Version of Record: https://www.sciencedirect.com/science/article/pii/S0304380018301297
Manuscript_ac21545d302d5ee088b3429139¢a984a

10

11

12

13

14

15

16

Characterizing the strength of density dependence in at-risk species through Bayesian model

averaging

Guillaume Bal'2, Mark D. Scheuerell® and Eric J. Ward*

'National Research Council, under contract to Northwest Fisheries Science Center, National
Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake

Blvd E, Seattle WA, 98112, USA
2Marine Institute, Oranmore, Co. Galway, Ireland

3 Fish Ecology Division, Northwest Fisheries Science Center, National Marine Fisheries Service,

National Oceanic and Atmospheric Association, Seattle, WA 98112, USA

4 Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries

Service, National Oceanic and Atmospheric Association, Seattle, WA 98112, USA

Corresponding author: G. Bal, Marine Institute, Oranmore, Co. Galway, Ireland. (E-mail:

guillaume.bal.pro@ gmail.com, Phone: +353 85 835 1670, Fax: +353 91 387 201)

© 2018 published by Elsevier. This manuscript is made available under the Elsevier user license
https://www.elsevier.com/open-access/userlicense/1.0/


https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0304380018301297
https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0304380018301297

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

ABSTRACT

Developing effective conservation plans for at-risk species requires an understanding of the
relationship between numbers of breeding adults and their subsequent offspring. In particular,
establishing the degree to which density-dependent effects limit population size can be difficult
due to errors in the data themselves, uncertainty in model parameters, and possible
misspecification of model structure. Here we develop a Bayesian model averaging framework to
fit four simple models of adult-offspring production and estimate the probabilities that negative
(i.e., decreasing survival with increasing density) and positive (i.e., Allee effects) density
dependence exists. As an example, we analyzed 48 at-risk populations of anadromous Chinook
salmon (Oncorhynchus tshawytscha) from the northwestern United States. We found strong
evidence that more than two-thirds of the populations exhibit negative density-dependent effects
of adults. This result was somewhat unexpected given the large reductions in adult numbers
relative to historical benchmarks, indicating that carrying capacity of spawning habitat has been
reduced considerably. Approximately two thirds of the populations also had non-zero
probabilities of positive density-dependent effects of adults, which could suggest that cumulative
losses of spawning adults over the past century has led to decreased nutrient and energy
subsidies from semelparous carcasses, and diminished bio-physical disturbance from nest-
digging activity. Importantly, our analysis highlights the utility of Bayesian model averaging in a
conservation context wherein errors in choosing the best model may have more severe

consequences than errors in estimating model parameters themselves.

Keywords: density dependence, bayesian model averaging, management strategies, Allee effect,

compensation, depensation, salmon.
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1 INTRODUCTION

One of the cornerstones of conservation biology is establishing the relationship between
the numbers of parents and the offspring they produce. In particular, the degree to which
organisms are affected by population density has important implications for individual fitness
and population growth. Negative density dependence (NDD) occurs when density is relatively
high and any further increases in density lead to increased competition for resources (e.g., food,
breeding locations) or transmission of diseases, ultimately causing reductions in per capita
survival (Hixon et al. 2002, Brook and Bradshaw 2006). Conversely, positive density
dependence (PDD), or the “Allee effect”, arises when density is relatively low and the loss of
more individuals causes decreased per capita survival because of cooperative foraging or
defensive behaviors, decreased probability of finding a mate, or combinations of these factors
(Courchamp et al. 1999, Berec et al. 2007, Gregory et al. 2010a). The strength of both NDD and
PDD in wild populations has practical management implications. For example, the presence of
NDD could indicate limited habitat availability (i.e., insufficient total area) whereas the existence
of PDD might suggest a high degree of habitat fragmentation; rectifying those two types of
habitat deficiencies could require rather different actions. When combined with historical
knowledge about the population, insights about the combined roles of NDD and PDD are also
useful for reintroduction planning (Anderson et al. 2014). Understanding whether NDD and PDD
occur and if so, to what extent, is thus particularly valuable for determining the best options for

population management and the conservation of at-risk species.

