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Abstract

As the spatiadnd temporascaleof ecological research expands, there is increasing need for
methods that integrate multiple data types into a single analytical frame®worknt work on

this topic primarilyfocuses on combiningapturerecapture datitcom marked individualsvith
other data types into integrated population models. Yet, studies of species disisilaniil
trendsoften, relyon data fromunmarked individualacross broad scales where local abundance
and environmental variables may vaWe present a modeling framework for integrating
detectionnondetection and count data into a single analysis to estimate population dynamics,
abundancgandindividual detection probabiliés during samplingOur dynamic population
modelassumsthat sitespecificabundance cachange over time according to survival of
individualstand gains through reproduction and immigrafidw observation procedsr each
datatypeis modeledy assuming thagveryindividual present at a site has equal probability

of being detected durirgampling processe¥/e examine our modeling approach through a
series of simulations illustrating the relative value of count vetstextionnondetectiordata
under a variety of parameter values and survey configuratidaslso provide an empirical
example ofithe‘model by combining lotermdetectioanondetectiordata(1995-2014with

newly collected count data (2015-2016) from a growing population of barred @indsvaria)

in the Pagific Mrthwest to examinthe factors influencingopulation abundance over tin@@ur
model provides a foundation for incorporating unmarked @étan a single frameworkeven in
cases whersampling process yielddifferent detection probabilitieShis approachvill be
usefulfor survey design anth researchensterested in incorporating historical or citizen
science datato analyses focused on understanding how demographic rates drive population
abundnce

Keywords; Dail-Madsen modeDetection probability, Integrated population modelniNdure

model, Occupancy, Unmarked data

I ntroduction

As the focus in ecology and conservation biology shifts towards bragatial extents
(Allen and Hoekstr@015), makinguse of data from multiple sourcissincreasingly necessary
as no one datasednadequatelgharacterize species across completegeographic range
(Marra et al. 2015)This is particularly true when interest liesassessingopulationlevel
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consequences of changing demograghgtive to climate and/or landscape covarigisbinson

et al. 2014). One method for combining data sources is through the use of integratetbpopulat
models, which estimate population abundance and demographic rates through the joist analys
of two or more datasevgithin a single frameworkBrooks et al. 2004)Compared to separate
analyses of.each data typetegrated population models proviaderence on a greater number

of parameterdncreasegrecision, and more accuraecounting of uncertainty (Schaub and
Abadi 2011)."To date, integrated population models have focused on combining capture-
recapture 'datwith indices of abundance and other data types (e.g., telemeargrecovery,
reproduction survey#\badi et al. 2012, Wilson et al. 2016, Zipkin and Saunders In review).
Capturerecapture data are collected byldaling marked (naturally or with tags) individuals
through time, which allows for explicit estimationmdpulation vital ratesand is arguably the
most informativeapproach for tracking populations (Lebreton et al. 199&) capturerecapture
data are expensive and tinmtensive tacollectand necessarily limited in spatial extbecause

of practical difficulties Furthermoresome speciésxa (e.g.invertebratesdo not readily allow

for capturerecapture sampling techniques.

Recently developed approaches allow for the estimation of population abundance and
demographic rates frofimnmarked” data typem which individualsarenot identified(Chandler
and King.2011, Dail and Madsen 20Rlgssman et aR016, Zipkin et al. 2014bThese models
collectively referred to as dynamicixture modelsrequirerepeated survey®ver a short
time frame.when the populationassumed to be closeakcross spatial locations accountor
detection errors during samplinbhis set of arveysis thenconductedversuccessivéime
periods to estimate annual or seas@ugdulation abundance (e.g., robust design; Dail and
Madsen 2011). Abundance changes thraimgk by birth/death and immigration/emigration,
which is described through processes of local survival and population gains (recraitchent
immigration)within the N-mixture modeling frameworRVhile unmarked data do not provide
the same level.of detain demography as capturecapture datéZipkin et al. 2014a), they are
cheaper andeasier dbtain Count data, along with other less intensive data types such as
detectionnondetection datarethusparticularlyvaluablein projects with large spatiakr
temporalextentsandin cases whert is difficult orimpossible to track individuals.

