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ABSTRACT 17 

Developing effective conservation plans for at-risk species requires an understanding of the 18 

relationship between numbers of breeding adults and their subsequent offspring. In particular, 19 

establishing the degree to which density-dependent effects limit population size can be difficult 20 

due to errors in the data themselves, uncertainty in model parameters, and possible 21 

misspecification of model structure. Here we develop a Bayesian model averaging framework to 22 

fit four simple models of adult-offspring production and estimate the probabilities that negative 23 

(i.e., decreasing survival with increasing density) and positive (i.e., Allee effects) density 24 

dependence exists. As an example, we analyzed 48 at-risk populations of anadromous Chinook 25 

salmon (Oncorhynchus tshawytscha) from the northwestern United States. We found strong 26 

evidence that more than two-thirds of the populations exhibit negative density-dependent effects 27 

of adults. This result was somewhat unexpected given the large reductions in adult numbers 28 

relative to historical benchmarks, indicating that carrying capacity of spawning habitat has been 29 

reduced considerably. Approximately two thirds of the populations also had non-zero 30 

probabilities of positive density-dependent effects of adults, which could suggest that cumulative 31 

losses of spawning adults over the past century has led to decreased nutrient and energy 32 

subsidies from semelparous carcasses, and diminished bio-physical disturbance from nest-33 

digging activity. Importantly, our analysis highlights the utility of Bayesian model averaging in a 34 

conservation context wherein errors in choosing the best model may have more severe 35 

consequences than errors in estimating model parameters themselves. 36 

Keywords: density dependence, bayesian model averaging, management strategies, Allee effect, 37 

compensation, depensation, salmon.  38 

39 
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1 INTRODUCTION 40 

One of the cornerstones of conservation biology is establishing the relationship between 41 

the numbers of parents and the offspring they produce. In particular, the degree to which 42 

organisms are affected by population density has important implications for individual fitness 43 

and population growth. Negative density dependence (NDD) occurs when density is relatively 44 

high and any further increases in density lead to increased competition for resources (e.g., food, 45 

breeding locations) or transmission of diseases, ultimately causing reductions in per capita 46 

survival (Hixon et al. 2002, Brook and Bradshaw 2006). Conversely, positive density 47 

dependence (PDD), or the “Allee effect”, arises when density is relatively low and the loss of 48 

more individuals causes decreased per capita survival because of cooperative foraging or 49 

defensive behaviors, decreased probability of finding a mate, or combinations of these factors 50 

(Courchamp et al. 1999, Berec et al. 2007, Gregory et al. 2010a). The strength of both NDD and 51 

PDD in wild populations has practical management implications. For example, the presence of 52 

NDD could indicate limited habitat availability (i.e., insufficient total area) whereas the existence 53 

of PDD might suggest a high degree of habitat fragmentation; rectifying those two types of 54 

habitat deficiencies could require rather different actions. When combined with historical 55 

knowledge about the population, insights about the combined roles of NDD and PDD are also 56 

useful for reintroduction planning (Anderson et al. 2014). Understanding whether NDD and PDD 57 

occur and if so, to what extent, is thus particularly valuable for determining the best options for 58 

population management and the conservation of at-risk species. 59 

Density-dependence has been studied extensively in fish populations because of its 60 

importance to both the management of healthy and economically valuable stocks and the 61 

conservation of imperiled populations (Liermann and Hilborn 1997, Barrowman and Myers 62 
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2000, Barrowman et al. 2003). In classical fisheries management, NDD within a stock implies 63 

parental biomass should be harvested to the point where the surplus production of new recruits to 64 

the fishery is maximized relative to replacement (Hilborn and Walters 1992). Conversely, the 65 

degree of PDD mortality will determine the rate at which overfished stocks will recover when 66 

harvest is reduced. Most conservation practitioners concentrate on the possible existence of 67 

PDD. However, NDD at relatively low abundance can exist, implying diminished carrying 68 

capacity from factors like habitat loss/modification or the presence of non-native species 69 

