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ABSTRACT: Management of the commercially important Washington coastal Chinook
Salmontroll fishery depends on the ChinoBlshery Regulation Assessment Model
(FRAM). TheChinookFRAM uses historical and contemporary coaece tag (CWT)
recoveries to estimate abumda and exploitation rates for particular indicator stocks.
Those estimates are used to set limits on overall haaudgirotectsensitive stocks
Current efforts are underway to implememeaver‘base period{time period on which
exploitation/rates areaseql. Our collaboration of science, management, and industry
used genetic mixture modeling to provide independent stock composition estimates
supportingFRAM recalibration. Genetic modéhg suggestsotal catch includea much
smaller proportion o&limiting Columbia River stock and a larger fractionGd#nadian
stocks as well asnabundanOregon coastatocknot previouslyincluded in the FRAM
Our resultsfocus attention on particular stockswhitbenefit from refinements in the
ChinookFRAM.
INTRODUCTION

Commercial troll fishing foChinook Salmor©Oncorhynchus tshawytscha off the
coast ofWashington State began around 1912 and grew rapidly during World War I. By
1919, therewere more than 1000 boats in the fleet. Between 1935 and the early 1950s
harvest.doubled from 200,000 to 400,000 fish per year. Harvest then declined
dramatically in the late 1950s amdrly 1960s. Fewer than 100,000 fighretaken in
1965 (US Dept of Commerce 1976)arvest numbers have varied widely in recent years
(8,636'in 2008 to 55,313 in 2015)018e stocks arstill quite abundant and can sustain
harvestwhereathers areseverelydepressedndare now protected under the US
Endangered Species Act (ESBespitethose declines in some stockise Wastington
Chinogk Salmon fishery overatmainsan importaneconomic asset to the Stated the
entire regior($2.6M exvessel valueTCW Economics 2008), yet theoll fishery
presentsomeacute management challengébee 1976 Environmental Impact
StatemenPreliminary Fishery Management Plan floe toll salmon fsheryof the
Pacific Ceastlescribed thdifficulty inherent in managing thimixed-stock fishery and
foretoldithe increasinglthorny problem of protecting sensitive stocks whaleyetng

abundanstocks for harvest
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“The mobility of the troll fleets, plus the fact that the salmon stocks uporhwhic
the fleets fish are highly migratory, makes management of the fishery extremely
complicated. This combination results in both the fishemekthe resources
crossing interstate and international boundaries. In addition to the inbealati
problems, management of the salmon resource is further complicated by the
presence of large net fisheries and sport fisheries also fishing on many of these

same salmostocks” US Deptof Commerce 1976:12).

TherecommerciaChinook Salmon fishery off the US West Coast, including
Washington State, is managesingthe Fishery Regulation Assessment Model (FRAM)
as the primary analyticaind evaluation tool (PFMC 2008)h& FRAMis dependent on
historical and contemporary codedre tag (CWT) recoveries and providesliscrete,
time-step, agestructured, deterministic model used by the Pacific Fishery Management
Council (PFMC) for annual pre-season and pestson estimates of impacts of ocean and
terminal fisheries on particular stock group<oinook Salmon and Coho Salm@n
kisutch=Fer'Chinook Salmon, impacts are modeled for most stock groups from
California'€entral Valley (SacramenRiver), northeertral Oregon ©ast, Columbia
River;Willapa Bay, north Washington Coast, Puget Sound, and southern British
Columbia. The FRAM is used to evaluate propaa®alal regulation scenarios in
specific fisheries for compliance with harvest allocation, US Endangered Species Act
(ESA)‘compliance, and domestic and international legal obligations. Téeitatiudes
providing-treaty tribes with the opportunity to harvest specific shares of individual
Chinook.Salmorstocks, as well ameeting obligations for stockpecific management
associated with the Magnus@&tevens Fishery Conservation and Management Act (16
U.S.C. 1801 - 1891(d)) (2014j.is important to note that the FRAM and other CWT-
based fisherynanagement models on the West Coast are integral ekeofdrdth
international and regional management structlieal, state, provincial, and federal
fishery management agencies in the eastern Paofficibute to and benefit from the
Regional Mark Information Systems database, the international repository of CWT

marking and recovery data.
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FRAM base period for inference of current exploitation rates

The Chinook FRAM depends on CWT recoveries to estimate contemporary
stockspecific abundance and exploitation ratesinferred from a historical “basenod”
(see PFMC 2008 for a detailed, quantitative description of the FRAM, including flow
charts and formulas for individual processéa$)e basgeriod 1979 - 1981 a critical
element of the Chinook FRAM and is currently being updated to the period 2007 - 2013.
Contemporary post-season abundanceadnsérved catcheapplied to the base period
datarin"fFRAM produce annual exploitation rastimates awell asstockcomposition
estimates-that are comparable to genetic mixture analyss.comparison of stock-
compasition estimatesdlowsan independent evaluation of the Chinook FRAMe base
period is important because thdsstoricalexploitation rates are used to infer
contemporarystockspecificexploitation. Managers then set regulationaltocate

harvest an@ontrol exploitation ratesn sensitive stocks

Genetic mixture analysis

Genetic mixture analysigJso known agenetic stock identification (GSiises
geneticidata to infer the source populations that most likely contributed tacalpart
group-ef fish taken in a mixed-stock fishery (Milner et al. 198&netic mixture
modeling’based oBDNA microsatellite data has been extensively tested and validated in
Atlantic SalmonSalmo salar and multiple Pacific salmon species (Beacham et al. 2003;
Beacham et al. 2008; Griffiths et al. 2010). There are generally two componentgeto the
studiesgthe, umown fishery mixture and the baseline dataset of known-origin fish. Each
of theseidatasets consists of a list of fish with their associated multilocus genotypes,
typically coded as atring of paired character states (alleles) at gacieticlocus
(chronpsomal location)GSI is the process of fitting a model of potential source
populations to the multilocus genotypes of the fish in the observed mikiijenen et
al. 2005).