Density-dependence has been studied extensively in fish populations because of its
importance to both the management of healthy and economically valuable stocks and the

conservation of imperiled populations (Liermann and Hilborn 1997, Barrowman and Myers
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2000, Barrowman et al. 2003). In classical fisheries management, NDD within a stock implies

parental biomass should be harvested to the point where the surplus production of new recruits to

the fishery is maximized relative to replacement (Hilborn and Walters 1992). Conversely, the
degree of PDD mortality will determine the rate at which overfished stocks will recover when
harvest is reduced. Most conservation practitioners concentrate on the possible existence of
PDD. However, NDD at relatively low abundance can exist, implying diminished carrying
capacity from factors like habitat loss/modification or the presence of non-native species

(Achord et al. 2003), but this is often ignored in conservation contexts.

Models of population dynamics offer a formal means for estimating both positive and
negative density dependence (Boyce 1992). For example, Beverton-Holt (1957) and Ricker
(1954) models of density dependence have been used to estimate the relationships between
parents and offspring for decades. Approaches allowing for flexibility in curves shapes but not
process based, such as splines or Gaussian model, have also been developed (Bravington et al.
2000, Munch et al. 2005). Meanwhile Barrowman and Myers (2000) introduced a form of
piecewise regression model known as the “hockey stick” (HS) model, which is similar to the
Ricker and Beverton-Holt curves. The HS model offers potential advantages over these other
models in a conservation context because it provides more conservative estimates of the
maximum density-independent survival (i.e., slope at the origin) and carrying capacity
(Barrowman and Myers 2000). In addition, the breakpoints in the HS segments may provide
natural reference points for management decisions. However, the HS model does not allow for

PDD.

Although statistical modeling is a powerful tool, three main types of uncertainties can

hinder our ability to infer the true underlying relationship between parents and their offspring.

4
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First, observation errors arise in the form of sampling and measurement errors. Second, model
parameters are rarely known without error and instead must be estimated from the data. Third,
uncertainty about the structure of the model itself affects inference about the form of the parent-
offspring relationship. The first two concerns are often addressed through appropriate sampling
designs and explicit consideration of both process and observation/sampling errors. However,
possible misspecification of a particular model is typically ignored and instead the “best” model
is chosen based on some model selection measure such as Akaike’s Information Criterion
(Burnham and Anderson 2002). In such cases, two models with nearly identical support from the
data could produce widely divergent predictions, especially when confronted with new data
(Pascual et al. 1997, Richards 2005). As a guard against this likely possibility, model averaging
(MA) offers a formal means for explicitly addressing model-selection uncertainty in problems of
inference and prediction (Burnham and Anderson 2002, Wintle et al. 2003). In particular, model
averaging can produce more robust estimates by combining results from an ensemble of multiple
independent models (Banner and Higgs 2017). As a cautionary note, however, averaging
expectations from models that are capable of producing an important spectrum of different
results may confuse interpretations (Galipaud et al. 2014, Cade 2015). Thus, the set of models to

consider should be carefully considered.

Pacific salmon (Oncorhynchus spp.) are important to human economies and the ecology
of coastal ecosystems across the northern Pacific rim (Schindler et al. 2003). Fisheries for
salmon are worth hundreds of millions of US dollars annually (NMFS, 2013). Salmon also act as
ecosystem engineers by modifying benthic habitats through nest-digging activity (Moore 2006)
and serve as keystone species in food webs as food for fish, mammals, birds, and insects

(Helfield and Naiman 2006). In many coastal watersheds across western Canada and the US,
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however, Pacific salmon populations have been reduced to mere fractions of their historical
abundances due to changes in habitat, hydropower development, overharvest, and changing
climate (Ruckelshaus et al. 2006). Literature also suggest that Pacific salmon population are
susceptible to Allee effect through predation, disease and decreased mate finding abilities at low
densities (Quinn et al. 2014, Godwin et al. 2015) . Thus, obtaining a proper understanding of
whether NDD, PDD, or both occur among at-risk salmon populations and estimating related

reference points is necessary for determining the best recovery strategies.

