

1
2 Article type : Feature
3
4

5
6 FEATURE
7
8

9 **Genetic Mixture Analysis Supports Re-calibration of the Fishery Regulation
10 Assessment Model**

11
12 Paul Moran | Northwest Fisheries Science Center, NOAA, 2725 Montlake Boulevard
13 East, Seattle, WA 98112-2097 USA. Email: paul.moran@noaa.gov

14 Joe Dazey | Washington Trollers Association, Kingston, WA

15 Larrie LaVoy | West Coast Region, NOAA, Lacey, WA

16 Sewall Young | Washington Department of Fish and Wildlife, Olympia, WA

17
18 Moran is a research geneticist at the Northwest Fisheries Science Center, NOAA—
19 Fisheries, Seattle, Washington USA, paul.moran@noaa.gov. Dazey is a commercial
20 fisherman (retired) and former Executive Director of the Washington Trollers
21 Association. LaVoy is a biologist at the West Coast Region, NOAA-Fisheries, Lacey,
22 Washington. Young is a fish and wildlife research scientist at the Washington
23 Department of Fish and Wildlife, Olympia.

This is the author manuscript accepted for publication and has undergone full peer review
but has not been through the copyediting, typesetting, pagination and proofreading process,
which may lead to differences between this version and the [Version of Record](#). Please cite
this article as [doi: 10.1002/fsh.10017](https://doi.org/10.1002/fsh.10017)

This article is protected by copyright. All rights reserved

24 **ABSTRACT:** Management of the commercially important Washington coastal Chinook
25 Salmon troll fishery depends on the Chinook Fishery Regulation Assessment Model
26 (FRAM). The Chinook FRAM uses historical and contemporary coded-wire tag (CWT)
27 recoveries to estimate abundance and exploitation rates for particular indicator stocks.
28 Those estimates are used to set limits on overall harvest and protect sensitive stocks.
29 Current efforts are underway to implement a newer “base period” (time period on which
30 exploitation rates are based). Our collaboration of science, management, and industry
31 used genetic mixture modeling to provide independent stock composition estimates
32 supporting FRAM recalibration. Genetic modeling suggests total catch includes a much
33 smaller proportion of a limiting Columbia River stock and a larger fraction of Canadian
34 stocks, as well as an abundant Oregon coastal stock not previously included in the FRAM.
35 Our results focus attention on particular stocks that will benefit from refinements in the
36 Chinook FRAM.

37 INTRODUCTION

38 Commercial troll fishing for Chinook Salmon *Oncorhynchus tshawytscha* off the
39 coast of Washington State began around 1912 and grew rapidly during World War I. By
40 1919, there were more than 1000 boats in the fleet. Between 1935 and the early 1950s
41 harvest doubled from 200,000 to 400,000 fish per year. Harvest then declined
42 dramatically in the late 1950s and early 1960s. Fewer than 100,000 fish were taken in
43 1965 (US Dept of Commerce 1976). Harvest numbers have varied widely in recent years
44 (8,636 in 2008 to 55,313 in 2015). Some stocks are still quite abundant and can sustain
45 harvest, whereas others are severely depressed and are now protected under the US
46 Endangered Species Act (ESA). Despite those declines in some stocks, the Washington
47 Chinook Salmon fishery overall remains an important economic asset to the State and the
48 entire region (\$2.6M ex-vessel value; TCW Economics 2008), yet the troll fishery
49 presents some acute management challenges. The 1976 Environmental Impact
50 Statement/Preliminary Fishery Management Plan for the troll salmon fishery of the
51 Pacific Coast described the difficulty inherent in managing this mixed-stock fishery and
52 foretold the increasingly thorny problem of protecting sensitive stocks while targeting
53 abundant stocks for harvest,

54

55 “The mobility of the troll fleets, plus the fact that the salmon stocks upon which
56 the fleets fish are highly migratory, makes management of the fishery extremely
57 complicated. This combination results in both the fisheries and the resources
58 crossing interstate and international boundaries. In addition to the international
59 problems, management of the salmon resource is further complicated by the
60 presence of large net fisheries and sport fisheries also fishing on many of these
61 same salmon stocks” (US Dept of Commerce 1976:12).

62
63 The commercial Chinook Salmon fishery off the US West Coast, including
64 Washington State, is managed using the Fishery Regulation Assessment Model (FRAM)
65 as the primary analytical and evaluation tool (PFMC 2008). The FRAM is dependent on
66 historical and contemporary coded-wire tag (CWT) recoveries and provides a discrete,
67 time-step, age-structured, deterministic model used by the Pacific Fishery Management
68 Council (PFMC) for annual pre-season and post-season estimates of impacts of ocean and
69 terminal fisheries on particular stock groups of Chinook Salmon and Coho Salmon *O.*
70 *kisutch*. For Chinook Salmon, impacts are modeled for most stock groups from
71 California Central Valley (Sacramento River), north-central Oregon Coast, Columbia
72 River, Willapa Bay, north Washington Coast, Puget Sound, and southern British
73 Columbia. The FRAM is used to evaluate proposed annual regulation scenarios in
74 specific fisheries for compliance with harvest allocation, US Endangered Species Act
75 (ESA) compliance, and domestic and international legal obligations. The latter includes
76 providing treaty tribes with the opportunity to harvest specific shares of individual
77 Chinook Salmon stocks, as well as meeting obligations for stock-specific management
78 associated with the Magnuson-Stevens Fishery Conservation and Management Act (16
79 U.S.C. 1801 - 1891(d)) (2014). It is important to note that the FRAM and other CWT-
80 based fishery management models on the West Coast are integral elements of both
81 international and regional management structure. Tribal, state, provincial, and federal
82 fishery management agencies in the eastern Pacific contribute to and benefit from the
83 Regional Mark Information Systems database, the international repository of CWT
84 marking and recovery data.

85

FRAM base period for inference of current exploitation rates

The Chinook FRAM depends on CWT recoveries to estimate contemporary stock-specific abundance and exploitation rates, as inferred from a historical “base period” (see PFMC 2008 for a detailed, quantitative description of the FRAM, including flow charts and formulas for individual processes). The base period 1979 - 1982 is a critical element of the Chinook FRAM and is currently being updated to the period 2007 - 2013. Contemporary post-season abundance and observed catches, applied to the base period data in FRAM, produce annual exploitation rate estimates as well as stock-composition estimates that are comparable to genetic mixture analysis. That comparison of stock-composition estimates allows an independent evaluation of the Chinook FRAM. The base period is important because those historical exploitation rates are used to infer contemporary stock-specific exploitation. Managers then set regulations to allocate harvest and control exploitation rates on sensitive stocks.

Genetic mixture analysis

Genetic mixture analysis, also known as genetic stock identification (GSI), uses genetic data to infer the source populations that most likely contributed to a particular group of fish taken in a mixed-stock fishery (Milner et al. 1985). Genetic mixture modeling based on DNA microsatellite data has been extensively tested and validated in Atlantic Salmon *Salmo salar* and multiple Pacific salmon species (Beacham et al. 2003; Beacham et al. 2008; Griffiths et al. 2010). There are generally two components to these studies, the unknown fishery mixture and the baseline dataset of known-origin fish. Each of these datasets consists of a list of fish with their associated multilocus genotypes, typically coded as a string of paired character states (alleles) at each genetic locus (chromosomal location). GSI is the process of fitting a model of potential source populations to the multilocus genotypes of the fish in the observed mixture (Koljonen et al. 2005).

Our study had two principal goals: 1) compare GSI and FRAM stock composition estimates for different times and areas in the commercial troll fishery, and 2) describe apparent trends or patterns in the spatial and temporal distribution of stocks. Our hope was that genetic results from this fishery would improve our understanding of stock

118 distribution and contribute to the power and utility of current CWT-based fishery
119 management as implemented using the FRAM. We examined the relative distribution of
120 different stocks among time/area strata; however, our primary focus is on fishery impacts.
121 Because stocks can have different exploitation rates, our fishery dependent study design
122 is ill suited to address the more academic question of how each stock is actually
123 distributed at sea in time and space.

125 MATERIALS AND METHODS

126 *Sample collection*

127 We genotyped Chinook Salmon tissue samples randomly drawn from all rayed fin
128 clips collected by commercial fishermen participating in Washington Chinook Salmon
129 troll fisheries conducted during 2012 through 2015 (Table 1). On average in each year we
130 analyzed 3.2% of total harvest collected by roughly 35% of the fleet (range 26 – 44%).
131 Although there are around 150 permit holders, not all of them fish, and many of them fish
132 only a small portion of the season. Most of our samplers caught their trip limits regularly,
133 so, based on review of trip limits caught per week over a 10-year period, 34 is a
134 reasonable estimate of average fleet size for active, commercial trollers on the
135 Washington Coast. Samples were collected opportunistically, as time permitted and
136 might not represent an ideal random sample. However, we offered a per-fish monetary
137 incentive to ensure sampling during busy periods, so we believe collections represent a
138 reasonable approximation of the fish taken in the fishery in each time and area.
139 Collection location and date were recorded (GPS time stamp), as well as fork length and
140 mark status (many hatchery-origin fish are marked with the removal of the adipose fin).

141
142 Fin-clip samples were folded in Whatman 3MM chromatography paper, dried,
143 and stored in barcoded coin envelopes at ambient temperature. Samples were deposited
144 into the Northwest Fisheries Science Center (NWFSC) Conservation Biology Division's
145 Genetic Tissue Archive (accession numbers in Table 1). Collection data were
146 downloaded from GPS units provided to fishermen and transcribed from forms printed on
147 the collection envelopes. Fin clips were collected each year during the normal
148 commercial fishing season that occurred between May and September. In our analyses,
149 we refer to the May-June period as spring and July-September as summer (Table 1). No

150 Chinook Salmon harvesting is permitted at other times in the open ocean off Washington.
151 Samples were analyzed from the southern Area 2 (Gray's Harbor Area: Leadbetter Point
152 to the Queets River at 47.5° latitude on the Washington Coast) and more northerly Areas
153 3 (Quillayute Area) and 4 (Cape Flattery Area) that were combined and referred to as
154 Area 3 & 4 for our study (Queets River to the US/Canadian border; Fig. 1).