Our. study had two principal goals: 1) compare GSI and FRAM stock composition
estimates fodifferent times and areas tine commercial troll fishery, and 2) describe
apparent trends or pattennsthe spatial and temporal distution of stocks. Our hope
was thatgenetic results from this fishewould improve our understanding of stock
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distribution and contribute to the power and utility of current Ché$ed fishery
management as implementesingthe FRAM.We examinedhe relative distribution of
different stockamong timedreastrata; howevemur primary focus is on fishery impacts.
Because stocks can have different exploitation ratasfishery dependent study design
is ill suited to address the more academic question of how each stmtka#ly

distributedat sea in time and space.

MATERIALSAND METHODS
Sample collection

We genotyped Chinook Salmon tissue samples randomly dramrall rayed fin
clips colleeted by commercial fishermparticipating in Washington Chinook Salmon
troll fisheries conducted during 2012 through 2(Lable 1) Onaveragen each yeawe
analyzed 3.2% of total harvest collected by roughly 35% of the fleet (range 26 — 44%)
Although there are around 150 permit holders, not all of them fish, and many of them fish
only a'small portion of the season. Most of our samsptaught their trip limits regularly,
so, based-on review of trip limits caught per week over a 10-year period, 34 is a
reasonablesestimate of average fleet size for active, commercial trollers on the
Washington CoasSamples were collectaapportunisticlly, as time permitteénd
mightnetrepresentraidealrandomsample However,we offered a pefish monetary
incentive toensure sampig during busy periods, swe believe collectionseepresena
reasonable approximation of the fish taken in the fishmeeach time and area
Collectionslgcation and date were record&dPS time stamphys well as fork length and

mark statugmany hatchery-origin fish are marked with the removal of the adipose fin).

Fin-clip samplesvere folded in WhatmaBMM chromatography paper, dried,
and stored ifbarcodectoin envelopes at ambient temperature. Samples were deposited
into the Northwest Fisheries Science Center (NWFSC) Conservation BioloigjoDis
GeneticlisSue Archivgaccession numbers in Table Xdlection data were
downloaded from GPS units provided to fishermen and transcribed from forms printed on
the collection envelopes. Fin clips were collected eachdwgarg the normal
commercial fishing seasdhat occurredetwe@ May and September. In our analyses,
we refer to the Mayuneperiod as springndJuly-Sepemberas summe(Tablel). No
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Chinook Salmon harvesting permittedat other timesn the open ocean offWashington.
Samples were analyzed frahe southern Area Zfay’s Harbor Areat.eadbetter Point
to the Queets River at 47 .&titudeon the Washington Coast) and more northArkgas

3 (Quillayute Areajand 4(Cape Flattery Area) that were combined and referred to as
Area 3 & 4 for our studyQueets River to the US/Canadian bordég; 1).

Genotyping and reference baseline

Washington Department of Fish and Wildlife (WDFW) and Northwest Fisheries
Science*Center (NWFSC) cooperategrocessig Chinook &lmon tissue samplemn
2012,samples were divided between NWFSC and WDFW genetics laboratbras.
2013 to,20415, all genotyping was carried out by NWFSC. In both laborafoNéswas
extracted and purified by using Qiage®Neasy™ membrane capture kitsPurified
DNA samplesvere amplified and genotyped for 13 internationally stanzedd
microsatellite loci (sebelowfor inter-laboratory genotyping standardizafjorAmplified
microsatelliteproducts were size fractionated on an Applied Biosystems 3730 Genetic
Analyzerinithe WDFW Molecular Genetics Laboratory an@100 Genetic Analyzeat
NWFSC Genotypic data produced by WDFW and NWFSC were combined to create a

singley4year dataset for mixture analysis.

Thegenetic mixturanodelswe employed depend on comple¢presentation in
the baseline of all potentially contributing populations. In this stwéyisedhe
internationally standardizedhicrosatellitepaseline datet(same loci and allele
designatiens; Moran et al. 2006) produced by the Genetic AnafyBacdic Salmonids
consortium (GAPS; Moran et al. 2005; Seeb et al. 2007). Thisetatas designed
explicitly for eastern Pacific coastal fishery mixtures, and geographic coverage is
excellent.for, the fisheries examined here, includimaye than 20,00Bnown-origin fish
from 167 representative populationshe GAPSChinook Salmorbaseline is the most
comprehensive of its kind. It includes all Evolutionarily Significant Units and Wildlife
Speciedistedunder the ESA and the Canadian counter@ammittee on the Status of
Endangered Wildlife in Canada, and is believed to represent principle gemesdigds
from all significant production areas over that geographic rartge GAPSChinook
Salmondatabase is thoroughly vetted with the salmon genetics research community on
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the Pacific West Coast of the US and Canada (Seeb et al. 2007). The 13 microsatellite
loci that make up the coasftide baseline are highly variablgith almost 500 alleles

observed. Extensive simulations and leave-one-out jaek&nalyses show excellent

power to allocate mixedtock fisheries to origin, either as single individuals or as

modeled proportions (Seeb et al. 2007; Anderson et al. 200@&) GAPSChinook
Salmonbaseline has been used widely in studies of harvesiyaradch impacts

(Sattethwaite et al. 2014; Bellinger et al. 2015) as well as ecological genetic studies (e.qg.,
Rhodesetal. 2011; Roegner et al. 2012; Johnson et al. 2013). The current study provides
an opportunity to independently evaluate Chinook Salstock composition estimates

from the FRAMover the 4-year period from 2012 through 2015.

Single nucleotide polymorphisms (SNPs\ve been usddr otherGSI studies
(Narum et al. 2008; Hess et al. 2011pwver, no current SNP baseline was available
with the geographic breadth (Central Valley California to Southeast Alaska) and depth
(multi-year samples from multiple populations from each genetic stock gneap$sary
to charaeterize contributing populations observed in Washingtote€Gdnook Sainon

fisheries.