Here we examined the strength of NDD and PDD among 48 populations of Chinook
salmon (0. tshawytscha) from the northwestern USA that are currently listed as “threatened”
under the US Endangered Species Act. To do so, we simultaneously considered four different
piecewise-linear models to characterize various forms of density dependence (Fig. 1): 1)
unrestricted (density-independent); 2) Allee effect only (PDD); 3) carrying capacity only (NDD);
and 4) both PDD and NDD. Piecewise-linear models tend to provide better estimates of per
capita productivity at low population sizes, and offer more conservative estimates of mortality
rates that lead to extinction. In addition, we addressed both parameter and model uncertainty
within a unified framework through Bayesian model averaging (BMA), which allowed us to

easily combine predictions and uncertainties across all four models.

2 MATERIAL AND METHODS

2.1 Allee Hockey Stick model and nested sub-models

Barrowman and Myers’ (2000) hockey stick (HS) model assumes the number of offspring

increases linearly up to an asymptote, beyond which it is independent of parental abundance. For
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a given population, the model is described by two linear functions above and below some
threshold level of parental abundance (FP,),

A AN (1)
t=1lK ifP,> P

where [is the density-independent per-capita reproductive rate, P; is the number of parents
breeding in year ¢. At parental abundance values above P. , NDD effects dominate and restrain
the number of offspring to K, the carrying capacity. As P. approaches infinity, the degree of
density-dependence goes to zero and because of exponential growth, there is no limit to

population size.

To allow for PDD (Allee effects) at relatively low levels of parental abundance, we
modified the original HS model (Barrowman and Myers 2000) to allow for a third linear
segment. This new “Allee Hockey Stick” (AHS) model allows growth rates to become depressed

when parental abundance is less than some threshold, P,

B1P; if P <Py
Op = {P1Pa+B2(Pe — Pg) if Py <P, <P, ()
K if P, > P,

where 0 < By <1< B,, K = B1P;+B,(P. — P;) and P, and P, are the breakpoint thresholds
respectively. By fixing some parameters at zero or infinity, the AHS model reduces to three less
complex models, each with contrasting assumptions about the occurrence of NDD and PDD
(Fig. 1). The first is for unrestricted or linear growth (L model) where f; =0, P; = 0and P, =

00), such that
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O, =B,F, 3)

The second is for an Allee effect only (AL model) where P, = oo and

{,3113 if P, <P,
I ﬁlPd+ﬁ2(Pz_Pd) l-.ff)t>Pd.

“4)

The third is the original HS model with carrying capacity only, such that f; =0, P; = 0, K =

B, P;, and

®)

o |BE PSP
"k ifP=P’

2.2 Parameter estimation and model weighting

Here we used a 2-steps procedure, where each model is first fit independently to data using
the Sampling — Importance — Resampling (SIR) algorithm (Rubin 1988), and then results are
averaged across models. The SIR algorithm we used to approximate the posterior distribution by
using an importance function to resample parameter draws from a proposal distribution is
equivalent to Moore (2008) and detailed in Appendix A. For a given model, the marginal
likelihood can be expressed as the product of the prior model probability and the likelihood
integrated over the entire parameter space. For instance, the corresponding equation for model
M, is P(M,|y) = P(M,) [ P(6|M;)P(y|6, M;). Across models, we normalized the marginal
likelihoods so that they could be interpreted as posterior model probabilities ),; P(M;|x) = 1
(Rubin 1988). There are several upsides and downsides of Bayesian estimation in SIR versus

