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ABSTRACT

Evidence oficlimate changiriven shifts inplant and animal phenologybe raised concerns
thatcertaintrophic interactions may be increasingly mismatdnetime, resulting in declines in
reproductive success. Given the constraints imposed by extreme seasonality atumigis land

the rapid shiftsn phenologyseen irthe Arctic we wouldalso expect Antarctic speciasbe
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highly vulnerable to climate change-driven phenologmaimatches with their environment.
However few studies have assessed the impacts of pbgical change in Antarctic Using the
largest database phytoplankton phenologgeaice phenology, anédélie penguin breeding
phenology and breeding success assembled to date, vibdtmchile atemporal match between
penguin breeding phenology and optimal environmental conditions sets an upper limit on
breeding success, only a weak relationship to the mean ®asigsite previous work suggesting
that divegenttrends irAdélie penguin breedinghgenology are apparent across the Aniarct
continent,"wefind no such trends. Furthermore, we find no trend in the magnitude of
phenological mismatch, suggesting that mismatch is driven by interannual variabilit
environmentalconditionsther tharclimate change-driven trendss observed in other systems
We propose several criteria necessary for a species to experg&naegaclimate changériven
phenological mismatch, of which several may be violated by this system.

Keywords: Antarctica; climate change; penguin; phenological mismatch; phenology; Pygoscelis
adeliae

INTRODUCTION
The henological rgsonse of biological systems ¢bmate changéasreceivedmuch attention
in the scientific literaturén recent years (Edwards aRichardson 2004, Parmesan 2007). Of
particular conceris the rok thatclimate changenay playin altering synchrony among trophic
levels, a process structured over millennia of coexistédifferential rates of change in the
phenology.of.consumers and resounty create a scenario imhich peak energy requirements
of an organism.become temporally uncoupled with peak resource availability. Tmslgdieal
mismatch’mayresult in decreaseitness (Cushing 1974, Visser and Both 2005) and g
term repercussianfor population dynamics (Ludwig et al. 2004ler-Rushinget al. 2010.
Impacts associated wiffhenological mismatch habeen observed in a variety of systems
(Kerby et al. 2012nd references thergim a diverse range of taxa including birds (Both et al.
2009, Visser etal. 20)2invertebratesWinder and Schindler 2004, Both et al. 2009), fish
(Durant et al. 2005), anthammalgPost and Forchhammer 2008).

The mnsequences of phenological mismatch magxaeerbatech high latitudesystemsoy

the strong seasonality of the environmenttich oftennecessitateclosesynchrony among
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80 ecological components. At high latitudes a narrow window for reproduction and growth (driven
81 by seasonality) means that even a slight temporal uncouplingéet@asumers and resources
82 may bedetrimentako survival anddr reproductive success (e.g., Ji et al. 20¥®)ile latitude
83 per seexplairs anly a small degree of variation in phenologgtafts among specietheseshifts
84 are generallylarger in magnitude at high latitudes (Parmesan db@/¢levategrevalencef
85 migratory specieat high latitudesalso increasetherisk of mismatchBoth 2010, Jones and
86 Cresswell"2010)A number of studies have demonstrated the importance of phenological
87  coupling forreproductive success in the Arctic (Post and Forchhammer 2008, BurtrzO&pal
88 McKinnon et al. 2012, Clausen and Clausen 2013, Kerby and Post 2013, Doiron et al. 2015). In
89  Antarctica,while the potential for climatehange driven phenological mismatch baserated
90 concern (Forcada and Trathan 2Q0é)v studes havedirectly addessed this issue
91 Within thelimited body ofliteraturefocused on the phenology Ahtarctic speciesmuch
92 attention has been paid to the Adélie pengBimdscelis adeliae), a wellstudied, circumpolar
93 specieghat.is known to baighly sensitive to anomalous weather atehg-term changes in
94 climate(reviewed inAinley 2002,Ainley et al.2010). Adélie penguins are colonially breeding
95 seabirds with'strong breeding synchrony within a breeding colony (Ainley 20@2pfhis
96 species during spring and sumnsdominated bykrill (Euphausia spp.), Antarctic silverfish
97 (Pleuragramma antarctica), andseveral othespecies of fish, the relative proportions of which
98 vary by region and year (Ainley 2002, Trathan and Ballard 2013). Both the sgraporal
99 availabilityand the quality of these prey may be affected by the availability of phytoplankton,
100 which is infléenced by the spring phytoplankton bloom (Atkinson et al. 2008, Saba et al. 2014),
101 though seasenal and interannual changes in phytoplankton community camjsodok
102 complexity to that relationship (8mith et al. 2014, Ainley et al. 201%)ish prey species
103 commonly, eat krill and other crustaceaha Mesa and Eastman 2Q18uggesting thahe
104 distribution of fisheaten by penguins may alsoreéated to theof krill (Ainley et al. 1991).
105 Adélie penguin/population trendsthe Antarctic Peninsula region of West Antarctieae been
106 previously.associated with Chlorophglla proxy for phytoplankton bloom magnitude (Lynch et
107 a. 2012b)."Adelie penguin colony locatiomsEast Antarcticdave also been associated with
108 phytoplankton bloombcatedin coastal polyngs within which Arrigo and van Dijken (2003)
109 demonstrate an association between colony sidg@haytoplankton bloom magnitudéhe
110 timing of phytoplankton blooms may thus influence the availability and quality of food
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111 resourcesThe timing of seaee breakout near breeding groundan affect penguin access to