Data analysis

To estimate stock compositions, we usedditional maximum likelihood
mixture, modeling CMLMM ) as implemented in the computer software package
ONCOR«(Kalinowski et al. 2007)ncludingbias correction (Anderson dt 2008).
Allele freguencies were estimated to assign-pem populatiorspecific frequencies for
all alleles observed in the mixture sampbes not observed in the source populations
(Rannala and Mountain 1997he CMLMM uses the expectatignaximization
algoiithm (Dempster et al. 1977) to estimate the most likely proportions of contributing
populations: We used tli&MLMM approachto derivemodeled proportionsecause
thosearebetter suitedo our application and more robust thahied individual
assignmers, especially where mixture proportions are non-uniform (Koljonen et al.
2005).
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213 We first examined overall stock compositimn each otthe 4 yearsirrespective
214  of time and area. We estimated 95% confidence intervals around thegtoimates for
215 each sockusinglOObootstrap replicates, «®ampling both the mixture and the baseline
216  (Kalinowski et al. 2007) We felt comfortable using this number of bootstrap replicates
217  because preliminary analysefs2012 and 2013 data demonstrated that 100 bootstrap
218 replicates.generated confidence limits that were indistinguishable from 1000 replicates.
219 These'estimates represent the proportional stock composition of fishnnixtiiee

220 sampleseollected. Genetic stock composition estimates were compareddegsost

221 estimates'from FRAMRFMC 2012 to 201&hatreflect all fisheryrelated mortality,

222 including postrelease mortality of sulegatsize fish.Thesecomparisons imply that non-
223  retention mertalitywasuniform across stock®epartures from uniform mortality rates
224 might result'from stoclspecific differences in age structure or si¢@ge; however,

225 these effectsvould belimited to sublegal encounters and were unlikébybe of

226  sufficient magnitude toonfound our results.

227

228 For-each year, e/stratified our stock composition estinsabg time and area to
229 facilitate cemparisoswith the FRAM.Forty-six genetic stock groups were aligned with
230 12 FRAM stocks (Appendix 1As stated earlier, we examined two areas off the

231 Washington Coast (Area 2, in the south; Area 3 & 4, in the north; Fig. 1) and two time
232 periods (springand summer)Mean squarerror (MSE) was used to evaluate the fit of
233  FRAMstock composition estimates to those from GSI. Recognizing the bias for larg
234  contributing,stocks, we also calculated mean absolute percent error (MAPE), which is
235  more sensitive to small contributing stocks. Because results were similar, only MSE
236 values are presented

237

238

239 RESULTS

240 Sample collection

241 Of thetotal 8,219samples collected in the course of this study, nmustided

242  complete and internally consistent collection data (e.g., time and location). Howeve
243  observed some problems withs#a georeferenaatadue toa malfunction with one of
244 our GPS unitshatresulted in a large number of duplicated waypdjoddection time
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and location). Also, some waypoints were from\fiestport Boat Basin (Grays Harbor)
or the site where the GPS units were configure@lympia, WA, an urban center 100
km inland from the study area. In total, 1,186 samples were missing valid
latitude/longitude coordinatese those specific location and timestamp satee
omittedfrom analyses. Despite discarding faulty GPS data, sample batches allowed
confident.assignment to time period (sproxgumme) and areatraum (Area 2or Area

3 & 4).Finally, 45samplesvere omittedhat werefound to have been collected outside
the study-arean Area 1, south of Leadbetter Point (Fig. 1).

Laboratory analysis

Sample quality was excellent. Only about 1.4%oicessedamples were later
omittedsfrom analysedue to sparse genotypic data and excessive homozygosity, which
aretypical of degraded DNA from poor quality tissue samples. For examphanple
scored as homozygous for three highly polymorphic loci but failing amplification for all
others'would bemitted Of the remainingamples, more than 80% were successfully
typed forall’13 loci, and more than 99% were typed for 10 or more loci. In each year, 1
to 5pairs ‘offish(12 pairs totalvere observed with identical multilocus genotypes. The
variability of the GAPSChinook Salmomicrosatellite loci is such that identical
genotypes for six or more loeijith no mismatchess almost certainlyheresut of
multiple tissue samples taken from the same individual (indivisip@tific DNA
“fingerprints”). In our case, members of each pair occurred within the same time/area
stratumitherefore we omittedone member of each pair. Cural sample sizafter
filteringwwas5b,344fish taken as a random samfilem a total 0f8,219tissue samples
collected(Table 1.

Nearly half the samples wetaken from fish markewith an adiposdin clip,
which identifiedthemwith near certaintyas hatchemproduced individuals. Unmarked
fish can.beeither hatchery or wildrigin, but almost navild fish are markedby clipping
theadipoesdin. All excepteightfish sampledvereof legal size ¥66 cm), and &erage
fork length was/7.2 cm (SD = 6.4m).
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Genetic mixture modeling

Genetic mixture analysshowedthat e Washington Chinook Salmdnol|
fishery is primarily supported by two Columbia Riv¥all-run stocksMid-Columbia
River Tule and Upper ColumbiRiver Bright.On average44% of our sample was
attributed to_thee two stocks (27% and 17%espectivelyFig. 2. Other important
contributorsncluded the LoweColumbiaRiver Bright and Tule stockd(7%0) andthe
FrasemRiver\West Coast Vancouver Islah@eorgia Strait stocka FRAM stock
comprised-of three genetically distinct regipds%). With the exception of 2013,
overallrstock composition showed little variation among ydaespitethat relative
uniformity, there was a general tretoavardincreasing abundance of Mid-Columbia
River Tulethrough time, resulting in a narrower distribution of contributing stdgtack
composition in 2013 was unusual in having a very high percenfa@entral Valley
Sacramentatock(fall run; 14% in 2013, 2 — 7% in other years studliadd a smaller
contribution fromthe Mid-Columbia Tule stock (14% in 2013, 31 — 50% in other years
studied).