other techniques, such as MCMC. As a positive, calculating the expected marginal likelihood is
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straightforward in SIR because the likelihood of each draw can be easily saved which is not
possible in software implementing MCMC, such as WinBUGS (Lunn et al. 2000), JAGS
(Plummer 2003) or Stan (Stan Development Team 2016). Second, the SIR algorithm does not
require a burn-in period or assessment of MCMC diagnostics for convergence. However, the
utility of SIR is somewhat limited for complex models, beyond 4-5 parameters, because
sampling can be inefficient. For all models presented above, we assumed that the residual error
was lognormally distributed. We chose weakly informative uniform priors and that were shared

among the four models whenever possible (Table I).

An R package containing functions to fit the 4 models, together with the dataset discussed
below, is freely available on GitHub at the following address:

https://github.com/GuillaumeBal/bal.et.al.2018.bma.density.dependence

2.3 Model Application

For management purposes, Pacific salmon species are grouped into evolutionarily
significant units (ESUs), defined as a group of salmon that (1) is reproductively isolated from
other conspecific populations, and (2) represents an important component in the evolutionary
legacy of the species (Waples 1991). We estimated the strength of density dependence among 48
Chinook salmon populations within 3 distinct ESUs from Washington, Idaho, and Oregon in the
northwestern USA (Fig. 2). These ESUs represent different life-history types, allowing us to
compare the strength of density dependence across life histories. For example, Chinook salmon
within the Puget Sound ESU are “ocean-type”; these juveniles spend less than 1 year in fresh
water before migrating to the ocean. In contrast, salmon from the Snake River and Upper
Columbia ESUs are “stream-type” and spend 1 full year in fresh water before migrating to sea

(Taylor 1990).
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We used the total number of spawning adults in a given year as our estimate of parent
abundance. Because salmon from the same cohort mature at different ages, our estimates of
offspring are then the sum of subsequent adults that were born in a given year, but that vary in
age and return over sequential years (e.g., the offspring of Snake River stream-type adults that
spawned in 2000 return as 3-6 years later in 2003-2006). All data used here were compiled by
the National Marine Fisheries Service. To ensure time series were long enough to potentially
detect positive density dependence (Brook and Bradshaw 2006, Gregory et al. 2010b), we
restricted our analysis to those populations with at least 20 years of data, and no more than 5
missing values within that period (Table 2). This resulted in time series length ranging from 20

to 54 years.

3 RESULTS

For both life history types across the three ESUs, we found the strong support from the data
for a model with only NDD (Fig. 3a); the median posterior model probabilities were 0.65 and
0.45 for ocean and stream-type Chinook salmon, respectively. We found little evidence for
models containing only PDD (Allee effects) and models that included both PDD and NDD had
median probabilities of being the best equal to 0.13 and 0.011 for ocean and stream-type salmon,

respectively.

Among populations within a specific life history type, however, the relative support for the
different models varied considerably (Fig. 3b). Although there were a few populations whose
model probabilities were rather evenly split among the four model forms (e.g., 4, 16), most
populations showed strong support in favor of one particular model. For ocean-type Chinook

salmon, most populations showed strong indications of NDD, but a few populations had little

10
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evidence for either form of density dependence (e.g., 1, 4, 8, 14, 15). Evidence for NND was
rather strong for stream-type Chinook, and notably, the evidence for models with both PDD and

NDD was reasonably strong in fewer populations (e.g., 39, 42).

For each population, the model averaged relationship exhibited subtle to rather significant
departure from the best model depending of the relative credibility of the models. For example,
the best models selected for Big Creek, the South Fork of the Salmon River east fork and the South
fork of the Salmon River mainstem (i.e., populations 23, 39, 40 in Table 2) were the L model, HS
model, and L. model, respectively. Applying BMA to estimate the shape of this curve may yield a
result very similar to the single “best” model, but it can also result in more conservative results
(Fig. 4). In the case of Big Creek, a simple model selection would select a linear relationship
whereas the shape coming from BMA exhibits NDD when the population reaches 409 fish
although the departure from the replacement curve is on average weak. In the South fork of the
Salmon River East Fork, PDD is highly likely when the population size falls under 27 individuals.
For the South fork of the Salmon River mainstream, however, there is very little difference

between the best and BMA models.

