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ABSTRACT 44 

Evidence of climate change-driven shifts in plant and animal phenology have raised concerns 45 

that certain trophic interactions may be increasingly mismatched in time, resulting in declines in 46 

reproductive success. Given the constraints imposed by extreme seasonality at high latitudes and 47 

the rapid shifts in phenology seen in the Arctic, we would also expect Antarctic species to be 48 
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highly vulnerable to climate change-driven phenological mismatches with their environment. 49 

However, few studies have assessed the impacts of phenological change in Antarctica. Using the 50 

largest database of phytoplankton phenology, sea-ice phenology, and Adélie penguin breeding 51 

phenology and breeding success assembled to date, we find that while a temporal match between 52 

penguin breeding phenology and optimal environmental conditions sets an upper limit on 53 

breeding success, only a weak relationship to the mean exists. Despite previous work suggesting 54 

that divergent trends in Adélie penguin breeding phenology are apparent across the Antarctic 55 

continent, we find no such trends. Furthermore, we find no trend in the magnitude of 56 

phenological mismatch, suggesting that mismatch is driven by interannual variability in 57 

environmental conditions rather than climate change-driven trends, as observed in other systems. 58 

We propose several criteria necessary for a species to experience a strong climate change-driven 59 

phenological mismatch, of which several may be violated by this system. 60 

Keywords: Antarctica; climate change; penguin; phenological mismatch; phenology; Pygoscelis 61 

adeliae 62 

 63 

 64 

INTRODUCTION  65 

The phenological response of biological systems to climate change has received much attention 66 

in the scientific literature in recent years (Edwards and Richardson 2004, Parmesan 2007). Of 67 

particular concern is the role that climate change may play in altering synchrony among trophic 68 

levels, a process structured over millennia of coexistence. Differential rates of change in the 69 

phenology of consumers and resources may create a scenario in which peak energy requirements 70 

of an organism become temporally uncoupled with peak resource availability. This ‘phenological 71 

mismatch’ may result in decreased fitness (Cushing 1974, Visser and Both 2005) and have long-72 

term repercussions for population dynamics (Ludwig et al. 2006, Miller -Rushing et al. 2010). 73 

Impacts associated with phenological mismatch have been observed in a variety of systems 74 

(Kerby et al. 2012 and references therein) in a diverse range of taxa including birds (Both et al. 75 

2009, Visser et al. 2012), invertebrates (Winder and Schindler 2004, Both et al. 2009), fish 76 

(Durant et al. 2005), and mammals (Post and Forchhammer 2008). 77 

The consequences of phenological mismatch may be exacerbated in high latitude systems by 78 

the strong seasonality of the environment, which often necessitates close synchrony among 79 
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ecological components. At high latitudes a narrow window for reproduction and growth (driven 80 

by seasonality) means that even a slight temporal uncoupling between consumers and resources 81 

may be detrimental to survival and/or reproductive success (e.g., Ji et al. 2013). While latitude 82 

per se explains only a small degree of variation in phenological shifts among species, these shifts 83 

are generally larger in magnitude at high latitudes (Parmesan 2007). The elevated prevalence of 84 

migratory species at high latitudes, also increases the risk of mismatch (Both 2010, Jones and 85 

Cresswell 2010). A number of studies have demonstrated the importance of phenological 86 

coupling for reproductive success in the Arctic (Post and Forchhammer 2008, Burthe et al. 2012, 87 

McKinnon et al. 2012, Clausen and Clausen 2013, Kerby and Post 2013, Doiron et al. 2015). In 88 

Antarctica, while the potential for climate-change driven phenological mismatch has generated 89 

concern (Forcada and Trathan 2006), few studies have directly addressed this issue. 90 

Within the limited body of literature focused on the phenology of Antarctic species, much 91 

attention has been paid to the Adélie penguin (Pygoscelis adeliae), a well-studied, circumpolar 92 

species that is known to be highly sensitive to anomalous weather and long-term changes in 93 

climate (reviewed in Ainley 2002, Ainley et al. 2010). Adélie penguins are colonially breeding 94 

seabirds with strong breeding synchrony within a breeding colony (Ainley 2002). Diet of this 95 

species during spring and summer is dominated by krill (Euphausia spp.), Antarctic silverfish 96 

