absolute fecundity (F , total number of oocytes or embryos) was estimated as the quotient of the
217 subsample count and weight multiplied by the weight of the ovary. Weight-specific, or relative
218 fecundity (F_{nl}), was the quotient of F and maternal somatic weight (g). Samples from ovaries in the
219 vitellogenic macroscopic stage that had multiple sizes of vitellogenic oocytes were excluded from
220 analyses, as it was presumed that either recruitment of oocytes to the spawning cohort was
221 incomplete or oocytes from multiple cohorts (batches) were present in these samples. In samples
222 from ovaries with developing embryos, only the embryos were collected and enumerated. As such,
223 these fecundity estimates represent potential annual fecundity for single brooders and brood (batch)
224 fecundity for multiple brooders.

225 The relationships of length with F and F_{nl} were examined to determine if there was a
226 significant maternal size effect on egg production. The fecundity-length relationship was best
227 described by the power function:

$$F = a \times L^b$$

228 where L = fork length (mm). The parameters a and b were the intercept and slope, respectively, of
229 the linear regression of natural-log transformations of absolute fecundity and length. The value for a
230 is reported after back-transformation using the bias correction term $\exp(\sigma^2/2)$. Values for p and R^2
231 are reported for the log-transformed equation. Geographic effects were examined by including
232

233 region as a categorical covariate in an analysis of covariance (ANCOVA). Relative fecundity was best
234 described as a linear function of female length as:

235
$$F_{rel} = c + Ld$$

236 where L = fork length (mm), and c and d are the intercept and slope, respectively, of the linear
237 regression fit to the data.

238 2.4 ANALYSIS OF PRODUCTIVITY

239 To assess the effect of multiple brooding on production, potential annual fecundity (PAF)
240 was modeled as:

241
$$PAF = F \times (1 + P_{MB})$$

242 which assumed that females produced a maximum of two broods and brood fecundity was equal
243 between broods (Appendix A). The relative potential annual fecundity (PAF_{rel}) at length (L) was
244 estimated as:

245
$$PAF_{rel} = \frac{F \times (1 + P_{MB})}{W}$$

246 where W was the somatic weight g at L , as determined using the relationship $W = 4.05e^6 * L^{3.2}$ from
247 the 2015 stock assessment (Field et al. 2016). PAF and PAF_{rel} are “potential” fecundity estimates as
248 fecundity down-regulation through atresia was not fully accounted for. All data were analyzed using
249 R (Version 3.2.1) with a significance level of $p < 0.05$.

250 3. RESULTS

251 In total, 794 female chilipepper rockfish were collected in the 2013-14, 2014-15, and 2015-16
252 reproductive seasons (September to March) from Central (n=417) and Southern (n=377) California
253 waters (Table 3). No collections were made in September or March off Southern California. Fish
254 collected off Central California had higher average (\pm standard deviation) and maximum lengths
255 (392 \pm 69 and 500 mm FL, respectively) than those from Southern California (305 \pm 44 and 454
256 mm FL, respectively; Table 3). Based on macroscopic staging, the period of peak ovarian
257 development and gestation was October through January in both regions, though vitellogenesis
258 initiated prior to the first collections (Fig. 4).

259 Ovarian histological samples from all females macroscopically staged as pre-vitellogenic or
260 resting between October and January (n=66) were examined to identify adolescent females and
261 those undergoing abortive maturation. The maximum length of these females was 401 mm, and 83%
262 (n=55) of these were below the reported length at 95% maturity (L_{95} ; 352 mm; Field et al. 2016).
263 Fifteen (23%) of these ovaries were undergoing abortive maturation (<2.5% of all females and 4%
264 of all fish $<L_{95}$), and fourteen (21%) were adolescents. These 29 fish, all <340 mm FL, were unlikely
265 to have been capable of reproducing during the season of capture. All adolescent females appeared
266 to have experienced abortive maturation; however, degeneration within the ovary was too advanced
267 to definitively define abortive maturation. Of the remaining pre-vitellogenic or resting stage ovaries,
268 eight (12%) were immature; 18 (27%) were in the developing or spawning capable subphases and
269 capable of reproducing in the season of capture; and 11 (17%) had likely already reproduced during
270 the season of capture (regressing and regenerating phases). There was no evidence of skip spawning.

271 Incidence of alpha atresia of the leading oocyte cohort was examined in the 113 ovaries that
272 were placed in the developing and spawning capable histological phases. When atresia was observed,
273 individuals generally displayed low (5% or less; n=88) or moderate (>5-25%; n=21) downregulation.

274 Four females with gestating eggs/embryos showed mass atresia of the leading oocyte cohort (which
275 was at the primary vitellogenic stage in all ovaries) suggesting they were aborting a secondary brood.

276 Multiple broods were identified macroscopically in 230 chilipepper ovaries (49% of all fish
277 with ovaries in the vitellogenic and fertilized egg or eyed-larvae macroscopic stages). They were first
278 evident in November in the central region and October in the southern region (Table 4). The
279 smallest multiple brooders were 300 and 252 mm FL in the central and southern regions,
280 respectively. Most fish showed evidence of a maximum of two broods; however, four (two from
281 each region; <3% of all multiple brooders) had evidence of three broods (e.g. macroscopically
282 visible as early eyed-larvae [brood #2] with residual, degrading eyed-larvae [brood #1] and
283 developing vitellogenic oocytes [brood #3], or histologically presenting as two stages of POFs
284 [broods #1 & #2] with developing vitellogenic oocytes [brood #3]).

285 Overall agreement between macroscopically and histologically designated multiple brooding
286 chilipepper was good (92%) for samples collected between October and (n=229; Table 4). However,
287 histological examination provided the most accurate assessment, as 12 (5%) fish were identified as
288 multiple brooders with histological but not macroscopic examination. These females either had
289 developing vitellogenic oocytes and POFs (n=3, 25%); were gestating a brood and had upcoming
290 vitellogenic oocytes (n=4, 33%); or were gestating a brood and had a second, older POF stage (n=5,
291 42%). Two fish (2%) identified macroscopically as multiple brooders did not show histological
292 evidence (2 stages of POFs). Anecdotal evidence suggests degradation of residual eyed-larvae takes
293 longer than that of POFs (Kashef and Stafford, unpublished data), and it is possible that the older
294 POFs were fully degraded or sparse enough to preclude histological detection in these cases. Two
295 (2%) additional fish from January in Southern California were macroscopically staged as having
296 upcoming broods but had primary vitellogenic oocytes, below the developmental stage threshold for
297 defining an upcoming brood histologically.

298 Based on the subset of histology samples selected for multiple brooding analyses (n=97
299 Central; n=78 Southern), 59% (n=57) and 69% (n=54) of chilipepper ovaries showed evidence of
300 multiple brooding in Central and Southern California, respectively (Table 4). Recruitment from the
301 reserve stock of primary growth and oil vacuole stage oocytes for secondary broods appeared to
302 occur when the leading oocyte cohort was nearing maturation (mean maximum oocyte diameter
303 >650 μm) or during gestation of the primary brood.

304 In modeling P_{MB} , region was a significant covariate (Table 5). In the best fit model, the slopes
305 of the logistic regressions were the same between regions, but the intercepts were significantly
306 different (Table 5; Fig. 5), possibly reflecting regional differences in life history traits. The resulting
307 logistic regression model showed that P_{MB} increased with maternal size, with a greater proportion of
308 multiple brooding in southern fish (Table 6; Fig. 5). At the maximum observed sizes in each region,
309 >90% of females were predicted and observed to be producing multiple broods (Fig. 5).

310 Single brood (e.g. batch) fecundity estimates from 358 chilipepper (n=168 Central; n=190
311 Southern) were included in the analysis of regional and maternal size effects. Region was not a
312 significant covariate (ANCOVA; $p=0.07$; $df=354$) and estimates were combined. The relationship
313 between absolute fecundity and length was $F = 3.06e^{-5} * L^{3.73}$ ($R^2=0.88$; $p<0.01$; $df=356$; Fig. 6A).
314 Relative fecundity was also significantly related to maternal size, with $F_{rel} = 46.44 + 0.31L$ ($R^2=0.26$;
315 $p<0.01$; $df=356$; Fig. 6B).

316 After incorporating P_{MB} into fecundity estimates, both PAF and PAF_{rel} showed substantial
317 increases in both regions compared to estimates of a single brood (Fig. 7).

318 **4. DISCUSSION**

319 All fishes face life-history trade-offs between somatic growth and reproduction. Total
320 fecundity increases with size, so unless survival to the next reproductive season is unlikely, lifetime
321 reproductive value may be increased when a female delays maturity and invests in growth (Charnov
322 et al. 2001; Rideout et al. 2005; Harvey et al. 2011). This is particularly true when annual egg
323 production disproportionately increases with size, as evident in the increase in F_{rel} with female size
324 for most *Sebastodes* species (Dick et al. 2017). The trade-off between somatic growth and reproduction
325 continues even after reproductive maturity has been attained, as seen by the shorter spawning
326 seasons and lower spawning frequency of smaller/younger compared to larger/older indeterminate
327 spawners (Ganias et al. 2007; Fitzhugh et al. 2012; Lefebvre et al. 2016). Chilipepper off Central and
328 Southern California appear to demonstrate both of these scenarios.

329 Chilipepper were shown here to exhibit delayed maturation: some females reached
330 physiological maturity but remained functionally immature, as evidenced by adolescent females and
331 those undergoing abortive maturation, all of which were below the reported L_{95} . The observation of
332 abortive maturation in chilipepper is the first report of this phenomenon occurring in a *Sebastodes*
333 species with a relatively shallow distribution (continental shelf) and moderate longevity (max age 35
334 years; Love et al. 2002). Mass atresia events have been documented in several rockfish species,
335 including blackgill (*S. melanostomus*; Lefebvre and Field 2015), darkblotched (*S. crameri*; Nichol and
336 Pikitch 1994), and Pacific Ocean perch (*S. alutus*; Hannah and Parker 2007), all species with deep
337 distributions and lifespans of 60 to 90 years. As mass atresia events in these species occurred mostly
338 in fish below the length or age at 99% maturity, and given the longevity, low natural mortality rates,
339 and strong maternal effects observed in rockfishes (Berkeley et al. 2004), it seems plausible these
340 females were shunting energy to growth by delaying maturation completely (e.g. abortive

341 maturation) or skipping opportunities early in their reproductive lives in favor of increasing their
342 fitness (in terms of lifetime reproduction; Charnov et al. 2001).