Although we found no discernable link between the data support for an Allee effect in a
population and the length of the corresponding time series, we did observe a positive relationship
with the ratio of the observed lowest to highest counts within a time series (i.e., a measure of

relative historical stock depletion; Fig. 5).

4 DISCUSSION

Our results reveal two important messages regarding the role of density-dependence in
the population dynamics of Chinook salmon in the Pacific Northwest. First, we found that linear

11
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relationships between offspring and parents with no density dependence were probable,
especially within the Snake River ESU (median model posterior probability = 0.53) whom the
rivers have experimented the strongest historical depletions according to the ratio of minimum
over maximum spawners abundances (Table 2). This suggests that quite a few populations from
the Columbia River watershed have still not recovered from the overall great reduction in
parental abundances compared to historical numbers. With a few exceptions, we found strong
support for models with NDD (median model posterior probability = 0.65) in populations from
the Puget Sound area. Our results further support ongoing efforts in this region to increase

carrying capacity through improvements to freshwater spawning and rearing habitats.

Second, the existence of PDD among these Chinook salmon populations is indeed a
possibility, which agrees with previous studies of other salmon species (Liermann and Hilborn
1997, Barrowman et al. 2003), but it appears to be low. The time series used in this study have
20 to 54 years of data, which are similar to previous publications attempting to detect the
presence of Allee dynamics (Brook and Bradshaw 2006, Gregory et al. 2010b). Although longer
time series are always preferable, we found little relationship between time series length and
support for Allee dynamics. Furthermore, most of the populations are at the low end of their
historical sizes, such that the ratio of the minimum to maximum spawners ranges from 0% to
20%, with about 50% of the populations below 2.5%. Interestingly, we found that the support for
Allee effects is positively correlated with this ratio. The support for Allee effects in populations
that have been less depleted may result from a lack of data at extremely low abundances,

wherein the Allee model produces different estimates from the linear or HS model.

Although support for Allee effects is weak overall and we cannot identify the exact

cause, some reasonable hypotheses exist. First, salmon gain about 90% of their adult biomass in

12



251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

the ocean, and therefore act as net importers of marine-derived nutrients and energy to
freshwater ecosystems (Schindler et al. 2003), but decades of low adult abundance may have
rendered these ecosystems much less productive for juveniles than they were historically (Rinella
et al. 2012). In addition, nest-digging activity by female salmon mobilizes fine sediment (Moore
et al. 2004) and decreases the probability of stream-bed scour and excavation of buried salmon
eggs or embryos (Montgomery et al. 1996). Thus, losses of adult salmon may have crossed a
threshold whereby the freshwater ecosystem cannot support the juvenile production it once did

(Achord et al. 2003, Schindler et al. 2005).

Absence of observed Allee effects could also indicate that availability of juvenile habitat
is more important than direct mortality from predators (Mogensen and Post 2012). For Puget
Sound populations, in particular, much of the lowland areas have been converted from forest to
agriculture, which has greatly decreased the carrying capacity for juvenile Chinook salmon
(Scheuerell et al. 2006). Furthermore, increasing evidence points to NDD among adult life stages
during their ocean residency owing to competition with hatchery fish (Ruggerone et al. 2012,
Connors et al. 2012). This potentially shifts the focus away from habitat actions and more toward

hatchery reforms (Buhle et al. 2009).

The varying degrees of support for different forms of density dependence among the
many populations provide some important insights for conservation. Decisions to list Pacific
salmon as threatened or endangered under the Endangered Species Act are made collectively at
the relatively large ESU level, but recovery plans are developed and implemented at much
smaller scales relating to specific populations. Here we have used posterior model probabilities

to assess the degree to which PDD, NDD, or a combination thereof exists for each population
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within an ESU. Managers could potentially use this information to further direct location-

specific actions that might decrease the intensity of PDD or NDD.