Here we present an integrated modeling approach to combine unnaatet/pes. We
analyze ount and detection-nondetectiome serieslatawithin a single modelassuming
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91 abundance changes according to biological preseescribingsurvival and gainsnder the
92  open-population dynamic N-mixture modBlail and Madse2011; Dorazio 20140ur
93  approaclthusallows for estimation of demographic rates (i.e., survival acditenent) while
94  explicitly accounting for detection errors during data collectda.show theutility of our
95 modeling approach through a series of simulations illustrating the retatmgbutions of count
96 versusdetectioanondetectiordata under a variety of parameter values and survey
97  configurations:*We also demonstrate how the model can be used with empiricatalagha an
98 analysis ofabarred owl 8rix varia) population in thédregonCoastRanges, USA. Including
99  count and detection-nondetectidatain a single model allows for more accurate and precise
100 estimates of population abundance over tiewen in cases where detection probabilities differ
101 by survey typer data are collected at nowerlapping spatial locatiorss time periodsOur
102  model provides a framework for combining many types ofiarked data into a single analysis
103  ard will be useful innvestigatingthe optimal design of future survegs well agproviding
104  capabilitiesto incorporatehistorical or citizen science data with more rigorously collected
105  scientific datas
106
107  Model deseription
108  Biological.state process
109 We incorporate count and detection-nondetection data into a single model by combining
110  dynamic N-mixture (Dail and Madsen 2011, Royle 2084doccupancy (MacKenzie et al.
111  2003) modeling frameworks. To do this, we modell#tentdemographic rate@.e., the state
112 proces}by-assuming that population abundange (whichis observed imperfectlyat a sitg at
113  time steptlis conditional on abundancejan the previougime step(Dail andMadsen2011).
114  Weconsider anannual cycle but the time step can be modified basespeniestdynamcs.

115 The changén-N; betweent — 1 andt is modeled by estimating the number of individuals that
116  surviveandwremain at a sif@; ;) andthose thatre gained ta sitej either by recruitmenor
117 immigration ¢;.). These quantities aexpresseds follows:
Sjt ~Bin (Njs—y , )
Gj ~ Pois (y)
118  wherew is the apparerdnnual survival probability of individuals apds the expected number

119  of individuals thatare gainedoj betweent — 1 andt. Dail and Madsen (2011) present a density
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independent process of population gains; yet this assungatrohemodified to include density
dependentecruitment when data aaxailable Bellier et al. 2016Zipkin et al. 2014p The
total population abundancejah timet > 1 is:
Nit = Sj¢+ G-
Thestate process initializedduring the first year of sampling € 1) by modeling abundance
ateach siteN;q4-according to a Poisson distribution with an expected count of
N;, ~ Pois (4).
Initial abundanceanalso be modeledith more flexible distributios (e.g., negative binomial)
if site-specific.eount data do not fit the Poisson assumption of equal meaargntte
(Hostetlerand Chandler 2015 ovariates and/or spatially correlated random effects can be
added to any of the parameteds ¥, 1) usingappropriatdink functions to incorporateelevant
factorsthat influencepopulation dynamicacross spatial locatiors through time
Many*populatioranalysegocus on evaluating the extinction risk and resiliency of local
sites. Thersurvival and gains parameters can be used to derive the colonization probability of
unoccupied sites and the extinction probability of occupied sites, quantities thragaently
estimat@ using dynamic occupancy models. The colonization probability of an unoccupied site,
®j ¢ Is the probability that at least one individual is gaineflitoyeart, i.e.,1 — P[Gjlt = 0],
which can-be"derived from the probability mass function of the Poisson distributitwe fpains
equation:
pje=1—e7".
The extinction probabilitye; ., of an occupied site is the probability that all individuals die
betweent =t=andt and that no new individuals immigrate to the site, PE;, = 0] n
P[G;, =0]:
€= —w)lit-e7?.
As a result,extinction rates differ among sites dependent upon local abundanog and a
covariates.om ory. More generally, metapopulation and colonization/extinadiymamics arise
from local demographyat the individual leve{Ovaskainen and Hanski 2004yoceseghat
cannot readily baccommodateth typical abundance accupancy models that do not

