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Abstract. Early warning signals (EWS) might dramatically improve our ability to manage nonlinear eco-
logical change. However, the degree to which theoretical EWS predictions are supported in empirical sys-
tems remains unclear. The goal of this study is to make recommendations for identifying the types of
ecological transitions that are expected to show EWS. We conducted a review and meta-analysis of pub-
lished studies and comparative analysis of eight northeast Pacific Ocean time series to illustrate the impor-
tance of testing for nonlinearity in empirical EWS studies. We found that published studies demonstrating
nonlinearity in ecosystem dynamics are more likely to support EWS predictions than studies with linear or
undetermined dynamics. The northeast Pacific time series in our analysis were often too short for formal
tests of nonlinearity, a common problem in empirical studies. To assess the evidence for nonlinear dynam-
ics in these data, we tested for state-dependent driver–response relationships consistent with hysteresis, a
central feature of nonlinear ecological models. This analysis supported the results of the literature meta-
analysis. Four time series with driver–response relationships consistent with hysteresis generally
supported theoretical EWS predictions, while four without evidence of hysteresis failed to support EWS
predictions. Theoretical support for EWS is largely generated from nonlinear models, and we conclude that
tests for either nonlinear dynamics or hysteresis are needed before employing EWS.
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INTRODUCTION

Early warning signals (EWS) for abrupt change
are one of the fastest-growing subfields in ecol-
ogy. The general idea of EWS is that key system
parameters should show characteristic statistical
signals as the system approaches a transition, and
that tracking these signals should provide infor-
mation about the likelihood of abrupt change.
Two classes of EWS are available: model-based
and metric-based (Boettiger and Hastings 2012,

Dakos et al. 2012a). Metric-based EWS, such as
rising variance or rising autocorrelation in key
parameters prior to a transition, require almost no
assumptions about the correct model underlying
system dynamics (Carpenter and Brock 2006, Sch-
effer et al. 2009), and this approach has domi-
nated the empirical literature. The theoretical
justification for EWS is most often based on criti-
cal slowing down as the system loses resilience
and approaches a critical transition (Box 1; Schef-
fer et al. 2009). EWS arise from a long tradition of
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using nonlinear models to explain complex eco-
logical behavior. They represent the most concrete
contribution of this tradition to problems of
ecosystem management to date, in the form of
explicit, testable predictions concerning the
response of systems to external perturbation, as
well as an approach for quantifying resilience,
which has previously been more of a buzzword
than a measurable quantity. The field of EWS pre-
sents great potential for addressing currently
intractable problems in ecosystem management,
such as the early recognition of impending transi-
tions, the avoidance of ecological surprises, and
the maintenance of systems in desired states.

But attempts to demonstrate the application of
EWS theory in empirical systems have produced
uneven results. Some studies have found EWS to
fail completely in real systems (Bestelmeyer et al.
2011, Burthe et al. 2016), others have found some
mix of success and failure (Lindegren et al. 2012,
Litzow et al. 2013), and others have presented

evidence supporting the predictions of theory
(Dakos et al. 2008, Wouters et al. 2015). This mix
of results is unsurprising when predictions
derived from simple models are applied to the
complex real world (Scheffer et al. 2015). How-
ever, progress in the use of EWS in empirical sys-
tems would benefit from attempts to elucidate
the factors distinguishing successful and unsuc-
cessful real-world applications.
A critical question in the application of EWS is

whether changes in the system under considera-
tion are the result of linear or nonlinear dynam-
ics. The fold or saddle-node bifurcation model
that underpins much of the theoretical EWS liter-
ature invokes strongly nonlinear dynamics, with
multiple ecological responses possible at a single
level of external forcing (Beisner et al. 2003).
While there is theoretical evidence for EWS prior
to ecological changes stemming from other
dynamics (K�efi et al. 2013), theoretical support
for EWS is generally weaker in situations where

Box 1 - Definitions
The terms describing nonlinear theory and early warning signals often have meanings that are
highly specific and context-dependent. Here, we define some of these concepts as we use them in
the paper.

Alternative stable states: Different configurations of a system that are able to exist at the same set
of external conditions, corresponding to a stable equilibrium or basin of attraction in nonlinear
response to external conditions.

Critical slowing down: Reduced speed of recovery from perturbation as a critical transition is
approached, due to a decline in engineering resilience.

Critical transition: Abrupt shift in a system caused by nonlinear responses to external conditions.
Early warning signal/early warning indicator: Model- or metric-based statistic able to warn that the

system is approaching a sudden change, most often associated with a critical transition.
Fold bifurcation/saddle-node bifurcation: A critical transition between alternative stable states, corre-

sponding to the threshold in external conditions at which stable and unstable equilibria meet.
Hysteresis: Different critical transitions in response to increasing and decreasing external condi-

tions; responses to external conditions that depend on system state and the direction of change in
external conditions.

Linear: Systems with dynamics that can be expressed statistically by models in which the esti-
mated parameters are combined by addition. Thus, a linear regression (y = a + bx) or a quadratic
regression (y = a + b1x + b2x

2) both describe linear systems. In a linear system, the effect of any
small perturbation decays in time.

Nonlinear: In a nonlinear system, a small perturbation may propel the system to another stable
state, and dynamics are both state-dependent and sensitive to initial conditions. Statistically, the
response variable cannot be summarized as a linear combination of estimated parameters.

Resilience: Ecological resilience is the ability of a system to remain in its current state when
exposed to perturbation. Engineering resilience is the speed with which a system returns to equi-
librium after perturbation.
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biological parameters show a linear or threshold
response to perturbation (Dakos et al. 2015).
Empirical studies often assume fold bifurcation
dynamics (Boettiger and Hastings 2012) or make
heuristic arguments for the presence of “regime
shifts” with similar dynamics (Hewitt and
Thrush 2010, Litzow et al. 2013, Wouters et al.
2015), while other empirical studies present for-
mal tests for nonlinearity (Carpenter et al. 2011,
Wang et al. 2012). Given the central importance
of nonlinearity in EWS theory, and the range of
approaches taken by empirical studies, perspec-
tive on the best approach is needed.