The SIR algorithm applied in this study uses samples across the prior distributions to
calculate marginal likelihood and derive model probabilities. This approach has already been
used in fisheries related studies (Punt and Hilborn 1997, McAllister and Kirkwood 1998, Zerbini
etal. 2011) as well as for the study of isotopic mixtures (Semmens and Moore 2008, Moore and
Semmens 2008). The efficiency of this SIR algorithm is limited to low dimensionality problems
(models with few parameters) as the acceptance rate would otherwise drops off very quickly and
thus make computation time very long. For this reason, MCMC methods tend to be favored.
Because of some recent criticism of Bayesian model selection tools, such as DIC (Spiegelhalter
et al. 2014, Gelman et al. 2014) we were interested in the SIR algorithm’s ability to perform
estimation for these relatively simple models. Computation time was quick, lasting only a few
minutes per population. We also compared our results to that of the more widely used DIC and
the more recent LOOIC (Leave One Out Information Criterion) Bayesian model selection
approaches. When compared to the SIR algorithm, the DIC approach tended to rank the HS
model first to the detriment of the L model in a few cases (Appendix C1). The reversed pattern
was observed with the LOOIC approach (Appendix C2). In both cases, those shifts were
consistent across the two life history types. Although the different methods lead to a few
differences on a river by river basis, the general patterns discussed above and based on the SIR
approach are robust. These similarities between methods also support the fact that the chosen

priors have little influence on the results obtained.

Our analysis highlights the utility of model averaging for estimating relationships among

parents and their offspring. Model averaged results were more conservative than the best model

14



296

297

298

299

300

301

302

303

304

305

306
307
308

309

alone, and therefore applying model averaging may be particularly important for populations of
conservation concern. The use of the HS and AHS models was largely chosen based on the taxa
in our analysis; other model sets could be developed for other species (and unlike our analysis,
there is no requirement that all candidate models be nested). Although there are a number of
ways to implement Bayesian model averaging, the SIR approach is best for relatively simple
models like those we used here. Increased model complexity will decrease the speed of the SIR
approach exponentially, however. Using other estimation routines such as Markov Chain Monte
Carlo (MCMC), the model-averaged procedure could also be constructed hierarchically across

populations, to estimate common strengths of density dependence across populations.
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310 6 TABLES

311  Table I. Bayesian priors for the parameters in the four competing models described by equation 2
312 in the methods. Ppax and Oyax are the maximum numbers of observed parents and offspring,

313 respectively, for a given population.

Parameter Linear Allee Hockey Stick Allee Hockey Stick
B Unif(0, 1) Unif(0, 1)
B2 Unif(1, 25) Unif(1, 25) Unif(1, 100) Unif(1, 100)
P Unif(0, Pnax/3)  Unif(0, Puax/ 3) Unif(0, Pmax/ 3)
K Unif(Omax/ 3, Omax)  Unif(Omax/ 3, Omax)
SD Unif(0, 3) Unif(0, 3) Unif(0, 3) Unif(0, 3)

314

16



Table 2. Summary of parent and offspring data for Chinook salmon used in the study. PS, S, and

UC refer, respectively, to Puget Sound, Snake, and Upper Columbia Evolutionary Significant

Units (ESU).