155

156 *Genotyping and reference baseline*

157 ■ Washington Department of Fish and Wildlife (WDFW) and Northwest Fisheries
158 Science Center (NWFSC) cooperated in processing Chinook Salmon tissue samples. In
159 2012, samples were divided between NWFSC and WDFW genetics laboratories. From
160 2013 to 2015, all genotyping was carried out by NWFSC. In both laboratories, DNA was
161 extracted and purified by using Qiagen® DNeasy™ membrane capture kits. Purified
162 DNA samples were amplified and genotyped for 13 internationally standardized
163 microsatellite loci (see below for inter-laboratory genotyping standardization). Amplified
164 microsatellite products were size fractionated on an Applied Biosystems 3730 Genetic
165 Analyzer in the WDFW Molecular Genetics Laboratory and a 3100 Genetic Analyzer at
166 NWFSC. Genotypic data produced by WDFW and NWFSC were combined to create a
167 single, 4-year dataset for mixture analysis.

168

169 The genetic mixture models we employed depend on complete representation in
170 the baseline of all potentially contributing populations. In this study, we used the
171 internationally standardized, microsatellite, baseline dataset (same loci and allele
172 designations; Moran et al. 2006) produced by the Genetic Analysis of Pacific Salmonids
173 consortium (GAPS; Moran et al. 2005; Seeb et al. 2007). This dataset was designed
174 explicitly for eastern Pacific coastal fishery mixtures, and geographic coverage is
175 excellent for the fisheries examined here, including more than 20,000 known-origin fish
176 from 167 representative populations. The GAPS Chinook Salmon baseline is the most
177 comprehensive of its kind. It includes all Evolutionarily Significant Units and Wildlife
178 Species listed under the ESA and the Canadian counterpart, Committee on the Status of
179 Endangered Wildlife in Canada, and is believed to represent principle genetic lineages
180 from all significant production areas over that geographic range. The GAPS Chinook
181 Salmon database is thoroughly vetted with the salmon genetics research community on

182 the Pacific West Coast of the US and Canada (Seeb et al. 2007). The 13 microsatellite
183 loci that make up the coast-wide baseline are highly variable, with almost 500 alleles
184 observed. Extensive simulations and leave-one-out jackknife analyses show excellent
185 power to allocate mixed-stock fisheries to origin, either as single individuals or as
186 modeled proportions (Seeb et al. 2007; Anderson et al. 2008). The GAPS Chinook
187 Salmon baseline has been used widely in studies of harvest and bycatch impacts
188 (Satterthwaite et al. 2014; Bellinger et al. 2015) as well as ecological genetic studies (e.g.,
189 Rhodes et al. 2011; Roegner et al. 2012; Johnson et al. 2013). The current study provides
190 an opportunity to independently evaluate Chinook Salmon stock composition estimates
191 from the FRAM over the 4-year period from 2012 through 2015.

192
193 Single nucleotide polymorphisms (SNPs) have been used for other GSI studies
194 (Narum et al. 2008; Hess et al. 2011). However, no current SNP baseline was available
195 with the geographic breadth (Central Valley California to Southeast Alaska) and depth
196 (multi-year samples from multiple populations from each genetic stock group) necessary
197 to characterize contributing populations observed in Washington coastal Chinook Salmon
198 fisheries.

199
200 ***Data analysis***

201 To estimate stock compositions, we used conditional maximum likelihood
202 mixture modeling (CMLMM) as implemented in the computer software package
203 ONCOR (Kalinowski et al. 2007), including bias correction (Anderson et al. 2008).
204 Allele frequencies were estimated to assign non-zero population-specific frequencies for
205 all alleles observed in the mixture samples but not observed in the source populations
206 (Rannala and Mountain 1997). The CMLMM uses the expectation-maximization
207 algorithm (Dempster et al. 1977) to estimate the most likely proportions of contributing
208 populations. We used the CMLMM approach to derive modeled proportions because
209 those are better suited to our application and more robust than tallied individual
210 assignments, especially where mixture proportions are non-uniform (Koljonen et al.
211 2005).

213 We first examined overall stock composition for each of the 4 years, irrespective
214 of time and area. We estimated 95% confidence intervals around the point estimates for
215 each stock using 100 bootstrap replicates, re-sampling both the mixture and the baseline
216 (Kalinowski et al. 2007). We felt comfortable using this number of bootstrap replicates
217 because preliminary analyses of 2012 and 2013 data demonstrated that 100 bootstrap
218 replicates generated confidence limits that were indistinguishable from 1000 replicates.
219 These estimates represent the proportional stock composition of fish in the mixture
220 samples collected. Genetic stock composition estimates were compared to post-season
221 estimates from FRAM (PFMC 2012 to 2016) that reflect all fishery-related mortality,
222 including post-release mortality of sub-legal-size fish. These comparisons imply that non-
223 retention mortality was uniform across stocks. Departures from uniform mortality rates
224 might result from stock-specific differences in age structure or size-at-age; however,
225 these effects would be limited to sub-legal encounters and were unlikely to be of
226 sufficient magnitude to confound our results.

227

228 For each year, we stratified our stock composition estimates by time and area to
229 facilitate comparisons with the FRAM. Forty-six genetic stock groups were aligned with
230 12 FRAM stocks (Appendix 1). As stated earlier, we examined two areas off the
231 Washington Coast (Area 2, in the south; Area 3 & 4, in the north; Fig. 1) and two time
232 periods (spring and summer). Mean square error (MSE) was used to evaluate the fit of
233 FRAM stock composition estimates to those from GSI. Recognizing the bias for large
234 contributing stocks, we also calculated mean absolute percent error (MAPE), which is
235 more sensitive to small contributing stocks. Because results were similar, only MSE
236 values are presented.

RESULTS

Sample collection

237

238

239

240 Of the total 8,219 samples collected in the course of this study, most included
241 complete and internally consistent collection data (e.g., time and location). However, we
242 observed some problems with at-sea georeference data due to a malfunction with one of
243 our GPS units that resulted in a large number of duplicated waypoints (collection time

245 and location). Also, some waypoints were from the Westport Boat Basin (Grays Harbor)
246 or the site where the GPS units were configured in Olympia, WA, an urban center 100
247 km inland from the study area. In total, 1,186 samples were missing valid
248 latitude/longitude coordinates, so those specific location and timestamp data were
249 omitted from analyses. Despite discarding faulty GPS data, sample batches allowed
250 confident assignment to time period (spring or summer) and area stratum (Area 2 or Area
251 3 & 4). Finally, 45 samples were omitted that were found to have been collected outside
252 the study area, in Area 1, south of Leadbetter Point (Fig. 1).

253

Laboratory analysis

254 Sample quality was excellent. Only about 1.4% of processed samples were later
255 omitted from analyses due to sparse genotypic data and excessive homozygosity, which
256 are typical of degraded DNA from poor quality tissue samples. For example, a sample
257 scored as homozygous for three highly polymorphic loci but failing amplification for all
258 others would be omitted. Of the remaining samples, more than 80% were successfully
259 typed for all 13 loci, and more than 99% were typed for 10 or more loci. In each year, 1
260 to 5 pairs of fish (12 pairs total) were observed with identical multilocus genotypes. The
261 variability of the GAPS Chinook Salmon microsatellite loci is such that identical
262 genotypes for six or more loci, with no mismatches, is almost certainly the result of
263 multiple tissue samples taken from the same individual (individual-specific DNA
264 “fingerprints”). In our case, members of each pair occurred within the same time/area
265 stratum; therefore, we omitted one member of each pair. Our final sample size after
266 filtering was 5,344 fish taken as a random sample from a total of 8,219 tissue samples
267 collected (Table 1).

269

270 Nearly half the samples were taken from fish marked with an adipose fin clip,
271 which identified them with near certainty as hatchery-produced individuals. Unmarked
272 fish can be either hatchery or wild origin, but almost no wild fish are marked by clipping
273 the adipose fin. All except eight fish sampled were of legal size (>66 cm), and average
274 fork length was 77.2 cm (SD = 6.4 cm).

275

277 Genetic mixture analysis showed that the Washington Chinook Salmon troll
278 fishery is primarily supported by two Columbia River fall-run stocks: Mid-Columbia
279 River Tule and Upper Columbia River Bright. On average, 44% of our sample was
280 attributed to those two stocks (27% and 17%, respectively; Fig. 2). Other important
281 contributors included the Lower Columbia River Bright and Tule stock (9.7%) and the
282 Fraser River/West Coast Vancouver Island/ Georgia Strait stock (a FRAM stock
283 comprised of three genetically distinct regions; 9.5%). With the exception of 2013,
284 overall stock composition showed little variation among years. Despite that relative
285 uniformity, there was a general trend toward increasing abundance of Mid-Columbia
286 River Tule through time, resulting in a narrower distribution of contributing stocks. Stock
287 composition in 2013 was unusual in having a very high percentage of Central Valley
288 Sacramento stock (fall run; 14% in 2013, 2 – 7% in other years studied) and a smaller
289 contribution from the Mid-Columbia Tule stock (14% in 2013, 31 – 50% in other years
290 studied).

Comparison of GSI and FRAM

When the Chinook FRAM was developed, mid-Oregon Coast populations were poorly represented among CWT releases. Those populations were not thought to contribute substantially to the Washington coastal troll fishery and, therefore, were not included in the model. In our study, however, GSI estimates for the Mid-Oregon Coast stock were unexpectedly large (Figs. 2 and 3), substantially larger than the estimated FRAM contribution of all non-FRAM stocks (Fig. 4). The Mid-Oregon Coast stock contributed up to 29% of the harvest in Area 3 & 4 in summer of 2012, and GSI estimates were generally an order of magnitude greater than the FRAM estimates for all non-FRAM contributors combined (which should have included Mid-Oregon Coast, Fig. 5). With the Mid-Oregon Coast disaggregated from the non-FRAM GSI estimate, FRAM and GSI estimates of remaining non-FRAM-stock contributors were similarly low (GSI ~2%, Fig. 2). Other than Mid-Oregon Coast, the largest non-FRAM contributor was Upper Fraser River, which averaged 0.6% of the troll fishery (range: 0.3% to 1.1%).

307 Some similarities in stock composition estimates were found between GSI and
308 FRAM, but in most cases we saw substantial differences. High concordance was
309 observed between GSI and FRAM in only 4 of 16 time/area strata; all 4 were in Area 2
310 during spring 2012, spring and summer 2014, and spring 2015 ($MSE < 0.0043$; Fig. 5).
311 GSI and FRAM usually diverged more substantially in Area 3 & 4 for both spring and
312 summer time strata. Despite similar numbers of contributing stocks, FRAM estimated
313 narrower, less diverse distributions of contributing stocks in essentially every stratum
314 relative to GSI, especially in the more northerly Area 3 & 4.