Comparison of GSI and FRAM

When the Chinook FRAM was developeddr®regon Coast populations were
poorly.represented among CWT releases. Those popdatierenot thought to
contribute substantially to the Washingtastaltroll fishery andthereforewere not
included in the model. In our study, howev@l estimates fathe Mid-Oregon Coast
stockweresunexpectedliarge(Figs. 2 and 3) substantiallylarger tharthe estimated
FRAM centributionof all nonFRAM stocks(Fig. 4. TheMid-Oregon Coasstock
contributed up to 29% of the harvest in Area 3 & 4ummerof 2012, andsSI estimates
were generally an order of magnitugkeaterthan theFRAM estimats for all non-
FRAM contributors combined (which should have inclutiéd-Oregon Coastig. 5).
With the MidOregon Coast disaggregated from the R&AM GSI estimate, FRAM
and GSlestimates oémaining norFRAM-stock contributors werersilarly low (GSI
~2%, Fig. 2). Other than Mid-Oregon Coast, the largest non-FRAM contributor was
Upper FraseRiver, which averaged 0.6% of tholl fishery fange: 0.3% to 1.1%).
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307 Some similarities in stock compositiestimatesvere found between GSI and
308 FRAM, but in most cases we saw substantial differences. High concordance was
309 observed between GSI and FRAM in odlpf 16 time/area stratall 4 werein Area 2
310  durng spring2012, spring andummer2014, and spring 201B8SE <0.0043;Fig. 5).
311 GSl and FRAM usually diverged more substantially in A3&a4 for both springand

312 summettime strata. Despite similar numbers of contributing stoeRAM estimated

313 narroweressdiverse distributions of contributing stocks in essentieery stratum

314 relativeto'GS|espeally in the more northerly Area 3 & 4.

315

316 Consistent, directional departures between GSI and FRAM were observed for
317 particularstocks across time/area strata and across(f&arS) Relative to GSI, FRAM
318 estimates were consistently low for the Oregon North Coast stodkratie Fraser

319 River/West Coast Vancouver Islain@eorgia Strait stock. The FRAM estimates were
320 also lower for Upper Columbiiver Brights, especially ithe springfishery. FRAM

321 estimates were consistently lower than GSI for Columbia Rwermer and Washington
322  North Geast stocks, although absolute contributions were small with both meBlyods
323 contrast, FRAM estimates for the ESisted Puget Sound fall-runicck were

324  consistently higher than GSI estimaté&$| showed smaller changes in stock

325 composition between time strata than did FRAME larger differences between areas
326  (Fig. 5). The most extrenmaismatchbetween methods, other than the Mid-Oregon Coast
327 issue described aboweasin estimates of theower ColumbiaRiver Bright and Tule
328 stock andithe Mi€ColumbiaRiver Tule stock. In every straturRRAM estimates for the
329 Lower ColumbiaRiver Bright and Tule stock wermgreaterthan comparabl&Si

330 estimatesFor the MidColumbiaRiver Tules,FRAM estimates wergreaterthan GSI in
331 13 of 16time/area strata (Fid).

332

333 DISCUSSION

334 Potentially informative differences between GSI and FRAM
335 Stock composition estimates from G&tendiffereddramatically from

336 comparable FRAM estimates. These differeneeeapparent in northern and southern
337 areas angpring andsummertime periods but especially in northern Argé& 4. In
338 particular, FRAM estimatesereconsistentlygreater tharisSl estimategor the sensitive
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ESA-listed Lower ColumbiaRiver Tule stock. Athough our genetic analysis did not
discriminate Lower ColumbiRiver Tule from Lower Columbi#&iver Bright, RAM
results suggestdtie Bright contributionwasvery smal] and most of the fish in this
combined groupverelikely from the Lower Columbi&iver Tule stock. This difference
in stock composition between methods is particularly important because Lowenla|
River Tule stockis the limiting stock in the coastabtl fishery (and also protectexs
threatenedinder the US Endangered Species Aotlr results suggest that the stock
might be"eonsistently overstimated under the current management regitmePFMC
attemptsttorstructure fisheries between Cape Fal@oegpn) and the Canadian border to
limit marine and freshwater exploitation rate on Lower Columbia River natulal
populations,to no greater than%41Pacific Fishery Management Council 2019 hat
objective was the primary constraint for ocean fisheries in this areadredé2 and
2015. It might be thatdle contributions estimated from GSI wégssthanthose
predicted by FRAM because these stoskseless abundant than current FRAM
estimates, or because exploitation rates were lower than estinyatieel FRAM.
PreliminarysFRAMcomposition estimates using the updated base period appear to be
closer to current GSI estimates, e.g., lower estimatekulerstocks and Puget Sound,
but greder for Upper Columbidriver Brights(based on ongoing recalibration effQris

is not clear whethemproved concordands a result oupdated exploitation rates that
might bemore accurateor other factors, including chancestinatel proportiondor the
Fraser River/West Coast Vancouver Island/Georgia Strait stoshigindy greater under
the newFRAM base period, but those estimates aresilistantialljessthanGSI
estimateskRAM estimates of Canadian stocks mnportant becaus@tal harvesits first
allocatedbetween nations, then between tribal and tnidal fishers nextbetween sport
and commercidishers and finallyamongtime/area sector&rrorsmade in allocating
the total catch between the United States and Cagragagate downward and influence
the equitable distribution of this important cultural and economic resource athong a
fishers