(Pleuragramma antarctica), and several other species of fish, the relative proportions of which 97 

vary by region and year (Ainley 2002, Trathan and Ballard 2013). Both the spatio-temporal 98 

availability and the quality of these prey may be affected by the availability of phytoplankton, 99 

which is influenced by the spring phytoplankton bloom (Atkinson et al. 2008, Saba et al. 2014), 100 

though seasonal and interannual changes in phytoplankton community composition add 101 

complexity to that relationship (cf Smith et al. 2014, Ainley et al. 2015). Fish prey species 102 

commonly eat krill and other crustaceans (La Mesa and Eastman 2012), suggesting that the 103 

distribution of fish eaten by penguins may also be related to that of krill  (Ainley et al. 1991). 104 

Adélie penguin population trends in the Antarctic Peninsula region of West Antarctica have been 105 

previously associated with Chlorophyll a, a proxy for phytoplankton bloom magnitude (Lynch et 106 

al. 2012b). Adélie penguin colony locations in East Antarctica have also been associated with 107 

phytoplankton blooms located in coastal polynyas, within which Arrigo and van Dijken (2003) 108 

demonstrate an association between colony size and phytoplankton bloom magnitude. The 109 

timing of phytoplankton blooms may thus influence the availability and quality of food 110 
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resources. The timing of sea-ice break-out near breeding grounds can affect penguin access to 111 

prey, as too much sea-ice may obstruct access to suitable foraging habitat (Ainley 2002, 112 

Olmastroni et al. 2004, Massom et al. 2006, Dugger et al. 2014, Emmerson et al. 2015, Wilson et 113 

al. 2016) and too little provides inadequate prey habitat (Atkinson et al. 2008, La Mesa and 114 

Eastman 2012, Sailley et al. 2013). Both prey availability and prey quality likely influence 115 

Adélie penguin reproductive success (Ainley 2002, Chapman et al. 2011, Whitehead et al. 2015, 116 

Jennings et al. 2016). 117 

Previous studies focusing on patterns in penguin breeding phenology have focused on the 118 

possible role that climate change may play in any observed trends (e.g., Barbraud and 119 

Weimerskirch 2006, Hinke et al. 2012, Lynch et al. 2012a). Barbraud and Weimerskirch (2006) 120 

found a delay (later breeding) in Adélie penguin reproductive phenology in the eastern sector of 121 

East Antarctica, which they attributed to changes in sea-ice extent (defined as distance of large 122 

scale ice edge from the colony during spring). These findings contrast with trends found in most 123 

other organisms, particularly those at high latitudes (Parmesan 2007). Later work, however, 124 

indicated that Adélie penguin breeding phenology was, in fact, either not changing (Emmerson et 125 

al. 2011; western sector of East Antarctica) or advancing (earlier breeding) over time (Lynch et 126 

al. 2012a; Antarctic Peninsula). These disparate trends were attributed to spatial variation in 127 

climate change in Antarctica, namely changing wind patterns contributing to rapid warming and 128 

declining winter sea-ice coverage on the Antarctic Peninsula and increasing sea-ice coverage in 129 

the East Antarctic and Ross Sea sectors of the Southern Ocean (Stammerjohn et al. 2008, 2012, 130 

Mayewski et al. 2009, Holland and Kwok 2012). Here we assess the impact of phenological 131 

mismatch on Adélie penguin reproductive success using data spanning a significant portion of 132 

the global distribution of this species. This provides a unique circumpolar comparison between 133 

penguin populations currently experiencing divergent environmental responses to climate change 134 

across Antarctica (i.e. decreasing populations on the northern Antarctic Peninsula [Lynch et al. 135 

2012b, Lynch and LaRue 2014], but increasing elsewhere in East and West Antarctica [Ainley et 136 

al. 2010, Lynch and LaRue 2014, Lyver et al. 2014, Southwell et al. 2015]). 137 

We assembled a circumpolar database of Adélie penguin breeding phenology and satellite-138 

derived data on the timing of phytoplankton blooms and sea-ice retreat. Our aim was to address 139 

the following questions: (1) is there evidence for a long-term shift in the timing of key 140 

phenological events in the Antarctic marine ecosystem?; (2) is there evidence that a phenological 141 
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mismatch with environmental conditions causes a decrease in Adélie penguin breeding success 142 

(the match-mismatch hypothesis)?; and (3) does the circumpolar comparison of phenological 143 

mismatch reveal contrasting impacts of climate change around the Antarctic continent? 144 