315

316 Consistent, directional departures between GSI and FRAM were observed for
317 particular stocks across time/area strata and across years (Fig. 5). Relative to GSI, FRAM
318 estimates were consistently low for the Oregon North Coast stock and for the Fraser
319 River/West Coast Vancouver Island/ Georgia Strait stock. The FRAM estimates were
320 also lower for Upper Columbia River Brights, especially in the spring fishery. FRAM
321 estimates were consistently lower than GSI for Columbia River summer and Washington
322 North Coast stocks, although absolute contributions were small with both methods. By
323 contrast, FRAM estimates for the ESA-listed Puget Sound fall-run stock were
324 consistently higher than GSI estimates. GSI showed smaller changes in stock
325 composition between time strata than did FRAM, but larger differences between areas
326 (Fig. 5). The most extreme mismatch between methods, other than the Mid-Oregon Coast
327 issue described above, was in estimates of the Lower Columbia River Bright and Tule
328 stock and the Mid-Columbia River Tule stock. In every stratum, FRAM estimates for the
329 Lower Columbia River Bright and Tule stock were greater than comparable GSI
330 estimates. For the Mid-Columbia River Tules, FRAM estimates were greater than GSI in
331 13 of 16 time/area strata (Fig. 5).

332

333 DISCUSSION

334 *Potentially informative differences between GSI and FRAM*

335 Stock composition estimates from GSI often differed dramatically from
336 comparable FRAM estimates. These differences were apparent in northern and southern
337 areas and spring and summer time periods but especially in northern Area 3 & 4. In
338 particular, FRAM estimates were consistently greater than GSI estimates for the sensitive,

339 ESA-listed Lower Columbia River Tule stock. Although our genetic analysis did not
340 discriminate Lower Columbia River Tule from Lower Columbia River Bright, FRAM
341 results suggested the Bright contribution was very small, and most of the fish in this
342 combined group were likely from the Lower Columbia River Tule stock. This difference
343 in stock composition between methods is particularly important because Lower Columbia
344 River Tule stock is the limiting stock in the coastal troll fishery (and also protected as
345 threatened under the US Endangered Species Act). Our results suggest that the stock
346 might be consistently over-estimated under the current management regime. The PFMC
347 attempts to structure fisheries between Cape Falcon (Oregon) and the Canadian border to
348 limit marine and freshwater exploitation rate on Lower Columbia River natural Tule
349 populations to no greater than 41% (Pacific Fishery Management Council 2015). That
350 objective was the primary constraint for ocean fisheries in this area between 2012 and
351 2015. It might be that Tule contributions estimated from GSI were less than those
352 predicted by FRAM because these stocks were less abundant than current FRAM
353 estimates, or because exploitation rates were lower than estimated by the FRAM.
354 Preliminary FRAM composition estimates using the updated base period appear to be
355 closer to current GSI estimates, e.g., lower estimates for Tule stocks and Puget Sound,
356 but greater for Upper Columbia River Brights (based on ongoing recalibration efforts). It
357 is not clear whether improved concordance is a result of updated exploitation rates that
358 might be more accurate, or other factors, including chance. Estimated proportions for the
359 Fraser River/West Coast Vancouver Island/Georgia Strait stock are slightly greater under
360 the new FRAM base period, but those estimates are still substantially less than GSI
361 estimates. FRAM estimates of Canadian stocks are important because total harvest is first
362 allocated between nations, then between tribal and non-tribal fishers, next between sport
363 and commercial fishers, and finally among time/area sectors. Errors made in allocating
364 the total catch between the United States and Canada propagate downward and influence
365 the equitable distribution of this important cultural and economic resource among all
366 fishers.

367 ***Differences not due to misalignment of genetic groups and FRAM stocks***

368 To make comparisons between GSI and FRAM stock composition estimates, we had to
369 align FRAM stocks to our 167 genetic baseline populations comprised of reference

samples of known-origin individuals (Appendix 1). In most cases, alignment was a straightforward process because hatchery collections in our baseline were often exactly the same FRAM indicator stocks. However, in some cases different FRAM stocks are genetically similar and cannot be easily distinguished, even stocks that show morphological differences (e.g., Lower Columbia Bright versus Lower Columbia Tule stocks). In other cases, FRAM stocks are made up of multiple individual populations that belong to genetically distinct groups (e.g., Canadian stocks in Georgia Basin). After years of hatchery stock transplantation and propagation of mixed-origin brood stocks, some populations have been partially homogenized and genetic differences diminished. Incongruities between GSI baseline populations and FRAM stock groups were mitigated partly by the allocate-sum procedure used in genetic mixture analysis to aggregate local populations into population groups (Wood et al. 1987). In this procedure, proportional allocations to local populations are summed hierarchically to estimate the contributions of population aggregates. Ideally population aggregates are based on genetic similarity (Wood et al. 1987), so population allocation errors occur primarily within aggregates and not among them. Whereas some genetically similar local populations were aggregated into separate groups to satisfy non-genetic FRAM stocks, resulting allocation errors should have been restricted to the implicated FRAM groups. We do not think there are substantial misallocation errors in our data, although we are aware of two potential sources of this type of error. First, allocation estimates for FRAM OR North Coast stock might have decreased due to misallocation of Siuslaw River Chinook (GSI: Mid-Oregon Coast; FRAM: OR North Coast) to other populations in the Mid-Oregon Coast GSI stock, which was not included in the FRAM. Second, allocation estimates for FRAM U Columbia R summer/fall stock might have been decreased due to misallocation of Hanford Reach Chinook (GSI: U Columbia R summer/fall; FRAM: Upper Columbia Fall Bright) to other populations in the U Columbia R GSI stock. Neither of these misallocation errors to FRAM group would substantially change our findings.

Opportunities and limitations for GSI and refined time/area management

We hoped that results from our GSI study would increase the power and utility of current CWT-based Chinook Salmon fishery management as implemented using the FRAM. We succeeded in a number of important ways. Overall, our results support

403 current recalibration of the Chinook Salmon FRAM to a more recent base period. This is
404 important to management because the base period is used to determine stock abundance
405 and exploitation and, by extension, post-season stock composition. One of our most
406 important findings was the contribution of Mid-Oregon Coast populations to harvests.
407 Previously, those populations were not thought to contribute substantially to Washington
408 commercial troll harvest and were not originally included in the Chinook FRAM when it
409 was developed. Because genetic data showed a substantial contribution from Mid-Oregon
410 Coast populations, we reviewed historical data for this fishery and found tag recoveries
411 that support results of genetic mixture analysis. Unfortunately, the options for CWT
412 release programs in this region are extremely limited. The only tagging program with a
413 sufficient time series is in the Elk River, which is at the southern end of the Mid-Oregon
414 Coast region and, according to our genetic data, is not necessarily representative of other
415 populations in the region in terms of overall contribution to the fishery. Elk River
416 contributes less than 7% of all Mid-Oregon Coast fish, whereas the Umpqua River
417 contributes 41%.

418

419 Stock composition analysis is used to monitor and evaluate fishery impacts on
420 Chinook Salmon stocks, and to increase understanding of spatiotemporal distribution of
421 these stocks, including their associations with oceanographic conditions. Our efforts were
422 focused on fishery impacts and improving the ability of resource managers to allocate
423 harvest of abundant stocks among fisheries while protecting sensitive stocks, especially
424 those listed under the US Endangered Species Act. However, because abundant and
425 sensitive stocks co-occur in coastal ocean fisheries, more detailed information on
426 sensitive stock distribution might not improve managers' abilities to increase harvests of
427 abundant stocks while still holding impacts on sensitive stocks to acceptable levels.
428 Nevertheless, improved distributional information will provide more accurate estimates
429 of relative impacts and should better inform safe harvest levels.

430

431 GSI provides a powerful, independent opportunity for cross validation of the
432 Chinook FRAM. With GSI, every fish is genetically marked and can be included in the
433 mixture model. With CWTs, tag recoveries vary in each fishery, depending on the stocks
434 contributing to the fishery and tagging rates for hatchery releases, which can vary

435 between 0% (none tagged) and 100% (all tagged). Expanding CWT stock composition
436 estimates to include wild fish would require information not available for this complex
437 fishery, including age-specific escapement and exploitation rates of wild populations.
438 Therefore, the number of tagged fish in a mixed-stock fishery is not easily related to the
439 total number of fish originating from natural production areas surrounding hatcheries that
440 tag fish. In contrast to CWT retrieval, GSI sampling is non-lethal, although some delayed
441 mortality undoubtedly results from capture and handling. Non-lethality provides an
442 opportunity to sample non-retained, sublegal-size fish and obtain empirical, stock-
443 specific estimates of those encounters. GSI estimates of stock origin for individual fish
444 also include assignment error that has been well characterized (Anderson et al. 2008).

445
446 Unlike CWT-based methods, neither conventional GSI mixture modeling nor
447 individual assignment provides age-specific exploitation rates or discrimination of
448 different hatchery release groups (e.g., different ages or experimental treatments) among
449 fish from the same or genetically similar populations. Age can be inferred from otoliths
450 or scales, but collection and analysis require significant additional effort and expense.
451 Age is also obtainable using an alternative genetic method referred to as parentage-based
452 tagging (PBT), which requires genotyping all (or nearly all) potential parents in a
453 “marked” population so that offspring can be assigned to specific parent pairs. PBT is
454 often used for characterizing relative reproductive success of hatchery fish spawning in
455 the wild (Ford et al. 2012), and can provide nearly all of the information currently
456 obtained from CWTs, including time and location where the parents were spawned as
457 well as family-specific performance (Hankin et al. 2005; Anderson and Garza 2006).
458 Although PBT has been proposed as an alternative to CWTs (Anderson et al. 2012;
459 Steele et al. 2013), it is thought to be logistically intractable and cost prohibitive on a
460 coast-wide scale (Hankin et al. 2015). Instead, managers have suggested using radio-
461 frequency identification (RFID) micro tags to replace or augment CWTs (Hankin et al.
462 2015). However, after considering results of a contracted study on the issue, the Pacific
463 Salmon Commission decided that, “transition to the current generation of RFID tags
464 (microchips or PIT tags) is not warranted” (Pacific Salmon Commission 2017). A
465 common sentiment among managers is that, “investigation of new technological
466 approaches to provide data for salmon fishery management diverts monies that can be

467 used to maintain the existing CWT program" (Pacific Salmon Commission Joint CWT
468 Implementation Team 2015). Multiple reports leave open the possibility of reconsidering
469 RFID tags in 3 to 5 years, but for the near future, CWT-based harvest models will remain
470 the cornerstone of West Coast salmon management.