Differences not due to misalignment of genetic groups and FRAM stocks

To make comparisorizetweenGSI and FRAM stock composition estimates, we had to
align FRAM stocks toour 167 genetic baseline populations comprisecetdrence
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samples of knowmrigin individuals(Appendix 1) In most caseslignmentwas a
straightforward procedsecausédatchery collections in our baselinereoftenexactly
thesame FRAM indicator stocks. However, in some cases different FRAM stocks are
genetically similar and cannot be easily distinguished, even stocks that show
morphological differences (e.g., Lower Columbia Bright versus Lower Columbia Tule
stocks).In other cases, FRAM stocks are made up of multiple individual populaabns t
belong to genetically distinct groups (e.g., Canadian stocks in Georgia Bafiar).

years of‘hatchery stock transplargatand propagation of mixed-origin brosicks,
somepopulations have been partially homogenized and genetic differences diminished.
Incongruities between GSI baseline populations and FRAM stock gnaspsnitigated
partly by the allocate-sum procedursed in genetic mixture analysis to aggregate local
populations‘into population groups (Wood et al. 1987). In this procedure, proportional
allocations to local populations are summed hierarchically to estimate the contributions
of population aggregates. ey population aggregates are based on genetic similarity
(Wood et al. 1987), so population allocation errors occur primarily within aggregates and
not ameng-themWhereas some genetically similar local populatwese aggregated

into separate groups to satisfy ngenetic FRAM stockgesultingallocation errors
should:have benrestricted to the implicated FRAM groups. We do not think there are
substantial misallocation errors in alata, althoughve are aware dfvo potential

sources othis type oferror. First, allocation estimates for FRAM OR North Coast stock
might have decreased duentvsallocation of Siuslaw River Chinook (G$4id-Oregon
Coast; FRAM OR North Coast) to other populations in the Mid-Oregoast GSI stock
which wasnot included in the FRAMSecond, allocation estimates for FRAM U
Columbia R summer/fall stoagkighthave been decreased due isatiocation of

Hanford Reach Chinook (GSlt Columbia R smmer/fdl; FRAM: Upper Columbia Fall
Bright) to other populations in the U Columbia R GSI stock. Neith#vase
misallocationerrorsto FRAM group would substantially change our findings.

Opportunities and limitations for GSI and refined time/area management

We hoped that results from our GSI study would increase the power and utility of
current CWTbasedChinook Salmon fishery managemeasimplemented using the
FRAM. We succeeded in a number of important ways. Overall, our results support
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current recalibration of the Chinook Salmon FRAM to a more recent base period This i
important to managemehecausehe base period is used to determine stock abundance
and exploitation and, by extension, pesason stockomposition. One of our most
important findings was the contribution id-Oregon Coast populations to harvests.
Previously, tlese populations were not thought to contribute substantially to Washington
commercial trollharvestand were not originally included in the Chinook FRAM when it
was developedBecause genetic dashoweda substantiatontribution fromMid-Oregon
Coast populationsye reviewedhistoricaldata forthis fishery and founthg recoveries
thatsupportresults ofgenetic mixture analysis. Unfortunately, the options for CWT
release programia this regionareextremely limited The only tagging program with a
sufficienttime series ign the Elk River, which is at the southern endh&Mid-Oregon
Coastregionand, according to ogenetic datais not necessarily representativeoter
populationsiin the region in terms of overall contribution to the fishery. EIk River
contributedess than 7% odll Mid-OregonCoastfish, whereas the Umpqua River

contributes 41%

Stoek composition analysis used to monitor and evaludtshery impactson
Chinoeoek Salmon stocks, and to increase understanding of spatiotemporal distribution of
thesestocks, includingheir associations with oceanographic conditidDar effortswere
focusedonfishery impactsand improving the ability of resource managderallocate
harvest of abundant stocks among fishenibde protectingsensitive stocks, especially
thoselistedunder the US Endangered Species However becausabundant and
sensitive,stocks eoccur in coastal ocean fisheri@soredetailedinformation on
sensitive stock distribution might niobprove managers’ abilities to increase harvests of
abundant stocks whilgill holdingimpacts on sensitive stocks to acceptable levels.
Neverthelessmproved distributional informatiowill provide more accurate estimates

of relative impacts andhouldbetterinform safe harvest levels.

GSl provides a powerful, independent opportunity for cross validation of the
Chinook FRAM.With GSI, every fish is geneticallyparked and can be included in the
mixture modelWith CWTs, tag recoveriesary ineachfishery, depending on the stocks
contributing to the fishery and tagging rateshatchery releasewhich can vary
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between 0% (none tagged) and 100% (all tagged). Expanding CWT stock composition
edimatesto includewild fish would require information not available for this complex
fishery, including agespecific escapement and exploitation ratewild populations.
Therefore, the number of tagged fisra mixed-stockfisheryis noteasilyrelated to the

total number of fish originating fromatural production areas surrounding hatcheries that
tag fish In.contrast to CWTetrieval GSI sampling is notethal althoughsome delged
mortality undoubtedly results fromapture and handlinflor+lethality provides an
opportunitytosamplenon+etained, sublegalize fishand obtairempirical, stock
specific’estimates of those encount&SI estimates of stock origin for individual fish

also include assignment error that has been well charactefimddr§oret al 2008.

Unlike CWT-based methods, neither conventional GSI mixture modeling nor
individual assignment providegyespecificexploitation rate®r discriminaton of
differenthatchery release groufes.g., different ages or experimental treatmesutsdng
fish from the samer genetically similapopulations. Age can beferredfrom otoliths
or scalesyhut colleion and analysi requiresignificantadditional effort and expense.
Age is alseebtainable using aalternative genetic method referred tgpasenagebased
tagging.PBT), whichrequiresgenotyping all (or nearly all) potential parents in a
“marked™populationso thatoffspringcan be assigned to specific parent p&&T is
oftenused for characterizinglative reproductive success of hatchery fish spawning in
the wild (Ford et al. 2012), anchn providenearlyall of the informatbn currently
obtainedsfrom CWTSs, including time and location where the parents were spasvned
well asfamilyspecific performancéHankin et al. 2005; Anderson and Garza 2006).
Although PBT has been proposed as an alternative to CWTs (Anderson et al. 2012,
Steele et al. 2013), is thought to be logistically intractable and cost prohibitive on a
coastwide scalgHankin et al. 2015). Instead amagerdiave suggested usingdio-
frequency identificationRFID) micro taggo replaceor augment CWTgHankin et al.
2015). Heweverafterconsideringesults ofa contracted study on the isstieg Pacific
SalmonsCommissiodecidedhat, “transition to the current generation of RFID tags
(microchips or PIT tags) is not warrantg@acific Salmon Commission 201A
commonsentiment among magers is that, “investigation of new technological