(Achord et al. 2003), but this is often ignored in conservation contexts.  70 

Models of population dynamics offer a formal means for estimating both positive and 71 

negative density dependence (Boyce 1992). For example, Beverton-Holt (1957) and Ricker 72 

(1954) models of density dependence have been used to estimate the relationships between 73 

parents and offspring for decades. Approaches allowing for flexibility in curves shapes but not 74 

process based, such as splines or Gaussian model, have also been developed (Bravington et al. 75 

2000, Munch et al. 2005). Meanwhile Barrowman and Myers (2000) introduced a form of 76 

piecewise regression model known as the “hockey stick” (HS) model, which is similar to the 77 

Ricker and Beverton-Holt curves. The HS model offers potential advantages over these other 78 

models in a conservation context because it provides more conservative estimates of the 79 

maximum density-independent survival (i.e., slope at the origin) and carrying capacity 80 

(Barrowman and Myers 2000). In addition, the breakpoints in the HS segments may provide 81 

natural reference points for management decisions. However, the HS model does not allow for 82 

PDD. 83 

 Although statistical modeling is a powerful tool, three main types of uncertainties can 84 

hinder our ability to infer the true underlying relationship between parents and their offspring. 85 
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First, observation errors arise in the form of sampling and measurement errors. Second, model 86 

parameters are rarely known without error and instead must be estimated from the data. Third, 87 

uncertainty about the structure of the model itself affects inference about the form of the parent-88 

offspring relationship. The first two concerns are often addressed through appropriate sampling 89 

designs and explicit consideration of both process and observation/sampling errors. However, 90 

possible misspecification of a particular model is typically ignored and instead the “best” model 91 

is chosen based on some model selection measure such as Akaike’s Information Criterion 92 

(Burnham and Anderson 2002). In such cases, two models with nearly identical support from the 93 

data could produce widely divergent predictions, especially when confronted with new data 94 

(Pascual et al. 1997, Richards 2005). As a guard against this likely possibility, model averaging 95 

(MA) offers a formal means for explicitly addressing model-selection uncertainty in problems of 96 

inference and prediction (Burnham and Anderson 2002, Wintle et al. 2003). In particular, model 97 

averaging can produce more robust estimates by combining results from an ensemble of multiple 98 

independent models (Banner and Higgs 2017). As a cautionary note, however, averaging 99 

expectations from models that are capable of producing an important spectrum of different 100 

results may confuse interpretations (Galipaud et al. 2014, Cade 2015). Thus, the set of models to 101 

consider should be carefully considered. 102 

Pacific salmon (Oncorhynchus spp.) are important to human economies and the ecology 103 

of coastal ecosystems across the northern Pacific rim (Schindler et al. 2003). Fisheries for 104 

salmon are worth hundreds of millions of US dollars annually (NMFS, 2013). Salmon also act as 105 

ecosystem engineers by modifying benthic habitats through nest-digging activity (Moore 2006) 106 

and serve as keystone species in food webs as food for fish, mammals, birds, and insects 107 

(Helfield and Naiman 2006). In many coastal watersheds across western Canada and the US, 108 
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however, Pacific salmon populations have been reduced to mere fractions of their historical 109 

abundances due to changes in habitat, hydropower development, overharvest, and changing 110 

climate (Ruckelshaus et al. 2006). Literature also suggest that Pacific salmon population are 111 

susceptible to Allee effect through predation, disease and decreased mate finding abilities at low 112 

densities (Quinn et al. 2014, Godwin et al. 2015) . Thus, obtaining a proper understanding of 113 

whether NDD, PDD, or both occur among at-risk salmon populations and estimating related 114 

reference points is necessary for determining the best recovery strategies. 115 

Here we examined the strength of NDD and PDD among 48 populations of Chinook 116 

salmon (O. tshawytscha) from the northwestern USA that are currently listed as “threatened” 117 

under the US Endangered Species Act. To do so, we simultaneously considered four different 118 

piecewise-linear models to characterize various forms of density dependence (Fig. 1): 1) 119 

unrestricted (density-independent); 2) Allee effect only (PDD); 3) carrying capacity only (NDD); 120 

and 4) both PDD and NDD.  Piecewise-linear models tend to provide better estimates of per 121 