Here, we elucidate the importance of tests for
nonlinear dynamics in attempts to apply EWS
theory to empirical systems, using a review of
the literature, meta-analysis of published studies,
and comparative analysis across multiple data
sets. Our specific goals are to (1) review the state
of empirical EWS research to date; (2) use meta-
analysis to compare the results of published
studies that do and do not demonstrate nonlin-
earity in study systems; and (3) analyze eight
northeast Pacific Ocean time series to compare
EWS results between systems that are and are
not consistent with a model of hysteretic driver–
response relationships, a central feature of non-
linear ecological systems.

LITERATURE REVIEW

Empirical EWS research, 2006–2015
Like most ideas in ecology, EWS have antece-

dents that stretch far back in the literature. Previ-
ous approaches for measuring ecological
resilience and stability (Ives 1995, Ives et al.
2003) draw on foundational research on nonlin-
ear ecological dynamics (May 1977, Wissel 1984)
and the relationships between disturbance, non-
linearity, and statistical behaviors of ecosystems
(van Nes and Scheffer 2003, Fraterrigo and Rusak
2008). However, the idea that characteristic sta-
tistical behaviors prior to critical transitions are a
tool that can be used broadly in systems showing
complex dynamics was advanced by Carpenter
and Brock (2006), and the explosion in the EWS
literature can reasonably be dated to that paper.
Our review and meta-analysis of published stud-
ies covers papers appearing in print or online
during 2006–2015. At least 94 EWS studies were
published in ecology and climate science during

that time. And while this literature has its origin
in theory, nearly a third of the papers published
during those years included empirical tests of
proposed EWS behavior (Fig. 1A). Given this
number of examples available in the literature,
reasonable conclusions from cross-study compar-
isons may be possible. A detailed description of
empirical studies is presented in Appendix S1:
Table S1, and a complete list of published EWS
studies appears in Appendix S1: Table S2.
Early warning signals have been described as

“generic”—suitable for application across many
system types, even if the underlying system
dynamics are poorly understood (Carpenter and
Brock 2006, Scheffer et al. 2009). This makes them
extremely attractive for application to large, com-
plex ecosystems, such as coastal and open ocean
systems, where the mechanisms underlying com-
plex reactions to external perturbation are almost
always mysterious. However, this idea of generic
application can be overstretched. It is relevant to
the mechanisms of system behavior, but not to
the class of model that describes system dynam-
ics. If the system is best described by a model of
linear relationships between the biological
response and environmental drivers, there is little
expectation for the presence of EWS. A central
question, both in theoretical and in empirical
EWS studies, is therefore the identity of the
model describing system response to perturba-
tion (Boettiger et al. 2013). Theorists are involved
in a dialogue about which models may or may
not produce EWS (e.g., Carpenter and Brock
2006, van Nes and Scheffer 2007, Hastings and
Wysham 2010, Dakos et al. 2011, Seekell et al.
2011, Boettiger and Hastings 2012, Boerlijst et al.
2013, D’Odorico et al. 2013, Fung et al. 2013,
Guttal et al. 2013, K�efi et al. 2013, Dakos and Bas-
compte 2014, Clements et al. 2015, D’Souza et al.
2015, Lumi et al. 2015, Xu et al. 2015). Empiricists
are faced with the double problem of sorting out
the conflicting advice of the theoretical literature
and then determining which theoretical model is
appropriate for their system. This is a poorly
tractable problem that predates the development
of EWS. It brings together several threads of
uncertainty in the literature, which may give rise
to the mixed results in the application of EWS
theory in empirical systems.
In the empirical studies to date, the ecosystem

transitions for which EWS are being tested
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include trophic cascades, desertification, and
shifts in species abundance, community compo-
sition, and climate patterns (Appendix S1:
Table S1). Empirical examples come primarily
from marine and freshwater ecology and climate
studies (Fig. 1B). These empirical studies have
faced two general challenges: the challenge of
identifying and classifying ecosystem shifts that
are suitable for EWS, and the statistical chal-
lenges that are presented by testing EWS with
real data.

Sudden ecosystem transitions that might be
preceded by EWS are often referred to as “regime
shifts,” but this term has never achieved a univer-
sal definition in the literature (Lees et al. 2006).
The term first gained currency in marine ecology,
where regime shifts may be linear biological reac-
tions to abrupt change in an environmental driver
(Rudnick and Davis 2003, Di Lorenzo and Ohman
2013). In the theoretical and general ecology litera-
ture, regime shifts have become synonymous with
critical transitions among alternative states (Schef-
fer et al. 2001, Scheffer and Carpenter 2003, Guttal
and Jayaprakash 2008, Pace et al. 2015). The diffi-
culty in defining the term has meant that “regime
shift” has also been used to mean any large,

