

## Ecological bridges and barriers in pelagic ecosystems

Dana K. Briscoe<sup>a</sup>

Alistair J. Hobday<sup>b</sup>

Aaron Carlisle<sup>a</sup>

Kylie Scales<sup>c</sup>

J. Paige Eveson<sup>b</sup>

Haritz Arrizabalaga

Jean Noel Druon<sup>e</sup>

Jean-Marc Fromenti

- a. Stanford University, Hopkins Marine Station, Pacific Grove, CA 93950, USA
- b. CSIRO Oceans and Atmosphere, Hobart, Tasmania, 7000, Australia
- c. Environmental Research Division, Southwest Fisheries Science Center, National Oceanic and Atmospheric Administration, Monterey, CA 93940, USA
- d. AZTI, Marine Research Division, Herrera Kaia Portualdea z/g, 20110 Pasaia, Basque Country, Spain
- e. European Commission, Joint Research Centre (JRC), Institute for the Protection and Security of the Citizen (IPSC), Maritime Affairs Unit, Via Enrico Fermi 1, 21027 Ispra VA, Italy
- f. IFREMER, UMR MARBEC - Marine Biodiversity, Exploitation & Conservation, Avenue Jean Monnet, CS 30171, 34203 Sète Cedex, France

32 **Abstract**

34 Many highly mobile species are known to use persistent pathways or corridors to move  
36 between habitat patches in which conditions are favorable for particular activities, such as  
38 breeding or foraging. In the marine realm, environmental variability can lead to the  
40 development of temporary periods of anomalous oceanographic conditions that can  
42 connect individuals to areas of habitat outside a population's usual range, or alternatively,  
44 restrict individuals from areas usually within their range, thus acting as *ecological bridges* or  
46 *ecological barriers*. These temporary features can result in novel or irregular trophic  
48 interactions and changes in population spatial dynamics, and, therefore, may have  
50 significant implications for management of marine ecosystems. Here, we provide evidence  
of ecological bridges and barriers in different ocean regions, drawing upon five case studies  
in which particular oceanographic conditions have facilitated or restricted the movements of  
individuals from highly migratory species. We discuss the potential population-level  
significance of ecological bridges and barriers, with respect to the life history characteristics  
of different species, and inter- and intra-population variability in habitat use. Finally, we  
summarize the persistence of bridge dynamics with time, our ability to monitor bridges and  
barriers in a changing climate, and implications for forecasting future climate-mediated  
ecosystem change.

52 **Key words:** species distribution, migration corridors, population connectivity,  
54 oceanographic features, tuna, billfish, marine mammal, Brazilian episode

## 1. Introduction

Throughout the biosphere and across all scales of ecological organization, the environmental conditions that constitute animal habitats are arranged in a complex, hierarchical and heterogeneous configuration. This patchiness can restrict sessile animals to the same habitat 'patch' for most of their lifetime while mobile animals can move between suitable patches, because they can tolerate unfavorable conditions when moving between preferred habitats (Switzer, 1993). These movements across a landscape or seascape connect populations and allow for life history processes that are essential to population persistence (Gilbert-Norton et al., 2010) and ecosystem function (e.g. genetic flow, nutrient cycling, Reimchen et al. (2003); Sanchez-Pinero and Polis (2000)).

Habitat connectivity – the degree of interconnectivity between patches of favorable habitat – is essential, not only for individual survival but also for the maintenance of metapopulation structure, and ultimately, biological diversity (Hanski, 1999). Seasonal events may trigger dispersal or migration to exploit different habitats that are beneficial to reproduction and fitness (Dingle, 2009; Murrell et al., 2002). In terrestrial landscapes, many large-bodied ungulates and winged species undergo lengthy migrations (Harris et al., 2009), avoiding unsuitable habitats, crossing barriers or temporarily tolerating unsuitable environments (e.g. wildebeest in Serengeti (Ottichilo et al., 2001) and raptor migrations across Sahara (Strandberg et al., 2009)).

In marine systems, satellite-tracking studies of pelagic fishes, sea turtles, seabirds and marine mammals have shown impressive transoceanic migrations between areas used for different stages of the ontogenetic or annual cycle (Akesson and Hedenstrom, 2007; Block et al., 2011; Bonfil et al., 2005; Scott and Hays, 2014; Shaffer et al., 2006). The routes that characterize movement between suitable habitats and that are spatially persistent are known as corridors (Anderson et al., 2013; Beier and Noss, 1998; Bennett, 1999). While habitat corridors in terrestrial environments are well understood (e.g. monarch butterflies (Brower, 1995); osprey (Alerstam et al., 2006)), the concept of corridors in the marine realm is less developed. Yet highly mobile marine species are also known to utilize seasonally dynamic oceanographic features to move between known breeding and foraging habitats (Guilford et al., 2009; Morreale et al., 1996; Polovina et al., 2006). Some corridors are well defined by the seasonal or annual predictability of a population returning generation after generation (Anderson et al., 2013).

There are also locations within a species range that have periodic bouts of anomalous environmental conditions that may influence habitat suitability. In pelagic systems, currents and mesoscale oceanographic features (e.g. eddies, fronts, filaments, changes in vertical mixing) are the major sources of this environmental variability over intra-annual timescales (Bakun, 2006). In contrast to predictable and regularly used migratory corridors, anomalous environmental conditions may lead to the development of short-lived corridors or *ecological bridges*. Following Fromentin et al. (2014a), we define an ecological bridge as a temporary habitat pathway connecting two suitable but distinct habitat regions (Fig. 1). Anomalous oceanographic conditions and changes in mesoscale variability can create such ecological bridges, and allow individuals access to alternate, or irregular, areas of habitat. We distinguish this from cases where a single habitat expands to new regions thereby allowing species to increase their range (e.g. Mackenzie et al., 2014; Stewart et al.,

104 2014), which has been increasingly observed as ecosystems respond to global climate  
105 change (Hollowed et al., 2013; Kirby et al., 2006).

106 In contrast to ecological bridges, migrating animals are often confronted with  
107 barriers between favorable habitat patches. Ecological barriers can be geographic (e.g.  
108 seas, land masses, deserts, or mountains), or environmental (e.g. temperature and salinity  
109 gradients, light or oxygen levels, (Prince and Goodyear, 2006; Selkoe et al., 2008).  
110 Profound changes to corridors and barriers have occurred in the past, e.g. historical  
111 episodes of climate change and tectonic activity (Gaston, 2003). Some change more  
112 quickly, in synchrony with timing and intensity of interannual and decadal events (ENSO  
113 and PDO) (Lehodey et al., 1997; Massom and Stammerjohn, 2010).

116 The timing and location of ecological bridges and barriers may change over space  
117 and time, connecting (or disconnecting) animals to disjunct (or adjunct) habitats, with a  
118 range of ecological implications. Here we provide evidence of ecological bridges and  
119 barriers in the marine realm, drawing upon case studies in which a particular set of  
120 oceanographic conditions have facilitated or prevented the movements of individuals  
121 between patches of favourable habitat. In Section 2, we present five case studies of  
122 ecological bridges and barriers, detailing how each bridge (barrier) is formed and how  
123 species respond, how the presence of a bridge (barrier) affects population structure and  
124 connectivity, and the socio-economic implications (if any). We then generalise the  
125 importance of bridges and barriers in terms of dynamics, population level significance, and  
126 future research needs (Section 3).

## 128 **2. Ecological bridges and barriers in pelagic systems**

130 The movements and migratory patterns of pelagic species can have important  
131 ecological and population level effects (Dingle, 2014; Frisk et al., 2014), especially in higher  
132 trophic level predators which can play an important role in structuring and maintaining  
133 marine food webs (Heithaus et al., 2008). While both physical and biological factors  
134 influence the movements and resulting patterns in population structure and connectivity in  
135 marine species (Frisk et al., 2014), we mostly focus here on changes in the physical  
136 environment. Case studies from pelagic fishes and marine mammals demonstrate how  
137 shifting environmental conditions create ecological bridges or barriers that can influence the  
138 distribution of migratory marine species with potentially important ecological effects at the  
population level, as described below.

### 140 **2.1 Atlantic bluefin tuna: the Brazilian episode and a bridge between two 141 hemispheres**

142 Throughout its thousand years of exploitation, catches of Atlantic bluefin tuna  
143 (ABFT, *Thunnus thynnus*) have exhibited conspicuous changes in both time and space  
144 domains (Fromentin et al., 2014a; Mather et al., 1995; Ravier and Fromentin, 2004),  
145 probably reflecting the high mobility of the species (Block et al., 2005; Sibert et al., 2006).  
146 During the 20<sup>th</sup> century, large Nordic and Japanese fisheries rapidly arose in unexpected  
147 fishing areas, i.e. the North and Norwegian Seas and the equatorial Atlantic, but suddenly  
148 disappeared after a few years or decades. Those variations seem to be primarily due to  
149 environmentally driven changes in ABFT migration patterns that could act in synergy with  
150 local/regional overfishing (Fromentin, 2009).

152 One of the most striking changes in ABFT spatial distribution was the so-called  
154 "Brazilian episode", during which Japanese longline fishing boats caught large quantities of  
156 ABFT (a temperate species) in the equatorial Atlantic where they were targeting tropical  
158 tunas (Fromentin et al., 2014a; Takeuchi et al., 2009). In a study by Fromentin et al.  
160 (2014a), a niche model was applied to an extensive dataset of catch and environmental  
162 variables from 1960 to 2009. Results showed that ABFT has a remarkably large ecological  
164 niche, with high probabilities of occurrence in the North Atlantic and adjacent seas (as  
166 expected), as well as in the South Atlantic at around 30°S and along the southwestern  
168 African coast (Fig. 2a). The niche model also detected favorable environmental conditions  
170 for ABFT in the western equatorial Atlantic during the 1960s, exactly where the Japanese  
172 vessels caught ABFT. The 1960s were the only decade in the last 50 years that exhibited  
174 relatively high probability of ABFT occurrence around the Equator. No ABFT have been  
176 caught in the equatorial Atlantic since then, although the fishing effort significantly increased  
178 in that area. During the last decade, higher probabilities of ABFT mostly occurred above  
180 45°N (Fig. 2b), which could be related to global warming and which agrees with a northward  
182 expansion of ABFT (see below). ABFT could have thus migrated from their northern  
184 spawning grounds to the South Atlantic during the 1960s through the western equatorial  
186 Atlantic acting as an ecological bridge between the central North and the central South  
188 Atlantic. These new geographical spots could have subsequently been transmitted from  
year-to-year through spatial learning and entrainment of younger fish (Petitgas et al., 2010).

172 Further analyses indicated that during that period, ABFT could have migrated from  
174 the equatorial Atlantic to the western spawning ground of the Gulf of Mexico during the first  
176 part of the year followed by a reverse north-south migration during the second part of the  
178 year (Fromentin et al., 2014a). The southeastern Atlantic feeding grounds (offshore of  
180 South Africa, Namibia and Angola) may well have been shared by both ABFT and southern  
182 bluefin tuna during the 1960s. However, this bridge appears to have broken by the late  
184 1960s because of oceanographic changes affecting primarily sea surface temperature and  
186 possibly the equatorial current and counter-current. This could have made ABFT migration  
188 to the South Atlantic more difficult. ABFT has high rates of natal homing (Rooker et al.,  
2008) and as connections have been detected between the western equatorial Atlantic and  
the Gulf of Mexico, but not with the Mediterranean Sea, it is highly probable that those  
individuals were part of the western Atlantic ABFT stock. Therefore, the breaking of this  
ecological bridge may have primarily affected the productivity of the western stock and its  
lack of rebuilding could result from a regime shift due to the combination of oceanographic  
changes in the equatorial Atlantic (the breaking of the ecological bridge) and intense fishing  
in the North Atlantic in the 1960s-1970s (Fromentin et al., 2014a).