343 In chilipepper, ovaries in the early stages of mass atresia events were easily identifiable in
344 histological sections. Among all females, the observed rate of abortive maturation was low (<2.5%);
345 however, distinguishing between fish that experienced mass atresia but were in later stages of
346 resorption from fish that were resorbing material left over after successful reproduction was
347 difficult. Histological examination improved the classification of early developing, post-parturition
348 (regressing and regenerating), and abnormally developing ovaries (abortive maturation), but could
349 not resolve with absolute certainty the maturity status of some individuals, an issue common to all
350 reproductive studies (Hunter and Macewicz 2003). Due to asynchrony in the timing of spawning
351 within this population, it is possible that some of the females classified as adolescents had actually
352 reproduced previously or that some of those with ovaries staged as regenerating had undergone
353 abortive maturation. However, histological characteristics of the tissue lend support for those
354 females classified as adolescents or undergoing abortive maturation having not yet successfully
355 reproduced (Lowerre-Barbieri et al. 2011). Documentation of a prolonged adolescent period in
356 chilipepper and other *Sebastodes* species emphasizes the necessity for careful consideration of sampling
357 time periods and the distinction between physiological and functional maturity when determining
358 spawning ogives.

359 Multiple brooding was a common phenomenon in chilipepper in waters off both Central
360 and Southern California during the 2013-14, 2014-15, and 2015-16 reproductive seasons. Multiple
361 brooding in other *Sebastodes* species was also observed more frequently than in previous years in both
362 regions (Beyer, unpublished data). Unexpectedly, the observed frequency of multiple brooding in
363 chilipepper was nearly equal between the regions during this time period (Table 4), despite
364 indications from previous studies that multiple brooding by any rockfish species was relatively rare

365 north of Point Conception (Love et al. 1990; Ralston and MacFarlane 2010; Stafford et al. 2014).
366 Interestingly, in collections dating to 2009, multiple brooding (as identified macroscopically) was
367 never observed at Cordell Bank², only occasionally observed in Half Moon Bay, and observed at a
368 lower frequency in the south prior to the 2013-14 reproductive season (Beyer et al. 2015). While
369 rates between this and the earlier collections are not directly comparable, because earlier collections
370 relied solely on macroscopic observations of residual larvae in ovaries with developing oocytes to
371 signify multiple brooding, this type of observation did increase in the current study.

372 The rates of multiple brooding observed in chilipepper in this study, regardless of whether
373 or not they were atypical, should be considered conservative estimates. Females developing a
374 secondary brood have been detected histologically as early as September in both regions (Lefebvre,
375 unpublished data) and macroscopically as late as March (Table 4). However, the protracted
376 reproductive season and observed asynchronicity in ovarian development within the population
377 made it difficult to accurately assess the prevalence of multiple brooding outside of a narrow
378 temporal window. The time period chosen for analyses should have removed any confounding
379 effects of seasonality and size on the propensity to produce multiple broods. Even if small, young
380 females initiated ovarian development later than larger, older females (as is common across taxa;
381 Fitzhugh et al. 2012; Hixon et al. 2014), evidence of an upcoming brood should have been present
382 given the duration of gestation and the fact that the majority of females (of all sizes) had ovaries in a
383 post-parturition stage by February. The restricted sampling period more likely resulted in an
384 underrepresentation of females that were capable of producing or had already produced more than
385 two broods. The conservative definition used to identify an upcoming brood and the inability to

² Although not observed macroscopically, anecdotal evidence of multiple brooding in chilipepper was found in 2004-2008 at Cordell Bank (Stafford et al. 2014), where a bimodal trend in parturition timing was observed. Multiple broods were potentially missed macroscopically due to sampling periodicity.

386 detect more than two POF classes (due to degradation during the long brood intervals) further
387 contributed to limited evidence of three or more broods.

388 While the environmental and physiological factors allowing for and driving multiple
389 brooding in rockfishes are unknown, given the typically southerly distribution of multiple brooding
390 within and among rockfish species, temperature could be a significant factor. Metabolic rates, and
391 subsequently rates of oogenesis and embryonic development, increase with increasing temperature
392 (Kjesbu et al. 2010; Lefebvre and Denson 2012). Rockfishes in the warm waters of the Southern
393 California Bight may be better positioned in “normal” years, compared to fishes residing in cooler
394 waters of the California Current, to produce multiple broods due to a shorter brood interval that
395 results from increased metabolic rates. High food availability may also be an important factor
396 enabling females to produce multiple broods, as increased egg production is positively correlated
397 with female condition (Beyer et al. 2015). Regardless of how interannual variability differs between
398 and within these two regions, the significant increase in the prevalence of multiple brooding with
399 female size (P_{MB}) contributes further to the suite of maternal size- and age-related effects that result
400 in a disproportionate contribution of larger, older females to larval production in rockfishes (see
401 Hixon et al. 2014).

402 We speculate that atypical oceanographic conditions were the major contributing factor to
403 the increased incidence of multiple brooding in the Central California region during this study
404 period. The Northeast Pacific experienced a “marine heatwave” from 2013-2016, during which time
405 the sea surface temperatures were at unusually high levels yet coastal waters in the California Current
406 experienced average to above average upwelling and abundant forage (pelagic micronekton)
407 conditions (Di Lorenzo and Mantua 2016; McClatchie et al. 2016; Sakuma et al. 2016). In particular,
408 the abundance of pelagic juvenile rockfish off of Central California during the time period of this
409 study (2013-14, 2014-15 and 2015-16 spawning seasons, corresponding to pelagic juvenile

410 abundance in the late spring of 2014-2016) were among the highest observed in a 30+ year time
411 series (Sakuma et al. 2016, Wells et al. 2017). Several stock assessments also indicated very strong
412 recruitment for recent year classes such as 2013 and 2014 (Field et al. 2016; He and Field 2018),
413 although data to inform more recent year classes have not yet been incorporated into assessment
414 models. While it is premature to directly connect high pelagic juvenile abundance and strong year
415 classes from assessments to the potential increase in multiple brooding, it is fair to assume that an
416 increase in the frequency of multiple brooding, which presents an increase in larval productivity,
417 should presumably also increase the overall recruitment in chilipepper and other multiple brooding
418 species. These unusual conditions of warm temperatures with potentially favorable foraging
419 opportunities may have allowed more females in the central region to successfully produce a second
420 brood during the study period. We expect the frequency of multiple brooding to decrease in years
421 with more typical oceanographic conditions for the region; however, at present, our time series of
422 the frequency of multiple brooding is too short to formally evaluate any potential relationship to
423 environmental factors.

424 Reproductive strategy, including fecundity pattern, is generally considered a fixed life-history
425 characteristic; however, chilipepper demonstrated flexibility in this regard. Grier et al. (2005)
426 suggested viviparity represents a special case of indeterminate batch fecundity (Murua and Saborido-
427 Rey 2003). The development of distinct broods, whose oocytes are recruited independently from the
428 reserve stock of primary growth and oil vacuole stage oocytes, observed in chilipepper in this study
429 and in other multiple brooding rockfishes (Moser 1967b; MacGregor 1970), supports this theory.
430 Furthermore, the development of discrete batches, as opposed to overlapping batches typical of
431 indeterminate spawners (Lefebvre et al. 2016), has been observed outside of *Sebastodes* (McBride et al.
432 2017). Historically, chilipepper in the central region (and all single brooding rockfishes), appeared to
433 be determinate total spawners (Murua and Saborido-Rey 2003), synchronously maturing all oocytes

434 for production of a single brood annually. The observation of multiple brooding off Central
435 California may not represent a change in fecundity pattern per se, as these fish are likely always
436 biologically capable of indeterminate batch spawning behavior, but may instead be a response to
437 favorable environmental and physiological factors. In particular, larger females, whose somatic
438 growth has slowed, may be better positioned to exploit favorable conditions and “switch” to
439 multiple brooding. This switch results in a near doubling of *PAF*, though the relationship between
440 brood fecundity and brood number requires further exploration and refinement.

441 Most species of *Sebastodes* have never been observed to produce multiple broods. The results
442 of Beyer et al. (2015) and Dick et al. (2017) suggest that the maternal effects on brood fecundity are
443 greater in single brooding species (such as yellowtail [*S. flavidus*] and blackgill rockfish), based on
444 the steepness of the fecundity-size relationships for single broods. However, when multiple broods
445 were accounted for in the present study, the slope of the relative fecundity relationships became
446 considerably steeper for chilipepper, indicating that maternal effects are as important in multiple
447 brooders as they are in single brooding species. In population assessment models, changes in the
448 slope of fecundity-size relationships can result in significant changes to estimates of stock depletion,
449 which in turn, may alter perception of stock status (Spencer and Dorn 2013; He et al. 2015).

450 For five decades, researchers have recognized the need to account for multiple brooding in
451 estimates of egg production in multiple brooding rockfishes (Moser 1967a; Love et al. 1990; Beyer et
452 al. 2015). We provided a basic approach to account for the relationship between multiple brooding
453 and maternal length that could easily be incorporated into age-structured stock assessment models
454 such as Stock Synthesis (Methot Jr. and Wetzel 2013). The model could be refined to account for
455 the production of more than two broods and differences in fecundity among sequential broods
456 (Appendix A). Accurately accounting for multiple brooding remains difficult, as sampling needs to
457 be timed appropriately and ovaries need to be examined microscopically (fresh or histologically) to

458 be able to best detect the phenomenon. However, an understanding of oocyte growth rates could
459 enable earlier detection of upcoming broods and allow for estimating the maximum number of
460 broods possible within the reproductive season. The observed maternal effect and the propensity to
461 produce multiple broods may strengthen further if there is also a size effect on the duration of the
462 reproductive season, such that, of multiple brooding individuals, larger females may be more likely
463 to produce three or more broods. Understanding the biological and environmental drivers of
464 multiple brooding, how the rates compare among species, and how its prevalence varies
465 interannually will be essential to future management of multiple brooding *Sebastodes* species.