 145 

METHODS  146 

Description of data 147 

The penguin reproductive cycle involves several key events, including arrival at the nest site, 148 

initiation of courtship behavior, egg laying, and subsequent hatching of those eggs to produce 149 

chicks. For our analysis, we used the mean clutch initiation date (CID – date the first egg was 150 

laid in the nest) in each year to characterize the timing of breeding in each of the following 151 

populations (see Appendix S1 for details): Admiralty Bay (62.21°S, 58.42°W) and Humble 152 

Island (64.77°S, 64.05°W) on the northern Antarctic Peninsula; Cape Crozier (77.45°S, 153 

169.20°E), Cape Bird (77.22°S, 166.43°E), and Cape Royds (78.55°S, 166.17°E) in the Ross Sea 154 

sector of Antarctica; and Point Géologie (67.17°S, 140.00°E)  and Béchervaise Island (67.58°S, 155 

62.82°E) in the Indian Ocean sector of Antarctica (Fig. 1). Data collection methods for breeding 156 

phenology and breeding success were similar across sites (Appendix S1). Periods of data 157 

collection differed among sites, ranging from 13 years (Humble Island) to 34 years (Point 158 

Géologie) (see Appendix S1 for details). Breeding phenology data (CID) were accompanied by 159 

data on breeding success, defined here as the number of chicks to reach the crèche stage (pre-160 

fledging but chicks independent of parents) per breeding pair. Breeding success data were not 161 

available for all years in which phenology data were available (Appendix S1). 162 

To understand how both the biological and physical Southern Ocean environments might 163 

influence the breeding phenology and success of Adélie penguins, we also assembled data on 164 

phytoplankton-bloom onset and sea-ice retreat (the decrease of sea-ice during spring-summer). 165 

Together, these metrics represent the principle measures by which we might define the arrival of 166 

spring in this system. Phytoplankton-bloom timing and sea-ice phenology were thought to 167 

impact penguin resource availability/quality and the accessibility to these resources, respectively 168 

(see above). 169 

As reliable, continuous, regional-scale data on phytoplankton-bloom phenology (ocean color) 170 

are not available prior to 1997, we used sea-ice adjusted light as a proxy for the spring 171 

phytoplankton-bloom onset (microwave data to assess sea-ice cover are available since 1979). 172 
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This is calculated by taking the Julian day in which a particular light threshold is reached within 173 

a 250 km radius of the colony of interest, and applying a correction for light blocked by local 174 

sea-ice (see Li et al. 2016). Previous work has shown this metric to be highly correlated with 175 

phytoplankton-bloom phenology, as deduced from ocean color, near penguin breeding colonies 176 

(Li et al. 2016). We calculated bloom onset using a 250 km radius, which incorporates the size of 177 

most coastal polynyas (Arrigo and van Dijken 2003, Arrigo et al. 2015) and the Adélie penguin 178 

foraging areas, as we were interested in a regional indicator of bloom onset. While foraging 179 

behavior, including foraging trip distance, differs among sites and years (Ballance et al. 2009), 180 

100-200 km is typically the maximum range at which Adélie penguins forage from breeding 181 

colonies during the breeding season (Ainley 2002, Lyver et al. 2011, Oliver et al. 2013, 182 

Emmerson et al. 2015). We followed methodology outlined by Li et al. (2016) and used a 10-183 

hour light threshold (see Appendix S1 for details). Sea-ice observations for the correction were 184 

obtained from the satellite-based Nimbus 7, SMMR, and SSM/I-SSMIS passive microwave 185 

sensors from 1979-2013, processed by the NASA Team algorithm (Cavalieri et al. 1995) at 25 186 

km resolution via the National Snow and Ice Data Center (Cavalieri et al. 1996). 187 

The date of sea-ice retreat around each penguin breeding site was calculated using the 188 

aforementioned sea-ice data following the approach of Stammerjohn et al. (2012) (Appendix S1). 189 

Date of sea-ice retreat was defined as the first day in which the average sea-ice concentration 190 

within a 250 km radius of the breeding site fell below 15%. 191 

Phytoplankton-bloom phenology and sea-ice retreat were used to calculate a ‘Bloom 192 

