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Abstract 29 

As the spatial and temporal scale of ecological research expands, there is increasing need for 30 

methods that integrate multiple data types into a single analytical framework. Current work on 31 

this topic primarily focuses on combining capture-recapture data from marked individuals with 32 

other data types into integrated population models. Yet, studies of species distributions and 33 

trends often rely on data from unmarked individuals across broad scales where local abundance 34 

and environmental variables may vary. We present a modeling framework for integrating 35 

detection-nondetection and count data into a single analysis to estimate population dynamics, 36 

abundance, and individual detection probabilities during sampling. Our dynamic population 37 

model assumes that site-specific abundance can change over time according to survival of 38 

individuals and gains through reproduction and immigration. The observation process for each 39 

data type is modeled by assuming that every individual present at a site has an equal probability 40 

of being detected during sampling processes. We examine our modeling approach through a 41 

series of simulations illustrating the relative value of count versus detection-nondetection data 42 

under a variety of parameter values and survey configurations. We also provide an empirical 43 

example of the model by combining long-term detection-nondetection data (1995-2014) with 44 

newly collected count data (2015-2016) from a growing population of barred owls (Strix varia) 45 

in the Pacific Northwest to examine the factors influencing population abundance over time. Our 46 

model provides a foundation for incorporating unmarked data within a single framework, even in 47 

cases where sampling processes yield different detection probabilities. This approach will be 48 

useful for survey design and to researchers interested in incorporating historical or citizen 49 

science data into analyses focused on understanding how demographic rates drive population 50 

abundance. 51 

Keywords: Dail-Madsen model, Detection probability, Integrated population model, N-mixture 52 

model, Occupancy, Unmarked data 53 

 54 

Introduction 55 

 As the focus in ecology and conservation biology shifts towards broader spatial extents 56 

(Allen and Hoekstra 2015), making use of data from multiple sources is increasingly necessary 57 

as no one dataset can adequately characterize a species across its complete geographic range 58 

(Marra et al. 2015). This is particularly true when interest lies in assessing population-level 59 
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consequences of changing demography relative to climate and/or landscape covariates (Robinson 60 

et al. 2014). One method for combining data sources is through the use of integrated population 61 

models, which estimate population abundance and demographic rates through the joint analysis 62 

of two or more datasets within a single framework (Brooks et al. 2004). Compared to separate 63 

analyses of each data type, integrated population models provide inference on a greater number 64 

of parameters, increased precision, and more accurate accounting of uncertainty (Schaub and 65 

Abadi 2011). To date, integrated population models have focused on combining capture-66 

recapture data with indices of abundance and other data types (e.g., telemetry, dead-recovery, 67 

reproduction surveys; Abadi et al. 2012, Wilson et al. 2016, Zipkin and Saunders In review). 68 

Capture-recapture data are collected by following marked (naturally or with tags) individuals 69 

through time, which allows for explicit estimation of population vital rates, and is arguably the 70 

most informative approach for tracking populations (Lebreton et al. 1992). Yet capture-recapture 71 

data are expensive and time-intensive to collect and necessarily limited in spatial extent because 72 

of practical difficulties. Furthermore, some species/taxa (e.g., invertebrates) do not readily allow 73 

for capture-recapture sampling techniques.   74 

Recently developed approaches allow for the estimation of population abundance and 75 

demographic rates from “unmarked” data types in which individuals are not identified (Chandler 76 

and King 2011, Dail and Madsen 2011, Rossman et al. 2016, Zipkin et al. 2014b). These models, 77 

collectively referred to as dynamic N-mixture models, require repeated surveys (over a short 78 

time frame when the population is assumed to be closed) across spatial locations to account for 79 

detection errors during sampling. This set of surveys is then conducted over successive time 80 

periods to estimate annual or seasonal population abundance (e.g., robust design; Dail and 81 

Madsen 2011). Abundance changes through time by birth/death and immigration/emigration, 82 

which is described through processes of local survival and population gains (recruitment and 83 

immigration) within the N-mixture modeling framework. While unmarked data do not provide 84 

the same level of detail on demography as capture-recapture data (Zipkin et al. 2014a), they are 85 

cheaper and easier to obtain. Count data, along with other less intensive data types such as 86 

detection-nondetection data, are thus particularly valuable in projects with large spatial or 87 

temporal extents and in cases where it is difficult or impossible to track individuals.   88 