466 The plasticity in reproductive effort demonstrated by chilipepper may help them and other
467 multiple brooding *Sebastodes* species buffer the effects of future climate change in the California
468 Current. While fisheries productivity is forecasted to increase in temperate regions due to expansion
469 of habitat and increased primary productivity (Britten et al. 2016), within the California Current
470 region, patterns of circulation and wind forcing are expected to change such that seasonal upwelling
471 will become less predictable (Checkley and Barth 2009; Rykaczewski et al. 2015). Given the
472 relationship of both P_{MB} and F_{nl} with maternal size, the ability to forego reproduction through
473 abortive maturation when environmental or individual physiological conditions are unfavorable may
474 increase lifetime fitness by allowing excess energy to be devoted to somatic growth (Harvey et al.
475 2011). Furthermore, the flexibility to change the frequency of reproduction and double (or more)
476 annual fecundity may allow these species to take advantage of favorable conditions. Given that the
477 frequency of abortive maturation and multiple brooding likely vary both spatially and temporally,
478 monitoring the prevalence and modeling the significance of these phenomena will be key to
479 accurately assessing the reproductive potential of these stocks as oceanographic conditions in the
480 California Current change.

481 ACKNOWLEDGEMENTS

482 Thank you to boat captains J. Churchman, J. Diamond, T. Mattusch, and R. Powers, their crew, and

483 volunteer anglers for assistance with fish collections. The following Southwest Fisheries Science

484 Center (SWFSC) staff and student interns provided substantial laboratory support: C. Friedlander

485 (SWFSC), R. Miller (SWFSC), M. Monk (SWFSC), A. Payne (SWFSC), A. Adlan, K. Anderson, S.

486 Baeg, A. Baldo, N. Bartell, K. Boone, A. Brewster, E. Chortek, K. Coll, K. Czupil, S. Eckley, H.

487 Garber, D. Hawk, H. Hermann-Sorensen, A. Hernandez, R. Hruska, F. Huang, I. Iglesias, L. Juarez,

488 M. Lau, M. Maguire, E. McDonald-Williams, K. Pearson, K. Pham, K. Shiraz, E. Slesinger, K.

489 Souza, E. Stollmeyer, K. Sullivan, and J. Yanik. R. Miller (SWFSC) provided figure 1. This

490 manuscript was improved with constructive comments on earlier drafts provided by G. Fitzhugh

491 (SEFSC), B. Roumillat (South Carolina Department of Natural Resources; retired), and two

492 anonymous reviewers. Support was provided by Enhance Annual Stock Assessments program funds

493 and the National Cooperative Research Program (NMFS), through the Cooperative Institute for

494 Marine Ecosystems and Climate, University of California Santa Cruz. The findings and conclusions

495 in the paper are those of the authors and do not necessarily represent the views of the National

496 Marine Fisheries Service.

497 LITERATURE CITED

498 Berkeley, S.A, Chapman, C., and Sogard, S.M. 2004. Maternal age as a determinate of larval growth
499 and survival in a marine fish, *Sebastodes melanops*. *Ecol.* **85**:1258-1264.

500 Beyer, S.G., Sogard, S.M., Harvey, C.J., and Field, J.C. 2015. Variability in rockfish (*Sebastodes* spp.)
501 fecundity: species contrasts, maternal size effects, and spatial differences. *Environ. Biol.*
502 *Fishes* **98**: 81-100.

503 Britten, G.L., Dowd, M., and Worm, B. 2016. Changing recruitment capacity in global fish stocks.
504 *Proc. Natl. Acad. Sci.* **113**(1): 134-139.

505 Brown-Peterson, N.J., Wyanski, D.M., Saborido-Rey, F., Macewicz, B.J., and Lowerre-Barbieri, S.K.
506 2011. A standardized terminology for describing reproductive development in fishes. *Mar.*
507 *Coast. Fish.: Dyn. Manage. Ecosyst. Sci.* **3**: 52-70.

508 Charnov, E.L., Turner, T.F., and Winemiller, K.O. 2001. Reproductive constraints and the evolution
509 of life histories with indeterminate growth. *Proc. Natl. Acad. Sci.* **98**(16): 9460-9464.

510 Checkley, D.M., and Barth, J.A. 2009. Patterns and processes in the California Current System. *Prog.*
511 *Oceanogr.* **83**: 49-64.

512 Conrath, C.L., and Knoth, B. 2013. Reproductive biology of Pacific Ocean perch in the Gulf of
513 Alaska. *Mar. Coast. Fish.: Dyn. Manage. Ecosyst. Sci.* **5**: 21-27.

514 Di Lorenzo, E., and Mantua, N. 2016. Multi-year persistence of the 2014/15 North Pacific marine
515 heatwave. *Nat. Clim. Change* **6**(11): 1042-1047.

516 Dick, E.J. 2009. Modeling the reproductive potential of rockfishes (*Sebastodes* spp.). Ph.d. dissertation,
517 Ocean Sciences, The Univeristy of California Santa Cruz, Santa Cruz, C.A..

518 Dick, E.J., Beyer, S., Mangel, M., and Ralston, S. 2017. A meta-analysis of fecundity in rockfishes
519 (genus *Sebastodes*). *Fish. Res.* **187**: 73-85.

520 Echeverria, T.W. 1987. Thirty-four species of California rockfishes: maturity and seasonality of
521 reproduction. Fish. Bull. **85**(2): 229-250.

522 Field, J.C., Beyer, S.G., and He, X. 2016. Status of the chilipepper rockfish, *Sebastes goodei*, in the
523 California Current for 2015. Stock Assessment. Pacific Fishery Management Council,
524 Portland, OR.

525 Fitzhugh, G.R., Shertzer, K.W., Kellison, G.T., and Wyanski, D.M. 2012. Review of size- and age-
526 dependence in batch spawning: implications for stock assessment of fish species exhibiting
527 indeterminate fecundity. Fish. Bull. **110**(4): 413-425.

528 Ganias, K., Somarakis, S., Koutsikopoulos, C., and Machias, A. 2007. Factors affecting the spawning
529 period of sardine in two highly oligotrophic seas. Mar. Biol. **151**(4): 1559-1569.

530 Grier, H.J., Uribe, M.C., Parenti, L.R., and De la Rosa-Cruz, G. 2005. Fecundity, the germinal
531 epithelium, and folliculogenesis in viviparous fishes. *In Viviparous Fishes. Edited by H.J.*
532 Grier and M.C. Uribe. New Life Publications, Homestead, Florida. pp. 193-217.

533 Hannah, R.W., and Parker, S.J. 2007. Age-modulated variation in reproductive development of
534 female Pacific Ocean perch (*Sebastes alutus*) in waters off Oregon. *In Biology, Assessment,*
535 *and Management of North Pacific Rockfishes. Edited by J. Heifetz, J. Dicosimo, A.J.*
536 Gharrett, M.S. Love, V.M. O'Connell and R.D. Stanley. Alaska Sea Grant, University of
537 Alaska Fairbanks. pp. 1-20.

538 Harvey, C.J., Field, J.C., Beyer, S.G., and Sogard, S.M. 2011. Modeling growth and reproduction of
539 chilipepper rockfish under variable environmental conditions. Fish. Res. **109**: 187-200.

540 He, X., Field, J.C., Beyer, S.G., and Sogard, S.M. 2015. Effects of size-dependent relative fecundity
541 specifications in fishery stock assessments. Fish. Res. **165**: 54-62.

542 He, X., and J.C. Field. 2018. Stock Assessment Update: Status of Bocaccio, *Sebastes paucispinis*, in the
543 Conception, Monterey and Eureka INPFC areas for 2017. Pacific Fishery Management
544 Council, Portland, Oregon.

545 Hixon, M.A., Johnson, D.W., and Sogard, S.M. 2014. BOFFFFs: on the importance of conserving
546 old-growth age structure in fishery populations. ICES J. Mar. Sci. **71**(8): 2171-2185.

547 Humason, G.L. 1972. Animal tissue techniques. W. H. Freeman and Co., San Francisco and
548 London.

549 Hunter, J.R., and Macewicz, B.J. 1985. Rates of atresia in the ovary of captive and wild northern
550 anchovy, *Engraulis mordax*. Fish. Bull. **83**(2): 119-136.

551 Hunter, J.R., and Macewicz, B.J. 2003. Improving the accuracy and precision of reproductive
552 information used in fisheries. *In* Report of the working group on modern approaches to
553 assess maturity and fecundity of warm- and cold-water fish and squids. *Edited by* O.S.
554 Kjesbu, J.R. Hunter and P.R. Witthames. Institute of Marine Research, Bergen, Norway. pp.
555 57-68.

556 Kjesbu, O.S., Righton, D., Krüger-Johnsen, M., Thorsen, A., Michalsen, K., Fonn, M., and
557 Witthames, P.R. 2010. Thermal dynamics of ovarian maturation in Atlantic cod (*Gadus*
558 *morhua*). Can. J. Fish. Aquat. Sci. **67**(4): 605-625.

559 Lefebvre, L.S., and Denson, M.R. 2012. Inshore spawning of *Rachycentron canadum* in South Carolina.
560 Fish. Bull. **110**(4): 397-412.

561 Lefebvre, L.S., and Field, J.C. 2015. Reproductive complexity in a long-lived deepwater fish,
562 Blackgill rockfish *Sebastes melanostomus*. Trans. Am. Fish. Soc. **144**(2): 383-399.

563 Lefebvre, L.S., Payne, A.M., and Field, J.C. 2016. Reproductive dynamics of Pacific sanddab,
564 *Citharichthys sordidus*, off the central coast of California. J. Sea. Res. **107**(1): 100-111.

565 Love, M.S., Morris, P., McCrae, M., and Collins, R. 1990. Life history aspects of 19 rockfish species
566 (Scorpaenidae: *Sebastodes*) from the Southern California Bight. NOAA Tech Rep NMFS 87:
567 38pp.

568 Love, M.S., Yoklavich, M., and Thorsteinson, L. 2002. The Rockfishes of the Northeast Pacific.
569 University of California Press, Berkeley, C.A..