112 prey, as too much seee may obstruct access to suitatoleaging habitat (Ainley 2002,

113 Olmastroni et al. 200Massom et al. 20Q0@ugger et al. 2014, Emmerson et al. 2015, Wilson et
114 al. 2016) and tao little provides inadequate prey habitat (Atkinson et al. 2008, Laiesa

115 Eastman 2012, Sailley et al. 2013). Both prey availability and prey quality likely inluenc

116  Adélie penguinreproductive successnley 2002,Chapmaret al. 2011, Whitehead et al. 2015,
117 Jennings etali 2016

118 Previous studies focimngy on patternsn penguin breeding phenolotpavefocused on the

119 possible role that climate change may plagny observetrends (e.g., Barbraud and

120 Weimerskirch#2006, Hinke et al. 2012, Lynch et al. 2012a). Barbraud and Weimerskirch (2006)
121 found a delaylater breedingjn Adélie penguin reproductiveh@nology inthe eastern sector of
122  East Antarcticawhich they attributed to changes in seaexteni{defined as distance of large
123 scale ice edge from the colony during spring). These findioggastwith trends found in most
124  otherorganisms, particulayr those at high latitudes (Parmesan 2007). Later work, however,
125 indicatedthat*Adélie penguin breeding phenology was, in fitihernot changing (Emmerson et
126 al. 2011 western sector diast Antarcticaor advancingearlier breedingdver time (Lynch et

127 al. 2012aAntarctic Peninsula)lThese disparate trends were attributesit@tial variation in

128 climate changen Antarctica namelychanging wind patterns contributing to rapid warming and
129 declining winterseaice coverage on the Antarctic Pasula and increasirgpaice coverage in

130 the East Antarctic and Ross Seactors of the Southern Ocean (Stammerjohn et al. 2008, 2012,
131 Mayewskietiak 2009, Holland and Kwok 201Rgre we assess the impact of phenological

132 mismatch on-Adélie penguin reproductive success using data spanning a sigrufitantqs

133 the globaldistributionof this species. This provides a unique circumpolar comparison between
134  penguin populations currently experiencing divergent environmental responses te charage
135 acrossAntarctia (i.e. decreasing populations thie northern Antarctic Peninsufaynch et al.

136 2012b, Lynch.and LaRue 2(14ut increasinglsewhere in East and West Antarc{iganley et

137 al. 2010, Lyneh and LaRue 2014, Lyver et al. 2014, Southwell et al. 2015]).