Mismatch Index’ and ‘Sea-ice Mismatch Index’ to represent the magnitude of the phenological 193 

mismatch between Adélie penguins and biological (timing of bloom onset) and physical (timing 194 

of sea-ice retreat) oceanographic conditions, respectively. The Bloom Mismatch Index was 195 

defined as the standardized difference (see Equation 1 below) between penguin CID and the 196 

phytoplankton-bloom onset at each particular site in a given breeding season (during the austral 197 

summer). The Sea-ice Mismatch Index was likewise defined as the standardized difference 198 

between penguin CID and the date of sea-ice retreat. Positive (negative) values for the mismatch 199 

indices represent a clutch initiation date that is later (earlier) than the long-term average relative 200 

to the phenology of the environment. A mismatch index of zero represents no difference from 201 

mean mismatch, but does not imply an optimal degree of synchrony (Reed et al. 2013). The 202 

timing of the physical and biological environments are intrinsically linked (i.e. non-zero 203 
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covariance) though the correlation between the Bloom Mismatch Index and Sea-ice Mismatch 204 

Index was relatively weak (Pearson’s correlation coefficient = 0.62), prompting the inclusion of 205 

both variables in our analysis. We assumed the importance of bloom phenology and sea-ice 206 

phenology lies in its relationship to breeding phenology. For this reason, we included Bloom 207 

Mismatch Index and Sea-ice Mismatch Index rather than phytoplankton-bloom onset and sea-ice 208 

retreat in our analysis. 209 

CID, breeding success, Bloom Mismatch Index, and Sea-ice Mismatch Index (each 210 

represented as ���) were normalized across years (�) and within site (�), using the mean and 211 

standard deviation at each site,

 

 to create a standardized variable (S) that allows for more 212 

meaningful inter-site comparisons: 213 ��� =
��� − �̅���(��)

 
(1) 

Estimating response of breeding success to phenology and environment 214 

The impact of 1) mismatch with the phytoplankton-bloom, 2) mismatch with sea-ice retreat, and 215 

3) penguin breeding phenology on Adélie penguin breeding success were modeled using a 216 

quantile regression approach (Koenker and Bassett 1978). While originally developed for 217 

econometrics, quantile regression has seen increased use in the field of ecology in recent years 218 

(Sankaran et al. 2005, Fujita et al. 2013). Rather than estimating the rate of change in the mean 219 

of the response variable distribution as a function of the predictor variables (as in traditional 220 

regression), quantile regression estimates the rate of change in a particular quantile of the 221 

response variable distribution (Cade and Noon 2003). This holds particular utility for complex 222 

relationships in which multiple factors are thought to control or limit a response variable, as is 223 

the case with penguin reproductive success. In this way, we sought to determine whether 224 

phenological and environmental factors were setting an upper limit on breeding success. 225 

An 85th quantile regression was implemented in a Bayesian framework (see Yu and Moyeed 226 

2001) with the ‘bayesQR’ package (Benoit et al. 2014) in the R statistical environment (R 227 

Development Core Team 2016). Appendix S2 provides a brief overview of interpreting results 228 

derived from Bayesian analyses, but more details can be found in Gelman and Hill (2006). We 229 

used the 85th quantile as it is near the upper boundary of breeding success and approximately one 230 

standard deviation away from the mean. We used a quadratic polynomial function to model the 231 

effect of phenological and environmental predictor variables on penguin breeding success, as we 232 
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hypothesized the response variable would be maximized at a particular set of parameters. 233 

Standardized breeding success � was modeled as:  234 

 � = � + �1 ∗ � + �2 ∗ �2 + � (2) 

where � is the predictor variable and the error term � is distributed such that the 85th

 241 

 quantile is 235 

zero. Data from all years and sites were used to fit the model. Uninformative normal priors were 236 

used for �, �1, and �2. Inferences were derived from 10,000 samples drawn following a ‘burn-in’ 237 

period of 40,000 draws using 3 chains. Model convergence was assessed through a visual 238 

analysis of the posterior chains, in addition to the use of the Gelman-Rubin convergence 239 

diagnostic (Brooks and Gelman 1998). All models unambiguously converged. 240 

Statistical analysis of trends in phenology and Mismatch Index 242 

 

Temporal trends in the Bloom Mismatch Index, Sea-ice Mismatch Index, and penguin breeding 243 

phenology were modeled individually using a hierarchical Bayesian approach, which allowed us 244 

to treat missing data in times series as latent states to be sampled and allowed us to better assess 245 

parameter estimate uncertainty (Gelman and Hill 2006). Each response variable (� – Bloom 246 