570 Lowerre-Barbieri, S.K., Ganias, K., Saborido-Rey, F., Murua, H., and Hunter, J.R. 2011.
571 Reproductive timing in marine fishes: variability, temporal scales, and methods. Mar. Coast.
572 Fish.: Dyn. Manage. Ecosyst. Sci. **3**: 71-91.

573 MacGregor, J.S. 1970. Fecundity, multiple spawning, and description of the gonads in *Sebastodes*.
574 U.S.F.W. S. Spec. S. Rep., Fisheries No. 596, 12pp., Washington D. C. p. 12.

575 McBride, R.S., Johnson, A.K., Lindsay, E.K., Walsh, H.J., and Richards, R.A. 2017. Goosefish
576 *Lophius americanus* fecundity and spawning frequency, with implications for population
577 reproductive potential. J. Fish Biol. **90**: 1861-1882.

578 McClatchie, S., Goericke, R., Leising, A., Auth, T.D., Bjorkstedt, E.P., Robertson, R.R., Brodeur,
579 R.D., et al. 2016. State of the California Current 2015-16: Comparison with the 1997-98 El
580 Niño CalCOFI Rep. **57**: 5-61.

581 Methot Jr, R.D., and Wetzel, C.R. 2013. Stock synthesis: A biological and statistical framework for
582 fish stock assessment and fishery management. Fish. Res. **142**: 86-99.

583 Moser, H.G. 1967a. Reproduction and development of *Sebastodes paucispinis* and comparison with
584 other rockfishes off southern California. Copeia **1967**(4): 773-797.

585 Moser, H.G. 1967b. Seasonal histological changes in gonads of *Sebastodes paucispinis* ayres an
586 ovoviparous teleost (Family Scorpaenidae). J. Morphol. **123**(4): 329-&.

587 Murua, H., and Saborido-Rey, F. 2003. Female reproductive strategies of marine fish species of the
588 North Atlantic. J. Northwest. Atl. Fish. Sci. **3**: 23-31.

589 Nichol, D.G., and Pikitch, E.K. 1994. Reproduction of darkblotched rockfish off the Oregon coast.

590 Trans. Am. Fish. Soc. **123**(4): 469-481.

591 Parrish, R.H., Nelson, C.S., and Bakun, A. 1981. Transport mechanisms and reproductive success of

592 fishes in the California Current. Biol. Oceanogr. **1**(2): 175-203.

593 R Core Team. 2015. R: A language and environment for statistical computing. R Foundation for

594 Statistical Computing, Vienna, Austria. <http://www.R-project.org/>.

595 Ralston, S., and MacFarlane, B.R. 2010. Population estimation of bocaccio (*Sebastodes paucispinis*) based

596 on larval production. Can. J. Fish. Aquat. Sci. **67**(6): 1005-1020.

597 Ramsay, K., and Whitthames, P.R. 1996. Using oocyte size to assess seasonal ovarian development

598 in *Solea solea* (L.). J Sea Res **36**(3/4): 275-283.

599 Rideout, R.M., Rose, G.A., and Burton, M.P.M. 2005. Skipped spawning in female iteroparous

600 fishes. Fish Fish. **6**: 50-72.

601 Rykaczewski, R.R., Dunne, J.P., Sydeman, W.J., García-Reyes, M., Black, B.A., and Bograd, S.J.

602 2015. Poleward displacement of coastal upwelling-favorable winds in the ocean's eastern

603 boundary currents through the 21st century. Geophys. Res. Lett. **42**(15): 6424-6431.

604 Sakuma, K.M., Field, J.C., Marinovic, B.B., Carrion, C.N., Mantua, N.J., and Ralston, S. 2016.

605 Anomalous epipelagic micronekton assemblage patterns in the neritic waters of the

606 California Current in Spring 2015 during a period of extreme ocean conditions. CalCOFI

607 Rep. **57**: 163-183.

608 Shaw, F.R., Morado, J.F., Lowe, V.C., McDermott, S.F., and Gunderson, D.R. 2012. An atlas of

609 reproductive development in rockfishes, genus *Sebastodes*. NOAA Prof. Pap. NMFS 14: 77pp.

610 Sogard, S.M., Berkeley, S.A., and Fisher, R. 2008. Maternal effects in rockfishes *Sebastodes* spp.: a

611 comparison among species. Mar. Ecol. Prog. Ser. **360**: 227-236.

612 Spencer, P. D., and M. W. Dorn. 2013. Incorporation of weight-specific relative fecundity and
613 maternal effects in larval survival into stock assessments. Fish. Res. **138**:159-167.

614 Stafford, D.M., Sogard, S.M., and Berkeley, S.A. 2014. Maternal influence on timing of parturition,
615 fecundity, and larval quality in three shelf rockfishes (*Sebastodes* spp.). Aquat. Biol. **21**(1): 11-24.

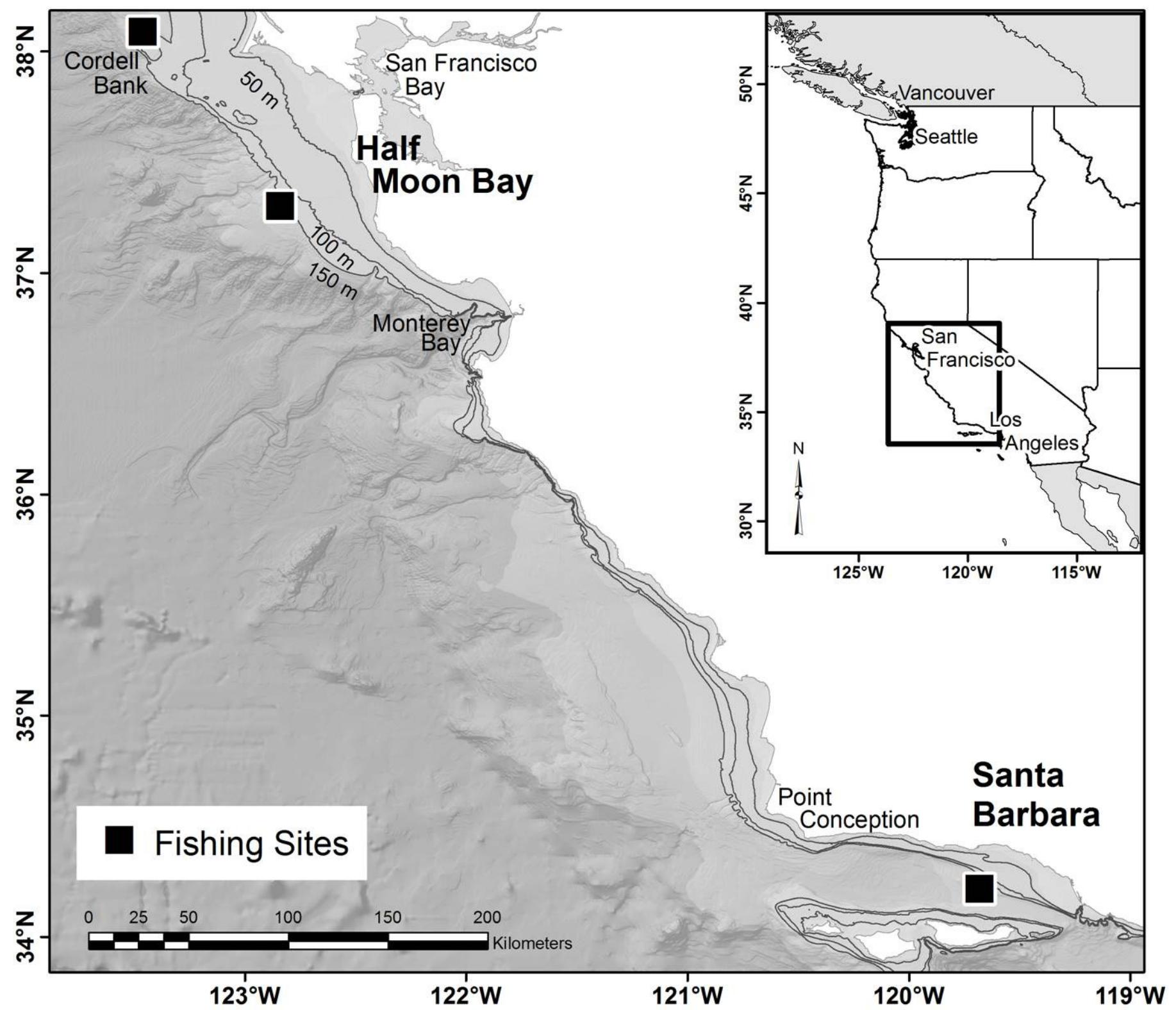
616 Wallace, R.A., and Selman, K. 1981. Cellular and dynamic aspects of oocyte growth in teleosts. Am.
617 Zool. **21**(2): 325-343.