persistent change in a system, springing from a
diverse set of underlying dynamics (Brock and
Carpenter 2010). Given this vagueness in the liter-
ature, it is unsurprising that empirical studies
have taken a variety of approaches to the problem
of identifying ecological transitions that might
produce EWS. Some studies rigorously test shifts
for conformity with a model of nonlinear change
between alternative states (e.g., Carpenter et al.
2011, Wang et al. 2012). More commonly, studies
use simple temporal or spatial breakpoint analy-
ses as evidence of a less rigorously defined shift of
indeterminate nature (e.g., Beaugrand et al. 2008,
Litzow et al. 2008, 2013, Carstensen and Weyd-
mann 2012, Wouters et al. 2015, Burthe et al.
2016). Some of these studies explicitly acknowl-
edge that tests for critical transitions are impossi-
ble given the data on hand, and recognize the use
of breakpoint analysis as a necessary compromise
(e.g., Carstensen and Weydmann 2012). Still other
studies, without directly testing for nonlinearity,
reference features of the study system that are
heuristically consistent with critical transitions
between alternative states (e.g., Litzow et al. 2008,
2013, Hewitt and Thrush 2010, Wouters et al.
2015). This reliance on heuristic arguments risks
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Fig. 1. Summary of early warning signals (EWS) studies published in print or online during 2006–2015.
(A) Published papers classified by year and study type. (B) Empirical studies classified by system type (more
than one system in some studies). (C) The results of quantitative EWS tests (positive or negative results)
compared between study systems with linear or undefined dynamics vs. systems with nonlinear dynamics.
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repeating earlier problems in the literature con-
cerning the possible over-application of nonlinear
theory to describe any abrupt ecological change
(see Hysteresis as a hallmark of nonlinearity, below).
Finally, some studies have tested for EWS against
shifts detected in time series without any attention
to the question of whether those shifts were the
result of alternative states or other nonlinear
dynamics. This type of application may involve
confusion over the term “nonlinear” in the litera-
ture. For instance, Burthe et al. (2016) defined
nonlinear change as turning points in predicted
values from generalized additive models (GAMs)
fit to time series, but this sort of time series vari-
ability may be parsimoniously explained by
linear processes, such as red noise (Di Lorenzo
and Ohman 2013). Similar confusion may exist
in the literature on possible driver–response
relationships (Analysis of northeast Pacific time
series, below), with relationships that can be
summarized through polynomial regression mis-
classified as nonlinear.

Empirical studies are also faced with the statis-
tical problems posed by time series data that are
short, noisy, temporally autocorrelated, open to
confounding and unknown sources of variability,
and inadequately replicated. Very helpful guides
for statistical best practices in empirical stud-
ies have been published (e.g., Boettiger and Hast-
ings 2012, Dakos et al. 2012a, K�efi et al. 2014).
However, in many cases, proposed statistical
approaches are demonstrated with data produced
by models, and may therefore not consider the
real-world problems outlined above. For instance,
metric-based indicators calculated from sliding
windows within time series were first proposed
in modeling studies where time series length is
not a consideration, but this approach may offer
inadequate statistical power to detect a trend in
EWS within the confines of short real-world time
series (Boettiger and Hastings 2012). Empirical
studies to date have taken a variety of statistical
approaches that may be classed into three groups:
statistical hypothesis testing (e.g., Carstensen and
Weydmann 2012, Litzow et al. 2013, Wouters
et al. 2015, Burthe et al. 2016), a model selection
approach (e.g., Carstensen and Weydmann 2012,
Krko�sek and Drake 2014), and shift detection rou-
tines applied simultaneously to EWS time series
and time series measuring system state (e.g., Lit-
zow et al. 2008, Lindegren et al. 2012). Generally

speaking, these three approaches can be consid-
ered as a declining order of statistical rigor for
demonstrating the operation of EWS. However,
the magnitude of the problem of designing appro-
priate statistical tests for EWS within the con-
straints imposed by real-world data sets can be
seen in the relatively large number of studies that
have conducted qualitative assessments of EWS,
usually through visual inspection of graphically
presented results (e.g., Robinson and Uehlinger
2008, Bestelmeyer et al. 2011, Carpenter et al.
2011, Spanbauer et al. 2014; see Appendix S1:
Table S1 for complete list). The relatively common
use of qualitative assessments in EWS studies is
an implicit recognition of the fact that rigorous
tests are often impossible within the constraints of
empirical data. Qualitative tests are certainly
preferable to quantitative tests that are based on
flawed assumptions, and they have been instru-
mental in making early progress in the empirical
application of EWS. However, study designs that
are able to produce quantitative assessments will
be necessary to reduce subjectivity and truly
assess the robustness and utility of EWS.

Hysteresis as a hallmark of nonlinearity
Since so much of EWS theory is based on non-

linear dynamics, and there is a greatly reduced
expectation for EWS in linear systems, there is an
obvious motivation for testing systems for nonlin-
ear dynamics before they are used in EWS studies.
However, this introduces another set of analytical
difficulties. Formal tests for nonlinearity, such as
the BDS test (after the initials of W. A. Brock,
W. Dechert and J. Scheinkman; Brock et al. 1996,
Dakos et al. 2012a) or S-maps (Hsieh et al. 2005),
are data-intensive and often unsuitable for short
ecological time series. Methods exist for joining
short time series to produce synthetic data sets
that are long enough for nonlinearity tests (Hsieh
et al. 2008). However, these have not been evalu-
ated in terms of their effects on EWS and shift
detection. This difficulty in testing for nonlinearity
mirrors long-standing difficulty in applying non-
linear models, such as the fold bifurcation, to real
ecosystems. These models (and the theoretical jus-
tification for EWS that they produce) have been
most successfully applied to simple ecosystems,
such as shallow freshwater lakes (Scheffer et al.
1993). However, even in these simple systems,
empirical evidence for nonlinear dynamics such
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as alternative states is surprisingly sparse at the
ecosystem scale (Schr€oder et al. 2005, Pinto and
O’Farrell 2014). In spite of this paucity of evidence
in even simple systems, heuristic arguments have
often been used to invoke the fold bifurcation
model to explain shifts in large complex systems
where empirical support is correspondingly more
difficult to obtain. Often-cited putative examples
of alternative states or critical transitions in large
systems include ecosystem regime shifts in the
North Pacific (Scheffer et al. 2001, Scheffer and
Carpenter 2003), coral–algae transitions on tropi-
cal reefs (Hughes 1994, Mumby et al. 2006,
Mumby and Steneck 2008, Norstr€om et al. 2009),
and fishing-induced community reorganization in
the North Atlantic (Choi et al. 2004). However,
these examples may be more parsimoniously
explained, respectively, by autocorrelated random
variability (i.e., red noise; Rudnick and Davis
2003, Di Lorenzo and Ohman 2013), linear, rever-
sible tracking of perturbation (Dudgeon et al.
2010), and transient responses to perturbation
(Frank et al. 2011). The possible over-application
of nonlinear theory may have important conse-
quences for ecological understanding (Dudgeon
et al. 2010), and results in considerable confusion
among empiricists and managers concerning the
best approaches for studying and managing
sudden ecological transitions (Bestelmeyer et al.
2011).