Mismatch, Sea-ice Mismatch, and breeding phenology) was modeled as normally distributed 247 

with a mean ��� that is a linear function of year (�) with location (�)-specific slope and intercept. 248 

The coefficients of the linear model for ��� were themselves modeled as normally distributed. 249 ���~�(��� ,��2) ���  =  �� + �� ∗ ����� ��~�(�� ,��2) ��~�(��,��2) 

(3) 

The precision (1/��2) was given an uninformative gamma prior. The coefficients for mean 250 

intercept (��) and slope (��) were given uninformative normal priors, and the associated 251 

precisions (1/��2 and 1/��2) given uninformative gamma priors (Appendix S1). Models were 252 

fit ted using the R package ‘R2jags’ (Su and Yajima 2015), to interface with JAGS (Plummer 253 

2003) in the R statistical environment (R Development Core Team 2016). Inferences were 254 

derived from 50,000 samples drawn following a ‘burn-in’ period of 1,900,000 draws using 3 255 

chains and a thinning rate of 2. Model convergence was assessed through a visual analysis of the 256 

posterior chains, in addition to the use of the Gelman-Rubin convergence diagnostic (Brooks and 257 
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Gelman 1998). All models unambiguously converged. For each variable of interest, the 258 

differences in � (slope) parameter estimates between each pair of sites were calculated for each 259 

iteration of the Markov Chain Monte Carlo. Posterior distributions of these differences were then 260 

analyzed to investigate whether trends differed among sites. 261 

 262 

RESULTS 263 

The Bloom Mismatch Index, Sea-ice Mismatch Index, and penguin breeding phenology showed 264 

a robust relationship with the upper limit (85th

With the exception of Humble Island, we found little evidence of a temporal trend in either 271 

Bloom Mismatch Index or Sea-ice Mismatch Index (Fig. 1, Fig. 3, Appendix S2). At all sites, the 272 

estimated rates of change in the mismatch indices were substantially smaller than the magnitude 273 

of interannual variability. Even where trends were greatest (i.e., Humble Island), the estimated 274 

rates of change for the Bloom Mismatch and Sea-ice Mismatch Indices were small compared to 275 

their interannual standard deviation. Interannual variation in the Bloom Mismatch and Sea-ice 276 

Mismatch indices appears to be driven predominantly by phytoplankton-bloom phenology and 277 

sea-ice phenology, respectively, rather than by breeding phenology. This is evidenced by: 1) 278 

larger interannual variation in both phytoplankton (�� = 10.9 days1T) and sea-ice phenology 279 

(�� = 15.7 days1T) compared to penguin breeding phenology (�� = 2.7 days

 quantile) of breeding success (Fig. 2) but 265 

explained little variation in the mean response (Appendix S2: Table S1). The degree of mismatch 266 

and breeding phenology each appear to set an upper limit for Adélie penguin breeding success 267 

but are poor absolute predictors of breeding success at any one point in time and space (Fig. 2). 268 

Breeding success was maximized in years with slightly earlier breeding phenology and near zero 269 

to negative Bloom Mismatch Index and Sea-ice Mismatch Index (Fig. 2, Appendix S2). 270 

We also found large inter-annual variations but no robust temporal trends in Adélie penguin 286 

breeding phenology at all seven breeding locations (Fig. 1, Fig. 3). Despite previous suggestions 287 

of an east-west dichotomy in breeding phenology (through comparison of Barbraud and 288 

); 2) high degrees of 280 

correlation between both mismatch indices and their associated non-penguin phenological 281 

components (Pearson’s correlation coefficients = -0.97, -0.98 for Bloom and Sea-ice 282 

respectively); and 3) the weak relationship between penguin breeding phenology and both 283 

phytoplankton-bloom phenology (Pearson’s correlation coefficient = 0.23) and sea-ice 284 

phenology (Pearson’s correlation coefficient = 0.19). 285 A
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Weimerskirch [2006] with Lynch et al. [2012a]), resulting from the spatially heterogeneous 289 

impacts of climate change in Antarctica, we found no difference in phenology among 290 

sites/regions (Appendix S2). 291 

 292 

DISCUSSION 293 

In contrast to our initial expectations, and despite contrasting impacts of climate change in 294 