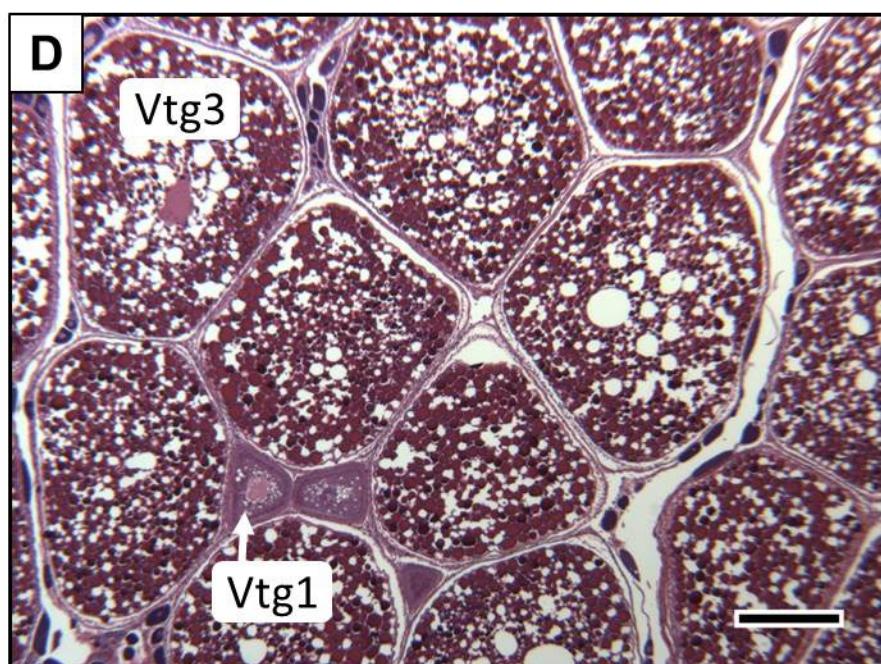
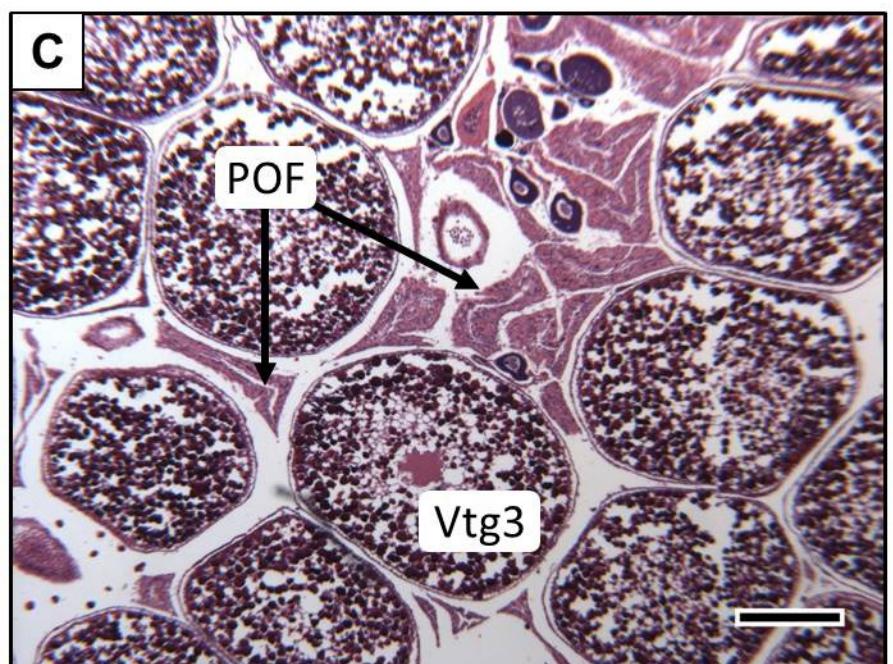
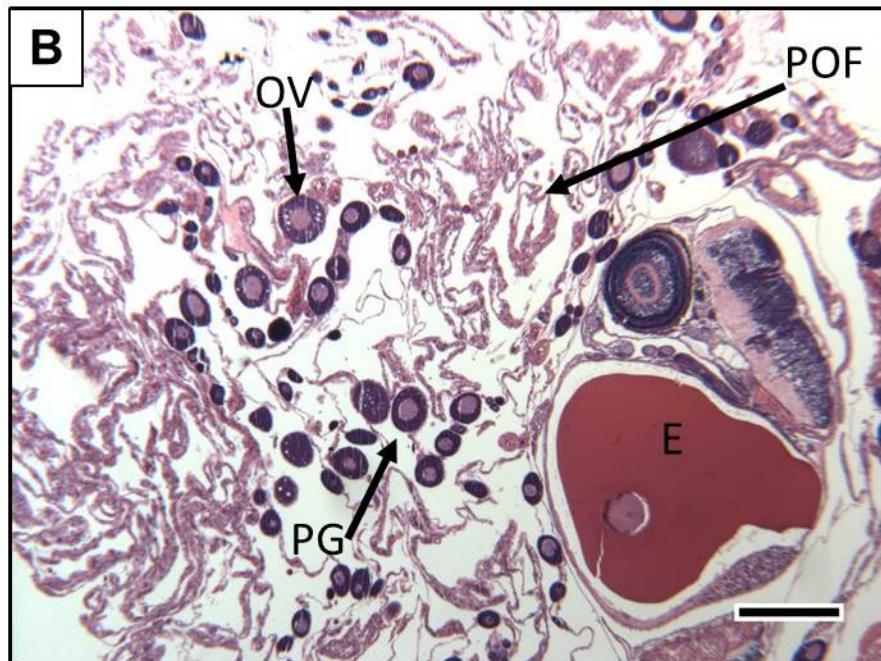
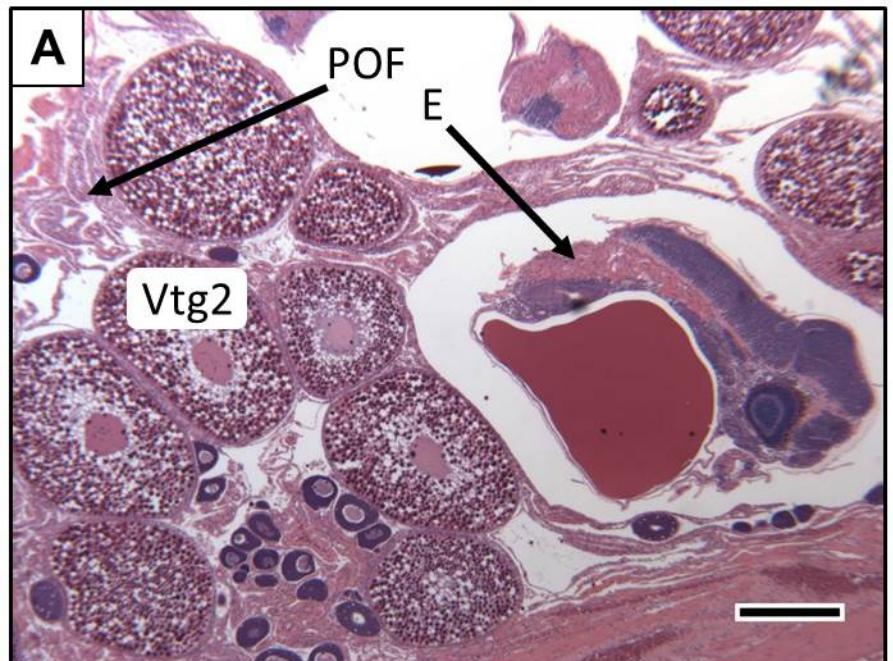
618 Wells, B.K., Schroeder, I.D., Bograd, S.J., Hazen E.L., Jacox, M.G., Leising, A., Mantua, N. et al.
619 2017. State of the California Current 2016-17: Still anything but “normal” in the North.
620 CalCOFI Rep. 58: 1-55.

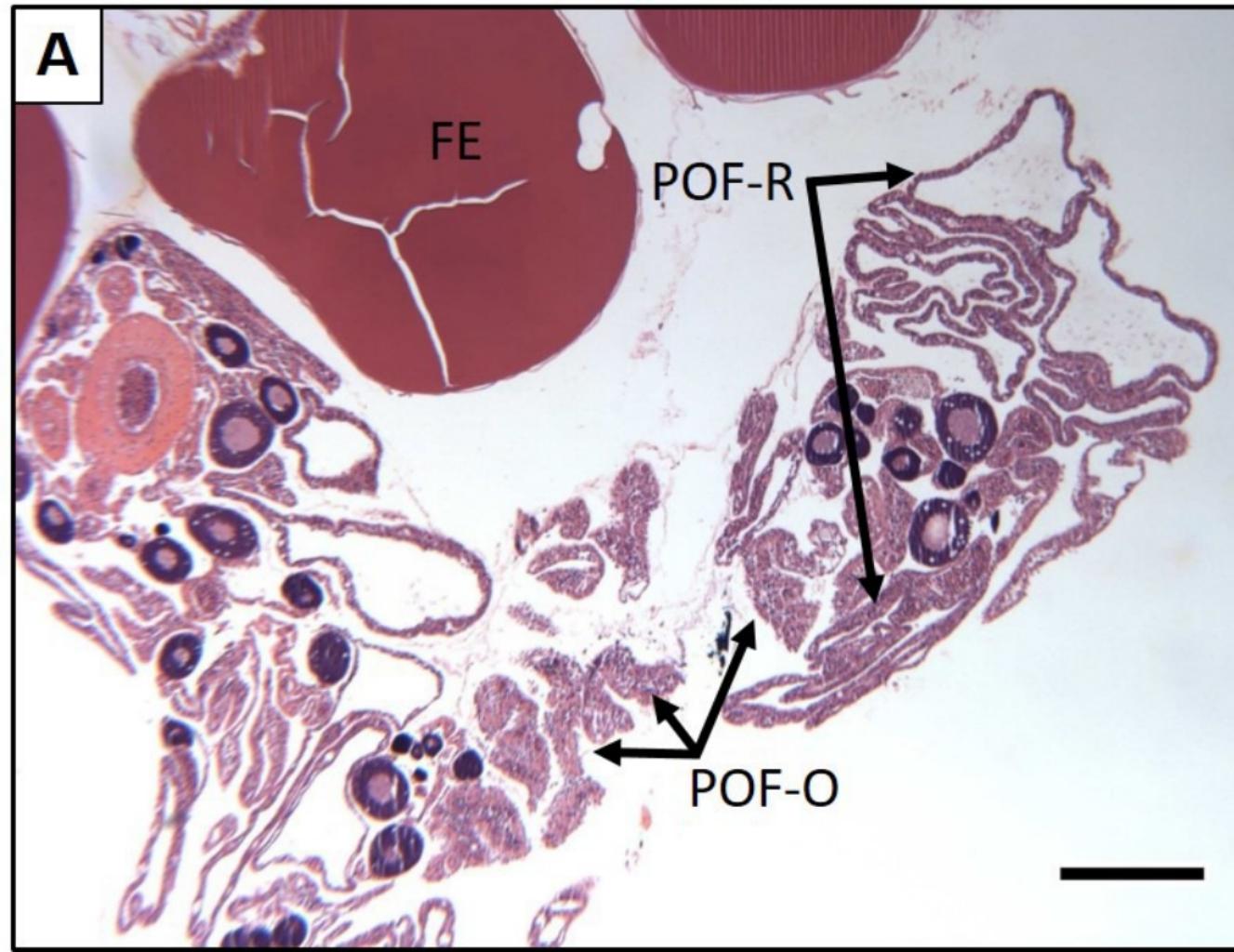
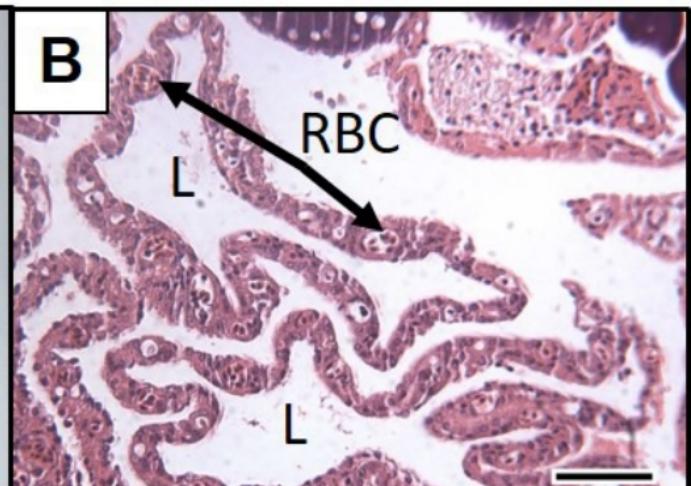
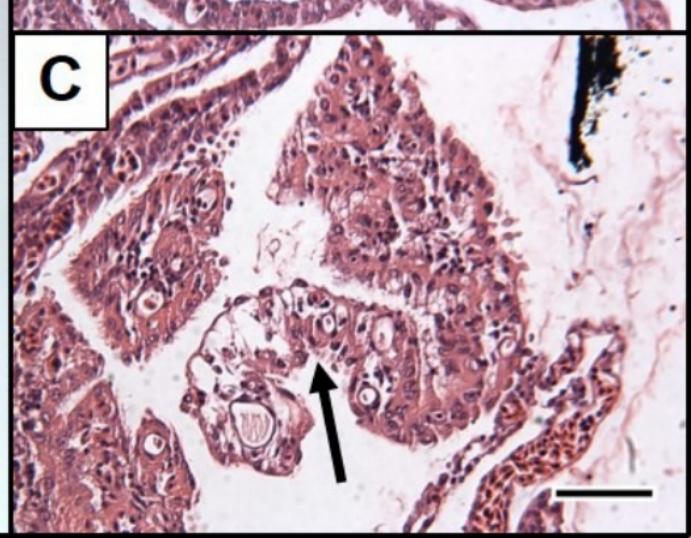
FIGURE LEGEND