138 We assembled a circumpoldatabasef Adélie penguin breeding phenology asatellite

139 derived data on the timing of phytoplankton bloans sedce retreatOur aim was t@ddress

140 the followingquestions(1) is there evidence for a lorigrm shift in the timing of key

141 phenologtal events in the Antarctimarine ecosyste®)(2) is there evidence that a phenological
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142 mismatch with environmental conditions causes a decrease in Adélie penguin breeding success
143 (the matchmismatch hypothesis)?; and (3) does the circumpolar comparison of phenological

144  mismatch reveal contrasting impacts of climate chamgend the Antarctic continent?
145

146 METHODS

147  Description of data

148 The penguin reproductive cycle involves several key events, including arrival astisitee

149 initiation of'courtship behavior, egg laying, and subsequent hatching of thode pgouce

150 chicks.For ouranalysiswe used theneanclutch initiationdate(CID — datethe firsteggwas

151 laid inthenest)n each yeato characterizehe timing of breedingh eachof the following

152 populationgseeAppendix Sifor details): Admiralty Bay§2.21°S, 58.42°W) andumble

153 Island(64#7°S; 64.05°W) on theorthernAntarctic Peninsula; Cape Crozigt7.45°S,

154 169.20E), Cape Bird(77.22°S, 166.43°E), and Cape Royds (78.55°S, 166.17tE¢Ross Sea
155 sectorof Antarcticg and Point Géologie (67.17°S, 140.00°E) andi&évaise Islands{?.58S,

156 62.82F) in the IndianOcean sectaof Antarctica (Fig 1). Data collectiormethods for breeding
157 phenology-and-breedirgyiccess were similar across sites (Appendix Bdrjiods of data

158 collection differed among sites, ranging from 13 years (Humble Island) to 3 (fRzant

159 Geéologie) (see Appendix S1 for details). Breeding phenology(GHy) wereaccompaniedby

160 data on beeding success, defined herdlesnumber of chick® reachthe creche stageie-

161 fledging but chicks independent of pargmsr breeding pair. Breedirsgiccess dataere not

162 available for all'years in which phenology data were available (Appendix S1).

163 To understand how both the biological and physical Southern Ocean environments might
164 influencethebreeding phenology arslicces®f Adélie penguinsywe alsoassemblediata on

165 phytoplankton=bloononsetand seaee retrea(the decrease of séee during springsummer)

166 Togetherthese metriceepresent the principle measures by which we might define the arrival of
167 spring in this system. Phytoplankton-bloom timargl seace phenology were thought to

168 impact penguin resour@vailability/quality andthe accessibility to these resources, respectively
169 (see above)

170 As reliable, continuousegionalscale data ophytoplankton-bloom phenology (ocean color)
171 arenot available prior to 199We used se&e adjusted light as a proxy for the spring

172  phytoplankton-bloom oret (microwave data to assess-$eacover are available since 1979)
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173 This is calculated btaking the Julian day in which a particular light tivelsl is reachedvithin

174  a 250 km radius of the colony of interest, and applying a correction for light blocked by local
175 seaice (see Li et al. 2016Previous workhas showrthis metric to be highly correlated with

176  phytoplankton-bloom phenology, as deduced from ocean color, near penguin breeding colonies
177 (Li et al. 2016)We calculated bloom onset usia@50km radius, which incorporateke size of
178 most coastal polynyas (Arrigo and van Dijken 2003, Arrigo et al. @i&the Adélie penguin
179 foraging'areasas we were interested in a regional indicator of bloom owdate foraging

180 behavior, including foraging trip distance, differs among sites and yRalfar{ce et al. 2009

181 100-200 km is typically the maximum range at which Adélie penguins forage from breeding
182 colonies during,the breeding season (Ainley 2002, Lyver et al. 2011, Oliver et al. 2013,

183 Emmersonset al. 2015). We followed methodology outlined by Li et al. j20ibusea 10-

184  hour light threshold (se&ppendix Sifor details).Seaice observations for the correction were
185 obtained from the satelltieased Nimbus 7, SMMR, and SSMIEMIS passive microwave

186 sensors from 1979-2013, processed by the NASA Team algorithm (Cavalieri et @lat1295
187 km resolutionwia the National Snow and Ice Da@&mnter Cavalieri et al. 1996).

188 The date obeaice retreat around each penguin breeding site was calculatedthising

189 aforementioned seiae datafollowing the approach of Stammerjohn et al. (2012) (Append)x S1
190 Dateof seaice retreat was defined as tfiest day in which the averageaice concentration

191  within a 50 km radiusf the breeding sitéell below 15%.