capita productivity at low population sizes, and offer more conservative estimates of mortality 122 

rates that lead to extinction.  In addition, we addressed both parameter and model uncertainty 123 

within a unified framework through Bayesian model averaging (BMA), which allowed us to 124 

easily combine predictions and uncertainties across all four models.  125 

2 MATERIAL AND METHODS 126 

2.1 Allee Hockey Stick model and nested sub-models 127 

Barrowman and Myers’ (2000) hockey stick (HS) model assumes the number of offspring 128 

increases linearly up to an asymptote, beyond which it is independent of parental abundance. For 129 
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a given population, the model is described by two linear functions above and below some 130 

threshold level of parental abundance (��), 131 

 �� = ���� �	 �� < ��� �	 �� ≥  �� 
(1) 

where β is the density-independent per-capita reproductive rate, �� is the number of parents 132 

breeding in year t. At parental abundance values above �� , NDD effects dominate and restrain 133 

the number of offspring to K, the carrying capacity. As �� approaches infinity, the degree of 134 

density-dependence goes to zero and because of exponential growth, there is no limit to 135 

population size. 136 

To allow for PDD (Allee effects) at relatively low levels of parental abundance, we 137 

modified the original HS model (Barrowman and Myers 2000) to allow for a third linear 138 

segment. This new “Allee Hockey Stick” (AHS) model allows growth rates to become depressed 139 

when parental abundance is less than some threshold, ��  140 

 �� = ����� �	 �� < ������+����� − ��� �	 �� < �� < ��� �	 �� ≥  ��
 (2) 

where 0 < �� < 1 < ��, � =  ����+����� − ��� and �� and �� are the breakpoint thresholds 141 

respectively. By fixing some parameters at zero or infinity, the AHS model reduces to three less 142 

complex models, each with contrasting assumptions about the occurrence of NDD and PDD 143 

(Fig. 1). The first is for unrestricted or linear growth (L model) where �� = 0,  �� = 0 and �� =144 

∞), such that 145 
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 tt PO 2β=  (3) 

The second is for an Allee effect only (AL model) where �� = ∞ and 146 

The third is the original HS model with carrying capacity only, such that �� = 0,  �� = 0, � =147 

 �� �� , and  148 
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2.2 Parameter estimation and model weighting 149 

Here we used a 2-steps procedure, where each model is first fit independently to data using 150 

the Sampling – Importance – Resampling (SIR) algorithm (Rubin 1988), and then results are 151 

averaged across models. The SIR algorithm we used to approximate the posterior distribution by 152 

using an importance function to resample parameter draws from a proposal distribution is 153 

equivalent to Moore (2008) and detailed in Appendix A. For a given model, the marginal 154 

likelihood can be expressed as the product of the prior model probability and the likelihood 155 

integrated over the entire parameter space. For instance, the corresponding equation for model 156 

�� is ����|�� = �����  ��!|������|!, ���. Across models, we normalized the marginal 157 

likelihoods so that they could be interpreted as posterior model probabilities ∑ ���#|$�# = 1 158 

(Rubin 1988). There are several upsides and downsides of Bayesian estimation in SIR versus 159 

other techniques, such as MCMC. As a positive, calculating the expected marginal likelihood is 160 
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straightforward in SIR because the likelihood of each draw can be easily saved which is not 161 

possible in software implementing MCMC, such as WinBUGS (Lunn et al. 2000), JAGS 162 

(Plummer 2003) or Stan (Stan Development Team 2016). Second, the SIR algorithm does not 163 

require a burn-in period or assessment of MCMC diagnostics for convergence. However, the 164 

utility of SIR is somewhat limited for complex models, beyond 4-5 parameters, because 165 

sampling can be inefficient. For all models presented above, we assumed that the residual error 166 

was lognormally distributed. We chose weakly informative uniform priors and that were shared 167 

among the four models whenever possible (Table I).  168 

An R package containing functions to fit the 4 models, together with the dataset discussed 169 

below, is freely available on GitHub at the following address: 170 

https://github.com/GuillaumeBal/bal.et.al.2018.bma.density.dependence 171 

2.3 Model Application  172 

For management purposes, Pacific salmon species are grouped into evolutionarily 173 

significant units (ESUs), defined as a group of salmon that (1) is reproductively isolated from 174 

other conspecific populations, and (2) represents an important component in the evolutionary 175 

legacy of the species (Waples 1991). We estimated the strength of density dependence among 48 176 