190 Because ABFT displays a large ecological niche, it has potentially more abiotic  
192 opportunities (i.e. a larger ecological window) than many other large pelagic fish. This may  
194 explain why the ABFT spatial distribution appears generally highly variable. The ABFT  
196 spatial distribution seems to have expanded northward (beyond 50°N) in the last decade  
198 (as it did from the 1930s to the 1950s), probably because of the effects of global climate  
change. This is particularly evident in the western Atlantic, with the northern expansion of  
large ABFT in the Gulf of Saint Lawrence. MacKenzie et al. (2014) postulated that the  
presence of bluefin tuna in waters east of Greenland in 2012 could be due to a combination  
of warmer temperatures and immigration of an important prey species (mackerel) to the

region, indicating that global warming will open (or close) ecological bridges in the northern (southern) parts of the oceans to marine fish and, probably to other marine vertebrates.

## 202 **2.2 Atlantic bluefin tuna: the western pulse into the Bay of Biscay**

203 In the Northeast Atlantic, the Bay of Biscay is a key juvenile ABFT feeding ground.  
204 Juveniles migrate into the Bay of Biscay in April-June, where they feed on the abundant  
205 local prey and grow before migrating back to Atlantic wintering areas in autumn (Dufour et  
206 al., 2010). Some adults also feed in the Bay of Biscay after spawning in the Mediterranean  
207 (Aranda et al., 2013). Using different technologies (such as conventional tags, electronic  
208 tags, or chemical tags), Bay of Biscay ABFT have been shown to be substantially  
209 connected with other areas across the Mediterranean and the western Atlantic (Abascal et  
210 al., 2016; Arregui et al., 2006; Graves et al., 2015). However, the natal origin of Bay of  
211 Biscay ABFT remained unknown until the otolith chemistry study by Fraile et al. (2015).  
212 Using a substantial sample of juveniles and adults over three consecutive years, they found  
213 that the Bay of Biscay is supported almost exclusively by the eastern ABFT population, but  
214 the western population may also occasionally contribute in some years. Given that the  
215 eastern population is believed to be an order of magnitude larger than the western  
216 population (Kerr et al., 2015), ABFT of western origin is particularly difficult to detect in  
217 eastern foraging areas. In fact, a small proportion of western migrants was detected in the  
218 Bay of Biscay only in 2009 – a western pulse. In contrast, the Bay of Biscay fishery was  
219 composed exclusively of eastern origin bluefin tuna in 2010 and 2011. Based on their  
220 sampling, Fraile et al. (2015) suggested that a substantial fraction of the western population  
221 may move across the Atlantic Ocean to feed in the Bay of Biscay and/or surrounding waters  
222 of the Northeast Atlantic.

223 Across the three consecutive fishing seasons, all the western origin ABFT detected  
224 in the Bay of Biscay were caught within a very restricted time window (10 days) in 2009,  
225 suggesting high temporal variability in the transatlantic migration from west to east, with  
226 migration events occurring in sporadic pulses that could be related to variability in  
227 environmental conditions (Fraile et al., 2015). A recently developed habitat model that  
228 notably includes productive mesoscale features as a proxy for food availability (Druon et al.,  
229 2016) suggests that the 2009 pulse of western origin ABFT into the Bay of Biscay might  
230 have been due to the existence of a longitudinal ecological bridge across the Atlantic (Fig.  
231 3a). One to three months prior to sampling in 2009, this habitat bridge which is linked to the  
232 Gulf Stream dynamics connected the main western and eastern Atlantic feeding areas  
233 through a well-defined, relatively narrow corridor west of 45°W. During the ABFT migration  
234 period to northeast Atlantic feeding grounds after wintering (from April to June), the  
235 potential feeding habitat in the central part of the bridge was observed to be largest in 2009  
236 compared to 2010 and 2011 (Fig. 3d). The bridge between the eastern and western feeding  
237 areas in 2010 and 2011 was less marked and more discontinuous, which might have acted  
238 as a barrier against migration of western origin ABFT into the eastern Atlantic feeding  
239 grounds (Fig. 3b and c).

240 Mixing of eastern and western ABFT across the whole Atlantic Ocean remains one  
241 of the most critical uncertainties preventing accurate diagnoses of stock status to guide  
242 effective management (Fromentin et al., 2014b). Different studies have illustrated the  
243 complexity of the connectivity between remote Atlantic areas and their implications for  
244 ABFT management (Block et al., 2005; Galuardi and Lutcavage, 2012; Rooker et al., 2014;

248 Rooker et al., 2008). Effective fishery management will require a better understanding of the  
magnitude of these movements, their temporal variability, and the physical and biological  
factors that may affect it (Graves et al., 2015).

250  
252 More research is needed to better understand the role of habitat bridges and  
barriers in relation to ABFT population connectivity. If bridges are not persistent over time  
as driven by climate change over the Gulf Stream dynamics, western origin ABFT that  
254 migrated into the eastern Atlantic might be less likely to return to the west (and vice versa  
for the eastern origin population to the east). Depending on the magnitude of such potential  
256 habitat barriers preventing the migration back to the west, important implications could  
include exposure to potentially higher fishing intensity, or delays in the natal homing  
258 behavior to spawn in the Gulf of Mexico (and vice versa in the Mediterranean Sea for the  
eastern origin population). The monitoring of these habitat contraction and relaxation acting  
260 as barriers and bridges under climate change is therefore essential to evaluate the  
important potential implications for ABFT population connectivity and dynamics.

### 262 **2.3 Southern bluefin tuna: pathways to southeast Australia**

264 Migration pathways of southern bluefin tuna (SBT *Thunnus maccoyii*) have been  
studied over many decades with conventional, acoustic, archival and satellite tagging  
266 programs, providing a range of insights into their movement and behaviour (Bestley et al.,  
2009; Fujioka et al., 2010; Hobday et al., 2015; Patterson et al., 2008). After hatching, fish  
268 move from the single-known spawning ground between Indonesia and Australia, following  
the Leeuwin Current down the Australian west coast to reach the southern coast by age 1.  
270 They are then resident during the austral summers in the Great Australia Bight (GAB)  
between the ages of 2-5 years. At the end of each summer, juvenile SBT leave the GAB  
272 and move east to the Tasman Sea or west to the Indian Ocean where they spend the winter  
feeding (Bestley et al., 2009).

274 A possible ecological bridge connecting juvenile SBT habitats was interrupted in the  
early 2000s, when eastward migration to the Tasman Sea became rare. Conventional tag-  
276 recapture data revealed that fewer juvenile SBT tagged in the 2000s moved into the  
Tasman Sea compared to fish tagged in the 1990s (Basson et al., 2012). Based on  
278 thousands of tag returns from SBT tagged at ages 1 and 2, the percent of returns coming  
from the Tasman Sea was much higher in the 1990s (5.7% and 12.8% for age 1 and 2  
280 respectively) than in the 2000s (1% and 0.4% for age 1 and 2, respectively). Archival tag  
tracks also provide evidence for reduced eastward movement of juvenile SBT in the 2000s  
282 (Basson et al., 2012). Only 4% of tracks (3 out of 75) showed movement into the Tasman  
Sea (>150°E) during the months of May through November after 2001, compared to 21%  
284 (14 out of 67) in prior years (chi-squared test p-value=0.01). The exact timing of this change  
is difficult to determine as few tags returned data between 2001 and 2004.

286 These migration pathway changes may be in response to population decline (there  
has been a documented decline in SBT abundance and recruitment through the 1990s and  
288 into the 2000s, and cohorts in 2000-2002 were at historically low levels (Anon, 2009)), or to  
environmental changes that affect SBT migration. In the Tasman Sea, a long-term warming  
290 trend has been observed (Hobday and Pecl, 2014; Ridgway, 2007). Other areas occupied  
by juvenile SBT, such as the GAB and eastern Indian Ocean have not warmed as rapidly  
292 over the same period (Basson et al., 2012; Hobday and Pecl, 2014). This warming may be  
acting as a partial barrier to restrict juvenile SBT movements to areas they occupied in the  
294 1990s.

Habitat models for juvenile SBT have been developed using location data collected on SBT over many years from electronic tags, and comparing the ocean conditions where fish were found with the conditions available to them throughout the region and time period of interest (Basson et al., 2012; Eveson et al., 2014). Sea surface temperature (SST) and chlorophyll were found to have the greatest influence. Habitat models based on SBT preferences for SST and chlorophyll revealed a high preference habitat band in April to June along the west and south coasts of Tasmania into the Tasman Sea in the period 1998-2000 that was no longer present in the period 2004-2006 (Basson et al., 2012). The habitat models have subsequently been updated to include new archival tag data and to use improved fish location estimates based on a recently published method for light-based geolocation (Basson et al., 2016). These updated models continue to show the disappearance of a connecting habitat band between the GAB and the Tasman Sea between the two time periods (Fig. 4). We note that separate habitat models were used for the two time periods since habitat preferences for SBT changed slightly between these periods (Fig. 4a,b). If we use a single habitat model based on the entire period 1998-2006, the missing band of suitable habitat in 2004-2006 is still evident but less extreme. We argue it is more defensible to use separate habitat models than to combine all years into a single model that masks the preference change. This does, however, raise the dilemma of whether the observed ecological barrier has arisen due to changes in fish physiology and behaviour or to environmental changes – most likely a combination of both. Changes in additional variables, such as forage distribution, remain difficult to estimate, and the habitat model remains a proxy for environmental change that restricted movements of juvenile SBT across this ecological bridge.

This example of an ecological bridge “breaking” foreshadows changes that are expected under climate change as environmental tolerances are exceeded in some regions (Burrows et al., 2014). If the ecological barrier persists, the implications for SBT populations are likely to be relatively minor, as this region is only a small part of their total range and larger SBT may not be restricted by the barrier. Dependent fisheries in eastern Australia and New Zealand may experience declines in catch, however, we are unable to estimate these effects. A new archival tagging program in the GAB commenced in 2015, and in a few years will allow new estimates of east-west migration and assessment of the state of this ecological bridge.

#### 2.4 Blue marlin: intermittent crossing of the Equatorial Pacific

Like bluefin tuna, blue marlin (*Makaira nigricans*) is a wide-ranging species, with some of the most impressive long-range movements ever recorded for oceanic fishes (Kraus et al., 2011; Ortiz et al., 2003). In the North Pacific, 59 marlin were tracked from 2009-2013 moving south from Hawaii, crossing the equator and moving towards French Polynesia (Fig. 5). For most migratory species, the equator serves as a natural ecological barrier (e.g. see ABFT example above), due to the combination of high sea-surface temperature and oxygen limits at relatively shallow depths (MacLeod, 2009). However, in a recent study blue marlin were shown to routinely undergo a unique, trans-equatorial migratory strategy (Carlisle et al., In Press).

Interestingly, this trans-equatorial route was not used by blue marlin in 2010, perhaps due to a La Niña event. This cold phase of the ENSO cycle, which in the North Pacific is characterized by a western extension of the cool SST water mass from the eastern Pacific (cool tongue), increased equatorial upwelling and shoaling of the thermocline and oxycline (Philander, 1989; Wyrtki, 1975). Blue marlin tagged in 2010

344 moved south as they did during other years until they encountered the western extension of  
345 the cool tongue (Fig. 5b), which had water temperatures below 24°C, below their preferred  
346 thermal range of 26 to 30°C (Goodyear et al., 2008; Graves et al., 2001; Holland et al.,  
347 1990). Upon encountering the cool tongue, the blue marlin stopped moving south and  
348 remained in the warm waters to the north of this cold oceanographic feature, with several  
349 fish moving longitudinally along its northern boundary. These cold temperatures, combined  
350 with the increased vertical habitat compression associated with shoaling of cold, low oxygen  
351 waters driven by increased equatorial upwelling, appeared to present a vertical and  
352 horizontal ecological barrier to trans-equatorial movements. During non-La Niña years, this  
353 oceanographic barrier to trans-equatorial migration is not present as SSTs are not limiting  
(Fig. 5a) and vertical habitat compression is reduced.