approaches to provide data for salmon fishery management diverts monies that can be
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used to maintain the existing CWT program” (Pacific Salmon Commission Joifit CW
Implementation Tear2015). Multiple reports leave open the possibility of reconsidering
RFID tagsin 3to 5 years, but for the near futu@WT-based harvest modealsll remain

the cornerstone of West Coast salmon management.

Future directions

For various historicalogistical,andfinancialreasons th&JS West Coadishery
harvestmanagement community has generally resisted genetic mé®acfic Salmon
Commission 2008). This is in distinct contrast to fisheries farther north ird& aamal
Alaska, whergyenetic mixture modeling is centtal harvest managemeivest Coast
salmonharvestimanagement has insteadolved towards exploitation rate evaluation,
rather thansstock composition estimates in individual fishékkesishima and Henry
2000) Exploitation rate estimationdm CWT recovees is astraightforwardcalculation
but estimate from GSldatawould require all fisherieso be samplegdwhich is unlikely
with current budget constraints on existing progradeverthelessGSI provides a
superiorsmethod fomanystock compositiomomparisosin selected fisheriesuch as
theWashington coastal trdiishery. Until now, stock compaosition estimates from GSI
dating-back to the 198@Milner et al. 1985; Utter et al 198Werenot used in fishery
management because of taggeinvesmentin CWT assessment method¥hile it is
unlikely that GSIPBT, or RFID tagswill soonreplaceCWTs (Pacific Salmon
Commission 2008 and 201%)e expecgenetic methodwill increasingly be used to
help mitigateproblemsassociated witimark-selective fisheriesThese problems include
violating.the assumption of similar exploitation rates between pafuilations and
hatchery indicator stock#otal marking of hatchery fisfromplicating tag recovery)
lethal samplingo recoveiICWTs and wild populationpotentially mismatchingheir
hatchery indicator stocksith respect tdabitat user migrationtiming, resulting in
different exploitation rates-ollowing the guidancefahe Pacific Salmon Commission
(2008),.our studypffersan example of the valuable role genetics can play in supporting

the establishednanagement structuend the recalibration of FRAM.
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Table 1. Total samples genotyped were randomly drawn form all those collecteiaghmgton Chinook Salmon troll fisheries 2102 — 20:
(genotyped/collected) and are listed by time and area (Fig. 1), along with te&dth&sh landed), numbers ofdis participating in sampling
(including percentage of the fleet represented by the samplers), and NWFSC Tissue Archive Accession number (genotyiatgsucces
~98.6%)

Time Spring Summer

Boats Approx fleet  Accession

Area 2 3&4 2 3&4 Total Landings sampling representation #

2012 495/543 371/489 188/223  355/403 1,409/1,658 36,855 15 44% 90560
2013 479/514 120/127 492/552  220/226 1,302/1,419 40,090 9 26% 90599
2014 348/555 470/703 469/743 93/175 1,387/2,176 38,707 11 32% 90612
2015 619/1,489 270/612 191/430 166/435 1,246/2,966 55,313 13 38% 90643
Total 1,932/3,101 1,238/1,932 1,340/1,948 834/1,239 5,344/8,219
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Figure Captions
Figure 1.Collection location®f individual Chinook Salmotaken in the commercial
troll fishery off the coast of WashingtoBamples were separated between the Juan de
Fuca Canyon in Area 3 & 4, north of latitude 47.5 and those taken to the south in Area 2

nearGrays Harbor These areas represent most of the Washingbdrfishery.

Figure'2.Genetic sock composition estimatesid 95% confidence intervdls genetic
stock groupsligned tol1 FRAM codedwire-tag indicatoistocks and Mid-Oregon Coast
(ordered*fram south to northdnda combined group &2 ron-FRAM stocls, 20122015.
The nonFRAM Mid-OregonCoaststock (marked with arasterisk is disaggregated from
the other nerFRAM stocks becausentadean unexpectedly large contribution in 4ll

studyyears

Figure 3.Genetic stock composition estimates and 95% confidence intervalsiion22
FRAM: stocks(ordered from south to northfhe noaAFRAM Mid-Oregon Coasstock
wasincludedwith the FRAM stocksn Figure 2 rather than in this figure, due to its much

larger contribution in relation to other n&MRAM stocks

Figure-4'Genetic (GSI) and codedlire tag (FRAM) stock composition estimates for 11
FRAM stocks Mid-Oregon Coast (ordered from south to north), and an aggregate of 22
non+RAM stocks. Because of its large contribution, &AM Mid-Oregon Coast is
shown disaggregated from the nBRAM GSI estimate and included with the FRAM
stocks. Differences between FRAM and GSI were quantified by mean squ@réupper

right corner of each panel).

Figure 5.Time-area stratifiedcSI| and ChinoolfRAM stock composition estimatésr

11 FRAM stocks and Mid-Oregon Coast (ordered from south to north), in addition to an
aggregate of 22 noRRAM stocks Meansquare error values appear in the upper right of
each paneiSee Table 1 for sample s&fgppendix 1. Listing of GAPSChinook

Salmonbaseline populations with corresponding genetic stock groups (Seeb et al. 2007)
and ChinookFRAM stocks.