Chinook salmon populations within 3 distinct ESUs from Washington, Idaho, and Oregon in the 177 

northwestern USA (Fig. 2). These ESUs represent different life-history types, allowing us to 178 

compare the strength of density dependence across life histories. For example, Chinook salmon 179 

within the Puget Sound ESU are “ocean-type”; these juveniles spend less than 1 year in fresh 180 

water before migrating to the ocean. In contrast, salmon from the Snake River and Upper 181 

Columbia ESUs are “stream-type” and spend 1 full year in fresh water before migrating to sea 182 

(Taylor 1990).  183 
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We used the total number of spawning adults in a given year as our estimate of parent 184 

abundance. Because salmon from the same cohort mature at different ages, our estimates of 185 

offspring are then the sum of subsequent adults that were born in a given year, but that vary in 186 

age and return over sequential years (e.g., the offspring of Snake River stream-type adults that 187 

spawned in 2000 return as 3-6 years later in 2003-2006). All data used here were compiled by 188 

the National Marine Fisheries Service. To ensure time series were long enough to potentially 189 

detect positive density dependence (Brook and Bradshaw 2006, Gregory et al. 2010b), we 190 

restricted our analysis to those populations with at least 20 years of data, and no more than 5 191 

missing values within that period (Table 2). This resulted in time series length ranging from 20 192 

to 54 years.  193 

3 RESULTS 194 

For both life history types across the three ESUs, we found the strong support from the data 195 

for a model with only NDD (Fig. 3a); the median posterior model probabilities were 0.65 and 196 

0.45 for ocean and stream-type Chinook salmon, respectively. We found little evidence for 197 

models containing only PDD (Allee effects) and models that included both PDD and NDD had 198 

median probabilities of being the best equal to 0.13 and 0.011 for ocean and stream-type salmon, 199 

respectively. 200 

Among populations within a specific life history type, however, the relative support for the 201 

different models varied considerably (Fig. 3b). Although there were a few populations whose 202 

model probabilities were rather evenly split among the four model forms (e.g., 4, 16), most 203 

populations showed strong support in favor of one particular model. For ocean-type Chinook 204 

salmon, most populations showed strong indications of NDD, but a few populations had little 205 
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evidence for either form of density dependence (e.g., 1, 4, 8, 14, 15). Evidence for NND was 206 

rather strong for stream-type Chinook, and notably, the evidence for models with both PDD and 207 

NDD was reasonably strong in fewer populations (e.g., 39, 42).  208 

For each population, the model averaged relationship exhibited subtle to rather significant 209 

departure from the best model depending of the relative credibility of the models. For example, 210 

the best models selected for Big Creek, the South Fork of the Salmon River east fork and the South 211 

fork of the Salmon River mainstem (i.e., populations 23, 39, 40 in Table 2) were the L model, HS 212 

model, and L model, respectively. Applying BMA to estimate the shape of this curve may yield a 213 

result very similar to the single “best” model, but it can also result in more conservative results 214 

(Fig. 4). In the case of Big Creek, a simple model selection would select a linear relationship 215 

whereas the shape coming from BMA exhibits NDD when the population reaches 409 fish 216 

although the departure from the replacement curve is on average weak. In the South fork of the 217 

Salmon River East Fork, PDD is highly likely when the population size falls under 27 individuals. 218 