192 Phytoplankton-bloom phenolognd sedce retreat weresed to calculate 8loom

193 Mismatch index’and ‘Seaice Mismatch Indexto represent the magnitude of the phenological
194 mismatch between Adélie penguins and biological (timing of bloom onset) and physiaaj (timi
195 of seaice retreat) oceanographic conditiprespectivelyThe Bloom Mismatch Indexwas

196 defined as thetandardizeditference(see Equation 1 below) between penddibB and the

197 phytoplankton-bloononsetat each particular site in a givereeding seasonl(ring the austral
198 summey). The Seace Mismatch Index was likewise definedthge standardized difference

199 between pengui€ID and the date dfeaice retreat.Positive (negative) values forglmismatch
200 indices represent@utch initiation date that is later (earlier) thiae longtermaverage relative
201 to the phenology of the environment. A mismatch indezeobrepresentsio difference from

202 mean mismatchut does notmply an optimal degree of synchrony (Reed et al. 2003

203 timing of the physical and biological environments are intrinsically linked (i.ezaom-
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covariancgthough the correlation between the Bloom Mismatch IndexSaadce Mismatch
Index was relatively wealPgarson’sorrelation coefficient = 82), prompting the inclusion of
both variables in our analysi/e assumed thienportance of bloom phenology and sea-
phenologylies inits relationship to breeding phenology. For this reason, we inclBhbeoh
Mismatch Indexand Seaee Mismatch Indexather than phytoplankton-bloom @band sedce
retreatin our analysis.

CID;"breeding success, Bloadismatch Indexand Seaee Mismatch Inde (each
represented as;) were normalizeccross year§) andwithin site (), using themean and
standard deviatioat each siteto create a standardized variab® thatallows for more
meaningfulintersite comparisons

5, =% ®

Yo sd(x))

Estimating response of breeding success to phenology and environment
The impact of 1 mismatch withthe phytoplankton-bloon2) mismatch with se&e retreatand
3) penguinsbreeding phenology on Adélie penguin breeding success were modeled using a
guantile regression approach (Koenker and Bassett 1978). While originally developed for
econometricsquantile regression has seanreased use in the field of ecology in recent years
(Sankararetal 2005, Fujita et al. 20)3Rather than estimating the rate of change in the mean
of the response variable distribution as a function of the predictor variables (as in traditional
regression), quantile regression estimates the rate of change in a gagtieatile of the
response variable distribution (Cade and Noon 20083%. holds particular utilityor complex
relationshipgnwhich multiple factors are thought to control or limit a response variabls,
the case with penguin reproductive success. In this way, we sought to determine whether
phenological and environmental factors weedingan upper limit on breeding success.

An 85" quantile regression was implemented in a Bayesian framework (see Yogadd
2001) with the ‘bayesQR’ package (Benoit et al. 2014) in the R statistical eneind it
Development'Core Team 2016). Appendix S2 provalbsef overview of interpreting results
derived fromBayesian analysebut more details can be found in Gelman and Hill (200&).
usedthe 85" quantile as it is near the upper boundary of breeding success and approximately one
standarddeviation away from the mean. We useguadratic polynomial function to model the

effect of phenological and environmental predictor variables on penguin breeding saseess
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hypothesized the response variable would be maximized at a particular set of parameters.
Standardized breeding susse was modeled as:

z=a+ P * X+ P xX*+¢ (2)
whereX is.the predictor variabland the error terma is distributed such that the 8§uantile is
zera Data frem, all yearand sitesvere used to fit the model. Uninformativermal priorswere
usedfor a, By-@ndg,. Inferences were derived from 10,000 samples drawn following a tburn-
period of 40,000 draws using 3 chaikkdel convergence was assessed through a visual
analysis of the posterior chains, in addition to the use db#tmanRubin convergence
diagnostic (Brooks and Gelman 1998). All models unambiguously converged.

Satistical analysis of trends in phenology and Mismatch Index
Temporal trendg theBloom Mismatch hdex Seaice Mismatch Indexand penguin breeding
phenologywere modeleahdividually using a hierarchical Bayesian approashichallowedus
to treatmissing.data in tims seriegslatent stateto be samplednd allowed us to better assess
parameter’estimate uncertaii@elman and Hilk006).Eachresponse variable/(— Bloom
Mismatch Seaice Mismatchand breeding phenologwasmodeled asormally distributed
with a meanu,; that is a linear function of yeai) with location {)-specific slope and intercept.
The coefficients of the linear model foy; werethemselves modeled asrmally distributed.