Here we present an integrated modeling approach to combine unmarked data types. We 89 

analyze count and detection-nondetection time series data within a single model, assuming 90 
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abundance changes according to biological processes describing survival and gains under the 91 

open-population dynamic N-mixture model (Dail and Madsen 2011; Dorazio 2014). Our 92 

approach thus allows for estimation of demographic rates (i.e., survival and recruitment) while 93 

explicitly accounting for detection errors during data collection. We show the utility  of our 94 

modeling approach through a series of simulations illustrating the relative contributions of count 95 

versus detection-nondetection data under a variety of parameter values and survey 96 

configurations. We also demonstrate how the model can be used with empirical data through an 97 

analysis of a barred owl (Strix varia) population in the Oregon Coast Ranges, USA. Including 98 

count and detection-nondetection data in a single model allows for more accurate and precise 99 

estimates of population abundance over time, even in cases where detection probabilities differ 100 

by survey type or data are collected at non-overlapping spatial locations or time periods. Our 101 

model provides a framework for combining many types of unmarked data into a single analysis 102 

and will be useful in investigating the optimal design of future surveys as well as providing 103 

capabilities to incorporate historical or citizen science data with more rigorously collected 104 

scientific data. 105 

 106 

Model description 107 

Biological state process 108 

 We incorporate count and detection-nondetection data into a single model by combining 109 

dynamic N-mixture (Dail and Madsen 2011, Royle 2004) and occupancy (MacKenzie et al. 110 

2003) modeling frameworks. To do this, we model the latent demographic rates (i.e., the state 111 

process) by assuming that population abundance ��,� (which is observed imperfectly) at a site j at 112 

time step t is conditional on abundance at j in the previous time step (Dail and Madsen 2011). 113 

We consider an annual cycle but the time step can be modified based on a species’ dynamics. 114 

The change in ��,� between � − 1 and �  is modeled by estimating the number of individuals that 115 

survive and remain at a site (��,�) and those that are gained to a site j either by recruitment or 116 

immigration (��,�). These quantities are expressed as follows: 117 ��,� ~ ��� ���,�−1 ,�� ��,� ~ ���� (�) 

where � is the apparent annual survival probability of individuals and � is the expected number 118 

of individuals that are gained to j between � − 1 and �. Dail and Madsen (2011) present a density 119 
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independent process of population gains; yet this assumption can be modified to include density 120 

dependent recruitment when data are available (Bellier et al. 2016; Zipkin et al. 2014a).  The 121 

total population abundance at j in time � > 1 is: 122 ��,� =  ��,� +   ��,�. 123 

The state process is initialized during the first year of sampling (� = 1) by modeling abundance 124 

at each site, ��,1, according to a Poisson distribution with an expected count of �:  125 ��,1 ~ ���� (�). 126 

Initial abundance can also be modeled with more flexible distributions (e.g., negative binomial) 127 

if site-specific count data do not fit the Poisson assumption of equal mean and variance 128 

(Hostetler and Chandler 2015). Covariates and/or spatially correlated random effects can be 129 

added to any of the parameters (�, �, �) using appropriate link functions to incorporate relevant 130 

factors that influence population dynamics across spatial locations or through time.   131 

Many population analyses focus on evaluating the extinction risk and resiliency of local 132 

sites. The survival and gains parameters can be used to derive the colonization probability of 133 

unoccupied sites and the extinction probability of occupied sites, quantities that are frequently 134 

estimated using dynamic occupancy models. The colonization probability of an unoccupied site, 135 ��,�, is the probability that at least one individual is gained to j in year t, i.e., 1 − ����,� = 0�, 136 

which can be derived from the probability mass function of the Poisson distribution for the gains 137 

equation: 138 ��,� = 1 − �−�.   139 

The extinction probability, ��,�, of an occupied site is the probability that all individuals die 140 

between � − 1  and � and that no new individuals immigrate to the site, i.e., ����,� = 0� ∩141 ����,� = 0�: 142 ��,� = (1 − �)��,�  · �−�. 143 

As a result, extinction rates differ among sites dependent upon local abundance and any 144 

covariates on � or �. More generally, metapopulation and colonization/extinction dynamics arise 145 

from local demography at the individual level (Ovaskainen and Hanski 2004), processes that 146 

cannot readily be accommodated in typical abundance or occupancy models that do not 147 

incorporate mechanism (e.g., survival and recruitment) explicitly.  148 

 149 
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Observation process 150 

The demographic parameters and the true underlying abundance ��,� cannot typically be 151 

observed directly. Instead, data are collected on ��,� at each location j in each year t according to 152 

one of two sampling processes: 1) counts of individuals (Royle 2004) or 2) detection- 153 

nondetection of at least one individual of the species (Royle and Nichols 2003). In both cases, 154 

sites are visited within each year on � > 1 occasions over a timeframe during which the 155 

population is assumed to be closed (i.e., abundance is constant). We note that if detection 156 

probabilities are the same across all sites, then only a subset of sites need to be sampled 157 

repeatedly (�� ≥ 1). Count data are collected by enumerating all individuals encountered during 158 

a fixed survey time interval while detection-nondetection (occupancy) data are collected by 159 