incorporate mechanisie.g., survival and recruitmergxplicitly.
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150  Observation process
151 The demographic parameters and the true underlying abundigncannottypically be
152 observediirectly. Instead, data are collected By} at each locationin each yeat according to
153  one of two samplingrocesses: Igounts of individuals (Royle 2004y 2) detection
154  nondetectiorofat least one individual dhe speciesRoyle and Nichol2003).In both cases,
155  sites are visited-within each year B> 1 occasions over a timeframe during which the
156  populationjsassumed to belosed (i.e., abundance is constavii note that if detection
157  probabilities are the same across all sites, then only a subset of sites need to be sampled
158  repeatedly(k; ='1). Count data are collectdry enumeratin@ll individuals encountered during
159  afixed sunveytime intervalwhile detectionnondetection (occupancgptaare collected by
160  recordingsimply whether or notat least one individual ofhe species was detectgdount and
161  detectionnondetectiordatacan be collected through point counts, transect walks, or other
162  techniquegMacKenzie et al. 20Q6Rroyle and Dorazio 2008). The key feature of both data types
163 s that thesnumber of individuals countegl, ., at a sitg in yeart during sampling replicateor
164 the obseryved occupancy status of a itgy, is subject to incomplete detectiorhat is, not
165  every individual is detected when collecting count data, suclthat< N; .. Similarly, a
166  species that is-preseat a sitg could incorrectly be recorded as absémione of theV; ,
167  individuals aredetectedduring sampling replicate It is therefore necessary to model the
168  relationship of the data to the true (unobservable) abundance or occupancyrstatusase of
169  the count data; .. = 0,1,2, ..., we model the observatigrocess as:

Njxe ~ Bin (N]t ,p)
170  wherep isfthe detection probability @ach individual at each survey evént 1,2, ..., K (Royle
171 2004) In'the case of theéetectioanondetection data, we assume that the probability of recording
172 adetectiol(y; ., = 1) is the probability that at Isaone individual is observed. Thus the
173  detection process for tlietectionnondetectiordata can be expressed(B®yleand Nichols
174 2003 Rossman et a2016):
175 Ytk ~ Bern (1 — (1 —p)Vit).
176  In this basic modethe detection probability of individualg)(is assumed to be equatrcss the
177  count and detection-nondetectidata(although we relax this assumption during simulations
178  below).When detection is equal across survey typsseated ampling of sites with detectien
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nondetection data is not necessary becpuse be infered from the count data alone. Thus, our
modeling framework could be particularly useful for utilizimgtorical detectiomondetection

data or dataollected in remotéocations where repeatesdmpling is challenging or nonexistent
(assuming that data are collected under a randorea®gpling desigrabsencelata is recorded

and detection,probabilities are the same for both survey types; Dorazio 201djh the
demographic parameterstdction probabilitycan be indexed by site or yeaarincluderelevant
covariateghataccountor variation in the samplingrocess across time or spaga.implicit
assumption‘of'our modeling framework, and integrated analyses generally, is tipattitdausit

of sites isisimilar across survey types (but we demonstrate an example of how to reconcile data
from differentsspatial units in the application section). Additiondbth detection probability

and the demographic parameters are assumedeguaé forall individuals during each survey
event (i.e., no individuanheterogeneityand detection of every individual is independent (Royle
and Nichols 2003Royle 2004). This assumption could be modified to account for differences in
parameterwalues across life sta@@sother subgroups of the populatiginglata are available
(Zipkin et al92014b).

Simulationsstudy design

We-developed a series of simulations to assesstility of our combined count and
occupancy model to estimate demographic rates and population abundance and to determine
optimal sampling schemes in cases where paramaiiees vary across sampling locations (e.qg.,
accordingtocovariategnd/or sampling methodology (e.g., differences in detectiga)
examinedheaccuracyand precision of our model over a range of parameter values and
sampling protocols usingt leastl000simulated datasets for all scenarios aathber of
surveyed sited-or each analysisnd parameter combinatiowe generateden years ofatent
population.abundances individual sitegusing parameter valuspecific to each scenajjo
during which we assumed abundance changed according to the process described in the model
descriptionssection. Each of the sites was thenves/ed three times annuallyassuming
independence.and closure within intra-annual sampling events, according to edbet-ar
occupancybased protocdinumber of sites witl particularsampling protocovaried among
simulation scenarg). We then analyzed tlsenulated datavith the joint modelsinga
Bayesian analysiwith Markov chain MonteCarlo in the programs R and JAG3ummer
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2003) We specified vague priors for all paramet@ssy, A, p as well as apadditional
parameters specified belpwModel code and implementation details for the simulation studies
are provided irData S1

Accuracy andspr.ecision of the basic model

Wedeterminé the accuracy and precision of the basic model under a wide range of
parametervaltes and across a realistic range of possible count/occupancy site combinations. To
that end, we"geénerated datasets by randomly selecting parameter valué® flolilowing
distributions:A ~ U(0.5,3), w ~ U(0,1), y ~ U(0,2.5), p ~ U(0,1). These distributions cover
the completeqparameter space for survival and detection probabilities and represent conditions
for which site abundance and occupancy is likely to vary amorgyBiteexample, we set an
upper bound of 2.5 individuals fer(expected number of recruits/immigrants gained annually
per site) becausste-specific population abundance becomes very high — leadimg to
unoccupied sites when the expected number of indwals gained to sites is large such
situations gseallection of detectiemondetection data would be uninformatitarameters were
drawn independently tguarante@amplecoverage across the specified parameter space. We
examinedhe, benefits ofombining eithel0, 25, 750r 190 sites with detectienondetection
data to either 5, 15, or 30 sites with count datai.each count/occupancy site combingtive
generated 5000atasets tensure thaa sufficiently widerange of possible parameter