Yij~N(uij, 0;%)

uij = a;+ P *Year; (3)

aj~N (Uq, 04%)

Bi~N (ug, 05*)
Thepreeision(17/0;*) was given an uninformative gamma pridhe coefficients for mean
intercept(i,) and slopez) were given uninformative normal priors, and #ssociated
precisions {/o,? andl/aﬁz) given uninformative gmma priorsAppendix S). Models were
fittedusing.the'R package ‘R2jags’ (Su and Yajima 20tbinterface with JAGEPIlummer
2003 in theR statistical environmer(R Development Core Team 2016)ferences were
derived from 50,000 samples drawn following a ‘burn-in’ period of 1,900,000 draws using 3
chainsand a thiming rate of 2Model convergence was assesedugh a visual analysis of the
posterior chains, in addition to the use of the GelfRahin convergencdiagnostic (Brooks and
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Gelman 1998). Amodelsunambiguously converged. For each variable of intetfest,
differencesin 8 (slope) parameter estimates between each pair of sites were calfariaizch
iterationof the Markov Chain Monte Carl@osterior distributions of these differences were then

analyzedo investigatavhether trends differedmongsites

RESULTS

The BloomMismatch IndexSeaice Mismatch Indexand penguin breeding phenology showed
a robust relationshipith the upper limit (8% quartile) of breeding success (Fig) but
explairedlittle*variation in the mean respon@ppendix S2Table S). The degree of mismatch
and breeding phenologgachappeato set an upper limit fohdélie penguin breeding success
but are pooer-absolute predictors of breeding success at appioné time andspacgqFig. 2).
Breeding suecessas maximized in years with slightly earlier breeding@mpblogyandnear zero
to negative BloonMismatch Irdex and Se&e Mismatch IndexXFig. 2 Appendix S2.

With the exception of Humble Island, we fouittle evidence of a temporal trendeither
Bloom Mismatch Indeor Seaice Mismatch IndexXFig. 1, Fig. 3, Appendix §2At all sites, the
estimatedwrateof change in themismatch indicesveresubstantiallysmaller than the magnitude
of interannual.variabilit. Even where trends we greatest (i.e., Humble Island), the estimated
rates of change for thBloom Mismatchand Sedaee Mismatch Indicesieresmall compared to
their interannual standard deviation. Interannual variation in the BMismatchand Seaee
Mismatch indicesppears to be driven predominantly by phytoplankton-bloom phenology and
seaice phenology, respectivelsather tharby breeding phenology. This is evidenced by: 1)
larger interannual variation in both phytoplanktén= 10.9 days) and sea-ice phenology
(¢ = 157days)-compared to penguin breeding phenology=(2.7 day9; 2) high degregof
correlation betweehoth mismatch indiceandtheir associated nepenguin phenological
componentsKearson’s correlation coefficients®97, -0.98 for Bloom and Seee
respectively;, and 3) the weak relationship between penguin breeding phenology and both
phytoplankton-bloom phenologyéarson’sorrelation cofficient = 0.23)and sedce
phenology (Pearsontrrelation coefficient = Q9).

We alsofound large interannual variations buto robusttemporaltrends in Adélie penguin
breeding phenologgt all sevenbreeding locations (Fig. 1, Fig. 3). Despite previous suggestions
of an eastvest dichotomy in breeding phenology (through comparison of Barbraud and
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289  Weimerskirch2006]with Lynch et al[20124), resulting from thespatiallyheterogeneous
290 impactsof climate change in Antarcag we found nalifferencein phenology among

291 sitesfegions Appendix S2.
292

293 DISCUSSION

294 In contrastto our initial expectations, and despite contrastimgacts ofclimate change in

295 Antarctica‘as a function of region, we found no evidence of a trend in Adélie penguin breeding
296 phenology’in any regioWe found thatwhile bothbreeding phenology amthenological

297 mismatch sean upper limit on Adélie penguin breeding success nditda strong relationship
298 to the mean/ The magnitude of phenological mismatch has not changed over the last several
299 decadenthissspeciesWe found that phenological mismatch is driven by large interannual and
300 spatiallylocalized variability(i.e., Ainley 2002, Massom et al. 2006, Emmerson and Southwell
301 2008, Wilson et al. 2016yather tharthe climate chang@&rivenenvironmental trend®und in a

302 number of other systemKérby et al. 2012 and references theyréide propose several criteria
303 that may benecessarjor a strong climate change-driven phenological mismatch, of which

304 severamay-beviolatedin the Southern Oceaystem.