These issues in reconciling theory with empiri-
cal observations will not be cleared up soon.
However, an intermediate step providing incre-
ased empirical rigor in the application of alterna-
tive state theory is possible: testing for signs of
hysteresis in ecological driver–response relation-
ships (Bestelmeyer et al. 2011, Hunsicker et al.
2016). This approach is consistent with theoretical
constructs for the range of possible biological
responses to environmental drivers, from linear
tracking, to threshold responses, to hysteresis
(Fig. 2; Scheffer et al. 2001, Andersen et al. 2009,
Pace et al. 2015). Hysteresis is present when the
biological response fails to reverse its initial path
after a perturbation is reversed, due to positive
feedbacks in the system or a difference in the set
of variables controlling the biological response in
different states (Scheffer et al. 2001, Beisner et al.
2003). While formal tests for hysteresis are extre-
mely difficult in observational systems (Schr€oder
et al. 2005, Dudgeon et al. 2010, Faassen et al.

2015), tests for state-dependent behavior in
driver–response relationships are statistically
straightforward and allow empiricists to test for
dynamics that are consistent with hysteresis.
Specifically, the expectation for linear tracking is
that the response is a continuous (linear) function
of the driver, across the time series. The expecta-
tion for hysteresis is that the response is quantita-
tively different in different system states, and the
expectation for the threshold model is that the dri-
ver and response show a sigmoidal relationship
(Fig. 2; Samhouri et al. 2010, Bestelmeyer et al.
2011). This test provides necessary but not suffi-
cient evidence for the presence of hysteresis and
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Fig. 2. Schematic of range of possible driver–
response relationships, from (A) linear tracking of
environmental conditions (in this case illustrated by a
cubic function, which is a linear combination of model
parameters); to (B) an intermediate response with a
strong threshold; and (C) a state-dependent response
consistent with hysteresis. Note that both (B) and (C)
are nonlinear relationships.
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alternative states (Beisner et al. 2003, Petraitis and
Dudgeon 2016). This approach offers an attractive
compromise between the need to demonstrate the
suitability of a given system for EWS research,
and the difficulties of testing for nonlinear
dynamics in empirical systems.

METHODS

Meta-analysis of published results
To compare the results of empirical EWS stud-

ies that do and do not demonstrate nonlinearity
in study systems, we searched the Web Of Science
database and references cited within the literature
to identify examples of empirical EWS studies
published in print or online from 2006 through
2015. We included only non-laboratory examples
from the natural world (e.g., examples from eco-
nomics were excluded) where the predictions of
EWS theory were explicitly tested. Studies merely
documenting trends in EWS (e.g., Boulton and
Lenton 2015) or using EWS to test for nonlinear
dynamics (e.g., Lenton et al. 2012) were not
included. Our meta-analysis did include climate
studies, as this literature includes a large propor-
tion of the available empirical examples, and the
utility of EWS in climate systems has direct bear-
ing on ecology. Approximately one quarter of the
empirical studies that we found presented only
qualitative comparisons of EWS observations and
predicted behavior (Appendix S1: Table S1). We
judged that the results of these qualitative tests
were not rigorous enough for the purposes of a
meta-analysis of published analyses. Accordingly,
we only included studies that presented some sort
of quantitative test of EWS predictions—either a
statistical hypothesis test, a model selection result,
or the results of shift detection routines run simul-
taneously on time series of mean values and EWS.

We categorized the systems in these examples
as either nonlinear or linear. In the former cate-
gory, we included examples for which the results
of a formal test for nonlinearity were either pre-
sented or cited. In the latter category, we
included examples for which no formal test for
nonlinearity was presented. None of the pub-
lished papers presented tests for nonlinearity
with negative results.

We then categorized each example as support-
ing or not supporting predictions for EWS. From
the perspective of an empiricist looking for

theoretical guidance on the expected behavior of
EWS, the literature continues to make inconsis-
tent predictions. For instance, while the most
commonly invoked metric-based EWS are
increasing variance, increasing autocorrelation,
and increasing skewness prior to a transition,
some models predict decreasing values of these
metrics in some situations (Dakos et al. 2012b,
Wang et al. 2012). In order to avoid the complica-
tion of comparing tests of inconsistent predic-
tions, we limited the meta-analysis to examples
where authors expected rising trends in the one
or more of these three metrics prior to a transi-
tion. We then compared the proportion of posi-
tive and negative results between study systems
for which nonlinear dynamics were or were not
demonstrated. The sampling unit for this analy-
sis was the test of an individual EWS metric
within an individual study system. Individual
studies often contained multiple EWS tests,
sometimes in more than one study system.

Analysis of northeast Pacific time series
Data.—In order to further test for differences in

the success of EWS applied to nonlinear vs. linear
systems, and to provide an example of possible
approaches for dealing with this distinction using
real data sets, we conducted a comparative analy-
sis of eight northeast Pacific time series. This
analysis used four time series from Alaskan
ecosystems and four time series from the northern
California Current ecosystem. Data from Alaska
include measures of community composition or
distribution from trawl surveys in Pavlof Bay
(Gulf of Alaska) and the Bering Sea, and time ser-
ies of mean length for juveniles (age-1) for two
gadid species (Pacific cod Gadus macrocephalus
and walleye pollock G. chalcogrammus) from the
Bering Sea. Data from the California Current are
population abundance time series for three cope-
pods (Acartia longiremis, Pseudocalanus mimus, and
Paracalanus parvus) and a naturally produced pop-
ulation of coho salmon (Oncorhynchus kisutch).
The eight time series respond to climate variabil-
ity on monthly, annual, or decadal time scales. For
detailed descriptions of each time series, see
Appendix S1: Detailed Methods.
Testing for nonlinearity.—We considered and