For the South fork of the Salmon River mainstream, however, there is very little difference 219 

between the best and BMA models. 220 

Although we found no discernable link between the data support for an Allee effect in a 221 

population and the length of the corresponding time series, we did observe a positive relationship 222 

with the ratio of the observed lowest to highest counts within a time series (i.e., a measure of 223 

relative historical stock depletion; Fig. 5).    224 

4 DISCUSSION 225 

Our results reveal two important messages regarding the role of density-dependence in 226 

the population dynamics of Chinook salmon in the Pacific Northwest. First, we found that linear 227 
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relationships between offspring and parents with no density dependence were probable, 228 

especially within the Snake River ESU (median model posterior probability = 0.53) whom the 229 

rivers have experimented the strongest historical depletions according to the ratio of minimum 230 

over maximum spawners abundances (Table 2). This suggests that quite a few populations from 231 

the Columbia River watershed have still not recovered from the overall great reduction in 232 

parental abundances compared to historical numbers. With a few exceptions, we found strong 233 

support for models with NDD (median model posterior probability = 0.65) in populations from 234 

the Puget Sound area. Our results further support ongoing efforts in this region to increase 235 

carrying capacity through improvements to freshwater spawning and rearing habitats.  236 

 Second, the existence of PDD among these Chinook salmon populations is indeed a 237 

possibility, which agrees with previous studies of other salmon species (Liermann and Hilborn 238 

1997, Barrowman et al. 2003), but it appears to be low. The time series used in this study have 239 

20 to 54 years of data, which are similar to previous publications attempting to detect the 240 

presence of Allee dynamics (Brook and Bradshaw 2006, Gregory et al. 2010b). Although longer 241 

time series are always preferable, we found little relationship between time series length and 242 

support for Allee dynamics. Furthermore, most of the populations are at the low end of their 243 

historical sizes, such that the ratio of the minimum to maximum spawners ranges from 0% to 244 

20%, with about 50% of the populations below 2.5%. Interestingly, we found that the support for 245 

Allee effects is positively correlated with this ratio.  The support for Allee effects in populations 246 

that have been less depleted may result from a lack of data at extremely low abundances, 247 

wherein the Allee model produces different estimates from the linear or HS model. 248 

Although support for Allee effects is weak overall and we cannot identify the exact 249 

cause, some reasonable hypotheses exist. First, salmon gain about 90% of their adult biomass in 250 
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the ocean, and therefore act as net importers of marine-derived nutrients and energy to 251 

freshwater ecosystems (Schindler et al. 2003), but decades of low adult abundance may have 252 

rendered these ecosystems much less productive for juveniles than they were historically (Rinella 253 

et al. 2012). In addition, nest-digging activity by female salmon mobilizes fine sediment (Moore 254 

et al. 2004) and decreases the probability of stream-bed scour and excavation of buried salmon 255 

eggs or embryos (Montgomery et al. 1996). Thus, losses of adult salmon may have crossed a 256 

threshold whereby the freshwater ecosystem cannot support the juvenile production it once did 257 

(Achord et al. 2003, Schindler et al. 2005). 258 

Absence of observed Allee effects could also indicate that availability of juvenile habitat 259 

is more important than direct mortality from predators (Mogensen and Post 2012). For Puget 260 

Sound populations, in particular, much of the lowland areas have been converted from forest to 261 

agriculture, which has greatly decreased the carrying capacity for juvenile Chinook salmon 262 

(Scheuerell et al. 2006). Furthermore, increasing evidence points to NDD among adult life stages 263 

during their ocean residency owing to competition with hatchery fish (Ruggerone et al. 2012, 264 

Connors et al. 2012). This potentially shifts the focus away from habitat actions and more toward 265 

hatchery reforms (Buhle et al. 2009). 266 

The varying degrees of support for different forms of density dependence among the 267 

many populations provide some important insights for conservation. Decisions to list Pacific 268 

salmon as threatened or endangered under the Endangered Species Act are made collectively at 269 

the relatively large ESU level, but recovery plans are developed and implemented at much 270 

smaller scales relating to specific populations. Here we have used posterior model probabilities 271 

to assess the degree to which PDD, NDD, or a combination thereof exists for each population 272 
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within an ESU. Managers could potentially use this information to further direct location-273 

specific actions that might decrease the intensity of PDD or NDD. 274 

The SIR algorithm applied in this study uses samples across the prior distributions to 275 

calculate marginal likelihood and derive model probabilities. This approach has already been 276 

used in fisheries related studies (Punt and Hilborn 1997, McAllister and Kirkwood 1998, Zerbini 277 

et al. 2011) as well as for the study of isotopic mixtures (Semmens and Moore 2008, Moore and 278 