recording simply whether or not (at least one individual of) the species was detected. Count and 160 

detection-nondetection data can be collected through point counts, transect walks, or other 161 

techniques (MacKenzie et al. 2006, Royle and Dorazio 2008). The key feature of both data types 162 

is that the number of individuals counted, ��,�,�, at a site j in year t during sampling replicate k or 163 

the observed occupancy status of a site, ��,�,�, is subject to incomplete detection. That is, not 164 

every individual is detected when collecting count data, such that ��,�,� ≤ ��,�. Similarly, a 165 

species that is present at a site j could incorrectly be recorded as absent if none of the ��,� 166 

individuals are detected during sampling replicate k. It is therefore necessary to model the 167 

relationship of the data to the true (unobservable) abundance or occupancy status. In the case of 168 

the count data, ��,�,� = 0,1,2, …, we model the observation process as:  169 ��,�,�  ~ ��� ���,� ,�� 
where p is the detection probability of each individual at each survey event � = 1,2, … ,� (Royle 170 

2004). In the case of the detection-nondetection data, we assume that the probability of recording 171 

a detection (��,�,� = 1) is the probability that at least one individual is observed. Thus the 172 

detection process for the detection-nondetection data can be expressed as (Royle and Nichols 173 

2003, Rossman et al. 2016): 174 ��,�,� ~ ���� (1 − (1 − �)��,�). 175 

In this basic model, the detection probability of individuals (�) is assumed to be equal across the 176 

count and detection-nondetection data (although we relax this assumption during simulations 177 

below). When detection is equal across survey types, repeated sampling of sites with detection-178 
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nondetection data is not necessary because p can be inferred from the count data alone. Thus, our 179 

modeling framework could be particularly useful for utilizing historical detection-nondetection 180 

data or data collected in remote locations where repeated sampling is challenging or nonexistent 181 

(assuming that data are collected under a randomized sampling design, absence data is recorded, 182 

and detection probabilities are the same for both survey types; Dorazio 2014). As with the 183 

demographic parameters, detection probability can be indexed by site or year to include relevant 184 

covariates that account for variation in the sampling process across time or space. An implicit 185 

assumption of our modeling framework, and integrated analyses generally, is that the spatial unit 186 

of sites is similar across survey types (but we demonstrate an example of how to reconcile data 187 

from different spatial units in the application section). Additionally, both detection probability 188 

and the demographic parameters are assumed to be equal for all individuals during each survey 189 

event (i.e., no individual heterogeneity) and detection of every individual is independent (Royle 190 

and Nichols 2003, Royle 2004). This assumption could be modified to account for differences in 191 

parameter values across life stages (or other subgroups of the population) if data are available 192 

(Zipkin et al. 2014b). 193 

 194 

Simulation study design 195 

 We developed a series of simulations to assess the utility of our combined count and 196 

occupancy model to estimate demographic rates and population abundance and to determine 197 

optimal sampling schemes in cases where parameter values vary across sampling locations (e.g., 198 

according to covariates) and/or sampling methodology (e.g., differences in detection). We 199 

examined the accuracy and precision of our model over a range of parameter values and 200 

sampling protocols using at least 1000 simulated datasets for all scenarios and number of 201 

surveyed sites. For each analysis and parameter combination, we generated ten years of latent 202 

population abundances at individual sites (using parameter values specific to each scenario), 203 

during which we assumed abundance changed according to the process described in the model 204 

description section. Each of the sites was then “surveyed” three times annually, assuming 205 

independence and closure within intra-annual sampling events, according to either a count- or 206 

occupancy-based protocol (number of sites with a particular sampling protocol varied among 207 

simulation scenarios). We then analyzed the simulated data with the joint model using a 208 

Bayesian analysis with Markov chain Monte Carlo in the programs R and JAGS (Plummer 209 
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2003). We specified vague priors for all parameters (�, �, �, � as well as any additional 210 

parameters specified below).  Model code and implementation details for the simulation studies 211 

are provided in Data S1. 212 

 213 

Accuracy and precision of the basic model 214 

 We determined the accuracy and precision of the basic model under a wide range of 215 

parameter values and across a realistic range of possible count/occupancy site combinations. To 216 

that end, we generated datasets by randomly selecting parameter values from the following 217 

distributions: � ~ �(0.5,3), � ~ �(0,1), � ~ �(0,2.5), � ~ �(0,1). These distributions cover 218 

the complete parameter space for survival and detection probabilities and represent conditions 219 

for which site abundance and occupancy is likely to vary among sites. For example, we set an 220 

upper bound of 2.5 individuals for � (expected number of recruits/immigrants gained annually 221 

per site) because site-specific population abundance becomes very high – leading to no 222 

unoccupied sites – when the expected number of individuals gained to sites is large. In such 223 