rejected several possible tests for nonlinearity in
the northeast Pacific data. Formal tests for nonlin-
ear time series behavior, such as the BDS test or
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S-maps, generally require longer time series than
the 31–34 years available in Alaska. Tests for mul-
timodal distributions in system state have previ-
ously been used as informal tests for nonlinearity,
though they may also indicate multimodality in
environmental drivers (Scheffer and Carpenter
2003, Wang et al. 2012). However, when we
applied Hartigans’ dip test (Bestelmeyer et al.
2011) to test for multimodal distributions of the
northeast Pacific time series, the results were diffi-
cult to interpret. In particular, analysis of distribu-
tions that appeared heuristically bimodal failed to
reject the null hypothesis of unimodality (e.g.,
Pavlof Bay community time series; Appendix S1:
Fig. S1). Bestelmeyer et al. (2011) noted the con-
servative nature of this test with small sample
sizes, and we judged that more experience is
needed with this test before it can be employed in
restricted data settings such as ours.

We opted to test these time series for behavior
consistent with hysteresis. Specifically, we used a
model selection approach to test for state depen-
dence in driver–response relationships (Bestel-
meyer et al. 2011). Candidate models compared
biological response to a climate driver between
different climate states: either warm or cool states
in the Pacific Decadal Oscillation (PDO) Index for
the California Current time series, warm and cold
states in the Pavlof Bay community composition
time series, or periods of warming and cooling
bottom temperature for Bering Sea time series.
The inference here is that persistent shifts in the
driver carry the response variable between differ-
ent states, consistent with an extensive literature
that ascribes different northeast Pacific commu-
nity states to different states in environmental
conditions (Mantua et al. 1997, Anderson and
Piatt 1999, Benson and Trites 2002). “Linear”mod-
els invoked driver–response relationships that are
unchanging across system states (linear regression
or GAMs Fig. 2). Note that “linear” in this sense
refers to dynamics that can be expressed by a sta-
tistical model containing linear combinations of
model parameters, which includes polynomial
regression or corollary dynamics in a GAM. “Hys-
teresis” models invoked responses that changed
between system states, as reflected by the interac-
tive effect between a state variable and the driver
variable (Bestelmeyer et al. 2011). Candidate
interactive models were constructed both with lin-
ear regression and with GAMs. We also tested

three-parameter sigmoidal regressions to model
strong threshold responses that were intermediate
between the linear and hysteresis models (Sam-
houri et al. 2010, Bestelmeyer et al. 2011, Hun-
sicker et al. 2016). We limited the degree of
smoothing in GAMs to three effective degrees of
freedom in order to prevent over-fitting. Compet-
ing models were evaluated with Akaike’s informa-
tion criterion, adjusted for sample size (AICc).
Testing EWS.—All of the time series used in this

analysis suffered from temporal autocorrelation
that violated the assumption of independent
samples. In order to conduct valid hypothesis
tests for EWS in the presence of autocorrelation,
we used a simple ad hoc randomization
approach (Manly 2006) following four steps:

1. The desired statistical test was conducted on
the data. The P-value from this test was
ignored, but the test statistic (t or s) was
retained.

2. A distribution of the test statistic was gener-
ated from randomized time series with the
same length and first-order autocorrelation
as the original data. Unless noted otherwise,
randomizations consisted of 10,000 permuta-
tions. Randomized time series were gener-
ated with function arima.sim in the “stats”
package of computer language R (R Core
Team 2016), which produces time series with
a distribution of AR(1) values centered on
the specified value. In an example, for 10,000
time series randomized with AR(1) = 0.6
specified, the mean AR(1) value over 100
time steps was 0.57, with SD of 0.08.

3. For a one-tailed test (i.e., for significantly ris-
ing or elevated values), the P-value of the
observed results under the null hypothesis
was estimated as the proportion of random-
ized tests with a test statistic equal to or
greater than the test statistic from the
observed data. Two-tailed P-values were
estimated as the proportion of randomized
absolute value test statistics equal to or
greater than the absolute value of the test
statistic from the actual data.

The EWS tested for in analysis differed among
time series. For the Pavlof Bay community
composition and gadid length time series, details
of how the variables were calculated meant that
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rising spatial variability was the only EWS avail-
able. For the Bering Sea community distribution
time series, rising spatial variability, rising spa-
tial correlation, and rising temporal autocorrela-
tion were used. For the four California Current
time series, rising temporal variability and rising
temporal autocorrelation were used.

For the Pavlof Bay community composition and
the four northern California Current time series,
our EWS test was formulated as a test of the
hypothesis that shifts in mean values are preceded
by rising EWS. For the three Bering Sea time series
(community distribution and length for the two
gadids), we tested the hypothesis that a persistent
perturbation should be accompanied by rising
EWS. For Pavlof Bay community composition, we
used a one-tailed test on the linear trend in vari-
ability from 1972 until 1978, the year when a shift
in variability was documented in the original
study. For Bering Sea community distribution and
the two juvenile gadid length time series, we used
a one-tailed test for increased EWS during the cold
anomaly compared with other years in the time
series. For California Current time series, the
hypothesis was tested with shifts in mean values
detected using the shift detection approach pre-
sented by Bestelmeyer et al. (2011), using the
“strucchange” package in R. This approach uses
the CUSUM test (cumulative sums of ordinary
least squares residuals) to identify break points in
the data and Bayesian information criterion model
selection to identify the best number of shifts for
describing the time series. Shift detection analysis
was conducted with raw time series values rather
than detrended or differenced data. Copepod
abundance EWS were calculated on 16-month
sliding windows within data that had been
detrended with Gaussian kernels, following the
approach of Dakos et al. (2012a) and the package
“earlywarnings” in R. The length of these sliding
windows was based on the life span of the study
species and the temporal scale of their response to
PDO variability. The sliding window for EWS cal-
culation in coho salmon abundance was set at 25%
of time series length (16 yr). For all four time ser-
ies, we tested for increasing EWS across 12 time
steps prior to shifts in mean values, using a one-
tailed randomization test.