combinationsvas included in the results

Determiningreptimal sampling schemes

Combining count and detection-nondetectiatawill beparticularlyuseful in cases
where it is,difficult to obtairsufficient data across a covariate space using a single sampling
protocol.Rer.this simulation, & assuméhat a covariate influences the survival probability of
individuals,acress spatial locatioas follows:

logit(a)j) = Bo + By - covariate;.

For simplicity;»we assume thAf is positive and thus survival increases as the value of the
covariate increase$Ve envision a scenario where either deteetiondetectioror count data
could be added to existing data to improvecision in parameter estimates and examined four

suchcase: 1) both count andetectionnondetectiordata areavailableover the corplete range
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of the covariate«{3 < covariate; < 3); 2) count datare collected at sampling locations over a
range where survival, and thus abundance, is High fovariate; < 3) anddetection

nondetectiordata are collected at locations where swaliand thus abundance, is low3( <
covariatey < 1); 3) count data areollectedat locations with average survival probabilities
(—1 < covariate; < 1) anddetectionnondetectiordata arecollectedat locations where
survivalis either-high {ovariate; > 1) or low (covariate; < —1); and 4) both count and
detectim-nondetectiomlata are available over a subset of the range of the covariate, where
survivalis high'(l < covariate; < 3). We generated 100fatasets for each of these scenarios
using the follewing parameter valués= 4, g, = 0.5, 5, = 0.7,y = 2, p = 0.5 and assumed

a fixed number of 40 sites with count data a6d with detectiornnondetectiordata.

Combining data sources when detection probabilities differ

We have so far considered scenavib®ere detection probabilitiegeequal for
individualsaeressoth count- and occupandyased sampling schemes. The degree to which this
assumption issreasonable depends on individual survey protocols. For example, the detection
probability.of individuals may differ by surveys because of the duration of the collecticgspro
the area surveyed, or theanner in which individuals are detected (e.g., audial versus visual
surveys). The best approach for dealing with differences in detection is to inekexknt
covariatefMacKenzie et al2006; Royle and Dorazio 2008). However, in some situations the
baseline deteetiofor individualsmay be different enough thaach surveyyperequires
independent.estimation of the detection probability. We explored both scenarios wheoelth
be true: 1) detection probabiliof individuals is higher in the count dagg {,,,, = 0.5) than in
the detectiornondetectiorata p,.. = 0.3); and 2) detection probability is lower in the count
data p.oune==-0.3) than in thedetectionnondetectiordata p,.. = 0.5). We also examined the
situation in.which detection probability differs between sampling protocols maagectly
modeled assuming that they are equivale@l, p.oun: = Pocc)- We generated 100Qathsets for
each of these,scenariasross a range of count (5, 15, 30) and occupancy (25, 75, 150) site

combinations using the following demographic parameter valuesl, v = 0.7, y = 1.5.

Simulation study results
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271 Simulation results indicate thatir model combining unmarked data types can provide
272 accurate estimates of demographic rates, population abundance, and individuaindetecti

273  probabilities across the comprehensive range of parameter values that we exgiguresi 1-

274  3). Precision in parameter estimates varied by the amount of data included in amatlyses

275  surprisinglygincreased with additional dékagure 1; Appendix S1, which shows results from
276  the basic simulation with only five years of data). Count data undoubtedly inform paramete
277  valuesmore“efficiently thardetectioanondetection data (i.e., Figure 1, comparison across panel
278  colors). However, thaddtion of a smallnumber of occupancy sites (e.g., 25) to existing count
279  dataimproved precision of parameters and abundastenates in all scenariosspecially when
280 the amount of+available count data was relatively (Bigure 1 grey and blue panel8ppendix

281  S1).

282 Combining count and detection-nondetectiata was especially usefalsimulatiors

283  with acovariate on survivaparticularly if a single data type was not available throughout the
284  complete range of the covariate (Figure 2; Appendix S@3urateand precisestimation of a

285  covariate effeet depends on whether the available data span the complete range of the covariate
286 value and notwon the data type, whether generated from count or occupancy protocols (Figure 2,
287  blue boxes.compared to red boxdd)ese results demonstratettti@e inclusion ofletection

288 nondetectiordatain addition tocount data (or count dataaddition todetectioanondetection

289 data) allows for estimates démographic rates and abundance in locations withdetgction

290 nondetection data while simultaneously improving precisioastimates of the covariate effect
291 in areas with"egunt data.