Index ESU River name Time period Parents range Offspring range

1 PS  Cascade River 1981-2005 83-625 92-2458

2 PS  Cedar Creek 1965-2005 126-1896 8-9099

3 PS  Dungeness River 1986-2005 43-955 47-1486
4 PS  Duwamish River 1968-2005  2014-11551 657-52907
5 PS  Elwha River 1986-2005 164-5309 418-5485
6 PS  Nisqually River 1968-2005 114-2788 0-32915

7 PS  Nooksack River North fork 1984-2005 10-7473 13-5337

8 PS  Nooksack River South fork 1984-2005 103-625 100-1364
9 PS  Puyallup River 1968-2005 527-5387 74-23354
10 PS  Sammamish River 1983-2005 34-550 20-1708
11 PS  Sauk River lower part 1952-2005 112-3896 321-22021
12 PS  Sauk River upper part 1952-2005 108-3345 57-27343
13 PS  Skagit River lower part 1952-2005 409-9263 577-62260
14 PS  Skagit River upper part 1952-2005  3586-20040 6146-114870
15 PS  Skokomish River 1968-2005 189-3184 39-16734
16 PS  Skykomish River 1965-2005 1681-7703 110-110621
17 PS  Snoqualmie River 1965-2005 324-3603 149-24714
18 PS  Stillaguamish River North fork 1974-2005 330-1849 353-89489
19 PS  Stillaguamish River South fork 1974-2005 73-391 15-14265
20 PS  Suiattle River 1952-2005 167-1804 87-10407
21 PS  White River 1965-2005 7-2131 9-7779

17



22 S Bear Valley 1960-2002 17-2376 24-4457
23 S BigCreek 1957-2002 5-1858 6-3349
24 S Camas Creek 1964-1998 3-554 1-1611
25 S Catherine Creek 1955-2002 28-3161 4-6515
26 S Grand Ronde River upper mainstem  1956-2002 3-1028 2-1991
27 S Imnaha River 1954-2002 258-6267 197-5361
28 S Lembhi River 1957-2002 10-3357 13-7633
29 S Loon River 1964-2002 2-899 0-816
30 S Lostine River 1959-2002 37-1585 35-3372
31 S Marsh Creek 1957-2002 13-1845 4-4461
32 S Minam River 1954-2002 54-4104 26-4068
33 S Salmon River lower mainstem 1963-2000 11-432 52-636
34 S Salmon River upper mainstem 1964-2000 18-2047 137-2545
35 S Secesh River 1957-2002 48-1395 21-1581
36 S Snake River (east fork) 1960-2002 11-3374 16-4269
37 S Snake River lower mainstem 1957-2002 11-4888 24-2444
38 S Snake River upper mainstem 1962-2002 18-3554 41-5267
39 S South fork Salmon River East fork 1958-2002 23-1257 17-1444
40 S South fork Salmon River mainstem 1964-1999 224-1515 354-2259
41 S Sulphur River 1957-2002 2-876 0-2135
42 S Tucannon River 1979-2002 11-897 11-16050
43 S Valley Creek 1957-2002 5-1496 0-2605
44 S Wenaha River 1964-2002 48-2682 46-5838
45 S Yankee Creek 1961-1999 2-1488 1-3132
46 UC  Entiat River 1962-1998 18-714 35-1111
47 UC  Methow River 1962-1998 43-2813 141-3894
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48 UC  Wenatchee River 1960-2000 58-3523 166-6126
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7 FIGURES
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Figure 1: Shape of the four alternative population production models described in the Methods

with P. the number of parents leading to reaching the carrying K and O the number of offspring

corresponding to the parents depensation breakpoint Py. Thin grey line is the 1:1 replacement

line.
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Figure 2. Map of the study area. Grey shading indicates ocean-type populations within the Puget
Sound ESU; black shading represents stream-type populations from the Upper Columbia and

Snake River ESUs.
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Figure 3. Posterior probabilities for the 4 competing model : linear (L), linear with Allee effect
(AL), hockey stick showing compensation (HS), hockey stick with depensation plus Allee Effect
(AHS). (A) Boxplots of models probabilities for the two different life-history types of Chinook
salmon. Whiskers and hinges indicate the 95% and 50% credible intervals, respectively, around
the median. (B) Stacked barplots detailing probabilities for each population. Numbers are

indicative of the river index in Table 1.
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