305

306 Trendsinphenology and consequences for breeding success

307 While previous work showed contrasting responses in Adélie penguin breeding phenology
308 between théntarctic Peninsula and Eashtarctica (Barbraud and Weimerskirch 2006, Lynch
309 etal. 2012a), we found no trends in breeding phenology at any site. These resultscatarparti
310 interestinggas-updatechd extended versions of te@me time series used by Barbraud and

311  Weimerskireh«(2006) and Lynch et al. (2012a) are analyzed here (Appendix S1). Weesdiitebut
312 contrast'with"Cynch et al. (201p#0 the use of an extended time series diffeérent

313 methodology (consideringopulation mean data andly one speciesh this analysigAppendix
314 S3) We attribute the contragtith Barbraud and Weimerskirch (20a6)a differing period of

315 analysis..Breeding phenology at Point Géolaggable after théate 1970s (Barbraud and

316  Weimerskirch 2006) with a distinct shift in the 1970s/1980@s.hypothesize th change-point

317 may be due to lErgescale regime shifrather than a continuous trend from the 1960ke

318 preseniJenouvrier et al. 2005; Appendix SBJe cannot assess the effect of such a regime shift
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319 on penguin breeding phenology at other locations due to lack of phenological data during this
320 time perod.

321 In accordance with previous studies on both the Adélie penguin (Ainley 2002, Smiley and
322 Emmerson 20106and closelyrelated gentoo penguilygoscelis papua; Hinke et al. 2012), we

323 find that breeding success is maximized when penguiresl le@rlier(Fig. 2a) relative to the site
324 averag, while later breeding results a lower ceiling on breeding succeSsveraimechanisms
325 may explainwhy the timing of breedimgpears to set an upper limit on breeding success.

326 Adélie penguinsnaybreed earlier ingars with favorable environmental conditions (dags

327 ice cover close to the colonyyhich could lead to higher breeding success. Later breeding may
328 result in asherter period of time in which to raise offspring to sufficient bodgiton before

329 themolt periodand winter migrationa pattern that may bespecially true of highest latitude

330 colonies (Ainley et al. 1983Ainley 2003. Interspecific competition for prey resources among
331 penguins, whales, and seals, may also play a role, but has been little studrestefode likely

332 underappreciatedAinley et al. 2007, Trathan et al. 2Q13t see Trivelpiece et al. 201While

333 Hinke et al=(2012) suggedéclines infood availabilityin the northern Antarctic Peninsula

334 regiondid not'significantly contribute ta decreas breeding successbservedvith delayed

335 breeding(see also Sailley et al. 2013), previous work has demonstrated thase¢heegoé

336 competitorsfor prey resources may lead to an increase in foraging tripdyyaltiich has been
337 linked to decreased breeding success [Ainley et al. 2006, 2015, Emmerson and Southwell 2008,
338 Emmerson.et al. 2015, Wilson et al. 2016]) and prey-switching behavior in the Adélie penguin
339 (Ainley et al"2006, 2015Earlier breeding magiecreaséemporal overlap with prey

340 competitorsmany of which are migrants and present only in sumktere information is

341 needed to determine what factors drive the arrival of competitors such as whales and seals, as
342 well as the relationship between cagtipor and penguin phenology and its effect on penguin
343 breedingsuccess.

344

345 Trendsin phenological mismatch: the role of environmental variability

346  As with breeding phenology, a phenological matath the environmenappears to be a

347 necessary but not sufficient condition for peak Adélie penguin reproductive sueice2b(Fig.