292 Ourmedel produces accurate estimatedenfiographic rates and abundaagen in

293  cases where detection varies by the data collection method (Fidute ®oxes in light grey

294  panels; Appendix S3Yhis is true regardless of whether individual detection probability is

295  higher with.either count- or occupancy-based protoddisprecision of paameter estimates,

296  however, depends on the amount of available dateeasing the number of parameters requires
297  more datafer'comparable precision (Appendix S3 compared to FigurerIhis parameter

298 combination, ppulation gaingre underestimated while survival probabilities are overestimated
299  whenwe incorrectly assumiiat detection is equal across sampling methods when in fact it is
300 different (Figure 3red boxes in dark grey panefppendix S3. Our simulatiorresults indicate

301 that abundancesioverestimated (Figuf® dark red boxes) when gtion in the detection-
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nondetectiordata is higher than that in the count data and underestimated in the reverse situation
(Figure3, light red boxes), likely due to the inclusionnedreoccupancy than count sites. Thus,
when detection is underestimated at the majority of sites, abundance is naturally overestimated
(with the reversge also being trirRoyle and Nichols 2003).he degree to whicharameter

biases causedy mis-specifying the detectigprocessare significant willdepend on the

magnitude,of the differences in detection probabilities among sampling protoddleeamelative
amount-ofsites'surveyetbr each data typédditional simulations across a wider parameter

space wuldallow for a more nuanced understanding of the consequences of mis-specifying the

detection process.

Applicationtoempirical data

We applied our modeling framework to survey data collected on an expanding population
of barred owls in a 1,692 Kmegion in the central Oregon Coast Ranges, over a period of two
decades. Barred owls were historically limited to eastern North American forests, but their range
has expandediinto the Pacific Northwest over the last centtiryocal densities increasing
dramatically over the last decade (Dugger et al. 2016; Yackulic et al.. 2012 is
considerable interest in understanding the population dynamics of barred owls lnd¢hese
potential.negative impact on threatened northern spotted 8unibs dccidentalis caurina) and
other native wildlife (Holm et al. 2018Viens et al. 2014yackulic et al. 2014)Detection
nondetection data on barred owls were collected incidentally wagfotted owl surveys from
1995-2014«(Lint et al. 1999). Spotted owl survégllowed a standardized protocol (Lint et al.
1999) and were focused on 106 historical breeding territories (e.g., sites), whiatealv®.9
km? in sizé (Fig. 4a). During annual surveys of spotted owls, observers visited eachaite up t
eight times dung the breeding season (March — August) and additionally recorded whether
territorial barred owls (individuals or pairs) were detected.

A new.count-based survey protocol, targeting barred owls, was initiated in 2015 as part
of a broadersstudy to improve estimation of barred owl abundancexamihe the effects of
experimental removals on the population demography of northern spotted owls (Wiens et al.
2011,Diller et al. 2019. The experiment included locations where barred owls were either
removed (treahents, about a third of the study area) or not (controls), but for the purposes of
this study we restricted estimates to-peatment (2015) survey data collected on both areas,
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and post-treatment survey data on the control area only (i.e., to avoid confounding effects in our
analysis of barred owl removals in treatment ardds).barred owl surveys employed a standard
design in which a grid of 5 kithexagons were overlaid to include historical breeding territories

of spotted owls (Figure 4a). Eachtbése hexagonal sites wesarveyed up to three times during

the breeding.season. During each survey, observers used an amplified megaphone (Wildlife
Technologies, Manchester, N.H.) to broadcast digitally recorded barred owl etalalished

call poins‘thatprovided complete coverage of the giteterritorial pairs and single owls were
recorded.Barred owl individuals were assumed tpaseof a territorial pair when: (1) both

sexes were obserdavithin 400 m of each other dhe same visits; or (2) at least one adult was
observed withwyoung (Wiens et al. 2011).