situations, collection of detection-nondetection data would be uninformative. Parameters were 224 

drawn independently to guarantee ample coverage across the specified parameter space. We 225 

examined the benefits of combining either 0, 25, 75, or 150 sites with detection-nondetection 226 

data to either 5, 15, or 30 sites with count data. For each count/occupancy site combination, we 227 

generated 5000 datasets to ensure that a sufficiently wide range of possible parameter 228 

combinations was included in the results.  229 

 230 

Determining optimal sampling schemes 231 

 Combining count and detection-nondetection data will  be particularly useful in cases 232 

where it is difficult to obtain sufficient data across a covariate space using a single sampling 233 

protocol. For this simulation, we assume that a covariate influences the survival probability of 234 

individuals across spatial locations as follows: 235 ��������� = �0 + �1 ∙ ����������. 236 

For simplicity, we assume that �1 is positive and thus survival increases as the value of the 237 

covariate increases. We envision a scenario where either detection-nondetection or count data 238 

could be added to existing data to improve precision in parameter estimates and examined four 239 

such cases: 1) both count and detection-nondetection data are available over the complete range 240 
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of the covariate (−3 < ���������� < 3); 2) count data are collected at sampling locations over a 241 

range where survival, and thus abundance, is high (1 < ���������� < 3) and detection-242 

nondetection data are collected at locations where survival, and thus abundance, is low (−3 <243 ���������� < 1); 3) count data are collected at locations with average survival probabilities 244 

(−1 < ���������� < 1) and detection-nondetection data are collected at locations where 245 

survival is either high (���������� > 1) or low (���������� < −1); and 4) both count and 246 

detection-nondetection data are available over a subset of the range of the covariate, where 247 

survival is high (1 < ���������� < 3). We generated 1000 datasets for each of these scenarios 248 

using the following parameter values: � = 4, �0 =  0.5, �1 =  0.7, � = 2, � = 0.5 and assumed 249 

a fixed number of 40 sites with count data and 100 with detection-nondetection data.  250 

 251 

Combining data sources when detection probabilities differ 252 

 We have so far considered scenarios where detection probabilities are equal for 253 

individuals across both count- and occupancy-based sampling schemes. The degree to which this 254 

assumption is reasonable depends on individual survey protocols. For example, the detection 255 

probability of individuals may differ by surveys because of the duration of the collection process, 256 

the area surveyed, or the manner in which individuals are detected (e.g., audial versus visual 257 

surveys). The best approach for dealing with differences in detection is to include relevant 258 

covariates (MacKenzie et al. 2006; Royle and Dorazio 2008). However, in some situations the 259 

baseline detection for individuals may be different enough that each survey type requires 260 

independent estimation of the detection probability. We explored both scenarios where this could 261 

be true: 1) detection probability of individuals is higher in the count data (������ = 0.5) than in 262 

the detection-nondetection data (���� = 0.3); and 2) detection probability is lower in the count 263 

data (������ = 0.3) than in the detection-nondetection data (���� = 0.5). We also examined the 264 

situation in which detection probability differs between sampling protocols but is incorrectly 265 

modeled assuming that they are equivalent (i.e., ������ = ����). We generated 1000 datasets for 266 

each of these scenarios across a range of count (5, 15, 30) and occupancy (25, 75, 150) site 267 

combinations using the following demographic parameter values: � = 1, � = 0.7, � = 1.5.  268 

 269 

Simulation study results 270 
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 Simulation results indicate that our model combining unmarked data types can provide 271 

accurate estimates of demographic rates, population abundance, and individual detection 272 

probabilities across the comprehensive range of parameter values that we examined (Figures 1-273 

3). Precision in parameter estimates varied by the amount of data included in analyses and not 274 

surprisingly, increased with additional data (Figure 1; Appendix S1, which shows results from 275 

the basic simulation with only five years of data). Count data undoubtedly inform parameter 276 

values more efficiently than detection-nondetection data (i.e., Figure 1, comparison across panel 277 

colors). However, the addition of a small number of occupancy sites (e.g., 25) to existing count 278 

data improved precision of parameters and abundance estimates in all scenarios, especially when 279 

the amount of available count data was relatively low (Figure 1, grey and blue panels; Appendix 280 

