

1  
2 DR. HEIDA L. DIEFENDERFER (Orcid ID : 0000-0001-6153-4565)  
3  
4

5 Article type : Articles  
6  
7

## 8 **Storm-Driven Particulate Organic Matter Flux Connects a Tidal Tributary Floodplain 9 Wetland, Main Stem River, and Estuary**

10  
11 Ronald M. Thom,<sup>1</sup> Stephen A. Breithaupt,<sup>1</sup> Heida L. Diefenderfer,<sup>1</sup> Amy B. Borde,<sup>1</sup> G. Curtis  
12 Roegner,<sup>2</sup> Gary E. Johnson,<sup>1</sup> and Dana L. Woodruff<sup>1</sup>  
13

14 <sup>1</sup>Pacific Northwest National Laboratory, Marine Sciences Laboratory, 1529 West Sequim Bay  
15 Road, Sequim, Washington 98382 USA  
16

17 <sup>2</sup>National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Point  
18 Adams Field Station, 520 Heceta Place, Hammond, Oregon 97121 USA  
19

20 **Corresponding Author:** H. Diefenderfer  
21

22 heida.diefenderfer@pnnl.gov

### 23 **Abstract**

24 The transport of terrestrial plant matter into coastal waters is important to regional and global  
25 biogeochemical cycles, and methods for assessing and predicting fluxes in such dynamic  
26 environments are needed. We investigated the hypothesis that upon reconnection of a floodplain  
27 wetland to its main stem river, organic matter produced in the wetland would reach other parts of  
28 the ecosystem. If so, we can infer that the organic matter would ultimately become a source for  
29 the food web in the main stem river and estuary. To accomplish this, we adapted numerical  
30 hydrodynamic and transport modeling methods to estimate the mass of particulate organic matter  
(POM) derived from the annually senescent above-ground parts of herbaceous marsh plants (H-POM). The Finite-Volume Community Ocean Model (FVCOM), parameterized with flow, tide,

This is the author manuscript accepted for publication and has undergone full peer review but has  
not been through the copyediting, typesetting, pagination and proofreading process, which may  
lead to differences between this version and the Version of Record. Please cite this article as [doi:  
10.1002/eap.1759](https://doi.org/10.1002/eap.1759)

31 and above-ground biomass data, simulated H-POM mobilization from fluid shear stress during  
32 tidal exchange, flooding, and variable river flow; entrainment into the water column; transport  
33 via channel and overland flow; and entrapment when wetted surfaces dry. We examined export  
34 from a recently reconnected, restoring tidal emergent marsh on the Grays River, a tributary to the  
35 Columbia River estuary. Modeling indicated that hydrologically reconnecting 65 ha at the site  
36 resulted in export of about  $96 \times 10^3$  kg of H-POM, primarily during pulsed storm flooding events  
37 in autumn and early winter. This exported mass amounted to about 19% of the summer peak  
38 above-ground biomass measured at the site. Of that 19%, about 48% ( $47 \times 10^3$  kg) was deposited  
39 downstream in the Grays River and floodplain wetlands, and the remaining 52% ( $50 \times 10^3$  kg)  
40 passed the confluence of the Grays River and the main stem estuary located about 7 km from the  
41 study site. The colonization of the restoring study site largely by non-native *Phalaris*  
42 *arundinacea* (reed canarygrass) may have resulted in 18–28% lower H-POM mobilization than  
43 typical marsh plant communities on this floodplain, based on estimates from regional studies of  
44 marshes dominated by less recalcitrant species. We concluded that restored floodplain wetlands  
45 can contribute significant amounts of organic matter to the estuarine ecosystem, and thereby  
46 contribute to the restoration of historical trophic structure.

47  
48 **Key words:** allochthonous organic matter flux; dike breach; H-POM; hydrodynamic and  
49 transport modeling; lateral connectivity; marsh detritus; particulate organic matter; restoration;  
50 riparian zone; spatial subsidy; terrestrial-aquatic interface; tidal freshwater

51  
52 **Introduction**

53 Studies since at least the 1950s have clearly demonstrated that particulate organic matter  
54 (POM) produced in wetlands of all kinds is exported to other parts of ecosystems where it can  
55 contribute to the detritus-based food web (e.g., Odum 1956; Teal 1962; Childers et al. 2000).  
56 Dissolved organic matter transported from wetlands along with benthic and planktonic algae can  
57 also be major contributors to the organic matter pool in estuaries (Haines 1977; Correll 1978;  
58 Odum 1984). The release of organic matter is often not steady. Rather, export occurs in pulses  
59 mediated by biological periodicity (e.g., productivity) and physical drivers such as floods,  
60 storms, or periods of high tidal amplitude (Junk et al. 1989; Odum et al. 1995; Mannino and  
61 Harvey 2000). Organic matter produced in terrestrial and aquatic ecosystems can be transported

62 to near-coastal systems through a process commonly referred to as “outwelling” (e.g., Nixon  
63 1980; Dame et al. 1986; Wheatcroft et al. 2010). Outwelling is generally considered an important  
64 link in global geochemical cycles (Hope et al. 1997).