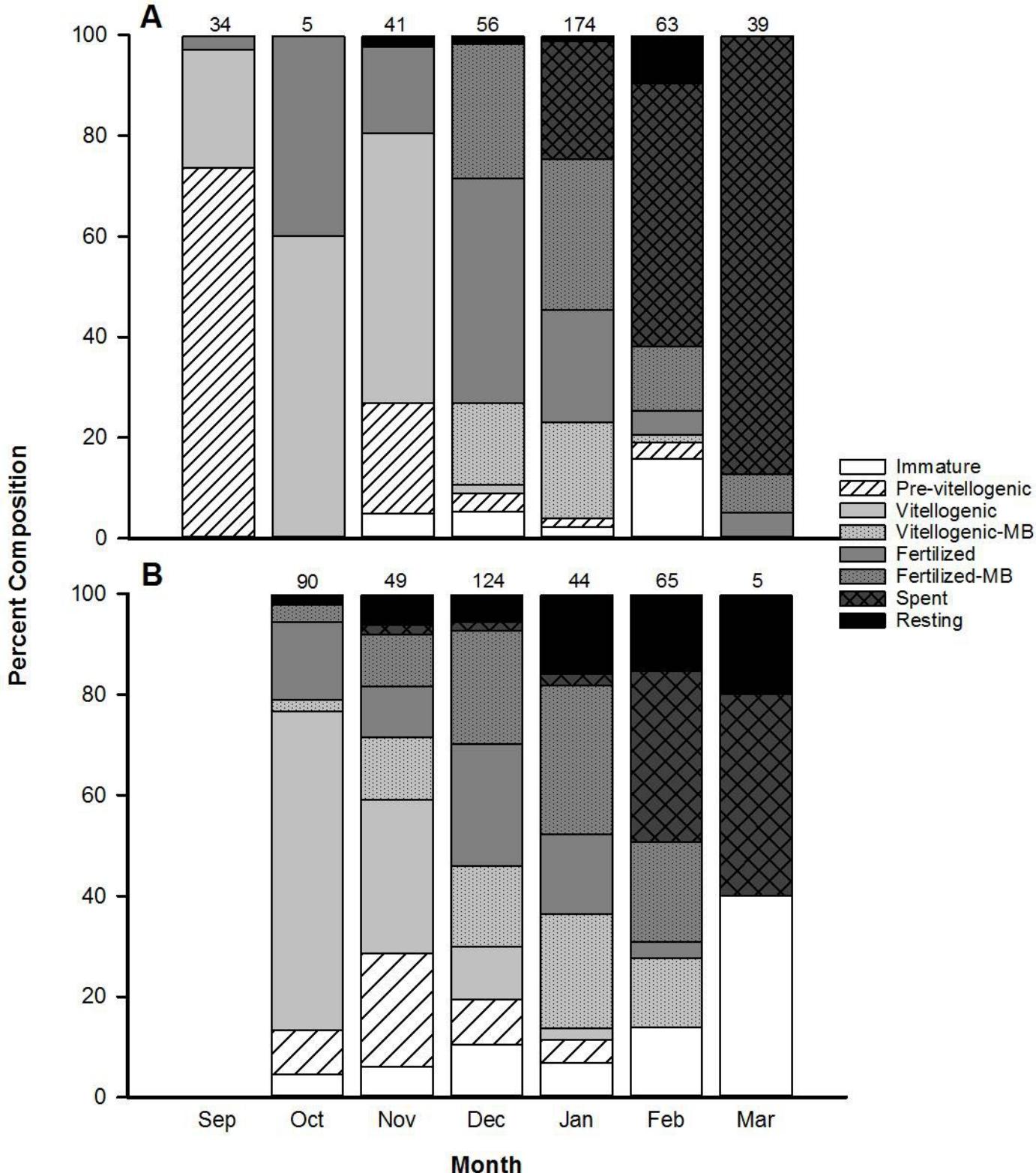
Figure 1. Map of sampling locations. Sampling locations of chilipepper rockfish along the coast of California. Collections from Cordell Bank and Half Moon Bay were combined into the Central region, while collections from the Santa Barbara Channel in the Southern California Bight were considered the Southern region.

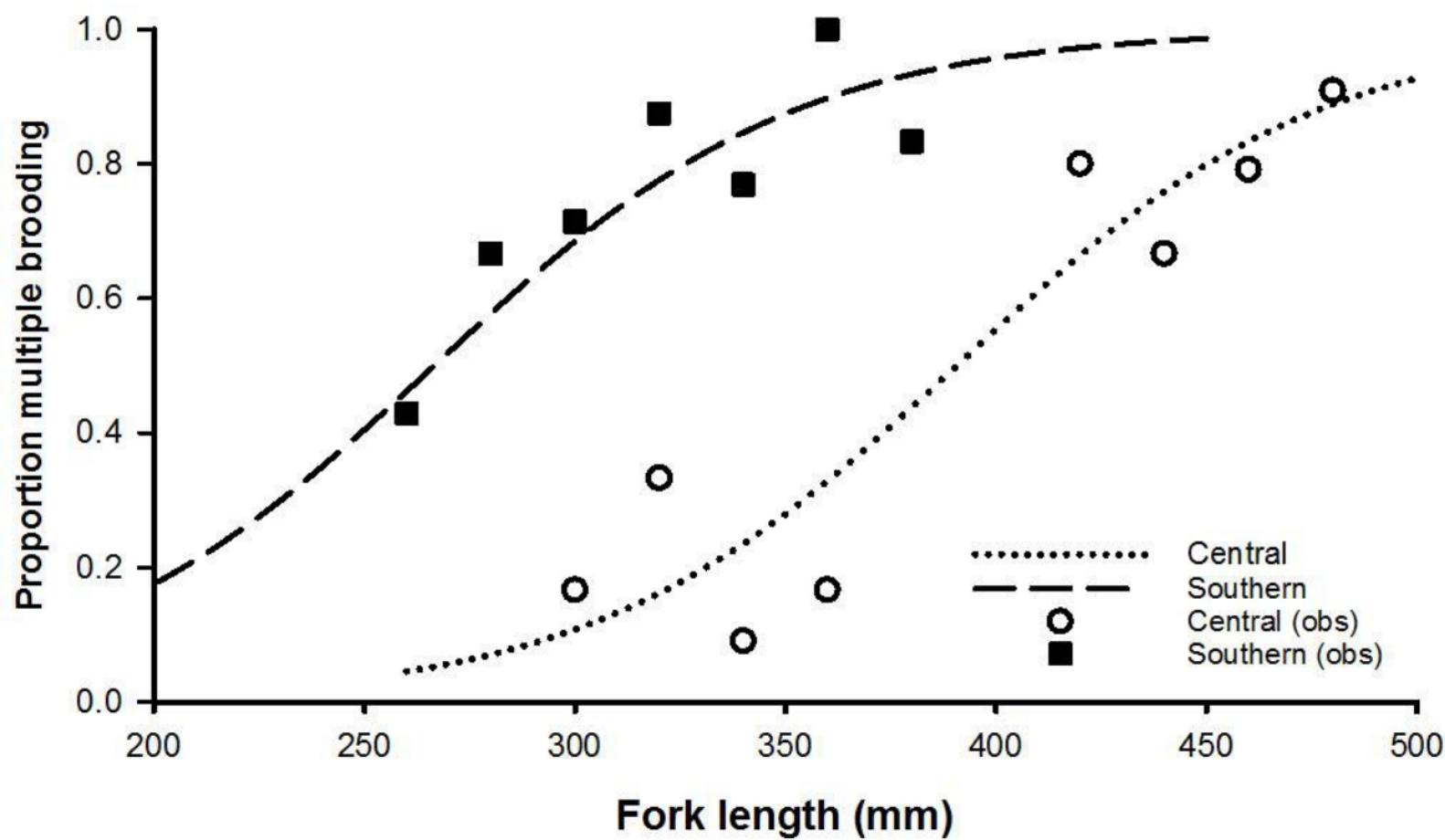
Figure 2. Histological micrographs of single and multiple brooding rockfish. Histological comparison of multiple brooding (A, C) and single brooding (B, D) female chilipepper. A and B show postovulatory follicle complexes (POF) from the current, gestating brood. The secondary vitellogenic oocytes (Vtg2) in A are evidence of an upcoming brood, whereas oil vacuole (OV) and primary growth (PG) stage oocytes in B indicate that female would not produce another brood. C) Multiple brooding female in the partially spent histological subphase with evidence of a previous brood (POF). D) Single brooding female in the late developing subphase with the leading oocyte cohort at a similar stage of development to C. Primary vitellogenic oocytes (Vtg1) in D were below the stage of development required to define them as an upcoming brood. E=Embryo; Vtg3=tertiary vitellogenic oocytes. Scale bars=250 μ m.