GAPSPopulation Genetic stock group FRAM stock
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GAPSPopulation Genetic stock group FRAM stock

Mill Cr sp® Central Valley sp Not included in the FRAM
Butte Cr ¢ Central Valley sp Not included in the FRAM
Deer Cr sp CentralValley sp Not included in the FRAM

Feather H sp

Central Valley fa

Central ValleySacramento

Stanislaus R Central Valley fa Central ValleySacramento
Butte Cr & Central Valley fa Central ValleySacramento
Feather H fa Central Valley fa Central ValleySacramento
Battle Cr Central Valley fa Central ValleySacramento

Sacramento H

Central Valley wi

Not included in the FRAM

Russian.R California Coast Not included in the FRAM
EelR California Coast Not included in the FRAM
Trinity H, fa Klamath R Not included in the FRAM
TrinityH.sp Klamath R Not included in the FRAM
Klamath*R+fa Klamath R Not included in the FRAM
Chetco.R N California/S Oregon Coast Not included in the FRAM

Cole Rivers'H

Applegate,Cr.

Rogue R
Rogue R

Not included in the FRAM
Not included in the FRAM

UmpquasH Mid-OregonCoast* Not included in the FRAM
Millicoma R Mid-OregonCoast* Not included in the FRAM
CoosH Mid-OregonCoast* Not included in the FRAM
SCoos H Mid-OregonCoast* Not included in the FRAM
ElkH Mid-OregonCoast* Not included in the FRAM
Sixes R Mid-OregonCoast* Not included in the FRAM
S Umpqua H Mid-OregonCoast* Not included in the FRAM
Coquille.R Mid-OregonCoast* Not included in the FRAM
Siuslaw R Mid-Oregon Coast* OR North Coast
Alsea R N OregonCoast OR North Coast
Nehalem R N Oregon Coast OR North Coast
Siletz R N Oregon Coast OR North Coast
Kilchis R N Oregon Coast OR North Coast

@Adult return times characteristic of particular stocks are abbreviated as follows: sp =
spring, su =ssummer, fa = fall, wi = winter. H = Hatchery.
bMixture allocation to the Rogue River genetic stock group will also include b tine

closely related AFE hatchery program propagated in the lower ColurRtiar.
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GAPSPopulation

Genetic stock group

FRAM stock

Necanicum H

N Oregon Coast

OR North Coast

Nestucca H N Oregon Coast OR North Coast

Salmon R fa N Oregon Coast OR North Coast

Trask R N Oregon Coast OR North Coast

Wilson,R N Oregon Coast OR North Coast

Yaquina R N Oregon Coast OR North Coast

Cowlitz H sp W Cascade sp Lower Columbia sp

Kalama H sp W Cascade sp Lower Columbia sp

Lewis H sp W Cascade sp Lower Columbia sp

Sandy R W Cascade fa Lower Columbia Bright&Tule
Cowlitz H fa W Cascade fa Lower Columbia Bright&Tule
Lewis Rfa W Cascade fa Lower Columbia Bright&Tule
McKenzie H Willamette R Lower Columbia sp
NSantiamH Willamette R Lower Columbia sp
Spring,Cr.H Spring Cr Group Tle Mid-Columbia Tule

U YakimarH Mid and Upper Columbia R sp Not included in the FRAM

Warm Springs H Mid and Upper Columbia R sp Not included in the FRAM
Mid and Upper Columbia R sp Not included in the FRAM
Wenatchee H sp Mid and Upper Columbia R sp Not included in the FRAM
CarsonH Mid and Upper Columbia R sp Not included in the FRAM

John Day R Mid and Upper Columbia R sp Not included in the FRAM

WenatcheesR sp

U Deschutes,R
L Deschutes R
Methow, R

Wells H
Wenatchee R su/fa
Hanford Reach
Minam R

Rapid R H
Secesh R
Tucannon H
Tucannon R
Newsome Cr
WF Yankee Fork
EF Salmon R
Imnaha R

Lyons Ferry H

Deschutes R fa
Deschutes R fa

U Columbia R su/fa
U Columbia R su/fa
U Columbia R su/fa
U Columbia R su/fa
Snake R sp/su
Snake R sp/su
Snake R sp/su
Snake R sp/su
Snake R sp/su
Snake R sp/su
Snake R sp/su
Snake R sp/su
Snake R sp/su
Snake R fa

Upper Columbia Fall Bright
Upper Columbia Fall Bright
Columbiasu

Columbiasu

Columbiasu

Upper Columbia Fall Bright
Not included in the FRAM
Not included in the FRAM
Not included in the FRAM
Not included in the FRAM
Not included in the FRAM
Not included in the FRAM
Not included in the FRAM
Not included in the FRAM
Not included in the FRAM
Upper Columbia Fall Bright
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GAPSPopulation

Genetic stock group

FRAM stock

QueetR

Sol Duc H

Forks Cr H

Hoh R
Humptulips H
Makah H

George Adams H
Hamma Hamma R
ElwhaH

Elwha R
Dungeness R
Voights.H

Soos H

White H

Hupp Springs H
Clear CrH

S Prairie,Cr
Skagit R

U Skagit R

U Sauk:R

L Sauk R

Suiattle R
Marblemount H sp
Marblemount H su
U Cascade,R
Samish H
Snoqualmie R
Wallace H
Skykomish R

NF Stillaguam H
NF Nooksack H
Birkenhead H

W Chilliwack H
Maria Slough
Nicola H

Spius H

Washington Coast
Washington Coast
Washington Coast
Washington Coast
Washington Coast
Washington Coast
Hood Canal

Hood Canal

Juan de Fuca
Juan de Fuca
Juan de Fuca

S Puget Sound fa
SPuget Sound fa
S Puget Sound sp
S Puget Sound sp
S Puget Sound fa
S Puget Sound fa
Whidbey Basin
Whidbey Basin
Whidbey Basin
Whidbey Basin
Whidbey Basin
Whidbey Basin
Whidbey Basin
Whidbey Basin