354 The effect on the population dynamics of blue marlin will depend on the extent and  
355 persistence of the barrier as well as the nature of the trans-equatorial migration. The  
356 purpose of the trans-equatorial migrations of blue marlin remains unclear, but in general the  
357 broad-scale migratory patterns of blue marlin have been linked to foraging and reproductive  
358 migrations (Shimose et al., 2009; Shimose et al., 2012). Hawaii is a known spawning  
359 location (Hopper, 1990; Seki et al., 2002), and French Polynesia has also been identified as  
360 a region where spawning occurs (Howard and Ueyangi, 1965). Hence, trans-equatorial  
361 movements may be related to spawning and disruption of these potential spawning  
362 migrations may have important effects in terms of population connectivity. In addition,  
363 reduced mixing rates between different populations may increase susceptibility of blue  
364 marlin to localized depletion due to overfishing (Lee et al., 2014). Much remains unclear  
365 about how oceanographic conditions will be altered under future climate change, but some  
366 research suggests that there will be an increase in the frequency of extreme El Niño and La  
367 Niña events (Cai et al., 2014; Cai et al., 2015; Power et al., 2013). Any increase in the  
368 intensity or frequency of La Niña events will likely increase the extent and persistence of  
369 such barriers, potentially dividing the population of blue marlin in the Central Pacific.

## 370 **2.5 Bowhead whales: traversing the Northwest Passage**

372 The Northwest Passage (NWP) is a series of Arctic waterways connecting the  
373 Atlantic and Pacific Oceans. Throughout most of the year, dense ice cover within the NWP  
374 represents a physical barrier between the two oceans (McKeon et al., 2015). Arctic species  
375 are well adapted to such barriers, and have tuned their feeding and breeding behaviors to  
376 coincide with seasonal changes in ice pack. Bowhead whales (*Balaena mysticetus*) are the  
377 largest Arctic predator, with a wide-ranging distribution and populations found on both sides  
378 of the NWP. The species is well suited for ice-covered waters, given their ability to move  
379 through extensive areas of sea ice coverage (Citta et al., 2015; George et al., 1989; Heide-  
380 Jørgensen et al., 2012; Laidre et al., 2008). Individuals spend the summer months foraging  
381 in Arctic waters and then migrate to subarctic seas during the winter months (Laidre et al.,  
382 2008).

384 While genetic evidence indicates historic gene flow between Atlantic and Pacific  
385 populations (Alter et al., 2012), the lack of bowhead remains from interior locations in the  
386 NWP suggests that individuals have maintained separate populations (McKeon et al.,  
387 2015). However, in the summer of 2010, and following a long-term warming trend, the NWP  
388 was suitably free of ice to allow two individuals from separate populations to forage in the  
389 same region at the same time (Heide-Jørgensen et al., 2012; McKeon et al., 2015).  
390 Individuals migrated back to their respective oceans after ten days. However, this short

390 occupation of common territory demonstrated the occurrence of an ecological bridge,  
391 through which bowhead whales were capable of inter-population exchange based on sea-  
392 ice conditions (Heide-Jørgensen et al., 2012; McKeon et al., 2015).

393 The extent and thickness of Arctic sea ice has continued to decrease at an alarming  
394 rate (McKeon et al., 2015), and the accelerated loss of sea ice will increase the ease and  
395 frequency with which marine species are able to move between the Pacific and Atlantic  
396 Ocean basins (Heide-Jørgensen et al., 2012). As such, the disappearance of long standing  
397 ice barriers and subsequent increased frequency of bridge conditions will have a dramatic  
398 impact on a range of Arctic species (McKeon et al. 2015). As the effects of climate-  
399 mediated ecosystem change are likely to be most pronounced in the Arctic in upcoming  
400 decades (Burrows et al., 2014; Moore and Huntington, 2008), it is perhaps not surprising  
401 that bridges and barriers will appear in this region. The dynamics of ice-melt and the effects  
402 on availability of preferred foraging habitats will see Arctic marine mammals and seabirds  
403 begin to explore novel areas (McKeon et al., 2015). At the same time, greater accessibility  
404 to humans (e.g. increased ship transport, oil exploration, and industrial fishing) may have  
405 serious ecological impacts for Arctic species (McKeon et al., 2015).

406

### 3. Importance of ecological bridges and barriers

407 The preceding examples illustrate that highly migratory pelagic species encounter  
408 ecological bridges and barriers that have facilitated or prevented individual movements over  
409 a range of space and time scales. In pelagic systems, the range over which individuals from  
410 a population tend to roam is an important consideration in the ability of those individuals to  
411 exploit an ecological bridge, or be restricted by an ecological barrier. The case studies  
412 presented here describe the movements of large teleost fish and marine mammals, which  
413 are among the most wide-ranging of all pelagic marine vertebrates (Block et al., 2011) and  
414 so most likely to encounter novel habitat conditions. Ecological bridges and barriers can  
415 modify spatial dynamics and connectivity of a population, impact on fisheries, and in the  
416 long term may affect population structure. For example, connectivity to new habitat may  
417 initiate conspecific interactions between separate populations, introduce new competition  
418 for resources, and modify existing biotic interactions and phenotypic traits (Brown et al.,  
419 2015). Below, we discuss the persistence in bridge dynamics with time, individual to  
420 population level sensitivity, and our ability to monitor bridges and barriers in a changing  
421 climate.

#### 422 3.1 Bridge and barrier dynamics

423 Importantly, ecological bridges and barriers may support a complex meta-population  
424 structure and thus safeguard populations from local extinction events (e.g. hypoxic dead  
425 zones, corrosive waters), inter-annual variability (e.g. ENSO-related events, 'anomalous'  
426 years), and even unprecedented changes to oceans. As rapid climate change is expected  
427 to impact pelagic species (Dell et al., 2015; McBride et al., 2014; Robinson et al., 2015), the  
428 spatio-temporal dynamics of ecological bridges and barriers will be inherently linked to the  
429 periodicity and frequency of environmental and oceanographic variability in pelagic  
430 systems. In effect, the significance of ecological bridges and barriers will depend on the  
431 prevalence of environmental events and the life history stage at which an individual exploits  
432 a bridge or barrier.

For some of our case studies, the oceanographic drivers are unclear, but it is clear  
436 that bridge and barrier dynamics can be influenced on a range of time scales – for example,  
438 by decadal-scale cycles such as the El-Nino Southern Oscillation, the Pacific Decadal  
439 Oscillation and the North Atlantic Oscillation (Higuchi et al., 1999). In ocean regions where  
440 these climate drivers dominate, the biological responses may be influenced by the  
442 appearance of bridges and barriers every few years (e.g. blue marlin). If there is a change  
444 in the frequency of these climate modes (e.g. Table 1a), but no overall climate trend, then  
446 the periodicity of the ecological bridge or barrier may also be affected. An increase in the  
448 "breakdown" of the bridge conditions may lead to a decline in total population growth. Long-  
450 term changes in bridge appearance (either declining or increasing frequency) have  
452 occurred in the past, and are likely under climate change. Development of bridge  
454 permanence, such as might be occurring in the Arctic now (e.g. bowhead whale), may lead  
456 to loss of metapopulation structure if breeding between Atlantic and Pacific populations  
458 (Table 1b), while a declining bridge frequency or barrier permanence may lead to great  
460 population division and perhaps, over millennia, speciation (Table 1c). Ecological bridges  
462 may be transient features in a changing climate, with the appearance of the bridge linked to  
464 the rate of long-term change and the natural ocean variability.

### **3.2 Population-level significance**

The significance of ecological bridges and barriers to pelagic species will likely be  
454 dependent upon aspects of that species' life history characteristics and the ontogenetic  
456 stage of individuals utilizing them. Important considerations include spatial range,  
458 distribution, fundamental niche width, fidelity to breeding or foraging areas, and the relative  
460 importance of proximate environmental influences versus learning and memory on at-sea  
462 space use. Scaling from individual movements to population-level significance, ecological  
464 bridges may be more readily exploited by neonate and juvenile stages of pelagic  
466 organisms, as they disperse away from sites of natal origin.

In addition to the extent of a population's space use, the width of the fundamental  
462 niche of a particular species may influence their propensity to use ecological bridges. A  
464 recent theoretical model (Mariani et al., 2016) suggests that habitat suitability, migration  
466 cost, and population structure can regulate habitat selection of highly migratory species.  
468 Our case studies describe the broad ecological niche of bluefin tuna, which are able to  
470 exploit a variety of prey types and tolerate a wide range of abiotic conditions (Arrizabalaga  
472 et al., 2015; Fromentin et al., 2014a), and so can expand into novel regions with ease. More  
474 specialised foragers, such as some surface-seizing and plunge-diving seabirds, require a  
476 particular set of biophysical conditions and availability of certain prey types for effective  
478 foraging, and so may be less likely to use ecological bridges in which conditions are not  
480 energetically favourable (Ancona et al., 2012). For many species, particularly marine  
482 ectotherms such as sea turtles, thermal sensitivity is a particularly important aspect that  
484 might influence the response to barriers or bridges (Hawkes et al., 2007; McMahon and  
486 Hays, 2006).

Moreover, fidelity to breeding and foraging habitats, and to migratory routes  
476 between these habitats, is important to consider when questioning how movements through  
478 ecological bridges might scale from individual- to population-level. A taxonomically diverse  
480 range of marine vertebrates are known to demonstrate fidelity to particular foraging or  
482 breeding habitats (e.g. tuna, Rooker et al. (2008); sharks, Queiroz et al. (2016); sea turtles,  
484 Broderick et al. (2007); seabirds, Weimerskirch (2007)). This implies a considerable  
486 influence on learning and memory in space use by a range of taxa (Regular et al., 2013).

Those that rely on learning and memory to navigate over proximate cues are less likely to expand their range into new regions through an ecological bridge (Carroll et al., 2015). For some fish species, it has been shown that the breakdown of information flow in a fish community can cause habitat contraction and drive stocks to collapse in certain regions (Petitgas et al., 2010) Moreover, theoretical analyses (Berdahl et al., 2016; De Luca et al., 2014) suggest that for species moving in large groups (i.e. schooling), group formation can be subject to threshold effects that alter migrations. For example, changes in individual preference and/or of the total population density can produce rapid alterations in group formation and collective behaviour to a point at which migration to other habitats may be stopped (De Luca et al., 2014). As a result, any consideration of range expansion or contraction must recognise the inherent interplay between an animal's responses to the contemporaneous environment and the intrinsic motivations that underlie movements and behaviours (Carroll et al., 2015).

In addition to species-specific constraints, ontogenetic stage may be important when considering the significance of ecological bridges. While large pelagic fish are most readily tagged, the movements of smaller juveniles and neonates may be of particular relevance to ecological bridges. Individuals in dispersive life stages are more likely to expand the population range into new habitats, as larval stages or neonates can often be advected in prevailing current flow (e.g. sea turtle hatchlings, Hays et al. (2010)), and juveniles are more likely to make exploratory movements at the edges of a population's current range (e.g. reef sharks, Chin et al. (2013); breeding colony prospecting in immature seabirds, Dittmann et al. (2005); Northern gannet on Farallon Islands, McKeon et al. (2015)). Conversely, individuals of breeding age may be less likely to exploit opportunities resulting from ecological bridges because many species show fidelity to particular breeding grounds, or natal philopatry (e.g. turtles, Luschi et al. (1998); whales, Wedekin et al. (2010); sharks, Feldheim et al. (2014); tuna, Block et al. (2005)).

The question of whether the significance of ecological bridges scales from changes in individual movements over intra- to inter-annual timescales to population-level effects remains unanswered. For some species, such as seabirds and marine mammals, that are now able to move through the ice-free Northwest Passage, this novel connectivity between habitats is almost certain to entail population-level effects, including genetic mixing, the establishment of new breeding colonies for seabirds, and possible population expansion into regions that marine mammals historically occupied but were extirpated. Thus, connectivity can contribute to meta-population recovery of historically over-exploited species, including various populations of marine mammals and bluefin tunas. This could improve the resilience and sustainability of tuna fisheries, provided both tuna populations and fisheries can adapt to novel spatio-temporal dynamics.

### 3.3 Future research

Advances in satellite telemetry and species distribution models have provided a wealth of information linking the movements and behaviors of highly migratory species to environmental conditions (e.g. Block et al. (2011); Hammerschlag et al. (2011); Hazen et al. (2013); Hobday et al. (2011)). Integration of these findings reveals the importance of spatio-temporal scales in understanding species-environment linkages (Hazen et al., 2013). Our case studies describe changes in migratory corridors, which may be particularly important in modifying the spatial dynamics of habitat use by populations of highly migratory species, affecting circumpolar, trans-equatorial and trans-oceanic species distributions. However, ecological bridges and barriers are likely to manifest over a range of spatio-temporal scales,

and further research into the mechanisms of biophysical coupling in the pelagic ecosystem  
532 is necessary to truly understand the wider significance of these anomalous events. The  
534 examples presented here are based on tracking and habitat models, yet limitations still exist  
536 in our ability to track individuals throughout their life history stages and thus over the  
538 environmental conditions experienced over a lifetime. Such information, coupled with  
spatially explicit demographic models, may assist scientists and managers in developing  
predictions and projections of species' responses to anticipated environmental change  
(Dunning Jr et al., 1995).