Semmens 2008). The efficiency of this SIR algorithm is limited to low dimensionality problems 279 

(models with few parameters) as the acceptance rate would otherwise drops off very quickly and 280 

thus make computation time very long. For this reason, MCMC methods tend to be favored. 281 

Because of some recent criticism of Bayesian model selection tools, such as DIC (Spiegelhalter 282 

et al. 2014, Gelman et al. 2014) we were interested in the SIR algorithm’s ability to perform 283 

estimation for these relatively simple models. Computation time was quick, lasting only a few 284 

minutes per population. We also compared our results to that of the more widely used DIC and 285 

the more recent LOOIC (Leave One Out Information Criterion) Bayesian model selection 286 

approaches. When compared to the SIR algorithm, the DIC approach tended to rank the HS 287 

model first to the detriment of the L model in a few cases (Appendix C1). The reversed pattern 288 

was observed with the LOOIC approach (Appendix C2). In both cases, those shifts were 289 

consistent across the two life history types. Although the different methods lead to a few 290 

differences on a river by river basis, the general patterns discussed above and based on the SIR 291 

approach are robust. These similarities between methods also support the fact that the chosen 292 

priors have little influence on the results obtained.  293 

Our analysis highlights the utility of model averaging for estimating relationships among 294 

parents and their offspring. Model averaged results were more conservative than the best model 295 
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alone, and therefore applying model averaging may be particularly important for populations of 296 

conservation concern. The use of the HS and AHS models was largely chosen based on the taxa 297 

in our analysis; other model sets could be developed for other species (and unlike our analysis, 298 

there is no requirement that all candidate models be nested). Although there are a number of 299 

ways to implement Bayesian model averaging, the SIR approach is best for relatively simple 300 

models like those we used here. Increased model complexity will decrease the speed of the SIR 301 

approach exponentially, however. Using other estimation routines such as Markov Chain Monte 302 

Carlo (MCMC), the model-averaged procedure could also be constructed hierarchically across 303 

populations, to estimate common strengths of density dependence across populations.  304 
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6 TABLES 310 

Table I. Bayesian priors for the parameters in the four competing models described by equation 2 311 

in the methods. Pmax and Omax are the maximum numbers of observed parents and offspring, 312 

respectively, for a given population. 313 

Parameter Linear Allee Hockey Stick Allee Hockey Stick 

β1  Unif(0, 1)  Unif(0, 1) 

β2 Unif(1, 25) Unif(1, 25) Unif(1, 100) Unif(1, 100) 

Pd  Unif(0, Pmax / 3) Unif(0, Pmax / 3) Unif(0, Pmax / 3) 

K   Unif(Omax / 3, Omax) Unif(Omax / 3, Omax) 

SD Unif(0, 3) Unif(0, 3) Unif(0, 3) Unif(0, 3) 

 314 
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Table 2. Summary of parent and offspring data for Chinook salmon used in the study. PS, S, and 

UC refer, respectively, to Puget Sound, Snake, and Upper Columbia Evolutionary Significant 

Units (ESU). 