348 2c), suggesting that a combination of factors, rather than one in isoiatiequired for

349 successful breedingn this way, Adélie pengasarebound tothe Anna Karenina Principle —
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350 success does not require that a single condition be met, but rather reqtimesphaonditions
351 of failure be avoided (McClay and Balciunas 2005). It should be nloé¢dhe scale at which the
352 environmentalariables are measuredesweaklyinfluence these resultsut not our resulting
353 conclusions (Appendix 34

354 We found.little evidence of trends in the magnitude of phenological mismatch. While
355 marginallynonzero slopes were estimated at some gAémiralty Bay and Humble Island), the
356 mean rates‘of'change in phenological mismatch through time are small compgheddriyge

357 interannual variatiomobserved in this systemany trend in mismatch is unlikely to be

358 biologically significant The trend observed at Humble Island should additionally be interpreted
359 with caution. Missing data may be related to environmental conditions (heawega@venting
360 access to the colong.g. Massom et al. 2006) and thus may not be 'missing at random’

361 (Appendix S1).{The high degree of ‘noise’ in these time series leads us to cohaluadtst
362 trends are not apparent at these sites.

363 It appearghatAdélie penguins do nahatchthelarge interannualariationsin

364 environmentaltiming in the Southern Ocean. Raihés these yeato-year fluctuations that

365 drive phenabgical mismatch in this systerfhis contrasts witlour understanding of

366 phenological mismatch in other systems, in whiidferential shifs in longterm mean

367 phenology-are the principal drivers of phenological mismatch (Visser and Both 20851 Bur
368 al. 2007). Renological mismatchppears to bthe historical condition for Adélie penguife

369 history,similar to the patterns observedadne insechost plant system (Singer and Parmesan
370 2010).

371 Although.we have shown that a mismatch is apparent, it is not the principal driver of
372 reproductive dynamicdVe present seralnot-mutually exclusivenypothesess towhy this

373 might be the case

374 1) Adélie penguins (similar to emperor penguins) arrive at breeding colonies with large
375 deposits of body fat (Ainley 2002), which may provide a buffer during mismatched

376 perieds.These penguins baist largely on these reserves during periods of $oadcity

377 (especially early season when extensive sea ice iotidrits ocean accegsomewhat

378 exemplifying a ‘capitdlbreeding strategy (Drent et al. 2006).

379 2) Changes in phytoplankton community composition within a given season may result in
380 the main phytoplankton bloom being uncoupled with penguin prey resoln¢bs Ross
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381 Sea— a region characterized by hitdtitude coastal, latent heat polynyasarly

382 phytoplankton blooms tend to be dominated by coldPakocystis antarctica, owing to

383 its ability to persist in low light level§Smith et al. 2014)Bloomsof colonialP.

384 antarctica generally lead to foodiebsthat do not involve penguin prey resour¢®sith

385 et al..2014; but see Haberman et al. 2003), which may weaken the relationship between
386 the Bloom Msmatchindex and penguireproductive success in somsgions.

387 3) Adélie'penguins feed on prey (krill and several species oftfiglt}are several years old

388 (Ainleyet al. 2003, Fraser and Hoffman 2008 Mesa and Eastman 2Q1#&hichmay

389 buffer the response of breeding success to phenological mismvdshother systems in

390 whieh phenological mismeh has beenbserved are populated by consumers that feed on
391 annual resourcgdliller-Rushing et al. 2010) (e.gnammalson vegetation, passerines

392 on larvalinsectsalcidson first year herringClupea spp.]).Unlike these systemd)e

393 timing of prey reproduction in a particular yeaay notseriously affect overall penguin

394 accessible prey abundance in that same yéhile the timing of the phytoplankton

395 bloemrandseaice retreatmay regulate the spatiemporaavailability and qualityof

396 prey, overall prey abundanaéso plays a role reproductive succegEmmerson et al.

397 2015).

398 4) Densityindependent processks the Adélie penguimay mask the effects of

399 phenological coupling. Increased precipitation and unusually high concentratsee of

400 ice'unrelated to seasonalityuch as large tabular iceber@igve bottheenshown to

401 significantly impact penguin breeding succe3br{astroniet al. 2004Massom et al.