540 While ecological bridges and barriers may be transient features in a changing  
climate, they can foreshadow changes that are expected under climate change as  
542 environmental tolerances are exceeded in some regions (Burrows et al., 2014). High-  
resolution climate predictions (e.g. Popova et al. (2016)), may add further understanding as  
544 to when, where, and how frequently bridges and barriers are likely to form over a variety of  
546 spatial and temporal scales. Together, such models can be used to simulate changing  
pelagic seascapes, providing management with scenarios to consider should an ecological  
bridge or barrier originate, decline, or persist.

### 548 **3.6 Conclusions**

550 Understanding changes in the marine environment continues to be challenging.  
Highly migratory species must navigate a fluid and shifting environment, adding complexity  
552 to how behavioral adaptations occur in relation to their immediate environment. Here, we  
have shown how ecological bridges and barriers can result in changes in highly mobile  
554 species distributions, population dynamics, and connectivity with their proximate  
environment. The availability of novel habitats through ecological bridges or disappearance  
556 of traditional habitats through ecological barriers may impact on a range of pelagic species.  
Important considerations include integration of life history characteristics and population-  
558 level sensitivity to their environment, as well as a greater awareness and understanding of  
the periodicity and frequency of bridges and barriers with time. As the effects of climate-  
560 mediated ecosystem change are likely to be even more pronounced in the coming decades  
(Burrows et al., 2014; Moore and Huntington, 2008), understanding how highly migratory  
562 species navigate a changing environment will be more important than ever.

### 564 **Acknowledgments**

566 This contribution arose from presentations and discussions at the 3<sup>rd</sup> CLIOTOP symposium  
in 2015. We acknowledge the financial support of AZTI, Collecte Localisation Satellites  
568 (CLS), CSIRO Oceans and Atmosphere, IMBER, the Intergovernmental Oceanographic  
Commission (IOC), the Institut de Recherche pour le Développement (IRD), the National  
Research Council (NRC), the IGFA Great Marlin Race (<https://igmr.igfa.org/5>  
570 Conserve/IGMR.aspx), and the Office of Science and Technology which is part of NOAA's  
National Marine Fisheries Service (NMFS-OST).

574 **References**

576 Abascal, F.J., Medina, A., De La Serna, J.M., Godoy, D., Aranda, G., 2016. Tracking bluefin tuna  
578 reproductive migration into the Mediterranean Sea with electronic pop-up satellite archival  
tags using two tagging procedures. *Fish Oceanog* 25, 54-66.

580 Akesson, S., Hedenstrom, A., 2007. How Migrants Get There: Migratory Performance and  
Orientation. *BioScience* 57, 123-133.

582 Alerstam, T., Hake, M., Kjellén, N., 2006. Temporal and spatial patterns of repeated migratory  
journeys by ospreys. *Animal Behaviour* 71, 555-566.

584 Alter, E.S., Rosenbaum, H.C., Postma, L.D., Whitridge, P., Gaines, C., Weber, D., Egan, M.G., Lindsay,  
586 M., Amato, G., Dueck, L., 2012. Gene flow on ice: the role of sea ice and whaling in shaping  
Holarctic genetic diversity and population differentiation in bowhead whales (*Balaena  
mysticetus*). *Ecology and evolution* 2, 2895-2911.

588 Ancona, S., Calixto-Albarrán, I., Drummond, H., 2012. Effect of El Niño on the diet of a specialist  
seabird, *Sula nebulosus*, in the warm eastern tropical Pacific. *Marine Ecology Progress Series*  
462, 261.

590 Anderson, J.J., Gurarie, E., Bracis, C., Burke, B.J., Laidre, K.L., 2013. Modeling climate change  
impacts on phenology and population dynamics of migratory marine species. *Ecological  
Modelling* 264, 83-97.

594 Anon, 2009. Report of the Sixteenth Annual Meeting of the Commission, Jeju Island, Republic of  
Korea.

596 Aranda, G., Abascal, F.J., Varela, J.L., Medina, A., 2013. Spawning behaviour and post-spawning  
migration patterns of Atlantic bluefin tuna (*Thunnus thynnus*) ascertained from satellite  
archival tags. *PLoS one* 8, e76445.

598 Arregui, I., Arrizabalaga, H., De la Serna, J., 2006. Preliminary approach to the experimental design  
of tagging campaigns for movement rates estimation of East Atlantic bluefin tuna. *Collective  
Volume of Scientific Papers ICCAT* 59, 769-788.

600 Arrizabalaga, H., Dufour, F., Kell, L., Merino, G., Ibaibarriaga, L., Chust, G., Irigoién, X., Santiago, J.,  
602 Murua, H., Fraile, I., 2015. Global habitat preferences of commercially valuable tuna. *Deep  
Sea Research Part II: Topical Studies in Oceanography* 113, 102-112.

604 Bakun, A., 2006. Fronts and eddies as key structures in the habitat of marine fish larvae:  
opportunity, adaptive response and competitive advantage. *Scientia Marina* 70, 105-122.

606 Basson, M., Bravington, M.V., Hartog, J.R., Patterson, T.A., 2016. Experimentally derived likelihoods  
for light-based geolocation. *Methods in Ecology and Evolution*.

608 Basson, M., Hobday, A., Eveson, J., Patterson, T., 2012. Spatial Interactions Among Juvenile  
Southern Bluefin Tuna at the Global Scale: a Large Scale Archival Tag Experiment. FRDC  
610 Project No: 2003/002. CSIRO: Collingwood, VIC.

612 Beier, P., Noss, R.F., 1998. Do habitat corridors provide connectivity? *Conservation biology* 12,  
1241-1252.

614 Bennett, A.F., 1999. Linkages in the landscape: the role of corridors and connectivity in wildlife  
conservation. Iucn.

616 Berdahl, A., van Leeuwen, A., Levin, S.A., Torney, C.J., 2016. Collective behavior as a driver of critical  
transitions in migratory populations. *Movement Ecology* 4, 18.

618 Bestley, S., Gunn, J.S., Hindell, M.A., 2009. Plasticity in vertical behaviour of migrating juvenile  
southern bluefin tuna (*Thunnus maccoyii*) in relation to oceanography of the south Indian  
Ocean. *Fish Oceanog* 18, 237-254.

620 Block, B.A., Jonsen, I.D., Jorgensen, S.J., Winship, A.J., Shaffer, S.A., Bograd, S.J., Hazen, E.L., Foley,  
622 D.G., Breed, G.A., Harrison, A.L., Ganong, J.E., Swithenbank, A., Castleton, M., Dewar, H.,  
Mate, B.R., Shillinger, G.L., Schaefer, K.M., Benson, S.R., Weise, M.J., Henry, R.W., Costa, D.P.,  
2011. Tracking apex marine predator movements in a dynamic ocean. *Nature* 475, 86-90.

624 Block, B.A., Teo, S.L., Walli, A., Boustany, A., Stokesbury, M.J., Farwell, C.J., Weng, K.C., Dewar, H.,  
 626 Williams, T.D., 2005. Electronic tagging and population structure of Atlantic bluefin tuna.  
 Nature 434, 1121-1127.

628 Bonfil, R., Meÿer, M., Scholl, M.C., Johnson, R., O'Brien, S., Oosthuizen, H., Swanson, S., Kotze, D.,  
 Paterson, M., 2005. Transoceanic migration, spatial dynamics, and population linkages of  
 white sharks. Science 310, 100-103.

630 Broderick, A.C., Coyne, M.S., Fuller, W.J., Glen, F., Godley, B.J., 2007. Fidelity and over-wintering of  
 sea turtles. Proceedings of the Royal Society of London B: Biological Sciences 274, 1533-1539.

632 Brower, L.P., 1995. Understanding and misunderstanding the migration of the monarch  
 butterfly(Nymphalidae) in North America: 1857-1995. Journal of the Lepidopterists Society  
 634 49, 304-385.

636 Brown, C.J., O'Connor, M.I., Poloczanska, E.S., Schoeman, D.S., Buckley, L.B., Burrows, M.T., Duarte,  
 C.M., Halpern, B.S., Pandolfi, J.M., Parmesan, C., 2015. Ecological and methodological drivers  
 of species' distribution and phenology responses to climate change. Global change biology.

638 Burrows, M.T., Schoeman, D.S., Richardson, A.J., Molinos, J.G., Hoffmann, A., Buckley, L.B., Moore,  
 P.J., Brown, C.J., Bruno, J.F., Duarte, C.M., 2014. Geographical limits to species-range shifts  
 640 are suggested by climate velocity. Nature 507, 492-495.

642 Cai, W., Borlace, S., Lengaigne, M., van Renssch, P., Collins, M., Vecchi, G., Timmermann, A., Santoso,  
 A., McPhaden, M.J., Wu, L., England, M.H., Wang, G., Guilyardi, E., Jin, F.-F., 2014. Increasing  
 644 frequency of extreme El Nino events due to greenhouse warming. Nature Clim. Change 4,  
 111-116.

646 Cai, W., Wang, G., Santoso, A., McPhaden, M.J., Wu, L., Jin, F.-F., Timmermann, A., Collins, M.,  
 Vecchi, G., Lengaigne, M., England, M.H., Dommgenet, D., Takahashi, K., Guilyardi, E., 2015.  
 Increased frequency of extreme La Nina events under greenhouse warming. Nature Clim.  
 648 Change 5, 132-137.

650 Carlisle, A., Kochevar, R., Argostequi, M., Ganong, J.E., Castleton, M., Schratwieser, J., Block, B.A., In  
 Press. Influence of temperature and oxygen on the distribution of blue marlin (*Makaira  
 nigricans*) in the Central Pacific. Fish Oceanog.

652 Carroll, E.L., Baker, C.S., Watson, M., Alderman, R., Bannister, J., Gaggiotti, O.E., Gröcke, D.,  
 654 Patenaude, N., Harcourt, R., 2015. Cultural traditions across a migratory network shape the  
 genetic structure of southern right whales around Australia and New Zealand. Scientific  
 reports 5.

656 Chin, A., Heupel, M., Simpfendorfer, C., Tobin, A., 2013. Ontogenetic movements of juvenile  
 blacktip reef sharks: evidence of dispersal and connectivity between coastal habitats and  
 658 coral reefs. Aquatic Conservation: Marine and Freshwater Ecosystems 23, 468-474.

660 Citta, J.J., Quakenbush, L.T., Okkonen, S.R., Druckenmiller, M.L., Maslowski, W., Clement-Kinney, J.,  
 George, J.C., Brower, H., Small, R.J., Ashjian, C.J., 2015. Ecological characteristics of core-use  
 662 areas used by Bering–Chukchi–Beaufort (BCB) bowhead whales, 2006–2012. Progress in  
 Oceanography 136, 201-222.

664 De Luca, G., Mariani, P., MacKenzie, B.R., Marsili, M., 2014. Fishing out collective memory of  
 migratory schools. Journal of The Royal Society Interface 11, 20140043.

666 Dell, J.T., Wilcox, C., Matear, R.J., Chamberlain, M.A., Hobday, A.J., 2015. Potential impacts of  
 climate change on the distribution of longline catches of yellowfin tuna (*Thunnus albacares*)  
 in the Tasman sea. Deep Sea Research Part II: Topical Studies in Oceanography 113, 235-245.

668 Dingle, H., 2009. ROWLEY REVIEW. Bird migration in the southern hemisphere: a review comparing  
 continents. Emu 108, 341-359.

670 Dingle, H., 2014. Migration: the biology of life on the move. Oxford University Press, USA.

672 Dittmann, T., Zinsmeister, D., Becker, P.H., 2005. Dispersal decisions: common terns, *Sterna  
 hirundo*, choose between colonies during prospecting. Animal Behaviour 70, 13-20.