The longer time series available for California
Current copepods also allowed us to test for false-
positive signals as an additional EWS test. This

took the form of a test of the hypothesis that peri-
ods of rising trends in EWS are more likely to be
followed by changes in the system mean than
periods without rising EWS trends. To test this
hypothesis, we first identified statistically signifi-
cant increases in every EWS time series using a
one-tailed randomization test. We then compared
the slopes in mean values for the 12-month win-
dows following these significant changes with
other 12-month windows in the time series, using
a two-tailed randomization test.
Comparison across time series.—We used the

individual time series as the sampling unit in our
comparison of EWS test results between time ser-
ies with linear and hysteretic driver–response
relationships. We first estimated the combined
probability of observed EWS behavior from mul-
tiple EWS tests within a time series with Fisher’s
combined probability test (Sokal and Rohlf 1995,
Dakos et al. 2008), which estimates the v2 statis-
tic of the overall probability as

v22k ¼ �2 ln
Xk

i¼1

lnðPiÞ

where k is the number of tests and Pi are the
P-values from individual tests. This gave us a
single P-value for each time series; a second round
of the combined probability test was then used to
evaluate the overall probability across the two
groups of time series (linear and hysteretic).

RESULTS

Meta-analysis of published studies
We retrieved explicit EWS tests from 25 study

systems reported in 19 studies (Table 1). Nonlin-
earity was demonstrated in only six of the 25 sys-
tems. These systems produced eight positive
EWS tests and no negative tests. There was no
demonstration of nonlinearity for 19 study sys-
tems. These systems produced a much more
mixed set of results (15 positive and 14 negative
tests; test for independence in the linear and non-
linear distribution of positive and negative
results, v21 = 4.33, P = 0.037, Fig. 1C).

Comparative analysis of northeast Pacific data
Driver–response relationships.—In Alaska, the

Pavlof Bay community composition (Fig. 3B),
Bering Sea community distribution (Fig. 3E), and
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Pacific cod length time series (Fig. 3H) were best
described by state-dependent driver–response
relationships consistent with hysteresis. Walleye
pollock length was best described by a linear
model (Fig. 3K). In the California Current, Pseu-
docalanus mimus abundance was best described
by a state-dependent driver–response relation-
ship (Fig. 4E), while the other three time series
showed linear relationships with the PDO
(Fig. 4B, H, K). Complete model selection results
are presented in Table 2.

EWS tests.—Predictions for EWS were sup-
ported in both community-level metrics from
Alaska. Spatial variability increased prior to the
shift in Pavlof Bay community composition
(P = 0.05, Fig. 3C). Spatial variability, spatial
autocorrelation, and temporal autocorrelation in
Bering Sea community distribution increased
during the persistent perturbation of the cold

anomaly (P < 0.00001, Fig. 3F). However, nega-
tive results were obtained for Pacific cod and
walleye pollock length; spatial variability for nei-
ther time series increased during the perturba-
tion (P ≥ 0.2; Fig. 3I, L).
In the California Current copepod data, the

best shift detection models invoked either three
of four shifts in each time series, with similar tim-
ing among time series, as is expected given their
shared sensitivity to the PDO (Fig. 4A, D, G).
Coho salmon abundance shifts were defined at
1976/1977, 1990/1991, and 2000/2001, correspo-
nding to low-frequency changes in the sign of
the PDO Index (Fig. 4J). However, these time ser-
ies did not support EWS predictions; EWS trends
(linear slopes on time) did not increase prior to
these shifts in any of the four time series (Fig. 4C,
F, I, L; P ≥ 0.18). Randomization tests with
Kendall’s s as the test statistic rather than t-values

Table 1. Summary of study type, analysis type, evidence for nonlinearities, and early warning signals test results
retrieved from the 19 published studies (25 examples) used in the meta-analysis.

Study ID Linear/nonlinear System type Analysis type Replication n
Test for false
positives? Var. Autocor. Skew.

1 Nonlinear Fw 1 T 6 No S S –
2 Nonlinear Int 2 T 40 No S S S
3 Nonlinear Lake 2 S 1 No S – –
4 Nonlinear Fw 2 T 1 No S – –
5 Nonlinear Marine 2 T 1 No S – –
6 Nonlinear Fw 2 T 2 No – – –
7 Linear Marine 1 S 4 No S – –
7 Linear Marine 1 T 5 No S – –
8 Linear Fw 2 T 83 No NS NS –
8 Linear Fw 2 T 19 Yes NS NS –
8 Linear Marine 2 T 24 Yes NS NS –
9 Linear Climate 2 T 1 Yes S – –
10 Linear Climate 2 T 8 No – S –
11 Linear Climate 2 T 25 No NS NS –
12 Linear Climate 2 T 1 No – – NS
13 Linear Int 2 T 1 No S – –
14 Linear Mar/Fw 2 S 86 No S S –
14 Linear Mar/Fw 2 S 37 No NS NS –
14 Linear Mar/Fw 2 S 40 No S S –
15 Linear Marine 2 B 2 No NS NS –
16 Linear Marine 1 S 1 No S – –
16 Linear Marine 1 S 1 No S – –
17 Linear Marine 2 S 14 Yes S – NS
18 Linear Climate 1 T 7 No – S –
19 Linear Marine 2 T 2 No S S –