402 2006,Bricher et al. 2008, Fraser et al. 2013, Duggek 2014 Barbraud et al. 2015,

403 Wilson et al. 2016) and are largely decoupled from any mismatch with spring phenology.
404 5) The impartance of breeding synchrony among individatés breeding site may

405 outweigh the importance of synchrony with the environment, as suggested by Hinke et al.
406 (2012) (see also Young 1994). Penguins may wait for some collective cue among

407 conspecifics to initiate courtship, copulation, and clutch initiation, as stroraj soc

408 facilitation may provide a reprieve from predators or facilitate foragingtsffahich

409 may lead to increaseddeding success (Darling 1938, Emlen and Demong 1975, Young
410 1994).Thisidea is supported by an analysis of breeding success and breeding synchrony
411 at Admiralty Bay(Appendix S9, where decreased breeding success is observed in years
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with less synchronous breedinighis suggests that colonial bo#eg may both hamper

individuals’ capacity to track the environment and redineerdative importance of

doing so.
It is also worth noting thathgnological mismatch may exist at the individual level, yet is
masked at the population level (Reed et al. 20AQ ean et al. 2016 Some individuals have a
tendency to breed early while others have a tendency to breed later (Ainley eBaHh8@ et
al. 2012).Years'in which environmental timing is particularly late (or earigy benefit some
individuals'while being disadvantageofor othes. Sinceyounger birds tend to breed slightly
laterthanalderbirds (Ainley 2002, age structurenayalso influence population level phenology

in a way thatdsyuncoupled from environmental conditions.

Conclusion
Evidencepresentedheresuggests that phenological mismatch in Adélie pengsiidisven by
interannual environmental variability rather thanchiynate change driven trends in
environmentalwconditions — a surprising conclusion given the signifiatetf environmental
change inthesSouthern Ocean (Jacobs 2006, Stammerjohn et alVZ8@8ggest that
mismatchmight represent thieistoricalcondition in other highly variable systems and that
further study is needed in this aréwever,much as ‘mountain passes are higher in the tropics’
(Janzen 1967), species that inhabit environments characterized by high interannbidityaria
likely able to cope with significant asynchrony between life history events artuhtimg of
favorable environmental conditions, effectively diluting the effe€tmismatch This same
reasoning suggests that species in these highly variable environments, all else being equal, will
be less susceptible to climate chaggeen mismatchthan species in envinonents with lower
interannual variability

Our findings, suggest a set of conditiengsts under which strong phenological mismagh
morelikely. Populations most vulnerable to mismatch are those thahalde to track the
timing of faverable environmental conditiorgve rates of reproductive success that are
strongly regulated by food availability (strong denslgpendencehave an ‘income’ breeding
strategy and use@esources characterized by a narwindow of temporal availability (as
highlighted by MillerRushing et al. 2010)n the face of rapid climate change, phenological
change and associated mismatch has garnered much attention. We suggest that the null
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hypothesis for studiesf phenologicamismatchshould not necesshy be one of no mismatch
but should reflect the underlying variability that may be a natural component of the Sise
role of phenological mismatch in population processes, the driving forces Iselsimd
phenomena, and hatliese patterns may persist into the futanelikely morenuanced than

currently aceepted by the ecological community.
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Figure 1:Timesseries fonormalizedpenguin breeding phenology (top panels), Blddismatch
Index (middle panels), arffieaice Mismatch Index (bottom panel®y each study site.
Dashed line representodel fit. Gedible interval§95%)are denoted by the shaded
regions in each plot. Note yearepresents thaustral summer spanning yeaendt+1.
Site,locations are represented on the map as colored dots.

Figure 2: Breeding success as a functioa)@enguin breeding phenology, b) Blodviismatch
Index, and c) Sewe Mismatch IndexModel fit for 83" quantile regression shown in
blackwith credible intervals (95%) shown in grey. All measures are normalized. Data
points from all sites are shown awere used to conduct the analyses.

Figure 3 Posterior distributions ¢f (slope) parametsrfor penguin breeding phenology (CID),
BloomMismath Index (BVI), and Seace Mismatch Index (SMI). Posterior means are
indicated by black ticks. i@dible interval§95%) are indicated by grey tickBhe dashed
line represents QLetter codesepresent each of thestudy sitesAB = Admiralty Bay,

HI = Humble Island, PG = Point GéologieC= Cape Crozier, CR Cape Royds, CB
Cape.Bird BE =Béchervaise Island
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