Antarctica as a function of region, we found no evidence of a trend in Adélie penguin breeding 295 

phenology in any region. We found that while both breeding phenology and phenological 296 

mismatch set an upper limit on Adélie penguin breeding success neither had a strong relationship 297 

to the mean. The magnitude of phenological mismatch has not changed over the last several 298 

decades in this species. We found that phenological mismatch is driven by large interannual and 299 

spatially localized variability (i.e., Ainley 2002, Massom et al. 2006, Emmerson and Southwell 300 

2008, Wilson et al. 2016), rather than the climate change-driven environmental trends found in a 301 

number of other systems (Kerby et al. 2012 and references therein). We propose several criteria 302 

that may be necessary for a strong climate change-driven phenological mismatch, of which 303 

several may be violated in the Southern Ocean system. 304 

 305 

Trends in phenology and consequences for breeding success 306 

While previous work showed contrasting responses in Adélie penguin breeding phenology 307 

between the Antarctic Peninsula and East Antarctica (Barbraud and Weimerskirch 2006, Lynch 308 

et al. 2012a), we found no trends in breeding phenology at any site. These results are particularly 309 

interesting, as updated and extended versions of the same time series used by Barbraud and 310 

Weimerskirch (2006) and Lynch et al. (2012a) are analyzed here (Appendix S1). We attribute the 311 

contrast with Lynch et al. (2012a) to the use of an extended time series and different 312 

methodology (considering population mean data and only one species) in this analysis (Appendix 313 

S3). We attribute the contrast with Barbraud and Weimerskirch (2006) to a differing period of 314 

analysis. Breeding phenology at Point Géologie is stable after the late 1970s (Barbraud and 315 

Weimerskirch 2006) with a distinct shift in the 1970s/1980s. We hypothesize this change-point 316 

may be due to a large-scale regime shift, rather than a continuous trend from the 1950s to the 317 

present (Jenouvrier et al. 2005; Appendix S3). We cannot assess the effect of such a regime shift 318 
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on penguin breeding phenology at other locations due to lack of phenological data during this 319 

time period. 320 

In accordance with previous studies on both the Adélie penguin (Ainley 2002, Smiley and 321 

Emmerson 2016) and closely-related gentoo penguin (Pygoscelis papua; Hinke et al. 2012), we 322 

find that breeding success is maximized when penguins breed earlier (Fig. 2a), relative to the site 323 

average, while later breeding results in a lower ceiling on breeding success. Several mechanisms 324 

may explain why the timing of breeding appears to set an upper limit on breeding success. 325 

Adélie penguins may breed earlier in years with favorable environmental conditions (e.g., less 326 

ice cover close to the colony), which could lead to higher breeding success. Later breeding may 327 

result in a shorter period of time in which to raise offspring to sufficient body condition before 328 

the molt period and winter migration, a pattern that may be especially true of highest latitude 329 

colonies (Ainley et al. 1983, Ainley 2002). Interspecific competition for prey resources among 330 

penguins, whales, and seals, may also play a role, but has been little studied and therefore likely 331 

under-appreciated (Ainley et al. 2007, Trathan et al. 2012; but see Trivelpiece et al. 2011). While 332 

Hinke et al. (2012) suggest declines in food availability in the northern Antarctic Peninsula 333 

region did not significantly contribute to a decrease in breeding success observed with delayed 334 

breeding (see also Sailley et al. 2013), previous work has demonstrated that the presence of 335 

competitors for prey resources may lead to an increase in foraging trip duration (which has been 336 

linked to decreased breeding success [Ainley et al. 2006, 2015, Emmerson and Southwell 2008, 337 

Emmerson et al. 2015, Wilson et al. 2016]) and prey-switching behavior in the Adélie penguin 338 

(Ainley et al. 2006, 2015). Earlier breeding may decrease temporal overlap with prey 339 

competitors, many of which are migrants and present only in summer. More information is 340 

needed to determine what factors drive the arrival of competitors such as whales and seals, as 341 

well as the relationship between competitor and penguin phenology and its effect on penguin 342 

breeding success. 343 

 344 

Trends in phenological mismatch: the role of environmental variability 345 

As with breeding phenology, a phenological match with the environment appears to be a 346 

necessary but not sufficient condition for peak Adélie penguin reproductive success (Fig. 2b, Fig. 347 