While our simulation study focused on instances in whetiectioanondetection and
countdata come from spatially distinct sites, our modeling framework can also be used in cases
wherethe twodatatypesare collected in the same locations in different time perBitss can
be alternatively sampled usiegher occupancyor countbasedprotocols as long as thare
independentrand the basic assumptmurttined in the model descriptisection are meln the
caseof this'study we needed to standardize the data from the two survey methods in which sites
overlapped;.but where barred owls were sampled at different spatial scales (Figuiede) to
combine théistorical barred owtletectionnondetection data with the newer count data. To do
this, we reassigned each of the counts of territorial pairs detected within tHeh&xagonal
sites (collected during barred egpecific surveys in 2015 and 2016) to the larger spotted owl
suwvey sites'(ite., historical territories) using the GPS coordinates of each pair observation. As a
result, the 106-Sites used for our analysis were defined according to the historical survey design,
from which most of the data originate, and the fireelition count data were reconfigured to
fit within that framework. Within our model, we allowed detection probabilities to differ
between sampling schemes because of the very different spatial scales and protocols used for the
surveys. In.the/case of the apancy data, we assumed that detection of individpgls)(was
constant aeross sites and years as data were all collgdiednedobserversn the early
morning However, we specified the detection process for the countggia ) usingthe
proportion of the total area of the historical $iteat was surveyed during replicaten yeart,

area; ., as an offsewith thecloglog link function:

cloglog(peount jt) = o +1og (area; ).
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Thus, if a given count-based sampling event only covered half the area of the larger occupancy
site, we recorded 0.5 for tléfseton detection. Similarlyif a hexagon count site overlapped

more than one historical occupancy site, only the proportion of that hexagon that ovett@pped t
focal occupancy site was usddhe cloglog link function is designed for encounter-
nonencounter.data given a Poisson intensity function, which arises in our model due tora Poiss
recruitment process and a Bernoulli survival process. It has the useful ptbpérgiven low
areaswept,"a‘doublig of areaswept results in a doubling of encounter probabitityd was
consequently“a'natural choice for our analysis.

We assumed that the barred owl population was closed to changes within years but tha
local sitelevelrabundance could change annually through survival and gains. We included a
covariate on the annual apparent survival probability of indiviceeded orareaof older
(approx.>80 yr).coniferous forest patches (Davis et al. 2015) within eacliusiteg the same
approach as. in the simulation stiidyhis covariate wasalculated annuallgnd,due to low
levels of recenolderforest disturbance and the slow rate of forest successibm the study’s
time framewas fairly constant across most sitésally, recentvidence suggests that sigvel
gainsin abundancenay be dependent on the total regional populationesizearred owls are
exceptionally good at colonizing new sites (Yackulic et al. 2012, 2014). As such, we included a
covariate-on the gains parameterto account for a potential effect of regional population size:

log(yy) = 8o+ 8 " Ney + 8, - NZy
whereN,_,is the average abundance of all sites in yean, which we normalized by
subtracting1 (a value that was close to the averagsmitiic abundance over the two decades
of the study)»We standardized all of the covariate data (e.g., forest cover) aneédittadyz
model using the programs R and JAGS, assuming uninformative prior distributions fof each o
the parameters,(see AppendixfB8dmodel code and implementation details).

Modelkresultshow that the barred owl population grew substantially over the course of
the survey.period from aean sitespecificvalueof 0.13(95% CI: 0.06, 0.49) territorial owls
(individualsrandpairs)in 1995 to 7.§95% CI: [426, 11.53]) in 201Gsee Table E1 for a
complete list'of parameter estimateBis increase can be largely attributed to a positive density
dependent effect on population gaipgFigure 4b). We estimated a significant posteffect of
mean regional abundance on the expected numberribrial owk gained to sites annually
(meand;: 0.59; 95% CI: [0.41,0.78]) that did not decline when abundance was high §mean

This article is protected by copyright. All rights reserved



394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424

0.02; 95% CiI: [-0.06, 0.02]; Figure 4b), suggesting that the population has not yet saturated the
study region. Annual survival probabilities were quite high (average range: 0.8G0®3)
increased with thamount of older coniferousrestcoveravailable within a site (Figure 4c).
The intercepts for thg andw parametersvere negatively correlatedd(55), although this is not
unexpected.as survival and gains are the only processes by which abundance can change within
the model structure.dimates of annual survival, and relationships with forest conditions, were
strikingly similar to those derived from more intensive (and costly) studies ofmzaticed
individuals conducted in the region (Wiens et al. 20@¥H.used the parameter estinsaéad our
derived equations to calculate annual colonization and extinction probalfHitgese 4d).
Colonizatiensor. the probability that an unoccupied site becomes occupied, incteasidy s
over the time frame of the survey from a low of 0.14 (95% CI: [0.10, 0.17]) in 1996 to a high of
0.90 (95% CI: [0.81, 0.96]) in 2016. Site extinction probabilities were fairly low throughout the
two decade period, averaging 0.07 in 1996 (95% CI: [0.00])(ahd declining to practically
zero by 2016. Not surprisingly, barred owl detection probabilities were much higher during the
count surveystas compared to the deteationdetection surveys and increased with the area
sampled(Figure 4e).
Discussion