674 Druon, J.-N., Fromentin, J.-M., Hanke, A.R., Arrizabalaga, H., Damalas, D., Tičina, V., Quílez-Badia, G.,  
 Ramirez, K., Arregui, I., Tserpes, G., Reglero, P., Deflorio, M., Oray, I., Karakulak, S.,

676 Megalofonou, P., Ceyhan, T., Grubisic, L., MacKenzie, B.R., Lamkin, J., Afonso, P., Addis, P.,  
2016. Habitat suitability of the Atlantic bluefin tuna by size class: An ecological niche  
approach. *Progress in Oceanography* 142, 30-46.

678 Dufour, F., Arrizabalaga, H., Irigoien, X., Santiago, J., 2010. Climate impacts on albacore and bluefin  
tunas migrations phenology and spatial distribution. *Progress in Oceanography* 86, 283-290.

680 Dunning Jr, J.B., Stewart, D.J., Danielson, B.J., Noon, B.R., Root, T.L., Lamberson, R.H., Stevens, E.E.,  
1995. Spatially explicit population models: current forms and future uses. *Ecological  
Applications* 5, 3-11.

682 Eveson, J.P., Hobday, A.J., Hartog, J.R., Spillman, C.M., Rough, K.R., 2014. Forecasting spatial  
684 distribution of southern bluefin tuna habitat in the Great Australian Bight. Final Report to the  
Fisheries Research and Development Corporation. FRDC Project No. 2012/239. ISBN 978-1-  
686 4863-0454-7. Available at: [http://frdc.com.au/research/Final\\_reports/2012-239-DLD.pdf](http://frdc.com.au/research/Final_reports/2012-239-DLD.pdf).

688 Feldheim, K.A., Gruber, S.H., DiBattista, J.D., Babcock, E.A., Kessel, S.T., Hendry, A.P., Pikitch, E.K.,  
Ashley, M.V., Chapman, D.D., 2014. Two decades of genetic profiling yields first evidence of  
natal philopatry and long-term fidelity to parturition sites in sharks. *Molecular ecology* 23,  
690 110-117.

692 Fraile, I., Arrizabalaga, H., Rooker, J.R., 2015. Origin of Atlantic bluefin tuna (*Thunnus thynnus*) in the  
Bay of Biscay. *ICES J Mar Sci* 72, 625-634.

694 Frisk, M.G., Jordaan, A., Miller, T.J., 2014. Moving beyond the current paradigm in marine  
population connectivity: are adults the missing link? *Fish and Fisheries* 15, 242-254.

696 Fromentin, J.-M., Bonhommeau, S., Arrizabalaga, H., Kell, L.T., 2014b. The spectre of uncertainty in  
management of exploited fish stocks: The illustrative case of Atlantic bluefin tuna. *Marine  
Policy* 47, 8-14.

698 Fromentin, J.M., 2009. Lessons from the past: investigating historical data from bluefin tuna  
fisheries. *Fish and Fisheries* 10, 197-216.

700 Fromentin, J.M., Reygondeau, G., Bonhommeau, S., Beaugrand, G., 2014a. Oceanographic changes  
and exploitation drive the spatio-temporal dynamics of Atlantic bluefin tuna (*Thunnus  
thynnus*). *Fish Oceanog* 23, 147-156.

702 Fujioka, K., Hobday, A.J., Kawabe, R., Miyashita, K., Honda, K., Itoh, T., Takao, Y., 2010. Interannual  
704 variation in summer habitat utilization by juvenile southern bluefin tuna (*Thunnus maccoyii*)  
in southern Western Australia. *Fish Oceanog* 19, 183-195.

706 Galuardi, B., Lutcavage, M., 2012. Dispersal routes and habitat utilization of juvenile Atlantic bluefin  
tuna, *Thunnus thynnus*, tracked with mini PSAT and archival tags. *PloS one* 7, e37829.

708 Gaston, K.J., 2003. The structure and dynamics of geographic ranges. Oxford University Press on  
Demand.

710 George, J.C., Clark, C., Carroll, G.M., Ellison, W.T., 1989. Observations on the ice-breaking and ice  
navigation behavior of migrating bowhead whales (*Balaena mysticetus*) near Point Barrow,  
712 Alaska, spring 1985. *Arctic*, 24-30.

714 Gilbert-Norton, L., Wilson, R., Stevens, J.R., Beard, K.H., 2010. A meta-analytic review of corridor  
effectiveness. *Conserv Biol* 24, 660-668.

716 Goodyear, C.P., Luo, J., Prince, E.D., Hoolihan, J.P., Snodgrass, D., Orbesen, E.S., Serafy, J.E., 2008.  
Vertical habitat use of Atlantic blue marlin *Makaira nigricans*: interaction with pelagic  
longline gear. *Mar Ecol Prog Ser* 365, 233-245.

718 Graves, J.E., Luckhurst, B.E., Prince, E.D., 2001. An evaluation of pop-up satellite tags for estimating  
postrelease survival of blue marlin (*Makaira nigricans*) from a recreational fishery. *Fish Bull*  
720 100, 134-142.

722 Graves, J.E., Wozniak, A.S., Dickhut, R.M., Cochran, M.A., MacDonald, E.H., Bush, E., Arrizabalaga,  
H., Goñi, N., MacLatchey, D., 2015. Transatlantic movements of juvenile Atlantic bluefin tuna  
724 inferred from analyses of organochlorine tracers. *Canadian Journal of Fisheries and Aquatic  
Sciences* 72, 625-633.

726 Guilford, T., Meade, J., Willis, J., Phillips, R.A., Boyle, D., Roberts, S., Collett, M., Freeman, R.,  
 Perrins, C., 2009. Migration and stopover in a small pelagic seabird, the Manx shearwater  
*Puffinus puffinus*: insights from machine learning. *Proceedings of the Royal Society of London*  
 728 B: Biological Sciences, *rspb*. 2008.1577.

730 Hammerschlag, N., Gallagher, A., Lazarre, D., 2011. A review of shark satellite tagging studies.  
*Journal of Experimental Marine Biology and Ecology* 398, 1-8.

732 Hanski, I., 1999. Habitat connectivity, habitat continuity, and metapopulations in dynamic  
 landscapes. *Oikos*, 209-219.

734 Harris, G., Thirgood, S., Hopcraft, J.G.C., Cromsight, J., Berger, J., 2009. Global decline in aggregated  
 migrations of large terrestrial mammals. *Endangered Species Research* 7, 55-76.

736 Hawkes, L.A., Broderick, A.C., Coyne, M.S., Godfrey, M.H., Godley, B.J., 2007. Only some like it hot -  
 quantifying the environmental niche of the loggerhead sea turtle. *Diversity and Distributions*  
 13, 447-457.

738 Hays, G.C., Fossette, S., Katselidis, K.A., Mariani, P., Schofield, G., 2010. Ontogenetic development  
 of migration: Lagrangian drift trajectories suggest a new paradigm for sea turtles. *J R Soc*  
 740 *Interface* 7, 1319-1327.

742 Hazen, E.L., Suryan, R.M., Santora, J.A., Bograd, S.J., Watanuki, Y., Wilson, R.P., 2013. Scales and  
 mechanisms of marine hotspot formation. *Marine Ecology Progress Series* 487, 177-183.

744 Heide-Jørgensen, M.P., Laidre, K.L., Quakenbush, L.T., Citta, J.J., 2012. The Northwest Passage  
 opens for bowhead whales. *Biology letters* 8, 270-273.

746 Heithaus, M.R., Frid, A., Wirsing, A.J., Worm, B., 2008. Predicting ecological consequences of marine  
 top predator declines. *Trends Ecol Evol* 23, 202-210.

748 Higuchi, K., Huang, J., Shabbar, A., 1999. A wavelet characterization of the North Atlantic oscillation  
 variation and its relationship to the North Atlantic sea surface temperature. *International*  
 journal of climatology

750 19, 1119-1129.

752 Hobday, A.J., Evans, K., Eveson, J.P., Farley, J.H., Hartog, J.R., Basson, M., Patterson, T.A., 2015.  
 Distribution and Migration—Southern Bluefin Tuna (*Thunnus maccoyii*). *Biology and Ecology*  
 754 of Bluefin Tuna, 189.

756 Hobday, A.J., Hartog, J.R., Spillman, C.M., Alves, O., Hilborn, R., 2011. Seasonal forecasting of tuna  
 754 habitat for dynamic spatial management. *Canadian Journal of Fisheries and Aquatic Sciences*  
 68, 898-911.

758 Hobday, A.J., Pecl, G.T., 2014. Identification of global marine hotspots: sentinels for change and  
 vanguards for adaptation action. *Reviews in Fish Biology and Fisheries* 24, 415-425.

760 Holland, K., Brill, R., Chang, R.K.C., 1990. Horizontal and vertical movements of Pacific blue marlin  
 captured and released using sportfishing gear. *Fish Bull* 88, 397-402.

762 Hollowed, A.B., Planque, B., Loeng, H., 2013. Potential movement of fish and shellfish stocks from  
 the sub-Arctic to the Arctic Ocean. *Fish Oceanog* 22, 355-370.

764 Hopper, C., 1990. Patterns of Pacific blue marlin reproduction in Hawaiian waters, in: Stroud, R.H.  
 (Ed.), *Planning the future of billfishes. Research and management in the 90s and beyond.*  
 National Coalition for Marine Conservation, Savannah, Georgia, pp. 29-39.

766 Howard, J.K., Ueyangi, S., 1965. Distribution and relative abundance of billfishes (Istiophoridae) of  
 the Pacific Ocean. *Stud Trop Oceanogr* 2, 1-134.

768 Kerr, L.A., Cadrin, S.X., Secor, D.H., Taylor, N., 2015. Evaluating the effect of Atlantic bluefin tuna  
 movement on the perception of stock units. *Collect. Vol. Sci. Pap. ICCAT* 71, 1660-1682.

770 Kirby, R.R., Johns, D.G., Lindley, J.A., 2006. Fathers in hot water: rising sea temperatures and a  
 Northeastern Atlantic pipefish baby boom. *Biology letters* 2, 597-600.

772 Kraus, R.T., Wells, R.D., Rooker, J.R., 2011. Horizontal movements of Atlantic blue marlin (*Makaira*  
*nigricans*) in the Gulf of Mexico. *Marine biology* 158, 699-713.

774 Laidre, K.L., Stirling, I., Lowry, L.F., Wiig, Ø., Heide-Jørgensen, M.P., Ferguson, S.H., 2008.  
 Quantifying the sensitivity of Arctic marine mammals to climate-induced habitat change.  
*Ecological Applications* 18, S97-S125.

776 Lee, H., Piner, K.R., Hinton, M.G., Chang, Y., Kimoto, A., Kanaiwa, M., Su, N., Walsh, W., Sun, C.,  
778 DiNardo, G., 2014. Sex-structured population dynamics of blue marlin *Makaira nigricans* in  
the Pacific Ocean. *Fish. Sci.*

780 Lehodey, P., Bertignac, M., Hampton, J., Lewis, A., Picaut, J., 1997. El Niño Southern Oscillation and  
tuna in the western Pacific. *Nature* 389, 715-718.

782 Luschi, P., Hays, G., Del Seppia, C., Marsh, R., Papi, F., 1998. The navigational feats of green sea  
turtles migrating from Ascension Island investigated by satellite telemetry. *Proceedings of  
the Royal Society of London B: Biological Sciences* 265, 2279-2284.

784 MacKenzie, B.R., Payne, M.R., Boje, J., Høyer, J.L., Siegstad, H., 2014. A cascade of warming impacts  
brings bluefin tuna to Greenland waters. *Global change biology* 20, 2484-2491.

786 MacLeod, C.D., 2009. Global climate change, range changes and potential implications for the  
conservation of marine cetaceans: a review and synthesis. *Endangered Species Research* 7,  
788 125-136.

790 Mariani, P., Křivan, V., MacKenzie, B.R., Mullon, C., 2016. The migration game in habitat network:  
the case of tuna. *Theoretical Ecology* 9, 219-232.

792 Massom, R.A., Stammerjohn, S.E., 2010. Antarctic sea ice change and variability—Physical and  
ecological implications. *Polar Science* 4, 149-186.