2c), suggesting that a combination of factors, rather than one in isolation, is required for 348 

successful breeding. In this way, Adélie penguins are bound to the Anna Karenina Principle – 349 
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success does not require that a single condition be met, but rather requires that many conditions 350 

of failure be avoided (McClay and Balciunas 2005). It should be noted that the scale at which the 351 

environmental variables are measured does weakly influence these results but not our resulting 352 

conclusions (Appendix S4). 353 

We found little evidence of trends in the magnitude of phenological mismatch. While 354 

marginally non-zero slopes were estimated at some sites (Admiralty Bay and Humble Island), the 355 

mean rates of change in phenological mismatch through time are small compared to the large 356 

interannual variations observed in this system – any trend in mismatch is unlikely to be 357 

biologically significant. The trend observed at Humble Island should additionally be interpreted 358 

with caution. Missing data may be related to environmental conditions (heavy sea-ice preventing 359 

access to the colony; e.g. Massom et al. 2006) and thus may not be 'missing at random' 360 

(Appendix S1). The high degree of ‘noise’ in these time series leads us to conclude that robust 361 

trends are not apparent at these sites. 362 

It appears that Adélie penguins do not match the large interannual variations in 363 

environmental timing in the Southern Ocean. Rather, it is these year-to-year fluctuations that 364 

drive phenological mismatch in this system. This contrasts with our understanding of 365 

phenological mismatch in other systems, in which differential shifts in long-term mean 366 

phenology are the principal drivers of phenological mismatch (Visser and Both 2005, Durant et 367 

al. 2007). Phenological mismatch appears to be the historical condition for Adélie penguin life 368 

history, similar to the patterns observed in one insect-host plant system (Singer and Parmesan 369 

2010). 370 

Although we have shown that a mismatch is apparent, it is not the principal driver of 371 

reproductive dynamics. We present several not-mutually exclusive hypotheses as to why this 372 

might be the case. 373 

1) Adélie penguins (similar to emperor penguins) arrive at breeding colonies with large 374 

deposits of body fat (Ainley 2002), which may provide a buffer during mismatched 375 

periods. These penguins subsist largely on these reserves during periods of food scarcity 376 

(especially early season when extensive sea ice often inhibits ocean access), somewhat 377 

exemplifying a ‘capital’ breeding strategy (Drent et al. 2006). 378 

2) Changes in phytoplankton community composition within a given season may result in 379 

the main phytoplankton bloom being uncoupled with penguin prey resources. In the Ross 380 
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Sea – a region characterized by high-latitude coastal, latent heat polynyas – early 381 

phytoplankton blooms tend to be dominated by colonial Phaeocystis antarctica, owing to 382 

its ability to persist in low light levels (Smith et al. 2014). Blooms of colonial P. 383 

antarctica generally lead to food webs that do not involve penguin prey resources (Smith 384 

et al. 2014; but see Haberman et al. 2003), which may weaken the relationship between 385 

the Bloom Mismatch Index and penguin reproductive success in some regions. 386 

3) Adélie penguins feed on prey (krill and several species of fish) that are several years old 387 

(Ainley et al. 2003, Fraser and Hoffman 2003, La Mesa and Eastman 2012), which may 388 

buffer the response of breeding success to phenological mismatch. Most other systems in 389 

which phenological mismatch has been observed are populated by consumers that feed on 390 

annual resources (Miller -Rushing et al. 2010) (e.g., mammals on vegetation, passerines 391 

on larval insects, alcids on first year herring [Clupea spp.]). Unlike these systems, the 392 

timing of prey reproduction in a particular year may not seriously affect overall penguin-393 

accessible prey abundance in that same year. While the timing of the phytoplankton 394 

bloom and sea-ice retreat may regulate the spatio-temporal availability and quality of 395 

prey, overall prey abundance also plays a role in reproductive success (Emmerson et al. 396 

2015). 397 

4) Density-independent processes for the Adélie penguin may mask the effects of 398 

phenological coupling. Increased precipitation and unusually high concentrations of sea-399 

ice unrelated to seasonality (such as large tabular icebergs) have both been shown to 400 

significantly impact penguin breeding success (Olmastroni et al. 2004, Massom et al. 401 

2006, Bricher et al. 2008, Fraser et al. 2013, Dugger et al. 2014, Barbraud et al. 2015, 402 

Wilson et al. 2016) and are largely decoupled from any mismatch with spring phenology. 403 

5) The importance of breeding synchrony among individuals at a breeding site may 404 

outweigh the importance of synchrony with the environment, as suggested by Hinke et al. 405 