Index ESU River name Time period Parents range Offspring range 

1 PS Cascade River 1981-2005 83-625 92-2458 

2 PS Cedar Creek 1965-2005 126-1896 8-9099 

3 PS Dungeness River 1986-2005 43-955 47-1486 

4 PS Duwamish River 1968-2005 2014-11551 657-52907 

5 PS Elwha River 1986-2005 164-5309 418-5485 

6 PS Nisqually River 1968-2005 114-2788 0-32915 

7 PS Nooksack River North fork 1984-2005 10-7473 13-5337 

8 PS Nooksack River South fork 1984-2005 103-625 100-1364 

9 PS Puyallup River 1968-2005 527-5387 74-23354 

10 PS Sammamish River 1983-2005 34-550 20-1708 

11 PS Sauk River lower part 1952-2005 112-3896 321-22021 

12 PS Sauk River upper part 1952-2005 108-3345 57-27343 

13 PS Skagit River lower part 1952-2005 409-9263 577-62260 

14 PS Skagit River upper part 1952-2005 3586-20040 6146-114870 

15 PS Skokomish River 1968-2005 189-3184 39-16734 

16 PS Skykomish River 1965-2005 1681-7703 110-110621 

17 PS Snoqualmie River 1965-2005 324-3603 149-24714 

18 PS Stillaguamish River North fork 1974-2005 330-1849 353-89489 

19 PS Stillaguamish River South fork 1974-2005 73-391 15-14265 

20 PS Suiattle River 1952-2005 167-1804 87-10407 

21 PS White River 1965-2005 7-2131 9-7779 
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22 S Bear Valley 1960-2002 17-2376 24-4457 

23 S Big Creek 1957-2002 5-1858 6-3349 

24 S Camas Creek 1964-1998 3-554 1-1611 

25 S Catherine Creek 1955-2002 28-3161 4-6515 

26 S Grand Ronde River upper mainstem 1956-2002 3-1028 2-1991 

27 S Imnaha River 1954-2002 258-6267 197-5361 

28 S Lemhi River 1957-2002 10-3357 13-7633 

29 S Loon River 1964-2002 2-899 0-816 

30 S Lostine River 1959-2002 37-1585 35-3372 

31 S Marsh Creek 1957-2002 13-1845 4-4461 

32 S Minam River 1954-2002 54-4104 26-4068 

33 S Salmon River lower mainstem 1963-2000 11-432 52-636 

34 S Salmon River upper mainstem 1964-2000 18-2047 137-2545 

35 S Secesh River 1957-2002 48-1395 21-1581 

36 S Snake River (east fork) 1960-2002 11-3374 16-4269 

37 S Snake River lower mainstem 1957-2002 11-4888 24-2444 

38 S Snake River upper mainstem 1962-2002 18-3554 41-5267 

39 S South fork Salmon River East fork 1958-2002 23-1257 17-1444 

40 S South fork Salmon River mainstem 1964-1999 224-1515 354-2259 

41 S Sulphur River 1957-2002 2-876 0-2135 

42 S Tucannon River 1979-2002 11-897 11-16050 

43 S Valley Creek 1957-2002 5-1496 0-2605 

44 S Wenaha River 1964-2002 48-2682 46-5838 

45 S Yankee Creek 1961-1999 2-1488 1-3132 

46 UC Entiat River 1962-1998 18-714 35-1111 

47 UC Methow River 1962-1998 43-2813 141-3894 
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48 UC Wenatchee River 1960-2000 58-3523 166-6126 
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7 FIGURES  

Figure 1: Shape of the four alternative population production models described in the Methods 

with Pc the number of parents leading to reaching the carrying K and Od the number of offspring 

corresponding to the parents depensation breakpoint Pd.  Thin grey line is the 1:1 replacement 

line.
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Figure 2. Map of the study area. Grey shading indicates ocean-type populations within the Puget 

Sound ESU; black shading represents stream-type populations from the Upper Columbia and 

Snake River ESUs.  
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Figure 3. Posterior probabilities for the 4 competing model : linear (L), linear with Allee effect 

(AL), hockey stick showing compensation (HS), hockey stick with depensation plus Allee Effect 

(AHS). (A) Boxplots of models probabilities for the two different life-history types of Chinook 

salmon. Whiskers and hinges indicate the 95% and 50% credible intervals, respectively, around 

the median. (B) Stacked barplots detailing probabilities for each population. Numbers are 

indicative of the river index in Table 1. 
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Figure 4. Plot of the stock recruitment data (in thousands) together with the posterior median of 

predicted values coming from the Bayesian model model averaging and the most credible model 

only. 
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Figure 5. Plot of support for Allee effect in relation to i) time sries length (left panel) and ii) the 

ratio of minimum over the maximum number of spawners observed (proxy of historical 

depletion, right panel). Grey curves are non parametric lowess smoothing and highlight 

relationships between the variables. 
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