S Puget Sound fa
S Puget Sound fa
Whidbey Basin
Whidbey Basin
Whidbey Basin
Nooksack

L Fraser R

L Fraser R

L Fraser R

L Thompson R

L Thompson R

WA North Coast

WA North Coast

WA North Coast

WA North Coast

Not included in the FRAM
WA North Coast

Puget Sound fa

Puget Sound fa

Puget Sound fa

Puget Sound fa

Puget Sound fa

Puget Sound fa

Puget Sound fa

Puget Sound sp

Puget Sound sp

Puget Sound fa

Puget Sound fa

Puget Sound sp

Puget Sound sp

Puget Sound sp

Puget Sound sp

Puget Sound sp

Puget Sound sp

Puget Sound sp

Puget Sound sp

Puget Sound fa

Puget Sound fa

Puget Sound sp

Puget Sound sp

Puget Sound sp

Puget Sound sp

Canada (Fraser, WCVI, G&i)°
Canada (Fraser, WCVI, G&i)
Canada (Fraser, WCVI, G&i)
CanadgFraser, WCVI, Ge&t)
Canada (Fraser, WCVI, G&i)

¢ WCVI = West Coast Vancouver Island, Geo. St = Georgia Strait
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GAPSPopulation

Genetic stock group

FRAM stock

M Shuswap H
L Adams H

L Thom R
Raft R
Deadman H
Clearwater.R
Louis Cr
Nechako R
Quesnel R
Stuart R

U Chileotin R
Chilko R
Morkill'R
Salmon*R'sp
Swift R

Torpy R

Big Qualicum,H
QuinsamsH
Nanaimo H.fa
PuntledgesH:fa
CowichanH
Marble H
Nitinat H
Robertson H

S Thompson R
S Thompson R
S Thompson R
N Thompson R
N Thompson R
N Thompson R
N Thompson R
Mid Fraser R
Mid Fraser R
Mid Fraser R
Mid Fraser R
Mid Fraser R

U Fraser R

U Fraser R

U Fraser R

U Fraser R

E Vancouver Is
E Vancouver Is
E Vancouver Is
E Vancouver Is
E Vancouver Is
W Vancouver Is
W Vancouver Is

W Vancouver Is

Canada (Fraser, WCVI, G&i)
Canada (Fraser, WCVI, G&i)
Canada (Fraser, WCVI, G&i)
Canada (Frasew/CVI, GeoSt)
Canada (Fraser, WCVI, G&i)
Canada (Fraser, WCVI, G&i)
Canada (Fraser, WCVI, G&i)
Canada (Fraser, WCVI, G&i)
Canada (Fraser, WCVI, G&i)
Canada (Fraser, WCVI, G&i)
Canada (Fraser, WCVI, G&i)
Canada (Fraser, WCVI, G&i)
Not included in the FRAM

Not included in the FRAM

Not included in the FRAM

Not included in the FRAM

Canada (Fraser, WCVI, G&i)
Canada (Frser, WCVI, Gedt)
Canada (Fraser, WCVI, G&i)
Canada (Fraser, WCVI, G&i)
Canada (Fraser, WCVI, G&i)
Canada (Fraser, WCVI, G&i)
CanadgFraser, WCVI, Ge&t)
Canada (Fraser, WCVI, G&i)

Sarita H W Vancouver Is Canada (Fraser, WCVI, G&i)
Tahsis R W Vancouver Is Canada (Fraser, WCVI, G&i)
Tranquil R W Vancouver Is Canada (Fraser, WCVI, Gest)
ConumaH W Vancouver Is Canada (Fraser, WCVI, G&i)
Porteau CoveH S BC Mainland Canada (Fraser, WCVI, G&i)
Klinaklini R S BC Mainland Canada (Fraser, WCVI, G&i)
Wannock H Central BC Coast Not included in the FRAM
Atnarko H Central BC Coast Notincluded in the FRAM
Kitimat H Central BC Coast Not included in the FRAM
Ecstall R L Skeena R Not included in the FRAM

L Kalum R L Skeena R Not included in the FRAM
Bulkley R U Skeena R Not included in the FRAM
Sustut R U Skeena R Not included in thé-RAM
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720

GAPSPopulation Genetic stock group FRAM stock

Babine H U Skeena R Not included in the FRAM
Owegee R Nass R Not included in the FRAM
Damdochax R Nass R Not included in the FRAM
Kincolith R Nass R Not included in the FRAM
Kwinageese R Nass R Not included in the FRAM
L Tahltan.R U Stikine R Not included in the FRAM
Nakina R Taku R Not included in the FRAM
Tatsatua Cr Taku R Not included in the FRAM
U Nahlin R Taku R Not included in the FRAM
Kowatug, Cr. Taku R Not included in the FRAM
Chickamin/White H SSE Alaska Not included in the FRAM
Chickamin®R SSE Alaska Not included in the FRAM
Chickamin H SSE Alaska Not included in the FRAM
Clear Cr SSE Alaska Not included in the FRAM
Cripple.Cr SSE Alaska Not included in the FRAM
Keta R SSE Alaska Not included in the FRAM
King Cr SSE Alaska Not included in the FRAM
AndrewsCr SSE Alaska Stikine R Not included in the FRAM

Andrew/Mac H
Andrew/Med:H
Andrew/Cry"H
King'Salmon,R
Tahini R
Tahini/Mac H
Big Boulder.Cr
Klukshu R
Situk R

SSE Alaska Stikine R

SSE Alaska Stikine R

SSE Alaska Stikine R

NSE Alaska King Salmon R
NSE Alaska Chilkat R

NSE Alaska Chilkat R

NSE Alaska Chilkat R

N Gulf Coast Alsek R

N Gulf Coast Situk R

Not included in the FRAM
Not included in the FRAM
Not included in thé-RAM

Not included in the FRAM
Not included in the FRAM
Not included in the FRAM
Not included in the FRAM
Not included in the FRAM
Not included in the FRAM
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