(2012) (see also Young 1994). Penguins may wait for some collective cue among 406 

conspecifics to initiate courtship, copulation, and clutch initiation, as strong social 407 

facilitation may provide a reprieve from predators or facilitate foraging efforts, which 408 

may lead to increased breeding success (Darling 1938, Emlen and Demong 1975, Young 409 

1994). This idea is supported by an analysis of breeding success and breeding synchrony 410 

at Admiralty Bay (Appendix S5), where decreased breeding success is observed in years 411 
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with less synchronous breeding. This suggests that colonial breeding may both hamper 412 

individuals’ capacity to track the environment and reduce the relative importance of 413 

doing so. 414 

It is also worth noting that phenological mismatch may exist at the individual level, yet is 415 

masked at the population level (Reed et al. 2013, McLean et al. 2016). Some individuals have a 416 

tendency to breed early while others have a tendency to breed later (Ainley et al. 1983, Hinke et 417 

al. 2012). Years in which environmental timing is particularly late (or early) may benefit some 418 

individuals while being disadvantageous for others. Since younger birds tend to breed slightly 419 

later than older birds (Ainley 2002), age structure may also influence population level phenology 420 

in a way that is uncoupled from environmental conditions. 421 

 422 

Conclusion 423 

Evidence presented here suggests that phenological mismatch in Adélie penguins is driven by 424 

interannual environmental variability rather than by climate-change driven trends in 425 

environmental conditions – a surprising conclusion given the significant rate of environmental 426 

change in the Southern Ocean (Jacobs 2006, Stammerjohn et al. 2008). We suggest that 427 

mismatch might represent the historical condition in other highly variable systems and that 428 

further study is needed in this area. However, much as ‘mountain passes are higher in the tropics’ 429 

(Janzen 1967), species that inhabit environments characterized by high interannual variability are 430 

likely able to cope with significant asynchrony between life history events and the timing of 431 

favorable environmental conditions, effectively diluting the effects of mismatch. This same 432 

reasoning suggests that species in these highly variable environments, all else being equal, will 433 

be less susceptible to climate change-driven mismatch than species in environments with lower 434 

interannual variability. 435 

Our findings suggest a set of conditions exists under which strong phenological mismatch is 436 

more likely. Populations most vulnerable to mismatch are those that are unable to track the 437 

timing of favorable environmental conditions, have rates of reproductive success that are 438 

strongly regulated by food availability (strong density-dependence), have an ‘income’ breeding 439 

strategy, and use resources characterized by a narrow window of temporal availability (as 440 

highlighted by Miller-Rushing et al. 2010). In the face of rapid climate change, phenological 441 

change and associated mismatch has garnered much attention. We suggest that the null 442 
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hypothesis for studies of phenological mismatch should not necessarily be one of no mismatch 443 

but should reflect the underlying variability that may be a natural component of the system. The 444 

role of phenological mismatch in population processes, the driving forces behind such 445 

phenomena, and how these patterns may persist into the future are likely more nuanced than 446 

currently accepted by the ecological community.  447 
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 787 

Figure 1: Time series for normalized penguin breeding phenology (top panels), Bloom Mismatch 788 

Index (middle panels), and Sea-ice Mismatch Index (bottom panels) for each study site. 789 

Dashed lines represent model fit. Credible intervals (95%) are denoted by the shaded 790 

regions in each plot. Note year t represents the austral summer spanning years t and t+1. 791 

Site locations are represented on the map as colored dots. 792 

   793 

Figure 2: Breeding success as a function of a) penguin breeding phenology, b) Bloom Mismatch 794 

Index, and c) Sea-ice Mismatch Index. Model fit for 85th

 798 

 quantile regression shown in 795 

black with credible intervals (95%) shown in grey. All measures are normalized. Data 796 

points from all sites are shown and were used to conduct the analyses. 797 

Figure 3: Posterior distributions of �1T (slope) parameters for penguin breeding phenology (CID), 799 

Bloom Mismatch Index (BMI), and Sea-ice Mismatch Index (SMI). Posterior means are 800 

indicated by black ticks. Credible intervals (95%) are indicated by grey ticks. The dashed 801 

line represents 0. Letter codes represent each of the 7 study sites: AB = Admiralty Bay, 802 

HI = Humble Island, PG = Point Géologie, CC = Cape Crozier, CR = Cape Royds, CB = 803 

Cape Bird, BE = Béchervaise Island. 804 
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