S1).  281 

 Combining count and detection-nondetection data was especially useful in simulations 282 

with a covariate on survival, particularly if a single data type was not available throughout the 283 

complete range of the covariate (Figure 2; Appendix S2). Accurate and precise estimation of a 284 

covariate effect depends on whether the available data span the complete range of the covariate 285 

value and not on the data type, whether generated from count or occupancy protocols (Figure 2, 286 

blue boxes compared to red boxes). These results demonstrate that the inclusion of detection-287 

nondetection data in addition to count data (or count data in addition to detection-nondetection 288 

data) allows for estimates of demographic rates and abundance in locations with only detection-289 

nondetection data while simultaneously improving precision on estimates of the covariate effect 290 

in areas with count data.  291 

 Our model produces accurate estimates of demographic rates and abundance even in 292 

cases where detection varies by the data collection method (Figure 3, blue boxes in light grey 293 

panels; Appendix S3). This is true regardless of whether individual detection probability is 294 

higher with either count- or occupancy-based protocols. The precision of parameter estimates, 295 

however, depends on the amount of available data; increasing the number of parameters requires 296 

more data for comparable precision (Appendix S3 compared to Figure 1). For this parameter 297 

combination, population gains are underestimated while survival probabilities are overestimated 298 

when we incorrectly assume that detection is equal across sampling methods when in fact it is 299 

different (Figure 3, red boxes in dark grey panels; Appendix S3). Our simulation results indicate 300 

that abundance is overestimated (Figure 3, dark red boxes) when detection in the detection-301 
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nondetection data is higher than that in the count data and underestimated in the reverse situation 302 

(Figure 3, light red boxes), likely due to the inclusion of more occupancy than count sites. Thus, 303 

when detection is underestimated at the majority of sites, abundance is naturally overestimated 304 

(with the reverse also being true; Royle and Nichols 2003). The degree to which parameter 305 

biases, caused by mis-specifying the detection process, are significant will depend on the 306 

magnitude of the differences in detection probabilities among sampling protocols and the relative 307 

amount of sites surveyed for each data type. Additional simulations across a wider parameter 308 

space would allow for a more nuanced understanding of the consequences of mis-specifying the 309 

detection process. 310 

 311 

Application to empirical data 312 

 We applied our modeling framework to survey data collected on an expanding population 313 

of barred owls in a 1,692 km2 region in the central Oregon Coast Ranges, over a period of two 314 

decades. Barred owls were historically limited to eastern North American forests, but their range 315 

has expanded into the Pacific Northwest over the last century with local densities increasing 316 

dramatically over the last decade (Dugger et al. 2016; Yackulic et al. 2012). There is 317 

considerable interest in understanding the population dynamics of barred owls because of their 318 

potential negative impact on threatened northern spotted owls (Strix occidentalis caurina) and 319 

other native wildlife (Holm et al. 2016, Wiens et al. 2014, Yackulic et al. 2014). Detection-320 

nondetection data on barred owls were collected incidentally within spotted owl surveys from 321 

1995-2014 (Lint et al. 1999). Spotted owl surveys followed a standardized protocol (Lint et al. 322 

1999) and were focused on 106 historical breeding territories (e.g., sites), which averaged 9.9 323 

km2

A new count-based survey protocol, targeting barred owls, was initiated in 2015 as part 327 

of a broader study to improve estimation of barred owl abundances and examine the effects of 328 

experimental removals on the population demography of northern spotted owls (Wiens et al. 329 

2011, Diller et al. 2016). The experiment included locations where barred owls were either 330 

removed (treatments, about a third of the study area) or not (controls), but for the purposes of 331 

this study we restricted estimates to pre-treatment (2015) survey data collected on both areas, 332 

 in size (Fig. 4a). During annual surveys of spotted owls, observers visited each site up to 324 

eight times during the breeding season (March – August) and additionally recorded whether 325 

territorial barred owls (individuals or pairs) were detected. 326 
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and post-treatment survey data on the control area only (i.e., to avoid confounding effects in our 333 

analysis of barred owl removals in treatment areas). The barred owl surveys employed a standard 334 

design in which a grid of 5 km2

 While our simulation study focused on instances in which detection-nondetection and 343 

count data come from spatially distinct sites, our modeling framework can also be used in cases 344 

where the two data types are collected in the same locations in different time periods. Sites can 345 

be alternatively sampled using either occupancy- or count-based protocols as long as they are 346 

independent and the basic assumptions outlined in the model description section are met. In the 347 

case of this study, we needed to standardize the data from the two survey methods in which sites 348 

overlapped, but where barred owls were sampled at different spatial scales (Figure 4a) in order to 349 

combine the historical barred owl detection-nondetection data with the newer count data. To do 350 

this, we reassigned each of the counts of territorial pairs detected within the 5 km

 hexagons were overlaid to include historical breeding territories 335 

of spotted owls (Figure 4a). Each of these hexagonal sites were surveyed up to three times during 336 

the breeding season. During each survey, observers used an amplified megaphone (Wildlife 337 