794 Mather, F., Mason, J., Jones, A., 1995. Historical document: life history and fisheries of Atlantic  
bluefin tuna. Miami: National Oceanic & Atmospheric Administration Tech. Memo NMFS-  
SEFSC-370: 165 pp.

796 McBride, M.M., Dalpadado, P., Drinkwater, K.F., Godø, O.R., Hobday, A.J., Hollowed, A.B.,  
798 Kristiansen, T., Murphy, E.J., Ressler, P.H., Subbey, S., 2014. Krill, climate, and contrasting  
future scenarios for Arctic and Antarctic fisheries. *ICES J Mar Sci*, fsu002.

800 McKeon, C., Weber, M.X., Alter, S.E., Seavy, N.E., Crandall, E.D., Barshis, D.J., Fechter-Leggett, E.D.,  
802 Oleson, K.L., 2015. Melting barriers to faunal exchange across ocean basins. *Global change  
biology*.

804 McMahon, C.R., Hays, G.C., 2006. Thermal niche, large-scale movements and implications of  
climate change for a critically endangered marine vertebrate. *Global Change Biology* 12,  
806 1330-1338.

808 Moore, S.E., Huntington, H.P., 2008. Arctic marine mammals and climate change: impacts and  
resilience. *Ecological Applications* 18, S157-S165.

810 Morreale, S.J., Standora, E.A., Spotila, J.R., Paladino, F.V., 1996. Migration corridor for sea turtles.  
Nature 384, 319-320.

812 Murrell, D.J., Travis, J.M., Dytham, C., 2002. The evolution of dispersal distance in spatially-  
structured populations. *Oikos* 97, 229-236.

814 Ortiz, M., Prince, E.D., Serafy, J.E., Holts, D.B., Davy, K.B., Pepperell, J.G., Lowry, M.B., Holdsworth,  
816 J.C., 2003. Global overview of the major constituent-based billfish tagging programs and their  
results since 1954. *Marine and Freshwater Research* 54, 489-507.

818 Ottichilo, W.K., de Leeuw, J., Prins, H.H., 2001. Population trends of resident wildebeest  
[*Connochaetes taurinus hecki* (Neumann)] and factors influencing them in the Masai Mara  
ecosystem, Kenya. *Biological Conservation* 97, 271-282.

820 Patterson, T.A., Evans, K., Carter, T.I., Gunn, J.S., 2008. Movement and behaviour of large southern  
bluefin tuna (*Thunnus maccoyii*) in the Australian region determined using pop-up satellite  
archival tags. *Fish Oceanog* 17, 352-367.

822 Petitgas, P., Secor, D.H., McQuinn, I., Huse, G., Lo, N., 2010. Stock collapses and their recovery:  
mechanisms that establish and maintain life-cycle closure in space and time. *ICES J Mar Sci*  
67, 1841-1848.

824 Philander, G., 1989. El Niño and La Niña. *American Scientist* 77, 451-459.

826 Polovina, J., Uchida, I., Balazs, G., Howell, E.A., Parker, D., Dutton, P., 2006. The Kuroshio Extension  
Bifurcation Region: A pelagic hotspot for juvenile loggerhead sea turtles. *Deep Sea Res II* 53,  
326-339.

Popova, E., Yool, A., Byfield, V., Cochrane, K., Coward, A.C., Salim, S.S., Gasalla, M.A., Henson, S.A., Hobday, A.J., Pecl, G., 2016. From global to regional and back again: common climate stressors of marine ecosystems relevant for adaptation across five ocean warming hotspots. *Global change biology*.

Power, S., Delage, F., Chung, C., Kociuba, G., Keay, K., 2013. Robust twenty-first-century projections of El Nino and related precipitation variability. *Nature* 502, 541-545.

Prince, E.D., Goodear, C.P., 2006. Hypoxia-based habitat compression of tropical pelagic fishes. *Fish Oceanog* 15, 451-464.

Queiroz, N., Humphries, N.E., Mucientes, G., Hammerschlag, N., Lima, F.P., Scales, K.L., Miller, P.I., Sousa, L.L., Seabra, R., Sims, D.W., 2016. Ocean-wide tracking of pelagic sharks reveals extent of overlap with longline fishing hotspots. *Proceedings of the National Academy of Sciences* 113, 1582-1587.

Ravier, C., Fromentin, J.M., 2004. Are the long-term fluctuations in Atlantic bluefin tuna (*Thunnus thynnus*) population related to environmental changes? *Fish Oceanog* 13, 145-160.

Reeb, C., Arcangeli, L., Block, B., 2000. Structure and migration corridors in Pacific populations of the Swordfish *Xiphias gladius*, as inferred through analyses of mitochondrial DNA. *Marine Biology* 136, 1123-1131.

Regular, P.M., Hedd, A., Montevecchi, W.A., 2013. Must marine predators always follow scaling laws? Memory guides the foraging decisions of a pursuit-diving seabird. *Animal Behaviour* 86, 545-552.

Reimchen, T., Mathewson, D., Hocking, M., Moran, J., Harris, D., 2003. Isotopic evidence for enrichment of salmon-derived nutrients in vegetation, soil, and insects in riparian zones in coastal British Columbia, American Fisheries Society Symposium. American Fisheries Society, pp. 59-70.

Ridgway, K., 2007. Long-term trend and decadal variability of the southward penetration of the East Australian Current. *Geophys Res Lett* 34.

Robinson, L., Hobday, A., Possingham, H., Richardson, A., 2015. Trailing edges projected to move faster than leading edges for large pelagic fish habitats under climate change. *Deep Sea Research Part II: Topical Studies in Oceanography* 113, 225-234.

Rooker, J.R., Arrizabalaga, H., Fraile, I., Secor, D.H., Dettman, D.L., Abid, N., Addis, P., Deguara, S., Karakulak, F.S., Kimoto, A., 2014. Crossing the line: migratory and homing behaviors of Atlantic bluefin tuna. *Marine Ecology Progress Series* 504, 265-276.

Rooker, J.R., Secor, D.H., De Metrio, G., Schloesser, R., Block, B.A., Neilson, J.D., 2008. Natal homing and connectivity in Atlantic bluefin tuna populations. *Science* 322, 742-744.

Sanchez-Pinero, F., Polis, G.A., 2000. Bottom-up dynamics of allochthonous input: direct and indirect effects of seabirds on islands. *Ecology* 81, 3117-3132.

Scott, R., Hays, G.C., 2014. Ontogeny of long distance migration. *Ecology* 95, 2840-2850.

Seki, M.P., Lumpkin, R., Flament, P., 2002. Hawaii cyclonic eddies and blue marlin catches: the case study of the 1995 Hawaiian International Billfish Tournament. *Journal of Oceanography* 58, 739-745.

Selkoe, K.A., Henzler, C.M., Gaines, S.D., 2008. Seascape genetics and the spatial ecology of marine populations. *Fish and Fisheries* 9, 363-377.

Shaffer, S.A., Tremblay, Y., Weimerskirch, H., Scott, D., Thompson, D.R., Sagar, P.M., Moller, H., Taylor, G.A., Foley, D.G., Block, B.A., 2006. Migratory shearwaters integrate oceanic resources across the Pacific Ocean in an endless summer. *Proceedings of the National Academy of Sciences* 103, 12799-12802.

Shimose, T., Fujita, M., Yokawa, K., Saito, H., Tachihara, K., 2009. Reproductive biology of the blue marlin *Makaira nigricans* around Yonaguni Island, southwestern Japan. *Fish. Sci.* 75, 109-119.

Shimose, T., Yokawa, K., Saito, H., Tachihara, K., 2012. Sexual difference in the migration pattern of blue marlin, *Makaira nigricans*, related to spawning and feeding activities in the western and central North Pacific Ocean. *Bull Mar Sci* 88, 231-250.

878 Sibert, J.R., Lutcavage, M.E., Nielsen, A., Brill, R.W., Wilson, S.G., 2006. Interannual variation in  
880 large-scale movement of Atlantic bluefin tuna (*Thunnus thynnus*) determined from pop-up  
satellite archival tags. Canadian Journal of Fisheries and Aquatic Sciences 63, 2154-2166.

882 Strandberg, R., Klaassen, R.H., Hake, M., Alerstam, T., 2009. How hazardous is the Sahara Desert  
crossing for migratory birds? Indications from satellite tracking of raptors. Biology letters,  
rsbl20090785.

884 Switzer, P.V., 1993. Site fidelity in predictable and unpredictable habitats. Evolutionary Ecology 7,  
533-555.

886 Takeuchi, Y., Oshima, K., Suzuki, Z., 2009. Inference on nature of Atlantic bluefin tuna off Brazil  
caught by the Japanese longline fishery around the early 1960s. Collect. Vol. Sci. Pap. ICCAT  
888 63, 186-194.

890 Wedekin, L.L., Neves, M.C., Marcondes, M.C., Baracho, C., Rossi-Santos, M.R., Engel, M.H., Simões-  
Lopes, P.C., 2010. Site fidelity and movements of humpback whales (Megaptera  
novaehollandiae) on the Brazilian breeding ground, southwestern Atlantic. Marine Mammal  
892 Science 26, 787-802.

894 Weimerskirch, H., 2007. Are seabirds foraging for unpredictable resources? Deep Sea Research Part  
II: Topical Studies in Oceanography 54, 211-223.

896 Weng, K.C., Castilho, P.C., Morrisette, J.M., Landeira-Fernandez, A.M., Holts, D.B., Schallert, R.J.,  
Goldman, K.J., Block, B.A., 2005. Satellite tagging and cardiac physiology reveal niche  
expansion in salmon sharks. Science 310, 104-106.

898 Wyrtki, K., 1975. El Niño – The dynamic response of the equatorial Pacific Ocean to atmospheric  
forcing. Journal of Physical Oceanography 5, 572-584.

900

## Table and Fig. Captions

902 **Table 1.** Schematic illustration of oceanic systems with bridge and barrier conditions over  
904 time. Shaded grey area indicates time periods when the periodicity has changed in A, and  
where bridges and barriers occur in B and C.

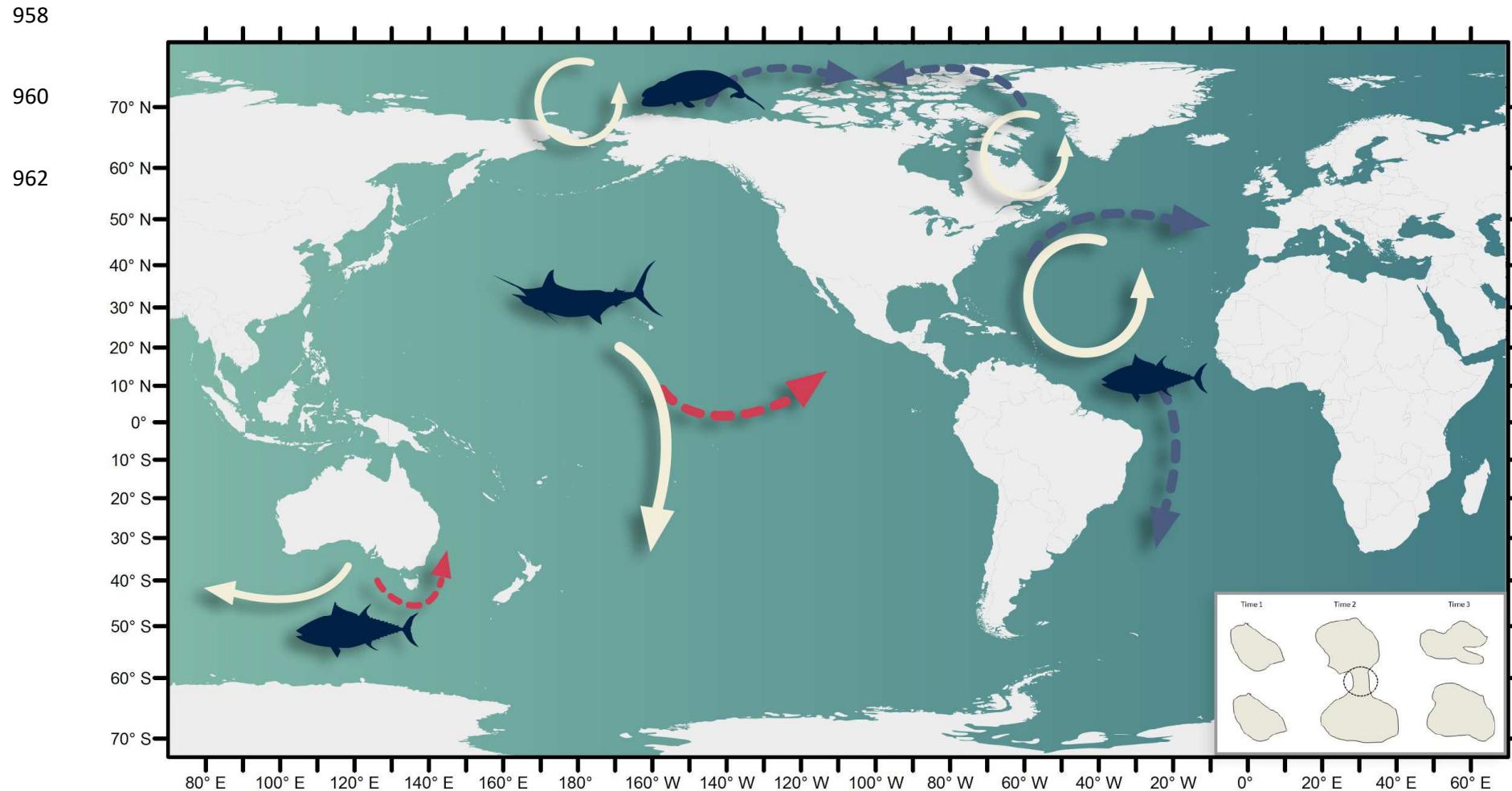
906 **Fig. 1.** (a) Examples of ecological bridges and barriers for five populations of pelagic  
908 species along their migratory routes (solid white line). Dashed lines represent individual  
910 movements upon the formation of a bridge (blue) or a barrier (red). (b) Schematic showing  
an ecological bridge connecting two ocean regions (time 2; dashed circle) that were not  
connected before (time 1) or after (time 3).