Estimatingdemographicates,population abundance, and trefsls universabbjective
in ecology ands necessary to inform population management. Capéoagture dataf marked
individuals.is the gold standabecause suctiata allow for detailed demographic analyses.
However,manypressingjuestions related to populatidgnamic aredifficult to answeusing
capture-recapture data, particularly in the case of invasions that are ongoing atrbady
occurred and because capturecapture data tend to be spatially limit&€dccessive sumys of
spatially replicated countnd occurrencesan provide similar, although ledstailed
information.on population abundance, demograpdties and/or colonization and extinction
dynamics facKenzie et al. 200Royle 2004, Dail and Madsen 201Cpmbining count and
detectionnendetectioratainto a single integrateshodelcanlead to anore accurate
understanding,of population demography and chaogesstimethan is possible with
independent analyses (Figure 1).

Integrated population models have typically focused on approaches to augptant c

recapturedata with other data typéSchaub and Abadi 2011; Zipkin and Saunders In Review).
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However,we show how combining only unmarkekta types can provide increased accuracy
and precision in estimates of population abundance and spatially varying demographic rates
even in cases where the sampling process leads to different detection probabilities among data
types.As with other integrated analyses, this is because the different data arecassa@rive

from the same underlying biological proces@orazio 2014)As a resultcombining the data in

a singlemodelleads taa more efficient analysis. In some cases, such asr barred owl

example, researchers may swifabm collectingone unmarkedata type to anothge.g., from
detectionnondetection to counwithin a specific study are@ur modeling approach prowd a
framework to includehe entire time series of dataa single analysis, regardless of this type of
change. Zipkimet al. (2014b) found that the length of the time series of data had a greater
contribution‘tosparameter precision than the number of sites surveyed in atstajged N
mixture model.'We anticipate a similar redolt thecombined detection-noetectioncount

model based on estimates from our simulation study (Figure 1, Appendioi&jgr time series
seem to lead to disproportionate parameter precision for a fixed number of tqithhgaevents.
Ourresultsfurthersuggest that a site with count data is approximately equivalent to three sites
with detection=nondetectiomiatain a model with no covariateget he exacinformation
tradeoffissdependent on variation in sitevel abundancand detection probabilities and will
naturallybe“€ase specific.

Studies of species distributions, abundances, and dynamics over broad spatial extents
often rely ‘'on eithedetection-nondetection data or counts of unmarked individuals. The potential
to combinesecount and detection-nondetection data into a unified analysis lays the foundation for
a number of:analysis possibilities, particularly in terms of survey design. Fopkexam
monitoring invasive species typically involvestectiornondetection surveys combined with
detailed count surveys at sites that are known to be occupiedniy such cases,tll not be
feasible to.conduct countés everylocation where the species is encountpsgdulations can
help determine/the optimal placement of count sites relatigetetionnondetection surveys.

In general,fesearchers may want to target ebaséd protocols at locations with high quality
habitat (i.e-;withcovariates in whickurvival and/or gaingreexpected to be higlgnd save less
intensive detection-nondetection protocols for locations in marginal habitatss@uwey
methodologies could provide high quality inferences as long as sites span the comgét# ra
covariate spacd-(gure 2).We envisiorthatfuture work couldnclude presencenly data in
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combination with other unmarked protocols (Dorazio 2014). This may be particulany fosef
monitoring emergingpecieswhere reports aletections (e.gof the salamander chytrid fungus
B. salamandrivorans) could then trigger clust@ount samples in nearby areAthough
presenceonly data are often associated with the analysis of historical and archival data sets, they
may also arise.in citizescience data $eor other survey protocols.