Technologies, Manchester, N.H.) to broadcast digitally recorded barred owl calls at established 338 

call points that provided complete coverage of the site. All territorial pairs and single owls were 339 

recorded. Barred owl individuals were assumed to be part of a territorial pair when: (1) both 340 

sexes were observed within 400 m of each other on the same visits; or (2) at least one adult was 341 

observed with young (Wiens et al. 2011).    342 

2 hexagonal 351 

sites (collected during barred owl-specific surveys in 2015 and 2016) to the larger spotted owl 352 

survey sites (i.e., historical territories) using the GPS coordinates of each pair observation. As a 353 

result, the 106 sites used for our analysis were defined according to the historical survey design, 354 

from which most of the data originate, and the finer-resolution count data were reconfigured to 355 

fit within that framework. Within our model, we allowed detection probabilities to differ 356 

between sampling schemes because of the very different spatial scales and protocols used for the 357 

surveys. In the case of the occupancy data, we assumed that detection of individuals (����) was 358 

constant across sites and years as data were all collected by trained observers in the early 359 

morning.  

��������������,�,�,�� = �0 + log (�����,�,�). 363 

However, we specified the detection process for the count data (������) using the 360 

proportion of the total area of the historical site j that was surveyed during replicate k in year t, 361 �����,�,�, as an offset with the ������� link function: 362 
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Thus, if a given count-based sampling event only covered half the area of the larger occupancy 364 

site, we recorded 0.5 for the offset on detection. Similarly, if

 We assumed that the barred owl population was closed to changes within years but that 372 

local site-level abundance could change annually through survival and gains. We included a 373 

covariate on the annual apparent survival probability of individuals based on area of older 374 

(approx. ≥80 yr.) coniferous forest patches (Davis et al. 2015) within each site (using the same 375 

approach as in the simulation study). This covariate was calculated annually and, due to low 376 

levels of recent older forest disturbance and the slow rate of forest succession within the study’s 377 

time frame, was fairly constant across most sites. Finally, recent evidence suggests that site-level 378 

gains in abundance may be dependent on the total regional population size as barred owls are 379 

exceptionally good at colonizing new sites (Yackulic et al. 2012, 2014). As such, we included a 380 

covariate on the gains parameter, �, to account for a potential effect of regional population size: 381 ���(��) = �0 + �1 ∙ ���−1 + �2 ∙ ���−12  

 a hexagon count site overlapped 365 

more than one historical occupancy site, only the proportion of that hexagon that overlapped the 366 

focal occupancy site was used. The ������� link function is designed for encounter-367 

nonencounter data given a Poisson intensity function, which arises in our model due to a Poisson 368 

recruitment process and a Bernoulli survival process. It has the useful property that, given low 369 

area-swept, a doubling of area-swept results in a doubling of encounter probability, and was 370 

consequently a natural choice for our analysis. 371 

where ���−1 is the average abundance of all sites in year � − 1, which we normalized by 382 

subtracting 1 (a value that was close to the average site-specific abundance over the two decades 383 

of the study). We standardized all of the covariate data (e.g., forest cover) and analyzed the 384 

model using the programs R and JAGS, assuming uninformative prior distributions for each of 385 

the parameters (see Appendix S4 for model code and implementation details). 386 

 Model results show that the barred owl population grew substantially over the course of 387 

the survey period from a mean site-specific value of 0.13 (95% CI: [0.06, 0.48]) territorial owls 388 

(individuals and pairs) in 1995 to 7.5 (95% CI: [4.26, 11.53]) in 2016 (see Table E1 for a 389 

complete list of parameter estimates). This increase can be largely attributed to a positive density 390 

dependent effect on population gains, � (Figure 4b). We estimated a significant positive effect of 391 

mean regional abundance on the expected number of territorial owls gained to sites annually 392 

(mean �1: 0.59; 95% CI: [0.41,0.78]) that did not decline when abundance was high (mean �2: -393 
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0.02; 95% CI: [-0.06, 0.02]; Figure 4b), suggesting that the population has not yet saturated the 394 

study region. Annual survival probabilities were quite high (average range: 0.86-0.93) and 395 

increased with the amount of older coniferous forest cover available within a site (Figure 4c). 396 

The intercepts for the � and � parameters were negatively correlated (-0.55), although this is not 397 

unexpected as survival and gains are the only processes by which abundance can change within 398 

the model structure. Estimates of annual survival, and relationships with forest conditions, were 399 

strikingly similar to those derived from more intensive (and costly) studies of radio-marked 400 

individuals conducted in the region (Wiens et al. 2014). We used the parameter estimates and our 401 

derived equations to calculate annual colonization and extinction probabilities (Figure 4d). 402 

Colonization, or the probability that an unoccupied site becomes occupied, increased steadily 403 

over the time frame of the survey from a low of 0.14 (95% CI: [0.10, 0.17]) in 1996 to a high of 404 