912 **Fig. 2.** Probabilities of Atlantic Bluefin tuna (ABFT) occurrence deduced from the NPPEN  
914 niche model (see Fromentin et al., 2014a): (a) for the entire period (1960 to 2009); (b)  
916 anomalies of the probabilities of ABFT occurrence during the “Brazilian episode” (computed  
918 as the map of ABFT occurrence over 1960 to 1967 minus the median probabilities  
calculated in each pixel from 1960 to 2009); and (c) same as (b) for the period 2000 to 2009  
(from Fromentin et al., 2014a)

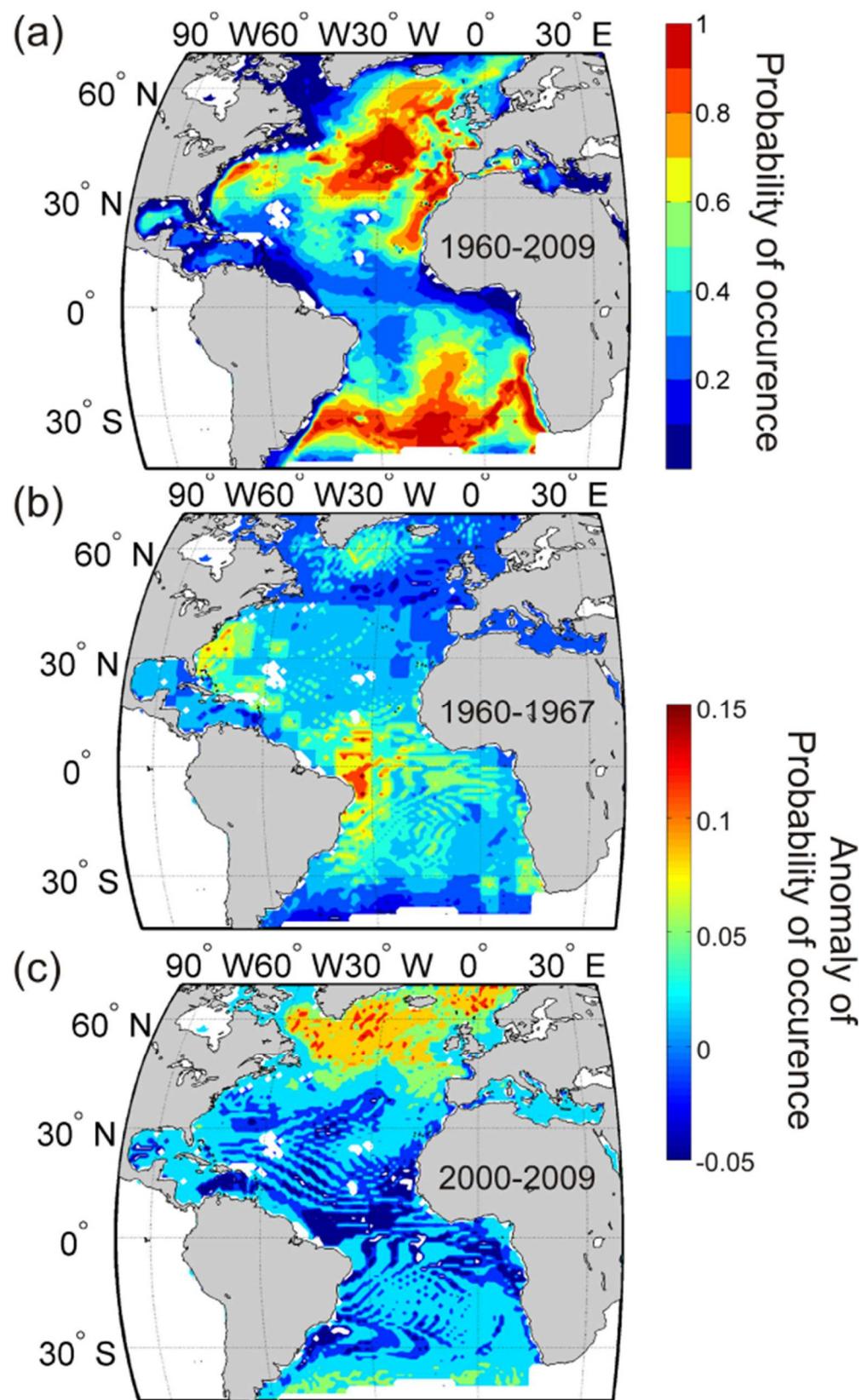
920 **Fig. 3:** Juvenile Atlantic Bluefin tuna potential feeding habitat (expressed as frequency of  
922 occurrence) during migration period after wintering (from April to June) in 2009 (panel a),  
924 2010 (panel b) and 2011 (panel c). The potential habitat of juvenile Atlantic bluefin tuna is  
derived from the daily detection of chlorophyll-a fronts and a tolerance to sea surface  
temperature (see Druon et al. 2016 for more details). Blanks indicate a frequency of  
926 occurrence lower than 1%. The 200 m depth contour is shown. Panel d) shows the mean  
928 occurrence of juvenile bluefin tuna feeding habitat in the central area of the bridge,  
represented by a box (36-48°N, 35-57°W) in panels a, b and c, from April to June in each of  
the years.

930 **Fig. 4.** Habitat preferences for juvenile SBT based on sea surface temperature (°C) and  
932 chlorophyll a (mg/m<sup>3</sup>; log scale) for the area 25-45°S, 80-180°E during April-June of 1998-  
934 2000 (a; n=46 fish) and 2004-2006 (b; n=24 fish); only fish ≥ 85 cm were included for  
936 consistency between the two periods. Preferences were calculated by comparing  
938 environmental data where SBT were located with environmental data for the whole area  
during the time period of interest. Values >1 indicate preferred habitat (i.e. conditions at  
which fish are found in greater proportion than they occurred in the ocean) (see Basson et  
al., 2012). The maps show areas around Tasmania containing preferred SBT habitat  
(values >1) in April-June of 1998-2000 (c) and 2004-2006 (d), based on the habitat  
preference model for the corresponding time period.

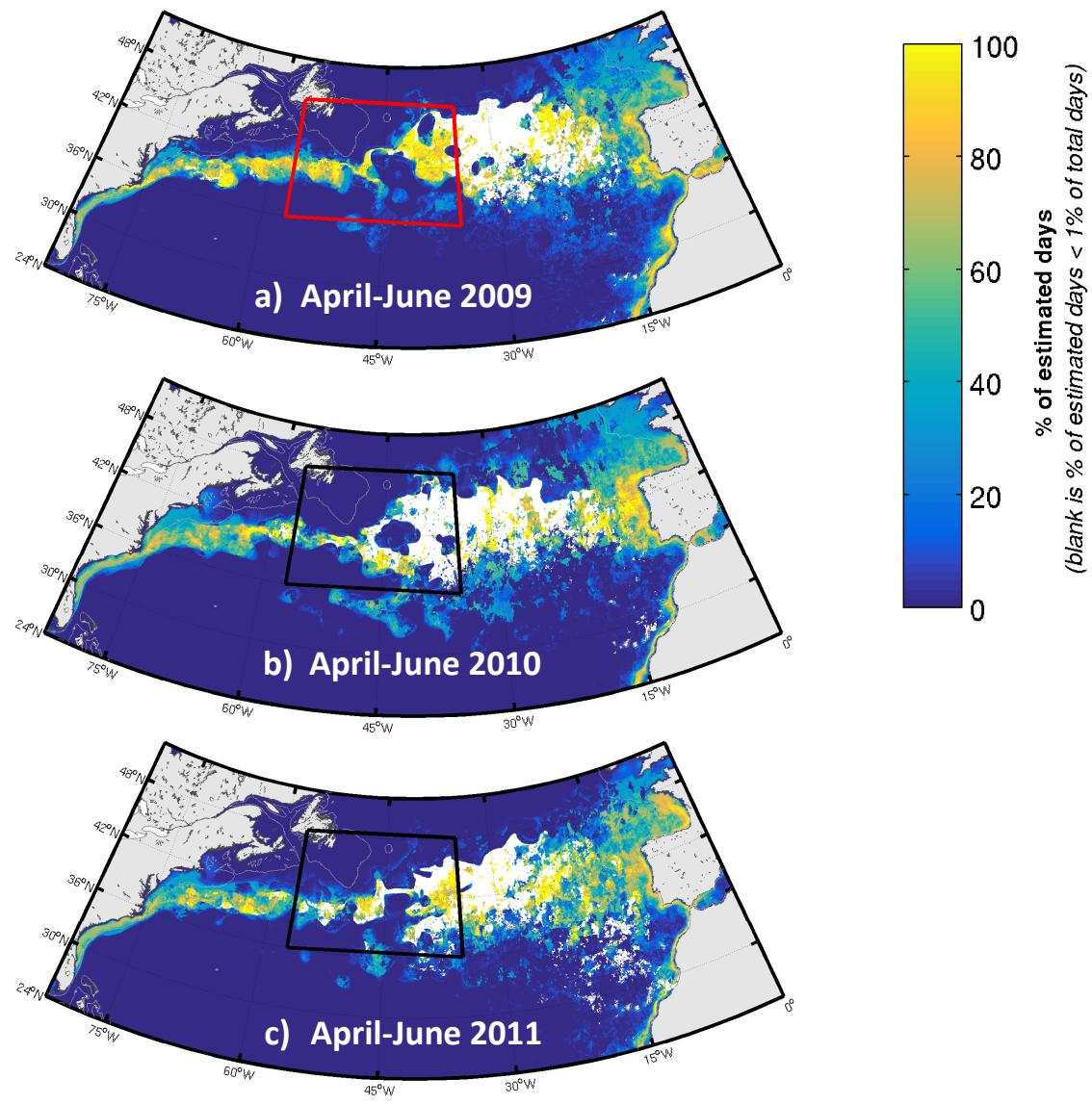
940 **Fig. 5:** Trans-equatorial movements of blue marlin during the 2009 El Nino (right) and 2010  
942 La Nina (left). Remotely sensed sea surface temperature is from October 2009 and 2010.  
944 Tracks from 2009 and 2010 are shown, with the thick black sections showing period of track  
corresponding to period for remotely sensed SST data. Note that fish crossed the equator  
during every year of tagging except for during the 2010 La Nina (left). From Carlisle et al.  
(In Review).