471

472 *Future directions*

473 For various historical, logistical, and financial reasons the US West Coast fishery
474 harvest management community has generally resisted genetic methods (Pacific Salmon
475 Commission 2008). This is in distinct contrast to fisheries farther north in Canada and
476 Alaska, where genetic mixture modeling is central to harvest management. West Coast
477 salmon harvest management has instead evolved towards exploitation rate evaluation,
478 rather than stock composition estimates in individual fisheries (Morishima and Henry
479 2000). Exploitation rate estimation from CWT recoveries is a straightforward calculation,
480 but estimates from GSI data would require all fisheries to be sampled, which is unlikely
481 with current budget constraints on existing programs. Nevertheless, GSI provides a
482 superior method for many stock composition comparisons in selected fisheries, such as
483 the Washington coastal troll fishery. Until now, stock composition estimates from GSI
484 dating back to the 1980s (Milner et al. 1985; Utter et al 1987) were not used in fishery
485 management because of the large investment in CWT assessment methods. While it is
486 unlikely that GSI, PBT, or RFID tags, will soon replace CWTs (Pacific Salmon
487 Commission 2008 and 2015), we expect genetic methods will increasingly be used to
488 help mitigate problems associated with mark-selective fisheries. These problems include
489 violating the assumption of similar exploitation rates between wild populations and
490 hatchery indicator stocks, total marking of hatchery fish (complicating tag recovery),
491 lethal sampling to recover CWTs, and wild populations potentially mismatching their
492 hatchery indicator stocks with respect to habitat use or migration timing, resulting in
493 different exploitation rates. Following the guidance of the Pacific Salmon Commission
494 (2008), our study offers an example of the valuable role genetics can play in supporting
495 the established management structure and the recalibration of FRAM.

496

ACKNOWLEDGMENTS

498 We thank the Washington Trollers Association, the Coastal Trollers Association,
499 and all the individuals who helped collect fin-clip tissue samples from the commercial
500 troll fishery. The port liaisons also played a pivotal role in the outstanding tissue and
501 data quality we observed in this study. We thank Eric Iwamoto and laboratory staff at
502 NWFSC and WDFW for DNA extraction and genotyping. Cheryl Dean and Todd
503 Kassler provided superb field, laboratory, and logistical support. David Teel and Jim
504 Myers provided immeasurable help and consultation related to genetic stock groups,
505 especially in the genetically complicated Columbia River and Puget Sound. NOAA's
506 Cooperative Research Fund supported the work with co-PI Peter Lawson. Finally, we
507 thank Michael Ford, Jeffery Hard, Jim Myers, Todd Seamons, Gary Winans and other
508 anonymous reviewers who helped substantially improve the clarity of our paper.
509 Reference to trade names is for information only and does not imply endorsement by the
510 US Government, the State of Washington, or the Washington Trollers Association.

REFERENCES

513 Anderson, E. C., and J. C. Garza. 2006. The power of single nucleotide polymorphisms
514 for large scale parentage analysis. *Genetics* 172: 2567-2582.

515

516 Anderson, E. C. R. S. Waples, and S. T. Kalinowski. 2008. An improved method for
517 predicting the accuracy of genetic stock identification. *Canadian Journal of Fisheries and*
518 *Aquatic Sciences* 65:1475-1486.

519

520 Anderson, J. H., P. L. Faulds, W. I. Atlas, and T. P. Quinn. 2012. Reproductive success
521 of captively bred and naturally spawned Chinook salmon colonizing newly accessible
522 habitat. *Evolutionary Applications* ISSN 1752-4571:1–15.

523

524 Beacham, T. D., M. Wetklo, C. Wallace, J. B. Olsen, B. G. Flannery, J. K. Wenburg, W.
525 D. Templin, A. Antonovich, and L. W. Seeb. 2008. The application of microsatellites for
526 stock identification of Yukon River Chinook salmon. *North American Journal of*
527 *Fisheries Management* 28:283-295.

529 Beacham, T. D., J. R. Candy, K. J. Supernault, M. Wetklo, B. Deagle, K. Labaree, J. R.
530 Irvine, K. M. Miller, R. J. Nelson, and R. E. Withler. 2003. Evaluation and application of
531 microsatellites for population identification of Fraser River chinook salmon
532 (*Oncorhynchus tshawytscha*). Fishery Bulletin 101:243–259.

533

534 Bellinger M. R., M. A. Banks, S. J. Bates, E. D. Crandall, J. C. Garza, G. Sylvia, P. W.
535 Lawson. 2015. Geo-referenced, abundance calibrated ocean distribution of Chinook
536 salmon (*Oncorhynchus tshawytscha*) stocks across the West Coast of North America.
537 PLoS ONE 10(7): e0131276.

538

539 Dempster, A. P., N. M. Laird, D. B. Rubin. 1977. Maximum likelihood from incomplete
540 data via the EM algorithm. Journal of the Royal Statistical Society. Series B. 39:1-38.

541

542 Ford, M. J., A. Murdoch, and S. Howard. 2012. Early male maturity explains a negative
543 correlation in reproductive success between hatchery-spawned salmon and their naturally
544 spawning progeny. Conservation Letters 5:450–458.

545

546 Griffiths, A. M., G. Machado-Schiaffino, E. Dillane, J. Coughlan, J. L. Horreo, A. E.
547 Bowkett, P. Minting, S. Toms, W. Roche, P. Gargan, P. McGinnity, T. Cross, D. Bright,
548 E. Garcia-Vazquez, and J. R Stevens. 2010. Genetic stock identification of Atlantic
549 salmon (*Salmo salar*) populations in the southern part of the European range BMC
550 Genetics 2010, 11:31.

551

552 Hankin, D. G., J. H. Clark, R. B. Deriso, J. C. Garza, G. S. Morishima, B. E. Riddell, C.
553 Schwarz, and J. B. Scott. 2005. Report of the expert panel on the future of the coded wire
554 tag recovery program for Pacific salmon. Prepared for the Pacific Salmon Commission.
555 230 pp. Available: www.psc.org/info_codedwiretagreview.htm.

556

557 Hankin, D., C. Lowe, M. Saunders, A. Wertheimer. 2015. Review of Satterthwaite et al.
558 2015: Multidisciplinary evaluation of the feasibility of parentage-based genetic tagging
559 (PBT) for management of Pacific salmon. Prepared by the Committee on Scientific

560 Cooperation, Pacific Salmon Commission. Available: www.psmfc.org/wp-content/uploads/2015/08/CSC-Complete-PBT-Review.11August2015.pdf.

561

562

563 Hess, J., A. P. Matala, and S. R. Narum. 2011. Comparison of SNPs and microsatellites
564 for fine-scale application of genetic stock identification of Chinook salmon in the
565 Columbia River Basin. *Molecular Ecology Resources* 11:137-149.

566

567 Johnson, L., B. Anulacion, M. Arkoosh, O. P. Olson, C. Sloan, S. Y. Sol, and J.
568 Spromberg, D. J. Teel, G. Yanagida, and G. Ylitalo. 2013. Persistent organic pollutants in
569 juvenile Chinook salmon in the Columbia River basin: Implications for stock recovery,
570 *Transactions of the American Fisheries Society* 142:21-40.

571

572 Kalinowski, S. T., K. R. Manlove, and M. L. Taper. 2007. ONCOR A computer program
573 for Genetic Stock Identification. Department of Ecology, Montana State University,
574 Bozeman MT 59717. Available: www.montana.edu/kalinowski.

575

576 Koljonen, M.-L., J. J. Pella, and M. Masuda. 2005. Classical individual assignments
577 versus mixture modeling to estimate stock proportions in Atlantic salmon (*Salmo salar*)
578 catches from DNA microsatellite data. *Canadian Journal of Fisheries and Aquatic
579 Sciences* 62:2143-2158.

580

581 Milner, G. B., D. J. Teel, F. M. Utter, and G. A. Winans. 1985. A genetic method of
582 stock identification in mixed populations of Pacific salmon, *Oncorhynchus* spp. *Marine
583 Fisheries Review* 47:1-8.

584

585 Moran, P., D. J. Teel, E. S. LaHood, J. Drake, and S. Kalinowski. 2006. Standardising
586 multi-laboratory microsatellite data in Pacific salmon: an historical view of the future.
587 *Ecology of Freshwater Fish*. 15:597-605.

588

589 Moran, P., D. J. Teel, E. Moran, P., M. Banks, T. Beacham, C. Garza, S. Narum, M.
590 Powell, M. Campbell, L. Seeb, R. Wilmot, S. Young, B. Ardren, and J. Wenburg. 2005.
591 Interlaboratory standardization of coast-wide Chinook salmon genetic data for

592 international harvest management. Progress report from the Genetic Analysis of Pacific
593 Salmonids (GAPS) consortium to the Chinook Technical Committee of the Pacific
594 Salmon Commission, FY2004, FY2005, 44 p. Available:
595 www.nwfsc.noaa.gov/research/divisions/cb/documents/gaps_year2_final.pdf

596

597 Morishima, G. S. and K. A. Henry. 2000. The history and status of Pacific Northwest
598 Chinook and coho salmon ocean fisheries and prospects for sustainability. Pages 219 –
599 235 *in* E. E. Knudsen et al., editors. Sustainable Fisheries Management: Pacific Salmon.
600 CRC Lewis Publishers, Boca Raton, FL.

601

602 Narum, S. R., M. Banks, T. Beacham, R. Bellinger, M. Campbell, J. DeKoning, A. Elz,
603 C. Guthrie, C. Kozfkay, K. Miller, P. Moran, R. Phillips, L. Seeb, C. Smith, K. Warheit,
604 S. Young, and J. C. Garza. 2008. Differentiating Chinook salmon populations at broad
605 and fine geographic scales with microsatellites and SNPs. *Molecular Ecology* 17:3464–
606 3477.

607

608 Pacific Fishery Management Council. 2008. Fisheries Regulation Assessment Model
609 (FRAM) An Overview for Coho and Chinook v 3.0. (Document prepared for the Council
610 and its advisory entities.) Pacific Fishery Management Council, 7700 NE Ambassador
611 Place, Suite 101, Portland, Oregon 97220-1384. Available: www.pcouncil.org/wp-content/uploads/FRAM_Overview_Final_1008.pdf

613

614 Pacific Fishery Management Council. 2015. Preseason Report II: Proposed Alternatives
615 and Environmental Assessment - Part 2 for 2015 Ocean Salmon Fishery Regulations.
616 (Document prepared for the Council and its advisory entities.) Pacific Fishery
617 Management Council, 7700 NE Ambassador Place, Suite 101, Portland, Oregon 97220-
618 1384.