0.90 (95% CI: [0.81, 0.96]) in 2016. Site extinction probabilities were fairly low throughout the 405 

two decade period, averaging 0.07 in 1996 (95% CI: [0.00, 0.14]) and declining to practically 406 

zero by 2016. Not surprisingly, barred owl detection probabilities were much higher during the 407 

count surveys as compared to the detection-nondetection surveys and increased with the area 408 

sampled (Figure 4e).  409 

Discussion 410 

Estimating demographic rates, population abundance, and trends is a universal objective 411 

in ecology and is necessary to inform population management. Capture-recapture data of marked 412 

individuals is the gold standard because such data allow for detailed demographic analyses. 413 

However, many pressing questions related to population dynamics are difficult to answer using 414 

capture-recapture data, particularly in the case of invasions that are ongoing or have already 415 

occurred, and because capture-recapture data tend to be spatially limited. Successive surveys of 416 

spatially replicated counts and occurrences can provide similar, although less detailed, 417 

information on population abundance, demographic rates, and/or colonization and extinction 418 

dynamics (MacKenzie et al. 2003, Royle 2004, Dail and Madsen 2011). Combining count and 419 

detection-nondetection data into a single integrated model can lead to a more accurate 420 

understanding of population demography and changes over time than is possible with 421 

independent analyses (Figure 1). 422 

Integrated population models have typically focused on approaches to augment capture-423 

recapture data with other data types (Schaub and Abadi 2011; Zipkin and Saunders In Review). 424 
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However, we show how combining only unmarked data types can provide increased accuracy 425 

and precision in estimates of population abundance and spatially varying demographic rates, 426 

even in cases where the sampling process leads to different detection probabilities among data 427 

types. As with other integrated analyses, this is because the different data are assumed to derive 428 

from the same underlying biological processes (Dorazio 2014). As a result, combining the data in 429 

a single model leads to a more efficient analysis. In some cases, such as in our barred owl 430 

example, researchers may switch from collecting one unmarked data type to another (e.g., from 431 

detection-nondetection to count) within a specific study area. Our modeling approach provides a 432 

framework to include the entire time series of data in a single analysis, regardless of this type of 433 

change. Zipkin et al. (2014b) found that the length of the time series of data had a greater 434 

contribution to parameter precision than the number of sites surveyed in a stage-structured N-435 

mixture model. We anticipate a similar result for the combined detection-nondetection-count 436 

model based on estimates from our simulation study (Figure 1, Appendix S1): longer time series 437 

seem to lead to disproportionate parameter precision for a fixed number of total sampling events. 438 

Our results further suggest that a site with count data is approximately equivalent to three sites 439 

with detection-nondetection data in a model with no covariates; yet the exact information 440 

tradeoff is dependent on variation in site-level abundance and detection probabilities and will 441 

naturally be case specific. 442 

Studies of species distributions, abundances, and dynamics over broad spatial extents 443 

often rely on either detection-nondetection data or counts of unmarked individuals. The potential 444 

to combine count and detection-nondetection data into a unified analysis lays the foundation for 445 

a number of analysis possibilities, particularly in terms of survey design. For example, 446 

monitoring invasive species typically involves detection-nondetection surveys combined with 447 

detailed count surveys at sites that are known to be occupied. In many such cases, it will not be 448 

feasible to conduct counts at every location where the species is encountered; simulations can 449 

help determine the optimal placement of count sites relative to detection-nondetection surveys. 450 

In general, researchers may want to target count-based protocols at locations with high quality 451 

habitat (i.e., with covariates in which survival and/or gains are expected to be high) and save less 452 

intensive detection-nondetection protocols for locations in marginal habitats. Such survey 453 

methodologies could provide high quality inferences as long as sites span the complete range of 454 

covariate space (Figure 2). We envision that future work could include presence-only data in 455 
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combination with other unmarked protocols (Dorazio 2014). This may be particularly useful for 456 

monitoring emerging species, where reports of detections (e.g., of the salamander chytrid fungus 457 

B. salamandrivorans) could then trigger cluster count samples in nearby areas. Although 458 

presence-only data are often associated with the analysis of historical and archival data sets, they 459 

may also arise in citizen-science data sets or other survey protocols.   460 

 Population closure is not a reasonable assumption for some sampling protocols and 461 

integrating such data may involve adding alternative observation models including those that 462 

allow for false positives, double counting, or species misidentification (Chambert et al. 2016, 463 

Miller et al. 2014, Thorson et al. 2014). Our results suggest that these efforts can provide 464 

accurate parameter estimates if the detection process is modeled correctly, but may still provide 465 

useful, if somewhat biased, estimates otherwise (e.g., Figure 3). Parameter identifiability and/or 466 

accuracy can be a problem in analyses that estimate demographic rates from unmarked data 467 