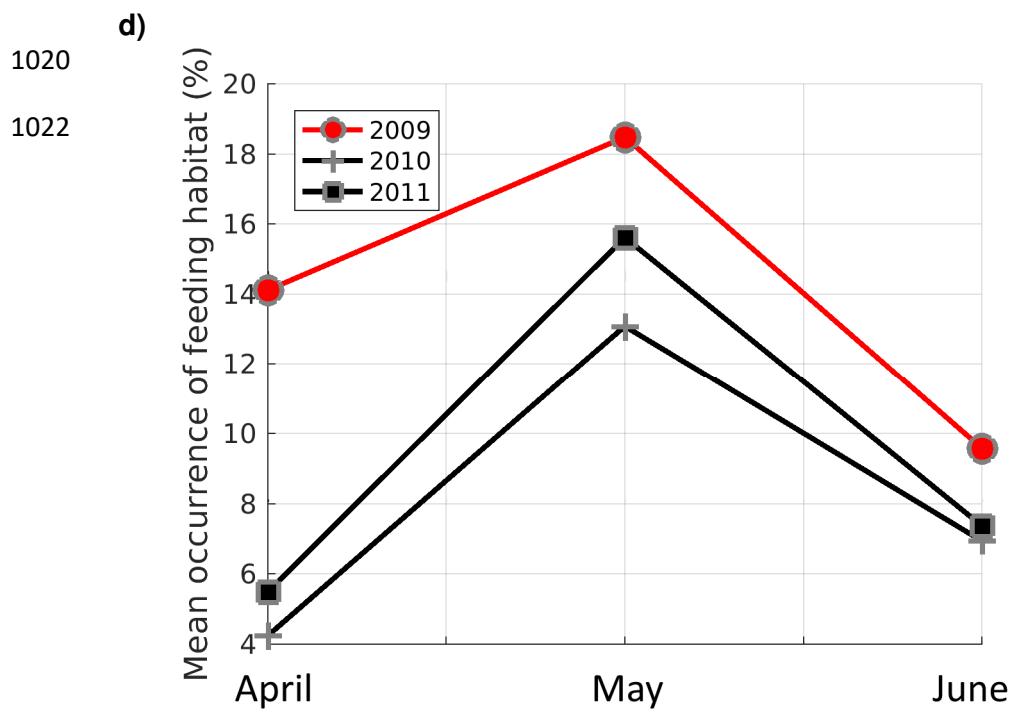

946 **Table 1.** Schematic illustration of oceanic systems with bridge and barrier conditions over  
 948 time. Shaded grey area indicates time periods when the periodicity has changed in A, and  
 where bridges and barriers occur in B and C.

950


| Mode                                           | Example                                                                                                           | Implications                                                                   |
|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| A. Increasing periodicity of bridge conditions | Blue marlin – El Nino conditions break bridge more often                                                          | Context-dependent                                                              |
| B. Declining frequency of bridge conditions    | NW passage in historical times<br>Salmon shark in north Pacific <sup>1</sup><br>Swordfish in Pacific <sup>2</sup> | Decreased connectivity, increase in metapopulations and possible speciation    |
| C. Increasing frequency of bridge conditions   | Bowhead whale – NW passage <sup>3</sup>                                                                           | Increased connectivity across species range – loss of metapopulation structure |

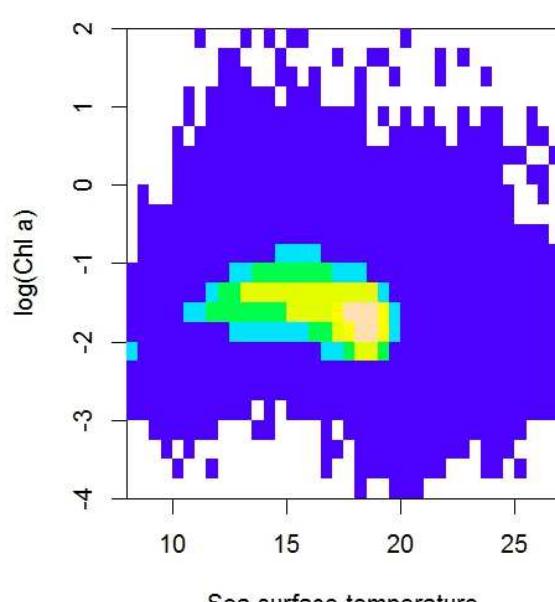
952 References: <sup>1</sup>Weng et al. (2005), <sup>2</sup>Reeb et al. (2000), <sup>3</sup>(Heide-Jørgensen et al., 2012)


954 **Fig. 1.** Examples of ecological bridges and barriers for five populations of pelagic species along their migratory routes (solid white line). Dashed  
955 lines represent individual movements upon the formation of a bridge (blue) or a barrier (red). Inset: Schematic showing an ecological bridge  
956 connecting two ocean regions (time 2; dashed circle) that was not connected before (time 1) or after (time 3).

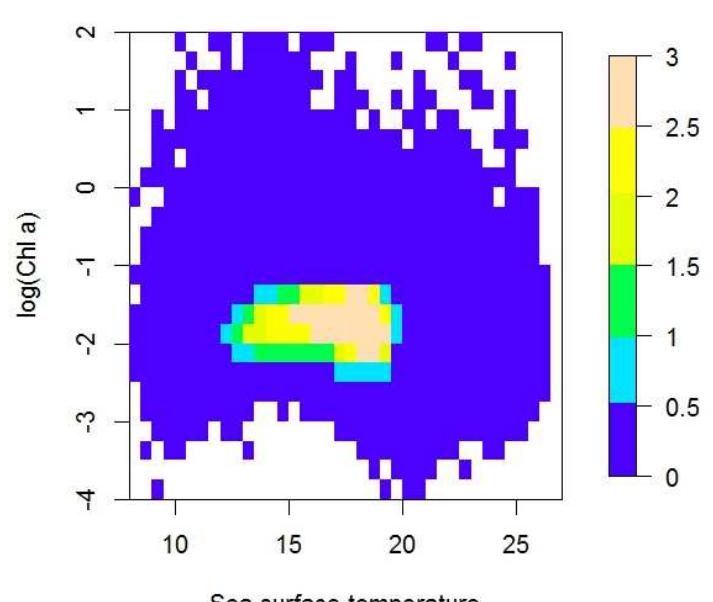



964 **Fig. 2.** Probabilities of Atlantic Bluefin tuna (ABFT) occurrence deduced from the NPPEN  
965 niche model (see Fromentin et al., 2014a): (a) for the entire period (1960 to 2009);  
966 (b) map of the anomalies of the probabilities of ABFT occurrence during the “Brazilian episode”  
967 (computed as the map of ABFT occurrence over 1960 to 1967 minus the median  
968 probabilities calculated in each pixel from 1960 to 2009); and (c) same as (b) for the period  
969 2000 to 2009 (from Fromentin et al., 2014a).

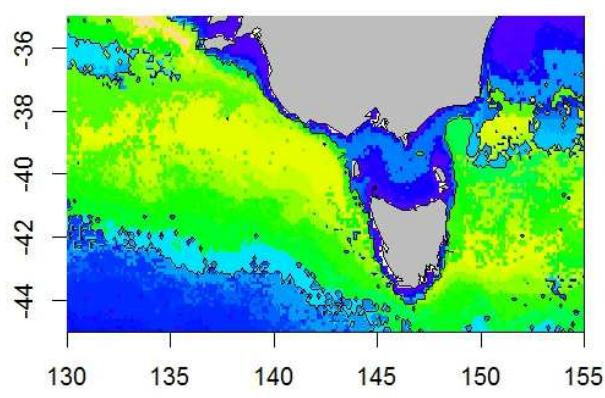



**Fig. 3:** Juvenile Atlantic Bluefin tuna potential feeding habitat (expressed as frequency of occurrence) during migration period after wintering (from April to June) in 2009 (panel a), 2010 (panel b) and 2011 (panel c). The potential habitat of juvenile Atlantic bluefin tuna is derived from the daily detection of chlorophyll-a fronts and a tolerance to sea surface temperature (see Druon et al. 2016 for more details). The 200 m depth contour is shown. Panel d) shows the mean occurrence of juvenile bluefin tuna feeding habitat in the central area of the bridge, represented by a box (36-48°N, 35-57°W) in panels a, b and c, from April to June in each of the years.

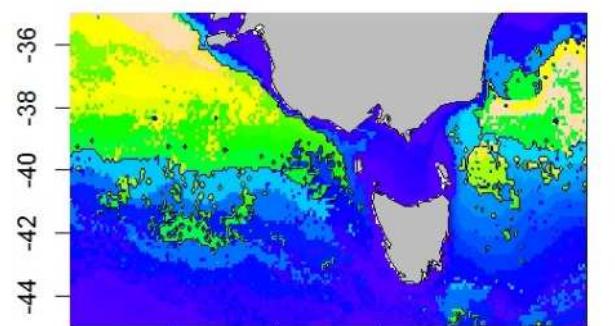





1024  
1026 **Fig. 4.** Habitat preferences for juvenile SBT based on sea surface temperature (°C) and  
1028 chlorophyll a (mg/m<sup>3</sup>; log scale) for the area 25-45°S, 80-180°E during April-June of 1998-  
1030 2000 (a; n=46 fish) and 2004-2006 (b; n=24 fish); only fish  $\geq 85$  cm were included for  
1032 consistency between the two periods. Preferences were calculated by comparing  
1034 environmental data where SBT were located with environmental data for the whole area  
during the time period of interest. Values >1 indicate preferred habitat (i.e. conditions at  
which fish are found in greater proportion than they occurred in the ocean) (see Basson et  
al., 2012). The maps show areas around Tasmania containing preferred SBT habitat  
(values >1) in April-June of 1998-2000 (c) and 2004-2006 (d), based on the habitat  
preference model for the corresponding time period.


1036 (a)

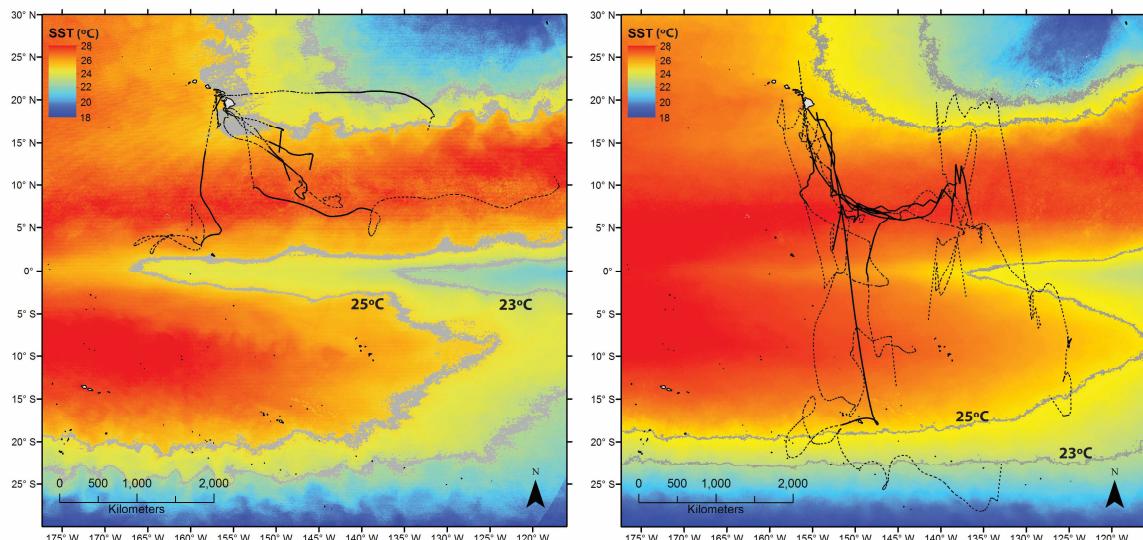



(b)



(c)




(d)



1046

1048 **Fig. 5:** Trans equatorial movements of blue marlin during the 2009 El Nino (right) and 2010  
1050 La Nina (left). Remotely sensed sea surface temperature is from October 2009 and 2010.  
1052 Tracks from 2009 and 2010 are shown, with the thick black sections showing period of track  
corresponding to period for remotely sensed SST data. Note that fish crossed the equator  
(In Press).

1054



1056

1058