65 In our study area on the U.S. Pacific Northwest (PNW) coast, the tidal wetlands, seagrass  
66 meadows, and benthic algae exhibit high production rates (Thom 1984; Small et al. 1990;  
67 Emmett et al. 2000). Organic matter produced in PNW estuaries and river floodplains reaches the  
68 coastal water where it contributes to the coastal food web (Dahm et al. 1981; Small and Prahl  
69 2004; Walsh et al. 2008). Further, planktonic larval exchange between estuaries and coastal  
70 waters is common (Johnson and Gonor 1982; Roegner 2000; Roegner et al. 2011). A growing  
71 body of information is demonstrating that this organic matter contributes significantly to  
72 fisheries resources important to the economies of the region, such as the iconic salmonids (Healy  
73 1979; Sibert 1979; Simenstad and Wissmar 1985, Maier and Simenstad 2009).

74 Globally, approximately 25–50% of vegetated coastal habitats responsible for organic matter  
75 production and export to the nearshore ocean has been lost in the past 50 years (Duarte et al.  
76 2013b). Presumably, historical levels of total primary production and total POM export have  
77 been correspondingly curtailed. Land conversion and development, including the construction of  
78 dikes and levees, have been the most pervasive human-linked alteration of floodplain and  
79 estuarine wetland habitats (Mitsch and Gosselink 2007). In the Columbia River estuary (defined  
80 as the 235 km tidal reach from Bonneville Dam to the Pacific Ocean), tidal forested, herbaceous,  
81 and shrub-scrub wetlands have been reduced by 20,734 ha (68-70%) since the late 1800s through  
82 agricultural development (i.e., forest removal, diking, farming, grazing) and urbanization  
83 (Marcoe and Pilson 2017). Eliminating or severely restricting hydrological connection between  
84 wetlands and surrounding ecosystems results in alterations to the flows of energy, materials and  
85 species between wetlands and the aquatic and riparian portion of the ecosystem (Naiman and  
86 Décamps 1997; Odum et al. 1995). Further, this “disintegration” of elements composing  
87 ecosystems restricts the ecosystem processes and services provided by the wetlands, such as  
88 groundwater recharge and sediment trapping. Efforts to restore and enhance coastal wetland  
89 ecosystems by breaching levees, removing dikes and levees, and retrofitting culverts are  
90 becoming increasingly common and successful in at least partially restoring many ecological  
91 functions and services (Simenstad and Thom 1996; Zedler 2001; Irving et al. 2011). Yet

92 managing and maximizing the benefits of wetland restoration requires quantifying and predicting  
93 the connections between wetlands and the wider hydrological system.

94 In the Columbia River estuary, POM historically formed the base of the food web, in contrast  
95 to present conditions in which fluvial phytoplankton appears to be predominant (Sherwood et al.  
96 1990; Small et al. 1990). Sources of POM and phytoplankton include autochthonous generation  
97 within the estuary, allochthonous input from the Columbia River and the tributaries upstream of  
98 the estuary, and imports from the Pacific Ocean via tidal exchange (Roegner et al. 2011).

99 Sherwood et al. (1990) concluded that the loss of marshes and swamps resulted in a  
100 comprehensive shift in the amount and quality of organic matter delivered to the food web in the  
101 lower river and estuary; i.e., an ~82% decline in the marsh macrodetritus mass reaching the  
102 estuary food web compared to the mass contributed historically. This is thought to have resulted  
103 in a shift of the food web base for juvenile salmon and other estuarine-dependent species from  
104 wetland-produced insects and epibenthic invertebrate prey to planktonic prey fed by water  
105 column primary producers in reservoirs above dams. Recent research employing stable isotope  
106 analysis of organic matter sources and fish tissues has shown that fluvial phytoplankton, vascular  
107 plants, and benthic diatoms, respectively, contributed 40, 46, and 14% of the organic matter of  
108 the diet of juvenile salmon feeding on invertebrate prey in the Columbia River estuary (Maier  
109 and Simenstad 2009; Maier et al. 2011). This information was an important driver of our  
110 research, because of the potential functional support afforded to threatened and endangered  
111 salmonids by restored floodplain habitats.