Notes: References for the publications and additional study details are provided in Appendix S1: Table S1. Study ID is
cross-referenced with Appendix S1: Tables S1 and S2. Fw, freshwater; Int, intertidal; Mar, marine; T, temporal; S, spatial; B, both;
n, number of time series; Var., authors tested for rising variance; Autocor., authors tested for rising autocorrelation; Skew.,
authors tested for rising skewness; S, supporting evidence; NS, no supporting evidence. Analysis type: 1, shift timing; 2, signifi-
cance test or model selection.
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Fig. 3. Results of early warning signal (EWS) tests in Alaskan ecosystems: Pavlof Bay predator:prey ratios
(A–C), Bering Sea community distribution (D–F), age-1 Pacific cod length (G–I), and age-1 walleye pollock length
(J–L). Left-hand panels plot time series of standardized values of response values and their primary drivers.
Middle panels plot best driver–response models and indicate different driver states (either warm/cold or
warming/cooling). Right-hand panels plot results of randomization tests for increasing EWS prior to a historical
shift (C), or during periods of increased perturbation (F, I, L). Bars in (C, I, L) indicate the distribution of t-values
for linear models of variability trends from randomized data; vertical dashed lines indicate t-value observed in
the system; bars in (F) plot the P-values from three separate EWS tests.
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from linear regression produced similar results
(data not shown). The tests for false positives in
the copepod data reinforced the negative results
of the primary EWS test. False positives were

extremely common in the copepod abundance
time series, and these data did not support pre-
dictions for EWS behavior. None of the three
time series showed inconsistency with the null
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Fig. 4. Results of early warning signal (EWS) tests in the California Current ecosystem: abundance of Acartia
longiremis (A–C), Pseudocalanus mimus (D–F), Paracalanus parvus (G–I), and coho salmon (J–L). Left-hand panels
plot abundance time series (green lines) and states defined by shift detection routine (red lines). Middle panels
plot best driver–response models and indicate warm/cold states in the PDO. Right-hand panels plot results of
randomization tests for rising temporal variability and autocorrelation prior to the shifts indicated by red lines in
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hypothesis (combined probability over two EWS
for each time series, P > 0.1; Appendix S1:
Fig. S2).

Comparison across time series.—The combined
probability of EWS tests for time series showing
hysteretic driver–response relationships (Pavlof
Bay community composition, Bering Sea commu-
nity distribution, Pacific cod length, P. mimus
abundance) led to rejection of the null hypothesis
of no EWS behavior prior to shifts (P < 0.00001).
On the other hand, combined probability for time
series with linear driver–response relationships
(walleye pollock length and Acartia longiremis,
Paracalanus parvus, and coho salmon abundance)
failed to reject the null hypothesis (P = 0.67).

DISCUSSION

Early warning signals (EWS) may eventually
prove to be immensely useful as management
tools. Controlled tests based on manipulations in
laboratories and simple ecosystems provide firm
empirical support for EWS that is particularly
important for demonstrating their potential for
real-world applications (Drake and Griffen 2010,
Carpenter et al. 2011, Dai et al. 2012, 2013, 2015,
Seekell et al. 2012, Veraart et al. 2012, Pace et al.
2013, Cline et al. 2014). However, assessing EWS
in larger, more complex ecosystems presents con-
siderable difficulties in terms of study design
and statistical approach. Recognizing these hur-
dles is essential for EWS to be properly assessed
in real ecosystems. Our results suggest that test-
ing for nonlinear dynamics or signs of hysteresis

is a key step for improving field studies of EWS
and hastening the testing and application of this
promising idea.

The central role of nonlinearity
Our analysis of the literature suggests that tests

in nonlinear systems are more likely to produce
successful empirical examples of EWS than are
systems where nonlinearity has not been formally
demonstrated (Fig. 1C). Because the number of
published examples is still quite small for the pur-
poses of statistical analysis, we treated conclusions
about separate EWS within studies, or conclusions
from separate ecosystems within studies, as inde-
pendent events in order to provide a reasonable
sample size for the meta-analysis. This decision
introduces the risk of pseudo-replication, so the
result should be considered with caution. Still, the
pattern is quite remarkable: Examples with a for-
mal demonstration of nonlinearity produced
exclusively positive EWS tests, while examples
without such a test produced mixed outcomes.
A similar result was produced in our compara-

tive analysis of northeast Pacific time series. The
four time series with driver–response relation-
ships consistent with hysteresis included two
time series that supported EWS predictions
(Pavlof Bay community composition and Bering
Sea community distribution) and two that did
not (Pseudocalanus mimus abundance and Pacific
cod length). The overall distribution of P-values
for these four time series rejects the null hypo-
thesis of no EWS behavior (P < 0.00001). The
four time series showing linear driver–response

Table 2. Results of model selection comparing linear, intermediate, and hysteretic driver–response models for
eight northeast Pacific time series: Δ-AICc values.

Time series n

Linear
Intermediate

Hysteretic

Linear regression GAM Sigmoidal‡ Linear interaction GAM interaction

Acartia longiremis abundance 231 1.049 0.000 NA 0.563 0.619
Pseudocalanus mimus abundance 231 20.793 5.545 NA 12.489 0.000
Paracalanus parvus abundance 231 0.000 0.000† NA 3.465 1.803
Coho salmon abundance 65 0.000 0.000† NA 2.343 0.081
Pavlof Bay community composition 34 21.068 13.820 2.038 0.000 0.004
Bering Sea community distribution 34 24.029 13.835 22.459 0.000 13.478
Pacific cod juvenile length 31 3.841 3.841 NA 1.580 0.000
Walleye pollock juvenile length 31 6.979 0.000 2.822 4.781 1.683

Notes: Best model in each case is indicated in boldface. AICc, Akaike’s information criterion, corrected for sample size;
GAM, generalized additive model.

† Best GAMwas identical to the linear regression.
‡ Sigmoidal model successfully fit only three time series.
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relationships (A. longiremis, P. parvus, and coho
salmon abundance and pollock length), on the
other hand, individually each failed to reject the
null hypothesis, as did the distribution of P-
values across these time series (P = 0.67).