619

620 Pacific Fishery Management Council. 2016. Review of 2015 ocean salmon fisheries:
621 Stock assessment and fishery evaluation document for the Pacific Coast Salmon Fishery
622 Management Plan. Available: www.pcouncil.org.

623

624 Pacific Salmon Commission. 2008. Recommendations for application of genetic stock
625 identification (GSI) methods to management of ocean salmon fisheries: special report of
626 the Genetic Stock Identification Steering Committee and the Pacific Salmon
627 Commission's Committee on Scientific Cooperation. Pacific Salmon Commission
628 Technical Report No. 23.

629

630 Pacific Salmon Commission. 2017. Annual Meeting Summary, Downtown Embassy
631 Suites, Portland, Oregon, February 13-17, 2017. Available:
632 [www.psc.org/download/131/meeting-summaries/7950/feb-2017-meeting-summary-and-
633 documents-final.pdf](http://www.psc.org/download/131/meeting-summaries/7950/feb-2017-meeting-summary-and-documents-final.pdf)

634

635 Pacific Salmon Commission Joint CWT Implementation Team. 2015. Five-year synthesis
636 report of the PSC Coded Wire Tag (CWT) Improvement Program. Pacific Salmon Comm.
637 Tech. Rep. No. 33: 48 pp.

638

639 Rannala, B. and Mountain, J. L. 1997. Detecting immigration by using multilocus
640 genotypes. Proceedings of the National Academy of Sciences USA. 94:9197–9201.

641

642 Rhodes, L. D., C. A. Rice, C. M. Greene, D. J. Teel, S. L. Nance, P. Moran, C. A. Durkin,
643 and S. B. Gezhegne. 2011. Nearshore ecosystem predictors of a bacterial infection in
644 juvenile Chinook salmon (*Oncorhynchus tshawytscha*) from Puget Sound. Marine
645 Ecology Progress Series 432:161-172.

646

647 Roegner, C., R. McNatt, D. J. Teel and D. L. Bottom. 2012. Distribution, size, and origin
648 of juvenile Chinook salmon in shallow-water habitats of the lower Columbia River and
649 Estuary, 2002–2007. Marine and Coastal Fisheries: Dynamics, Management, and
650 Ecosystem Science, 4:450-472.

651

652 Satterthwaite W. H., M. S. Mohr, M. R. O'Farrell, E. C. Anderson, M. A. Banks, S. J.
653 Bates, M. R. Bellinger, L. A. Borgerson, E. D. Crandall, J. C. Garza, B. J. Kormos, P. W.
654 Lawson, and M. L. Palmer-Zwahlen. 2014. Use of stock identification data for
655 comparison of the ocean spatial distribution, size at age, and fishery exposure of an

656 untagged stock and its indicator: California Coastal versus Klamath River Chinook
657 salmon. *Transactions of the American Fisheries Society*, 143:117-133.

658

659 Seeb, L. W., A. Antonovich, M. A. Banks, T. D. Beacham, M. R. Bellinger, S. M.
660 Blankenship, M. Campbell, N. A. Decovich, J. C. Garza, C. M. Guthrie III, T. A.
661 Lundrigen, P. Moran, S. R. Narum, J. J. Stephenson, K. J. Supernault, D. J. Teel, W. D.
662 Templin, J. K. Wenburg, S. F. Young, and C. T. Smith. 2007. Development of a
663 standardized DNA database for Chinook salmon. *Fisheries* 32:540-552.

664

665 Steele, C. A., E. C. Anderson, M. W. Ackerman, M. A. Hess, N. R. Campbell, S. R.
666 Narum, and M. R. Campbell. 2013. A validation of parentage-based tagging using
667 hatchery steelhead in the Snake River basin. *Canadian Journal of Fisheries and Aquatic
668 Sciences* 70: 1046–1054

669

670 TCW Economics. 2008. Economic analysis of the non-treaty commercial and recreational
671 fisheries in Washington State. December 2008. Sacramento, CA. With technical
672 assistance from The Research Group, Corvallis, OR. Available:
673 www.wdfw.wa.gov/publications/00464/wdfw00464.pdf

674

675 United States, Department of Commerce, National Oceanic and Atmospheric
676 Administration, National Marine Fisheries Service. 1976. Environmental Impact
677 Statement/Preliminary Fishery Management Plan, troll salmon fishery of the Pacific
678 Coast, 75 pp. Available: <https://books.google.com/books?id=iNY3AQAAQAAJ>

679

680 Utter, F., D. Teel, G. Milner, and D. McIsaac. 1987. Genetic estimates of stock
681 compositions of 1983 chinook salmon harvests off the Washington Coast and the
682 Columbia River. *Fishery Bulletin*. 85:13-23.

683

684 Wood, C. C., S. McKinnell, T. J. Mulligan, and D. A. Fournier. 1987.
685 Stock identification with the maximum-likelihood mixture model: Sensitivity
686 analysis and application to complex problems. *Canadian Journal of Fisheries and
687 Aquatic Sciences* 44:866-881.

Table 1. Total samples genotyped were randomly drawn from all those collected in the Washington Chinook Salmon troll fisheries 2102 – 2015 (genotyped/collected) and are listed by time and area (Fig. 1), along with total harvest (fish landed), numbers of boats participating in sampling (including percentage of the fleet represented by the samplers), and NWFSC Tissue Archive Accession number (genotyping success rate ~98.6%)

Time	Spring		Summer		Total	Landings	Boats	Approx fleet	Accession
	Area	2	3&4	2	3&4				
2012		495/543	371/489	188/223	355/403	1,409/1,658	36,855	15	44%
2013		479/514	120/127	492/552	220/226	1,302/1,419	40,090	9	26%
2014		348/555	470/703	469/743	93/175	1,387/2,176	38,707	11	32%
2015		619/1,489	270/612	191/430	166/435	1,246/2,966	55,313	13	38%
Total		1,932/3,101	1,238/1,932	1,340/1,948	834/1,239	5,344/8,219			

689 **Figure Captions**

690 Figure 1. Collection locations of individual Chinook Salmon taken in the commercial
691 troll fishery off the coast of Washington. Samples were separated between the Juan de
692 Fuca Canyon in Area 3 & 4, north of latitude 47.5 and those taken to the south in Area 2
693 near Grays Harbor. These areas represent most of the Washington troll fishery.

694

695 Figure 2. Genetic stock composition estimates and 95% confidence intervals for genetic
696 stock groups aligned to 11 FRAM coded-wire-tag indicator stocks and Mid-Oregon Coast
697 (ordered from south to north), and a combined group of 22 non-FRAM stocks, 2012-2015.
698 The non-FRAM Mid-Oregon Coast stock (marked with an asterisk) is disaggregated from
699 the other non-FRAM stocks because it made an unexpectedly large contribution in all 4
700 study years.

701

702 Figure 3. Genetic stock composition estimates and 95% confidence intervals for 22 non-
703 FRAM stocks (ordered from south to north). The non-FRAM Mid-Oregon Coast stock
704 was included with the FRAM stocks in Figure 2 rather than in this figure, due to its much
705 larger contribution in relation to other non-FRAM stocks.

706

707 Figure 4. Genetic (GSI) and coded-wire tag (FRAM) stock composition estimates for 11
708 FRAM stocks, Mid-Oregon Coast (ordered from south to north), and an aggregate of 22
709 non-FRAM stocks. Because of its large contribution, non-FRAM Mid-Oregon Coast is
710 shown disaggregated from the non-FRAM GSI estimate and included with the FRAM
711 stocks. Differences between FRAM and GSI were quantified by mean square error (upper
712 right corner of each panel).

713

714 Figure 5. Time-area stratified GSI and Chinook FRAM stock composition estimates for
715 11 FRAM stocks and Mid-Oregon Coast (ordered from south to north), in addition to an
716 aggregate of 22 non-FRAM stocks. Mean square error values appear in the upper right of
717 each panel. See Table 1 for sample sizes **Appendix 1. Listing of GAPS Chinook**
718 Salmon baseline populations with corresponding genetic stock groups (Seeb et al. 2007)
719 and Chinook FRAM stocks.

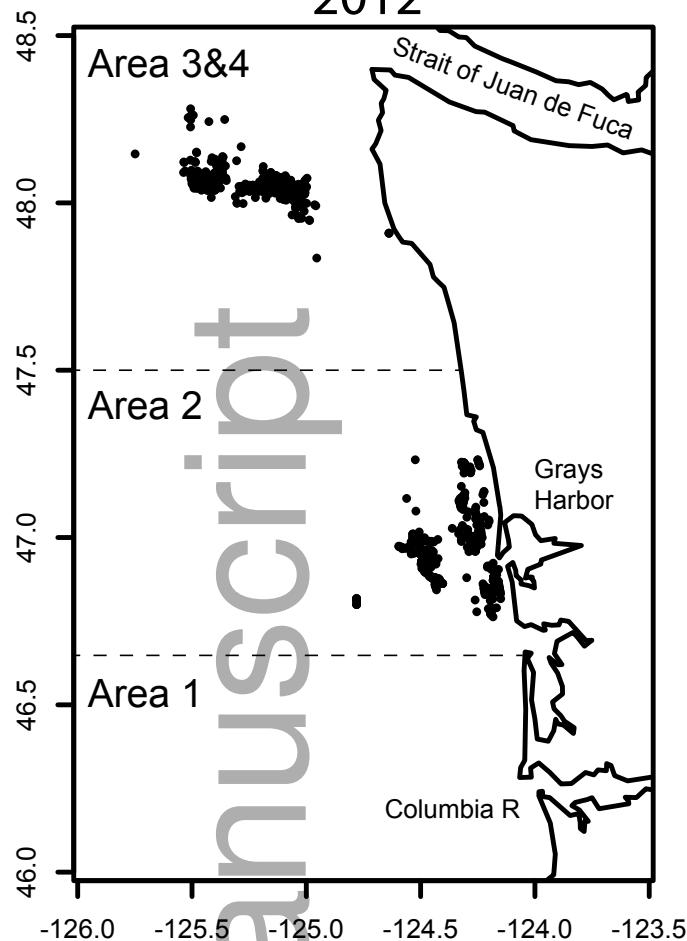
GAPS Population	Genetic stock group	FRAM stock
-----------------	---------------------	------------