(Bellier et al. 2016, Zipkin et al. 2014a). Although we did not have this issue in our application 468 

of the model (Appendix S4), analyses using comparatively sparser datasets may have difficulties 469 

with convergence or identifiability. The incorporation of auxiliary information can increase the 470 

accuracy and precision of parameter estimates through the use of informative priors (Morris et al. 471 

2015) or by explicitly integrating available demographic data into the modeling framework. This 472 

may be particularly advantageous in cases where model assumptions are not strictly met (Bellier 473 

et al. 2016). We anticipate a growing importance for studies that combine data from multiple 474 

sampling protocols and thus encourage additional research regarding optimal data collection and 475 

analysis methods on integrated model structures. 476 
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Figure Legends 588 

Figure 1. Boxplots summarizing the accuracy and precision of analyses with simulated data 589 

under an array of sites surveyed using count- and occupancy-based protocols. The x-axis 590 

indicates the number of detection-nondetection sites for each simulation and the colored panels 591 

indicate the number of count sites. Each panel shows the median (thick line within boxes), 50% 592 

quantiles (boxes), and ± 1.5 times the interquartile range (whiskers) for the median estimated 593 

value minus the true value of parameters (top four panels) and abundance (bottom panels) for 594 

5000 simulated datasets with random combinations of the true parameter values. Parameter 595 

estimates equal the true values where the y-axis equals zero (black lines). 596 

 597 

Figure 2. Estimates of a covariate effect on survival under a number of sampling protocols. The 598 

left panel shows the relationship between the covariate and survival. The other two panels show 599 

the estimated intercept (�0 =  0.5; middle) and slope (�1 =  0.7; right) under six scenarios: count 600 

data only (blue boxes), available across the whole range of the covariate (X1) and only where 601 

survival is high (X2); a combination of count and detection-nondetection data (red boxes) 602 

available across the range of the covariate (X3), from count data where survival is high and 603 

detection-nondetection data where survival is low (X4), from count data where survival is 604 

average and detection-nondetection data where survival is low or high (X5), and where both 605 

count and detection-nondetection data are only available where survival high (X6). Boxplots 606 

show median parameter estimates (thick line within boxes), 50% quantiles (boxes), and ± 1.5 607 

times the interquartile range (whiskers) for 1000 simulated datasets. True parameter values are 608 

shown with a thick black line. 609 

 610 
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Figure 3. Accuracy and precision of parameter values under four scenarios for 15 count and 75 611 

detection-nondetection sites. The first two (blue) assume data are modeled according to the data 612 

generating process where: individual detection probability is higher in the count than in the 613 

detection-nondetection data (X1) and detection is higher in the detection-nondetection than in the 614 

count data (X2). Scenarios X3 and X4 (red) model data generated in X1 and X2 using the 615 

standard model, which assumes that detection probability is equal across both sampling 616 

protocols. Black lines show the true values of the data generation process. Boxplots show the 617 

median (dark lines), 50% quantiles (boxes), and ± 1.5 times the interquartile range (whiskers) for 618 

1000 simulations. 619 

 620 

Figure 4. Study area and results from the barred owl application: (a) Map of the study area in the 621 

central Oregon Coast Ranges, USA. The grey areas with black outlines depict breeding 622 

territories of northern spotted owls (i.e., detection-nondetection sites) where barred owls were 623 

detected incidentally during surveys of spotted owls from 1995 to 2014. Blue hexagons (i.e., 624 

count sites) indicate where barred owl-specific count surveys were completed in 2015 and 2016. 625 

Blue dots demonstrate the GPS locations of barred owl counts that we used in reconciling 626 

detections of territorial pairs between the different spatial scales of the survey sites; (b) Expected 627 

site-specific gains, γ, relative to average regional abundance in the previous year; (c) Apparent 628 

annual survival, ω, relative to the amount of older growth forest cover within sites; (d) Mean 629 

annual colonization (�, grey circles) and extinction (�, black diamonds) probabilities over the 630 

study period shown with 95% CI; (e) Detection probabilities for the count (left panel) and 631 

detection-nondetection (right panel) data. In panels b, c, and e black lines indicate mean values, 632 

plotted with 50% CI (dark grey region) and 95% CI (light grey region). In panel e, the boxplot 633 

for Pocc

Supporting Information 635 

 shows the mean (black lines in box), 50% CI (box), and 95% CI (whiskers). 634 

Additional Supporting Information may be found in the online version of this article: 636 

Appendix S1. Basic model run with five years of data 637 

Appendix S2. Complete simulation results for the covariate model  638 

Appendix S3. Complete simulation results for the model with different detection probabilities 639 

for count and detection-nondetection data 640 
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Appendix S4. Barred owl application implementation details, model code, and parameter 641 

estimates 642 

Data S1. R Code for the combined count and detection-nondetection model  643 
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