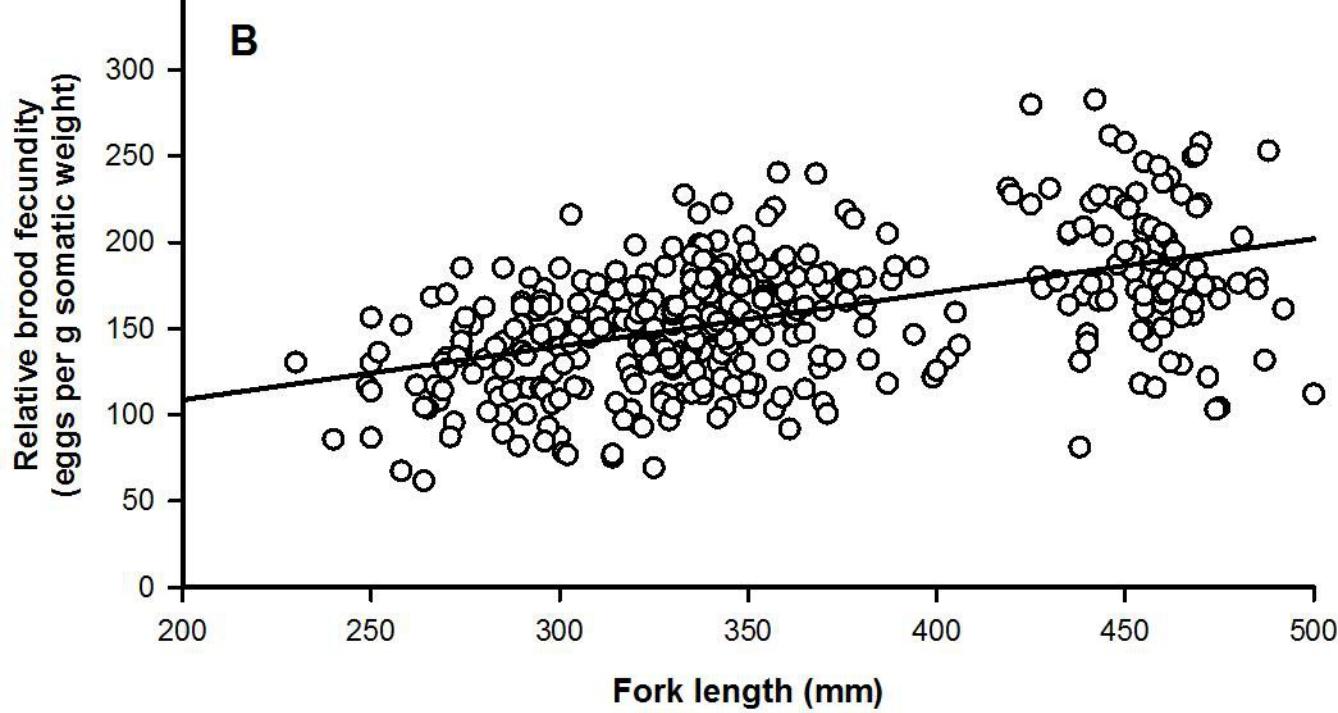
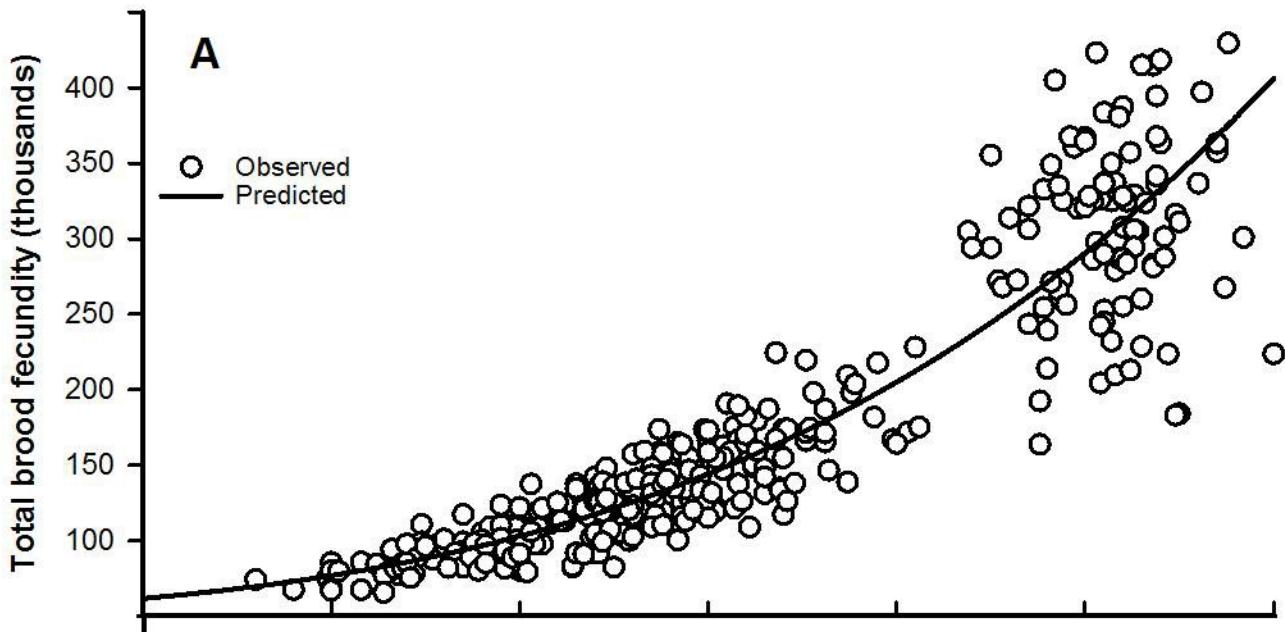

Figure 3. Histological micrographs of POF A) Micrograph from a histological ovarian section from a chilipepper collected off central California in December 2103, showing fertilized eggs (FE) and two stages of postovulatory follicle complexes (POF). B) Recent POFs (POF-R) had open lumens (L), clusters of red blood cells (RBC) in the thecal layer, and thecal and granulosa cells that were mostly intact. C) Older POFs (POF-O) lacked a distinct lumen, were more vacuolated compared to POF-R, and showed degeneration of thecal and granulosa cells. The arrow in (C) points to the POF-O. Scale bar equals 250 μ m in A and 50 μ m in B and C.