GAPS Population	Genetic stock group	FRAM stock
Mill Cr sp ^a	Central Valley sp	Not included in the FRAM
Butte Cr sp	Central Valley sp	Not included in the FRAM
Deer Cr sp	Central Valley sp	Not included in the FRAM
Feather H sp	Central Valley fa	Central Valley-Sacramento
Stanislaus R	Central Valley fa	Central Valley-Sacramento
Butte Cr fa	Central Valley fa	Central Valley-Sacramento
Feather H fa	Central Valley fa	Central Valley-Sacramento
Battle Cr	Central Valley fa	Central Valley-Sacramento
Sacramento H	Central Valley wi	Not included in the FRAM
Russian R	California Coast	Not included in the FRAM
Eel R	California Coast	Not included in the FRAM
Trinity H fa	Klamath R	Not included in the FRAM
TrinityH sp	Klamath R	Not included in the FRAM
Klamath R fa	Klamath R	Not included in the FRAM
Chetco R	N California/S Oregon Coast	Not included in the FRAM
Cole Rivers H	Rogue R ^b	Not included in the FRAM
Applegate Cr	Rogue R	Not included in the FRAM
Umpqua H	Mid-Oregon Coast*	Not included in the FRAM
Millicoma R	Mid-Oregon Coast*	Not included in the FRAM
Coos H	Mid-Oregon Coast*	Not included in the FRAM
S Coos H	Mid-Oregon Coast*	Not included in the FRAM
Elk H	Mid-Oregon Coast*	Not included in the FRAM
Sixes R	Mid-Oregon Coast*	Not included in the FRAM
S Umpqua H	Mid-Oregon Coast*	Not included in the FRAM
Coquille R	Mid-Oregon Coast*	Not included in the FRAM
Siuslaw R	Mid-Oregon Coast*	OR North Coast
Alsea R	N Oregon Coast	OR North Coast
Nehalem R	N Oregon Coast	OR North Coast
Siletz R	N Oregon Coast	OR North Coast
Kilchis R	N Oregon Coast	OR North Coast

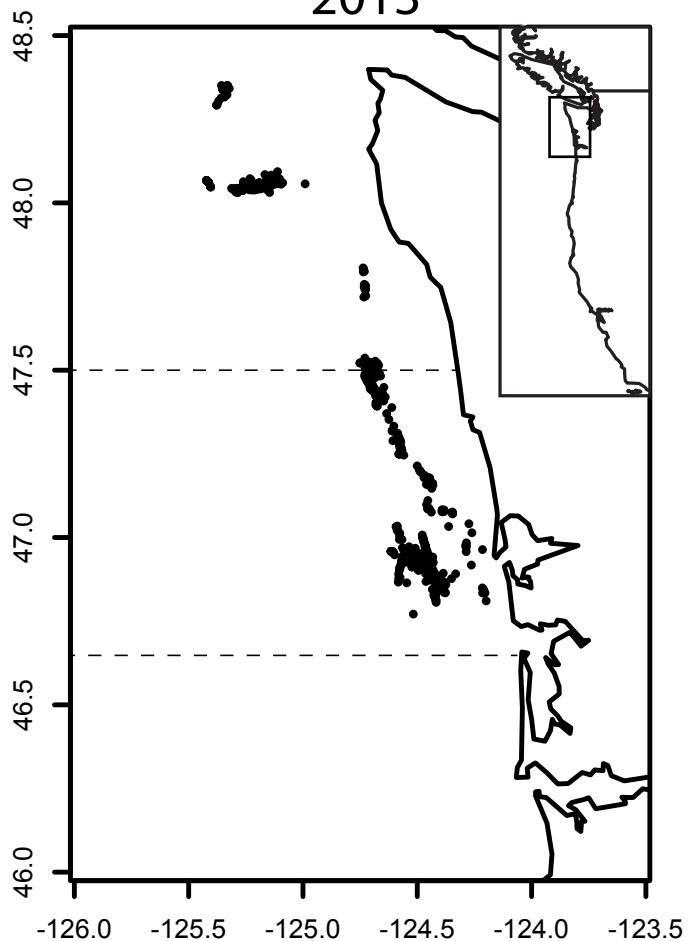
^aAdult return times characteristic of particular stocks are abbreviated as follows: sp = spring, su = summer, fa = fall, wi = winter. H = Hatchery.

^bMixture allocation to the Rogue River genetic stock group will also include fish from the closely related SAFE hatchery program propagated in the lower Columbia River.

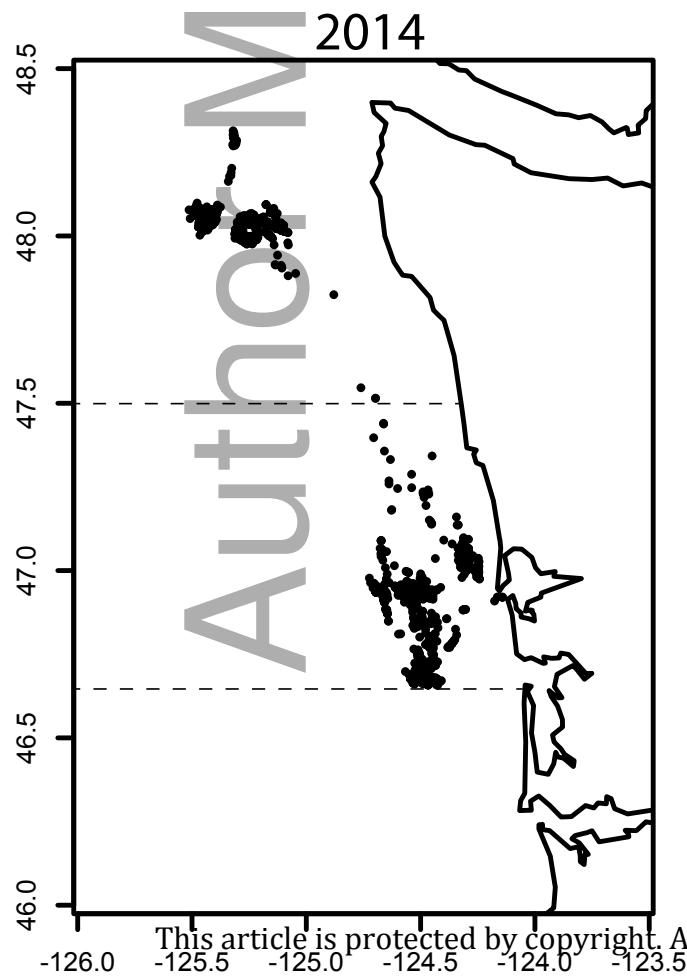
GAPS Population	Genetic stock group	FRAM stock
Necanicum H	N Oregon Coast	OR North Coast
Nestucca H	N Oregon Coast	OR North Coast
Salmon R fa	N Oregon Coast	OR North Coast
Trask R	N Oregon Coast	OR North Coast
Wilson R	N Oregon Coast	OR North Coast
Yaquina R	N Oregon Coast	OR North Coast
Cowlitz H sp	W Cascade sp	Lower Columbia sp
Kalama H sp	W Cascade sp	Lower Columbia sp
Lewis H sp	W Cascade sp	Lower Columbia sp
Sandy R	W Cascade fa	Lower Columbia Bright&Tule
Cowlitz H fa	W Cascade fa	Lower Columbia Bright&Tule
Lewis R fa	W Cascade fa	Lower Columbia Bright&Tule
McKenzie H	Willamette R	Lower Columbia sp
NSantiam H	Willamette R	Lower Columbia sp
Spring Cr H	Spring Cr Group Tule	Mid-Columbia Tule
U Yakima H	Mid and Upper Columbia R sp	Not included in the FRAM
Warm Springs H	Mid and Upper Columbia R sp	Not included in the FRAM
Wenatchee R sp	Mid and Upper Columbia R sp	Not included in the FRAM
Wenatchee H sp	Mid and Upper Columbia R sp	Not included in the FRAM
Carson H	Mid and Upper Columbia R sp	Not included in the FRAM
John Day R	Mid and Upper Columbia R sp	Not included in the FRAM
U Deschutes R	Deschutes R fa	Upper Columbia Fall Bright
L Deschutes R	Deschutes R fa	Upper Columbia Fall Bright
Methow R	U Columbia R su/fa	Columbia su
Wells H	U Columbia R su/fa	Columbia su
Wenatchee R su/fa	U Columbia R su/fa	Columbia su
Hanford Reach	U Columbia R su/fa	Upper Columbia Fall Bright
Minam R	Snake R sp/su	Not included in the FRAM
Rapid R H	Snake R sp/su	Not included in the FRAM
Secesh R	Snake R sp/su	Not included in the FRAM
Tucannon H	Snake R sp/su	Not included in the FRAM
Tucannon R	Snake R sp/su	Not included in the FRAM
Newsome Cr	Snake R sp/su	Not included in the FRAM
WF Yankee Fork	Snake R sp/su	Not included in the FRAM
EF Salmon R	Snake R sp/su	Not included in the FRAM
Imnaha R	Snake R sp/su	Not included in the FRAM
Lyons Ferry H	Snake R fa	Upper Columbia Fall Bright