Population closure is not a reasonable assumption for some sampling protocols and
integratingsuchdata may involve addingiternativeobservation modsiincludingthose that
allow for false"positives, double counting, or species misidentification (Chamberfétlél,
Miller et al. 2014, Thorson et al. 2019ur results suggest that these effortsmawide
accurategarameter estimates if the detection process is modeteectly, but may still provide
useful,if somewhat biaseestimates otherwide.g., Figure 3)Parameteidentifiability and/or
accuracy can be a problem in analyses that estimate demographic rates from unmarked data
(Bellier et al. 2016Zipkin et al. 2014a). Although we did not have this issue in our application
of the modelAppendix S3, analyses usingomparativelysparser datasets may have difficulties
with convergence ddentifiability. Theincorporation ofauxiliary informationcanincrease the
accuracy andwprecision of parameter estimdesigh the use of informative prigidorris et al.
2015)or by.explicitlyintegratingavailabledemographic data into the modeling framework. This
may be particularly advantagedascases whe model assumpins are not strictly met (Bellier
et al. 2016)We anticipatea growing importance for studies that combine data from multiple
sampling protocols and thus encourage additiczsdarch regardingptimaldata collection and

analysis metheds on integratewdel structures.
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588  FigurelLegends

589  Figure 1. Boxplots summarizing the accuracy and precision of analyses with simulated data
590 under an array‘of sites surveyed using count- and occupancy-based protoeslaxis

591 indicates the number dfetectioanondetection sites for each simulation and the colored panels
592 indicate the number of count sit€&ach panel shows the medidhick line within boxes), 50%
593 quantiles (bogg, and+ 1.5 times the interquartile ran@@hiskers)for the medianestimated

594  value minusythe true value of parameters (top four panels) and abundance (bottonigranels)
595 5000 simulated datasets with random combinations of the true parameter Rahlaeseter

596 estimatessequal the true values where thgig equals zer(black lines).

597

598  Figure 2. Estimates of a covariate effect on survival urelaumber of sampling protocols. The
599 left panel shows the relationship between the covariate and survival. The ahpem@ls show
600 the estimatedintercepf{ = 0.5; middle) and slopef; = 0.7; right) uncder six scenarios: count
601 data only bluesboxey awailable across theholerange of the covariat() and onlywhere

602  survival is high(X2); a combination of count artetectionnondetectiordata(red boxe}y

603 available across the range of the covarix®)(from count data where survival is high and

604  detectionnondetectiordata where survival is lowké), from count data where survival is

605 average andetectioanondetectiordata where survival is low or higi%), and where both

606 count and.detection-nondetectidata arenly available where survival high (X6). Boxplots
607  show median,parameter estimates (thick line within boxes), 50% quantiles)eme + 1.5

608 times the interquartile rangehiskers) for 1000 simulated datasets. True parameter \aiees
609  shown with a thick black line.

610
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Figure 3. Accuracy and precision of paramet@tuesunder four scenaridsr 15 count and 75
detectionnondetectiorsites The first two(blue)assume data are modeled according to the data
generating process whetiedividual detectionprobabilityis higherin the counthan inthe
detectionnondetectiordata(X1) and detection is higher in tdetectioanondetectiorthan in the
count datdX2). Scenarios X3 and X#¢ed) model data generated in X1 and X2 using the
standard model, which assumes that detection probability is equal across both sampling
protocols.Blacklinesshow the true values of the data generation process. Boxplots show the
median (dark'lines), 50% quantiles (boxes), and + 1.5 timdatdrguartile rangéwhiskers)for

1000simulations

Figure 4. Study area and results frahme barred owl application: (a) Map of the study area in the
central OregonCoast Ranges, USA. The grey areas with black outlines degltigoree
territories ofnorthern spotted owls (i.e., detectinandetection sites) where barred owls were
detected incidentally during surveys of spotted owls from 1995 to 2014. Blue hexagons (i.e.,
count sites)uindicate where barred aplecificcountsurveys were completed i 25 and 2016.
Blue dots demonstrate the GPS locations of barred owl counts that we used iningconcil
detections«ef territorial pairs between the different spatial scales of the survefb3iEegyected
site-specifie'gains, v, relative to average regional abundance in the previous year; (c) Apparent
annual survival, o, relative to the amountof older growthforestcover withinsites (d) Mean
annual colenizationg, grey circles) and extinctior ,(black diamonds) probabilities over the
study peried"shown with 95% (Jle) Detection probabilities for th@ent (left panel) and
detectionnondetection (right panel) data. In panels b, ¢, and e black lines endieain values,
plotted with 50% CI (dark grey region) and 95% CI (light grey regiorpalrel e, the boxplot

for Pocc Shows the mean (black lines in box), 50% CI (box), and 95% CI (whiskers).
Supportinglnfor mation

Additional. Supporting Information may be found in the online version of this article:
Appendix SiyBasic model run with five years of data

Appendix S2. Complete simulation results for the covariate model

Appendix S3. Complete simulation results for the model with different detection probabilities

for count anddetectioanondetection data
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641  Appendix $S4. Barred owl application implementation details, model code, and parameter
642 estimates

643 Data Sl1. R Code for the combined count ametectioanondetectiormodel
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