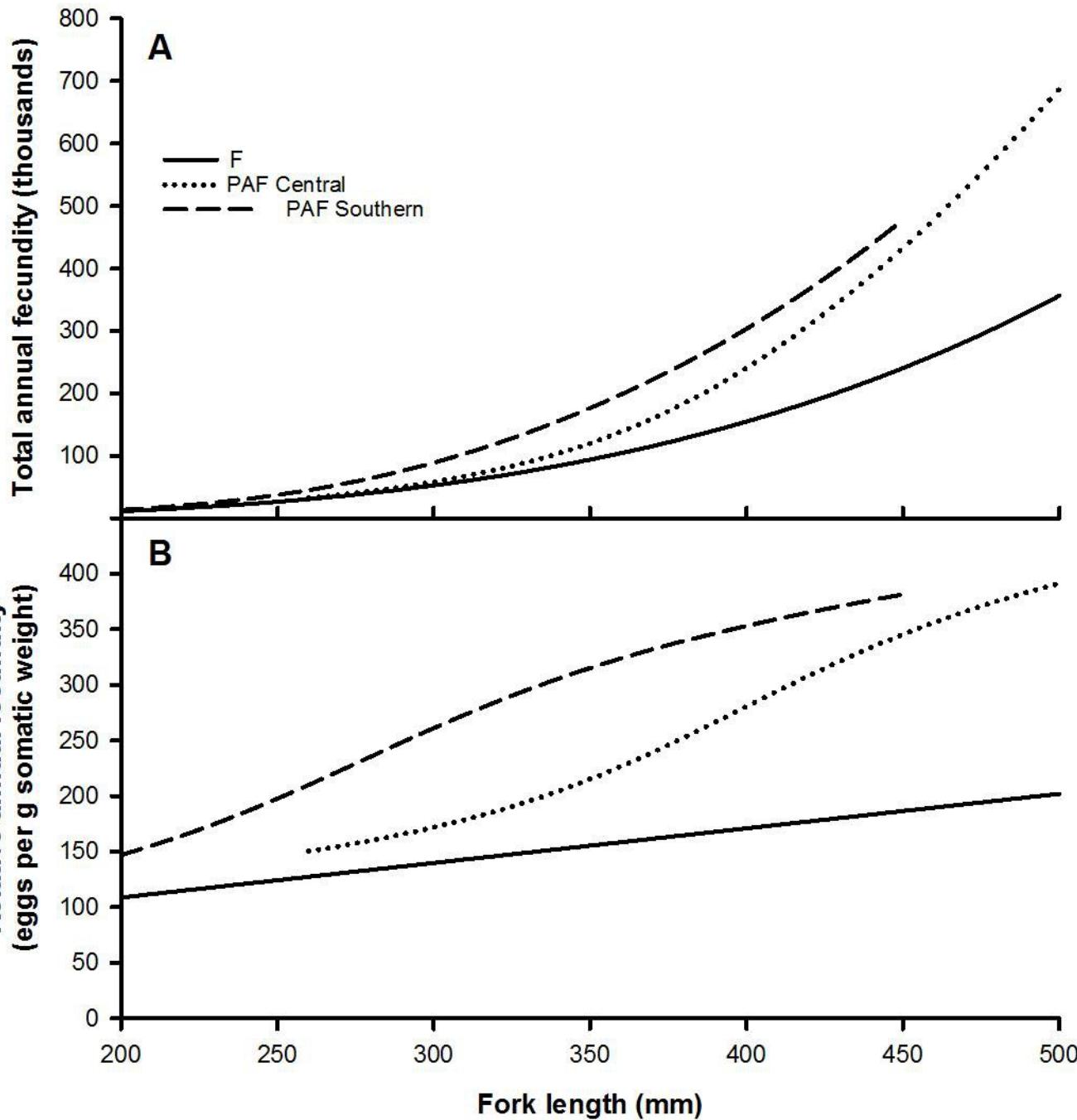




Figure 4. Seasonality of ovarian development. Seasonal pattern of ovarian development from macroscopically staged ovaries (n=794) of chilipepper in (A) Central and (B) Southern California. Years were combined, and monthly sample sizes are indicated above the bars.




Figure 5. Prevalence of multiple brooding. The proportion of female chilipepper multiple brooding at length off Central and Southern California. Curves of the logistic regression (model 3) reflect minimum and maximum collected lengths by region. The symbols (square and circle) represent observed proportions at 20 mm length-bins in each region (central and southern, respectively) and were excluded when there were less than five observations in a given bin.


Figure 6. Basic fecundity relationships. A) Total and B) relative fecundity in chilipepper rockfish with ovaries in the developing or fertilized/eyed-larvae stages. Regions were combined for analyses.


Figure 7. Potential annual fecundity relationships. A) Potential annual fecundity (PAF) and B) relative potential annual fecundity (PAF_{rel}) in chilipepper, incorporating the probability of multiple brooding by maternal size, with separate functions for each region. Fecundity of single broods at length (F and F_{rel}) is plotted for comparison. The plots reflect the minimum and maximum sizes collected in each region.



A**B****C**

Table 1. *Sebastodes* species in which multiple brooding has been macroscopically observed. All central California (CCA) observations are from unpublished data. SCB=Southern California Bight. Sources: A=Moser 1967a; B=MacGregor 1970; C=Echeverria 1987; D=Love et al. 1990; E=Love et al. 2002; F=Ralston and MacFarlane 2010; G=Beyer et al. 2015; H=Stafford and Kashef, unpublished data; I=Beyer, unpublished data.

Scientific name	Common name	Region	Source(s)
<i>S. auriculatus</i>	Brown rockfish	CCA	E, H
<i>S. chlorostictus</i>	Greenspotted rockfish	SCB	D, E, I
<i>S. constellatus</i>	Starry rockfish	SCB, CCA	B, D, E, I
<i>S. elongatus</i>	Greenstriped rockfish	SCB	D, E
<i>S. ensifer</i>	Swordspine	SCB	D, E, I
<i>S. goodei</i>	Chilipepper rockfish	SCB	D, E, G, I
<i>S. hopkinsi</i>	Squarespot rockfish	SCB	D, E, I
<i>S. jordani</i>	Shortbelly rockfish	SCB	E, I
<i>S. levis</i>	Cowcod	SCB	D, E, I
<i>S. ovalis</i>	Speckled rockfish	SCB, CCA	B, D, E, G, I
<i>S. paucispinus</i>	Bocaccio	SCB, CCA	A, B, C, D, E, F, I
<i>S. rosaceus</i>	Rosy rockfish	SCB, CCA	D, E, I
<i>S. rosenblatti</i>	Greenblotched rockfish	SCB	D, E
<i>S. rufus</i>	Bank rockfish	SCB	D, E

Table 2. Macroscopic stages and corresponding histological phases of ovarian development in chilipepper. GVB=germinal vesicle breakdown oocyte; GVM=germinal vesicle migration oocyte; HO=hydrated oocyte; LC=leading oocyte cohort; PG=primary growth oocyte; POF=post ovulatory follicle complex; OV=oil vacuole oocyte; Vtg1=primary vitellogenic oocyte; Vtg2=secondary vitellogenic oocyte; Vtg3=tertiary vitellogenic oocyte.

MACROSCOPIC HISTOLOGICAL

Stage	Phase	Subphase	Description
Immature	Immature		Only PG oocytes present. Lamellae are well organized with little to no atresia and no prominent blood vessels, muscular bundles, or connective tissue. Ovarian wall is thin.
Pre-vitellogenic	Developing	Early developing	The LC is OV or Vtg1 (<25% cytoplasm is vitellogenin). Low to moderate alpha atresia may be present. Prominent blood vessels, muscular bundles, connective tissue, and late stages of atresia; tissue disorganization; and a thick ovarian wall are indicative of females that have spawned in previous years.
Vitellogenic	Developing		The LC is Vtg2 (25-50% cytoplasm is vitellogenin). Low to moderate alpha atresia may be present.
Spawning	Late		The LC is Vtg3 (vitellogenin occupying >50% cytoplasm), GVM, GVB, and unovulated HO.
Capable	developing		

			There is no evidence of recent spawning. Low to moderate alpha atresia may be present.
Fertilized Eggs or Eyed-Larvae	Gestating		Ovulated HO, fertilized eggs, or eyed-larvae present in ovarian lumen. One class of POF present and abundant. The LC is Vtg1 or earlier.
	Partially spent		Upcoming brood: resembles gestating subphase but with LC Vtg2 or later. Previous brood: resembles developing or late developing subphase with POFs present; or gestating subphase with recent (from developing embryos) and old POFs present.
Spent	Regressing	Regressing	The non-atretic LC is oogonia, PG, or OV; other oocyte stages present are undergoing atresia (mostly alpha and beta). POFs may be present. Lamellae appear loose and disorganized. Blood vessels, muscular bundles, and connective tissue may be prominent and abundant.
	*Abortive		>50% of LC are undergoing alpha atresia. Ovarian
	Maturation		wall is thin. There is no evidence of recent reproduction (POFs).
	*Skipped		>50% of LC are undergoing alpha atresia. Ovarian
<i>*Note: no corresponding macroscopic stage</i>		Spawning	wall is thick. Blood vessels, muscular bundles, and

connective tissue are prominent and abundant throughout lamellae.

Resting	Regenerating	<p>The LC is oogonia, PG, or OV. Oogonial nests are proliferating. Lamellae appear more organized compared to regressing subphase, though atresia (mostly delta and gamma) is common. Blood vessels, muscular bundles, and connective tissue maybe prominent and abundant. Oogonial nests are proliferating.</p>
---------	--------------	--

Table 3. Collections of chilipepper rockfish by year and region, with the number available for abortive maturation (AM), multiple brooding (MB, with the number examined histologically in parentheses), and fecundity analyses.

Year	Region	Total	Length range (average	No. AM subset	No. MB subset	No. Fecundity
			lengths \pm standard deviation)			
2013	Central	179	217-506 (405 \pm 63)	11	86 (48)	84
	Southern	79	229-454 (322 \pm 41)	5	30 (15)	57
2014	Central	124	240-500 (349 \pm 81)	5	54 (31)	47
	Southern	176	175-376 (294 \pm 43)	26	58 (31)	74
2015	Central	114	247-487 (377 \pm 53)	1	35 (18)	37
	Southern	122	204-403 (303 \pm 46)	18	63 (32)	59
OVERALL	Central	417	217-506 (381 \pm 71)	17	175 (97)	168
	Southern	377	175-454 (303 \pm 45)	49	151 (78)	190

Table 4. Total number of female chilipepper collected (total no. females) and available for assessing prevalence of multiple brooding (No. vtg+) throughout the reproductive season. The number and percentages of all multiple brooders (No. MB) are noted as well as the subset selected for analysis of P_{MB} (No. in analysis). Bold text = totals by region; vtg+ = number of ovaries in the vitellogenic and fertilized egg/eyed-larvae macroscopic stages. MMB=macroscopically identified MB; HMB = histologically identified MB.

Region	Month	Total no.	No.	No.	% MB	No. in	No.	No.		
		females	vtg+	MB		analysis	MMB	% MMB	HMB	% HMB
Central	Sep	34								
	Oct	5	5	0	0%					
	Nov	46	34	2	6%					
	Dec	56	50	22	44%	32	16	50%	16	50%
	Jan	179	125	90	72%	65	44	68%	41	63%
	Feb	53	6	4	67%					
	Mar	44	5	3	60%					
TOTAL		417	225	121	54%	97	60	62%	57	59%
Southern	Oct	95	77	5	6%					
	Nov	44	30	11	37%	15	7	47%	7	47%
	Dec	124	95	52	55%	48	29	60%	33	69%
	Jan	39	26	19	73%	15	10	67%	14	93%
	Feb	75	25	22	88%					
	TOTAL	377	253	109	43%	78	46	59%	54	69%

Table 5. Selection criteria and parameters of the best-fit model for the logistic regression modeling the proportion of multiple brooding chilipepper at length (P_{MB}): colons represent interactions between variables and bold text indicates the best-fit model.

Model	Parameters	# of	Delta-	AIC-
				weights
1) Intercept only		1	49.28	0.00
2) FL		2	33.37	0.00
3) FL + region		3	0.00	0.69
4) FL + region + FL:region		4	1.62	0.31

Table 6. Results of the logistic regression model 3 of the proportion of multiple brooding chilipepper at length (0=single brooder, 1=multiple brooder; fork length was a continuous variable and region [central, southern] was a categorical variable).

Coefficient	Coefficient Standard	
	Estimate	Error
Intercept-Central	-9.0801	1.5719
Intercept-Southern	-6.1951	0.5598
Slope	0.0232	0.0038