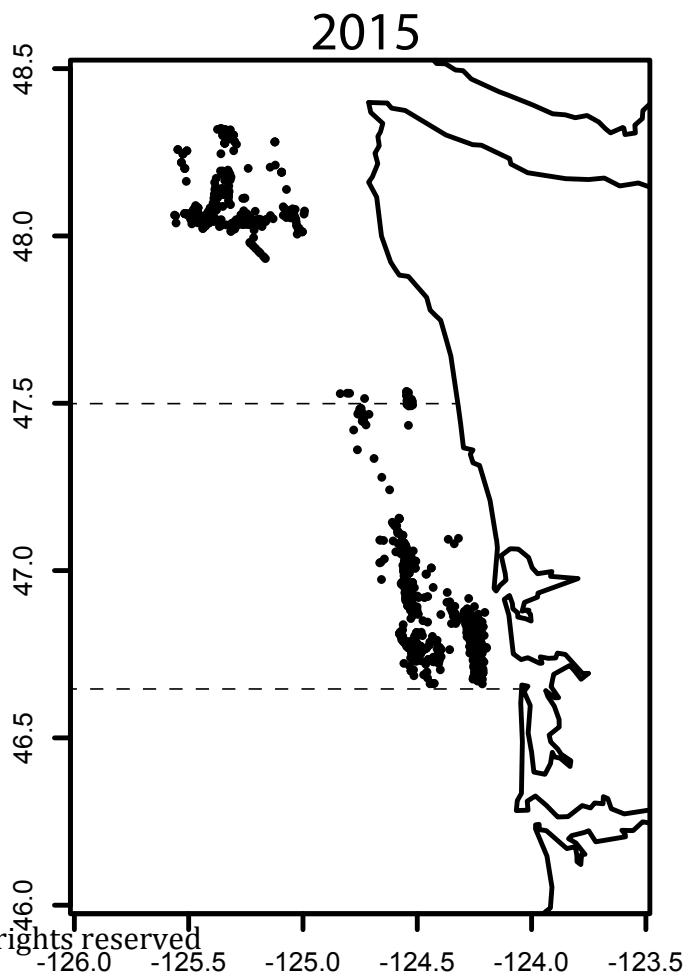

GAPS Population	Genetic stock group	FRAM stock
Queets R	Washington Coast	WA North Coast
Sol Duc H	Washington Coast	WA North Coast
Forks Cr H	Washington Coast	WA North Coast
Hoh R	Washington Coast	WA North Coast
Humptulips H	Washington Coast	Not included in the FRAM
Makah H	Washington Coast	WA North Coast
George Adams H	Hood Canal	Puget Sound fa
Hamma Hamma R	Hood Canal	Puget Sound fa
Elwha H	Juan de Fuca	Puget Sound fa
Elwha R	Juan de Fuca	Puget Sound fa
Dungeness R	Juan de Fuca	Puget Sound fa
Voights H	S Puget Sound fa	Puget Sound fa
Soos H	S Puget Sound fa	Puget Sound fa
White H	S Puget Sound sp	Puget Sound sp
Hupp Springs H	S Puget Sound sp	Puget Sound sp
Clear Cr H	S Puget Sound fa	Puget Sound fa
S Prairie Cr	S Puget Sound fa	Puget Sound fa
Skagit R	Whidbey Basin	Puget Sound sp
U Skagit R	Whidbey Basin	Puget Sound sp
U Sauk R	Whidbey Basin	Puget Sound sp
L Sauk R	Whidbey Basin	Puget Sound sp
Suiattle R	Whidbey Basin	Puget Sound sp
Marblemount H sp	Whidbey Basin	Puget Sound sp
Marblemount H su	Whidbey Basin	Puget Sound sp
U Cascade R	Whidbey Basin	Puget Sound sp
Samish H	S Puget Sound fa	Puget Sound fa
Snoqualmie R	S Puget Sound fa	Puget Sound fa
Wallace H	Whidbey Basin	Puget Sound sp
Skykomish R	Whidbey Basin	Puget Sound sp
NF Stillaguam H	Whidbey Basin	Puget Sound sp
NF Nooksack H	Nooksack	Puget Sound sp
Birkenhead H	L Fraser R	Canada (Fraser, WCVI, Geo St) ^c
W Chilliwack H	L Fraser R	Canada (Fraser, WCVI, Geo St)
Maria Slough	L Fraser R	Canada (Fraser, WCVI, Geo St)
Nicola H	L Thompson R	Canada (Fraser, WCVI, Geo St)
Spius H	L Thompson R	Canada (Fraser, WCVI, Geo St)

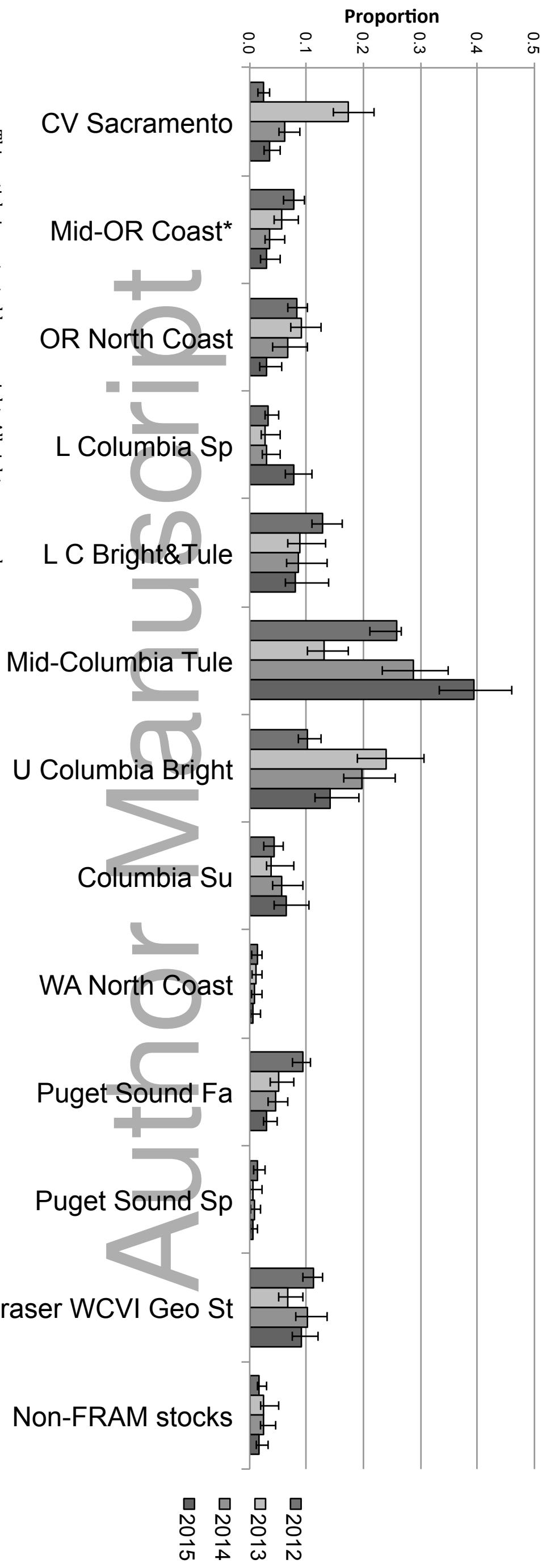
^c WCVI = West Coast Vancouver Island, Geo. St = Georgia Strait

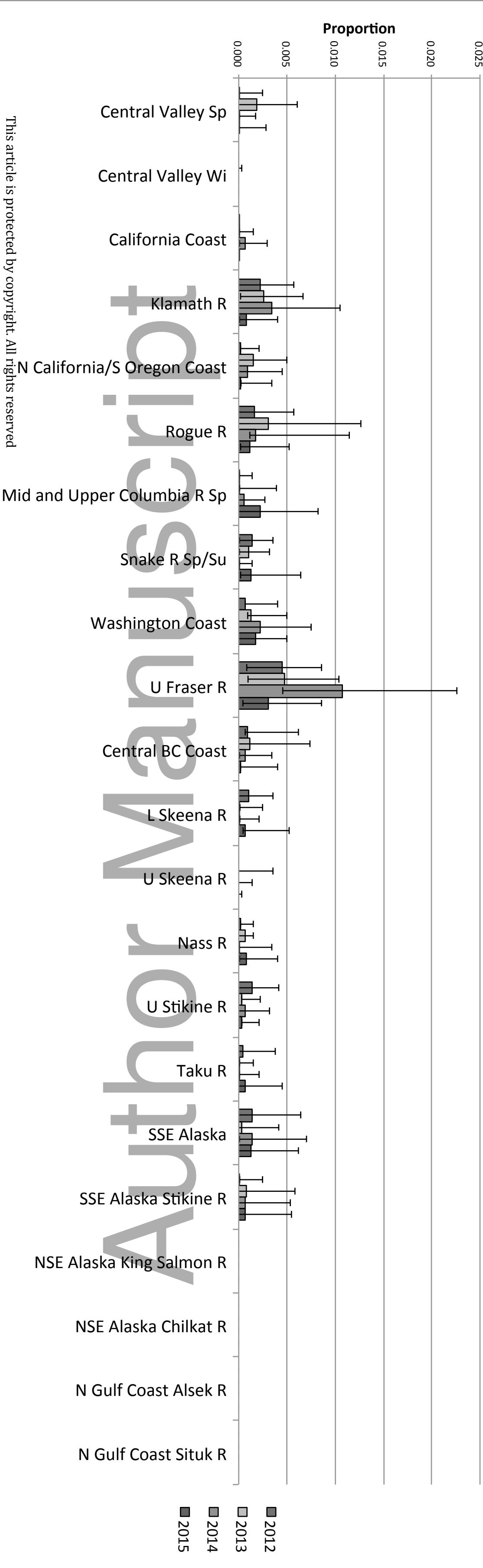

GAPS Population	Genetic stock group	FRAM stock
M Shuswap H	S Thompson R	Canada (Fraser, WCVI, Geo St)
L Adams H	S Thompson R	Canada (Fraser, WCVI, Geo St)
L Thom R	S Thompson R	Canada (Fraser, WCVI, Geo St)
Raft R	N Thompson R	Canada (Fraser, WCVI, Geo St)
Deadman H	N Thompson R	Canada (Fraser, WCVI, Geo St)
Clearwater R	N Thompson R	Canada (Fraser, WCVI, Geo St)
Louis Cr	N Thompson R	Canada (Fraser, WCVI, Geo St)
Nechako R	Mid Fraser R	Canada (Fraser, WCVI, Geo St)
Quesnel R	Mid Fraser R	Canada (Fraser, WCVI, Geo St)
Stuart R	Mid Fraser R	Canada (Fraser, WCVI, Geo St)
U Chilcotin R	Mid Fraser R	Canada (Fraser, WCVI, Geo St)
Chilko R	Mid Fraser R	Canada (Fraser, WCVI, Geo St)
Morkill R	U Fraser R	Not included in the FRAM
Salmon R sp	U Fraser R	Not included in the FRAM
Swift R	U Fraser R	Not included in the FRAM
Torpy R	U Fraser R	Not included in the FRAM
Big Qualicum H	E Vancouver Is	Canada (Fraser, WCVI, Geo St)
Quinsam H	E Vancouver Is	Canada (Fraser, WCVI, Geo St)
Nanaimo H fa	E Vancouver Is	Canada (Fraser, WCVI, Geo St)
Puntledge H fa	E Vancouver Is	Canada (Fraser, WCVI, Geo St)
Cowichan H	E Vancouver Is	Canada (Fraser, WCVI, Geo St)
Marble H	W Vancouver Is	Canada (Fraser, WCVI, Geo St)
Nitinat H	W Vancouver Is	Canada (Fraser, WCVI, Geo St)
Robertson H	W Vancouver Is	Canada (Fraser, WCVI, Geo St)
Sarita H	W Vancouver Is	Canada (Fraser, WCVI, Geo St)
Tahsis R	W Vancouver Is	Canada (Fraser, WCVI, Geo St)
Tranquil R	W Vancouver Is	Canada (Fraser, WCVI, Geo St)
Conuma H	W Vancouver Is	Canada (Fraser, WCVI, Geo St)
Porteau Cove H	S BC Mainland	Canada (Fraser, WCVI, Geo St)
Klinaklini R	S BC Mainland	Canada (Fraser, WCVI, Geo St)
Wannock H	Central BC Coast	Not included in the FRAM
Atnarko H	Central BC Coast	Not included in the FRAM
Kitimat H	Central BC Coast	Not included in the FRAM
Ecstall R	L Skeena R	Not included in the FRAM
L Kalum R	L Skeena R	Not included in the FRAM
Bulkley R	U Skeena R	Not included in the FRAM
Sustut R	U Skeena R	Not included in the FRAM