We recognize that our model selection approach
for determining whether driver–response relation-
ships are or are not consistent with hysteresis is an
imperfect test for assessing nonlinear dynamics.
These results are vulnerable to the effects of small
sample size, noise, confounding dynamics, and
alternate interpretation that plague many attempts
to test for complex dynamics with real-world
observational data. Furthermore, the presence of
hysteresis is not an ironclad guarantee that the
fold bifurcation/alternative state model at the base
of much EWS theory is actually present in these
systems (Beisner et al. 2003). Nor can a simple sta-
tistical test for an interactive state effect in driver–
response relationships distinguish hysteresis from
other phenomena, such as transient responses and
asymmetry in basins of attraction (Beisner et al.
2003, Frank et al. 2011). This approach should
therefore be seen as a compromise between what
we would wish and what is possible with real
data. The approach is able to identify time series
with strictly linear relationships to environmental
drivers (e.g., A. longiremis, P. parvus, and coho sal-
mon abundance; Fig. 4B, H, K), which are there-
fore poor candidates for the application of EWS.
In cases where driver–response relationships con-
sistent with hysteresis are detected, mechanistic
understanding of the system can be used to evalu-
ate the likelihood of nonlinear dynamics. For ins-
tance, interactions between Pacific cod and their
prey in Pavlof Bay (Fig. 3A–C) are an example of
oscillating trophic control, with the system pro-
gressing from bottom-up control at the start of the
time series, through top-down control during the
community reorganization, and back to bottom-
up control (Litzow and Ciannelli 2007). These
population controls that differ across the time ser-
ies provide a possible explanation for state-depen-
dent relationships between temperature and
community state (Scheffer et al. 2001). The Pavlof
Bay community composition time series is also
notable because it is a reaction to a sudden pertur-
bation in an external driver, the PDO. Normally
such a sudden trigger is not expected to produce
EWS, which are more likely in cases where the
perturbation is slow relative to the other dynamics

of the system (Dakos et al. 2015). However, in this
case, the sudden perturbation appears to have
produced a nonlinear biological response that was
characterized by both state-dependent driver–
response relationships and EWS. This contrasts
with the four California Current time series, which
are also driven by the PDO, and supports the
prediction that EWS should not be present for
reactions to sudden perturbation (Fig. 4). In the
case of the Bering Sea community distribution
time series (Fig. 3D–F), the mechanisms underly-
ing state-dependent driver–response relationships
are less clear. Community resilience increases with
diversity (Frank et al. 2006), and warming since
the 1980s has increased diversity of the Bering Sea
demersal community (Mueter and Litzow 2008).
This increase in diversity may therefore explain
the apparent hysteresis in the community
response to temperature as diversity-driven differ-
ences in resilience of the cold and warm commu-
nity states. Beyond this general observation,
understanding of the eastern Bering Sea ecosys-
tem is not advanced enough to provide mechanis-
tic understanding of possible hysteresis in the
system. Similarly, state-dependent responses to
temperature variability are known in gadids. For
example, the sign of recruitment–temperature
relationship in Atlantic cod (Gadus morhua)
depends on the mean temperature (Drinkwater
2005). However, the mechanism creating apparent
hysteresis in the Pacific cod length time series,
with a switch from insensitivity to temperature
during the warming period, to temperature sensi-
tivity during the cooling period (Fig. 3G, H)
remains mysterious. Walleye pollock length
showed a linear relationship to temperature across
the warming and cooling periods (Fig. 3K), and
the reason for this different response between the
two species is unknown. Finally, the generally lin-
ear nature of the relationships between the PDO
and copepods and coho salmon in the northern
California Current (Fig. 4B, H, K) is consistent
with the expectation that copepod population
dynamics are driven by linear relationships, char-
acterized by reddening of environmental variabil-
ity that is integrated over the mean life span of a
population (Di Lorenzo and Ohman 2013).
The results of our meta-analysis and compara-

tive analysis, demonstrating the importance of
nonlinearity or hysteresis for the successful
application of EWS, are unsurprising given the
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overwhelming importance of the fold bifurcation
model in the theoretical literature. Indeed, EWS
are so strongly associated with nonlinearity that
they have been suggested as a means of distin-
guishing linear and nonlinear variability in time
series (e.g., Ditlevsen and Johnsen 2010, Lenton
et al. 2012). Given such strong theoretical and
empirical association between EWS and nonlin-
earity, why did nearly 80% of the examples in
our meta-analysis come from systems for which
no tests for nonlinearity were conducted?

The scarcity of tests for nonlinearity in empiri-
cal EWS studies, and the central role of nonlin-
earity in the theory, is part of a broader pattern
of differences between empirical and theoretical
ecology. Nonlinear dynamics have been a corner-
stone of mathematical ecology for decades (Lotka
1956, Lewontin 1968, Holling 1973, May 1977).
But the majority of empirical research continues
to be conducted with statistical tools assuming
linear relationships (Deyle et al. 2013). We see
three reasons for this dichotomy. The first, out-
lined in the Introduction, is the analytical diffi-
culty in assessing nonlinearity with short time
series from the real world. The second has to do
with differences between mathematical models
and reality (Scheffer et al. 2015). In real ecosys-
tems, stochastic perturbations and weak interac-
tions between a large number of interacting
variables may prevent nonlinear dynamics from
occurring (Bjørnstad 2015). Finally, both empiri-
cal (Schr€oder et al. 2005) and theoretical (Petraitis
and Dudgeon 2016) studies indicate that the fold
bifurcation and alternative state models are only
one possible configuration of many that ecosys-
tems may take on. Similarly, population variabil-
ity and driver–response relationships may
commonly reflect linear dynamics (Glaser et al.
2014, Hunsicker et al. 2016). In other words, the
nonlinear dynamics that EWS are largely based
on likely represent only a subset of ecological sit-
uations. These sources of uncertainty concerning
the application of nonlinear models underscore
the importance of the approach that we advance
in our comparative analysis to test for signs of
consistency with the models justifying EWS.
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