GAPS Population	Genetic stock group	FRAM stock
Babine H	U Skeena R	Not included in the FRAM
Owegee R	Nass R	Not included in the FRAM
Damdochax R	Nass R	Not included in the FRAM
Kincolith R	Nass R	Not included in the FRAM
Kwinageese R	Nass R	Not included in the FRAM
L Tahltan R	U Stikine R	Not included in the FRAM
Nakina R	Taku R	Not included in the FRAM
Tatsatua Cr	Taku R	Not included in the FRAM
U Nahlin R	Taku R	Not included in the FRAM
Kowatua Cr	Taku R	Not included in the FRAM
Chickamin/White H	SSE Alaska	Not included in the FRAM
Chickamin R	SSE Alaska	Not included in the FRAM
Chickamin H	SSE Alaska	Not included in the FRAM
Clear Cr	SSE Alaska	Not included in the FRAM
Cripple Cr	SSE Alaska	Not included in the FRAM
Keta R	SSE Alaska	Not included in the FRAM
King Cr	SSE Alaska	Not included in the FRAM
Andrew Cr	SSE Alaska Stikine R	Not included in the FRAM
Andrew/Mac H	SSE Alaska Stikine R	Not included in the FRAM
Andrew/Med H	SSE Alaska Stikine R	Not included in the FRAM
Andrew/Cry H	SSE Alaska Stikine R	Not included in the FRAM
King Salmon R	NSE Alaska King Salmon R	Not included in the FRAM
Tahini R	NSE Alaska Chilkat R	Not included in the FRAM
Tahini/Mac H	NSE Alaska Chilkat R	Not included in the FRAM
Big Boulder Cr	NSE Alaska Chilkat R	Not included in the FRAM
Klukshu R	N Gulf Coast Alsek R	Not included in the FRAM
Situk R	N Gulf Coast Situk R	Not included in the FRAM

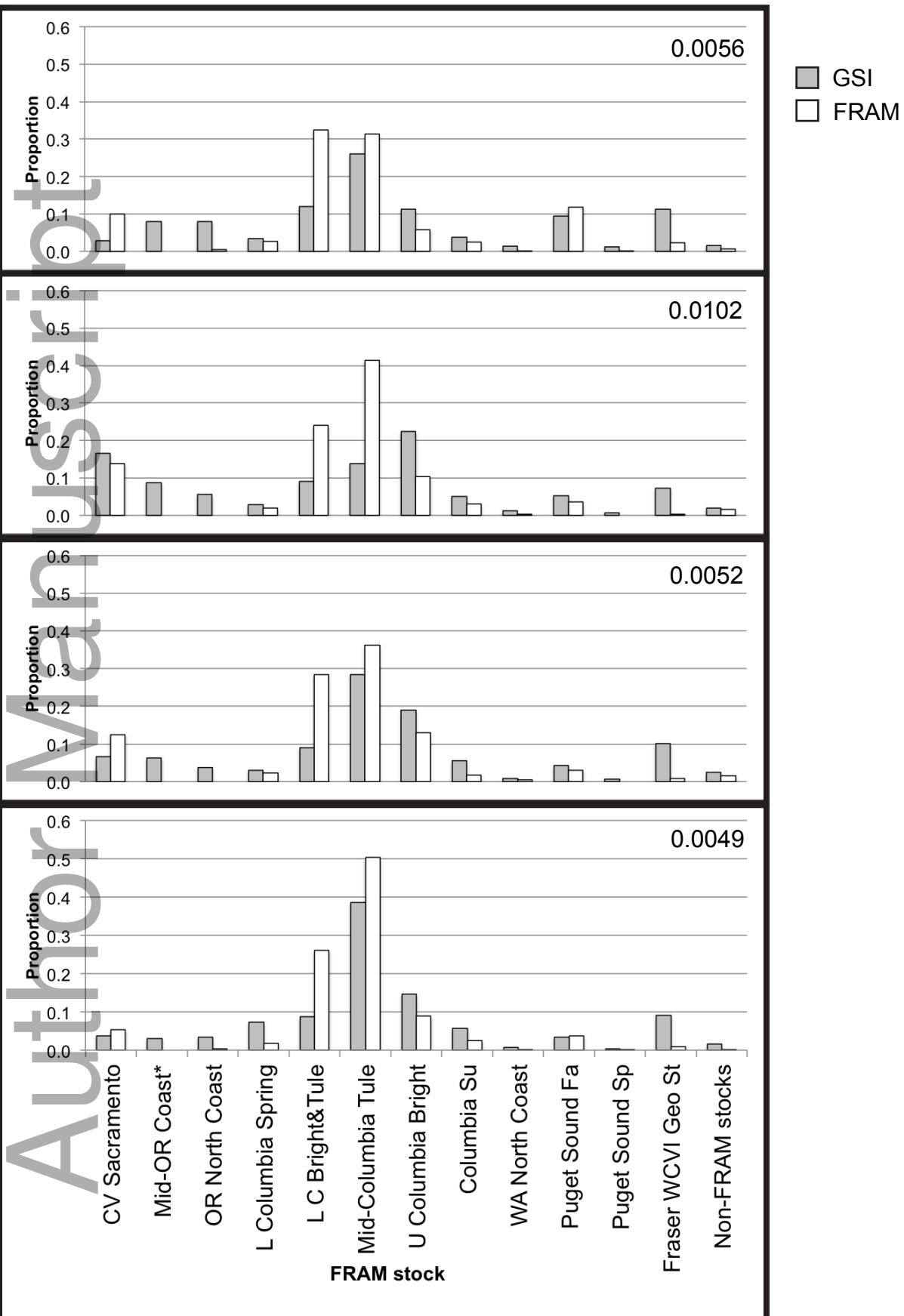

2012

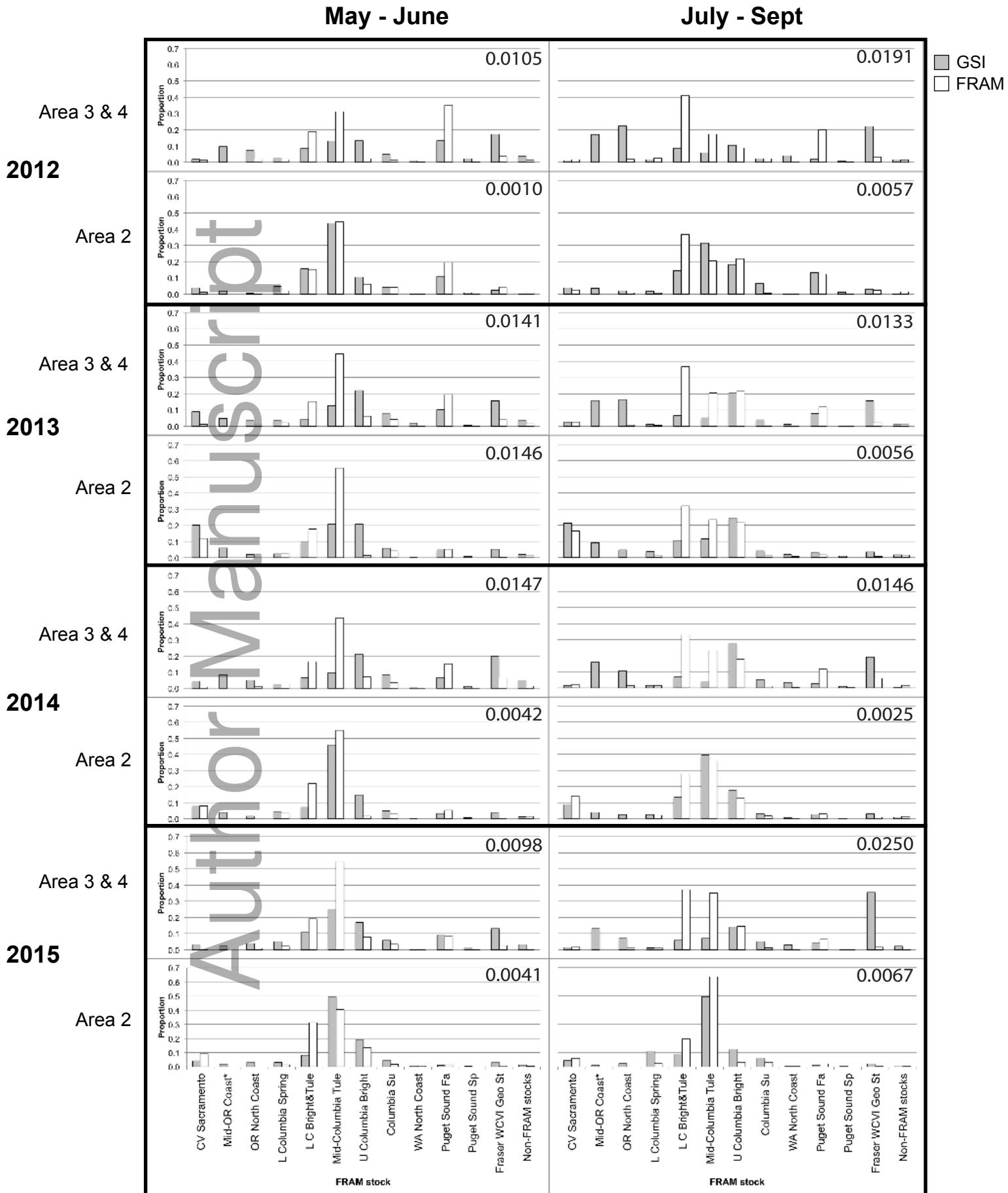

2013




2014

2015





This article is protected by copyright. All rights reserved

RAM stock

2012