112 Our study was part of a comprehensive research effort supporting the Columbia Estuary  
113 Ecosystem Restoration Program, which is aimed at restoring ecosystems in the Columbia River  
114 estuary (Ebberts et al. 2017). Researchers measured the responses of tidal wetlands to tidal  
115 hydrological reconnection, and developed and implemented methods for predicting the effects of  
116 multiple restoration projects on the ecosystem (Diefenderfer et al. 2012; Ke et al. 2013;  
117 Diefenderfer et al. 2016). “Material flux” was recommended as an indicator of the ecosystem  
118 processes and realized functions among several response indicators that were assessed (Roegner  
119 et al. 2009). Specifically, our study addressed the following question: Does restoring  
120 hydrological connection facilitate the export of quantities of endogenously produced POM that  
121 could fuel the food web of the broader ecosystem? Using the framework described by  
122 Diefenderfer et al. (2011, 2016), we hypothesized that restoring hydrological interconnection

123 would allow for material exchange process and we investigated how much material would leave  
124 the system and whether that material could reach the broader estuary from sites located in tidal  
125 freshwater portions of tributary streams and rivers.

126 To address how the restoration of floodplain wetlands can affect the contribution of marsh  
127 macrophyte organic matter from production site to the broader ecosystem, we assessed the mass  
128 of vascular plant organic matter produced that is exported out of a tidal wetland after  
129 hydrological reconnection to the estuary. For this purpose, we focused on POM derived from the  
130 annually senescent above-ground parts of herbaceous marsh plants (H-POM). Our objective was  
131 to develop quantifiable information based on field data and modeling about how restoring the  
132 hydrological connectivity and the associated shift in plant communities of floodplain wetlands  
133 would affect the flow of energy as organic matter between wetlands and the broader ecosystem,  
134 recognizing that H-POM is only one component of organic matter flux. To that end, we first  
135 simulated the hydrologic and hydraulic characteristics that affect H-POM transport from a  
136 wetland, and then used mass-transport tracking simulation to estimate H-POM transport between  
137 the wetland source, the tributary floodplain, and ultimately the main stem of the Columbia River  
138 estuary.

139

140

### Study Area and Site

141 Our study area was a tidal portion of the rainfall-dominated Grays River watershed, a major  
142 tributary to the main stem Columbia River (Fig. 1a). The study site, Kandoll Farm (KF site), is  
143 ~7 km upstream from the confluence of the Grays and Columbia Rivers. The confluence, at  
144 Grays Bay, is within the energy minimum reach (i.e., where the turbidity maximum normally  
145 occurs) of the Columbia River estuary system zone between river kilometers 21 and 39 (Jay et al.  
146 2016). The 65 ha KF site was disconnected from Grays River and its floodplain by dikes along  
147 the river and across the floodplain, forming a parcel isolated from all but the most extreme  
148 annual flood events (Fig. 1). Beginning in the 1800s, logging of *Picea sitchensis* (Sitka spruce)  
149 forest and dike construction converted the landscape from a natural tidal freshwater spruce  
150 wetland to pastureland grazed by cattle. Water was only allowed to drain from the site through a  
151 small (~0.75 m diameter) top-hinged tide gate into Seal Slough. The tide gate essentially  
152 prevented water from flowing into the site at all surface-water levels except for those related to

153 flood events. During annual maximum flood events, water would flow into the site by  
154 overtopping the levee primarily along the main channel of the Grays River.

155 In 2005, hydrological reconnection to the KF site was undertaken by replacing the tide gate  
156 to Seal Slough with two ~4 m diameter culverts and by several small breaches along the main  
157 stem of Grays River. The new culverts restored water-level variations within the site that  
158 matched the timing and amplitude within unrestricted areas in Seal Slough, although floodwaters  
159 still overtop the remaining levees (Breithaupt and Khangaonkar 2008). Between 2005 and 2010,  
160 vegetation shifted from wet pasture grasses, *Trifolium pratense*, *T. repens*, *T. dubium* (clovers),  
161 and *Ranunculus repens* (creeping buttercup) to a mix of tidal freshwater emergent marsh species  
162 dominated by *Phalaris arundinacea* (reed canarygrass). These changes indicated that physical  
163 and biological processes were driving tidal wetland development.

164

## 165 **Methods**

166 Our period of analysis covers the seasonal changes from June 2006 through February 2007,  
167 i.e., post-restoration years one to two after culvert installation in 2005. We chose this seasonal  
168 time period because sampling showed that it represents the period of development of the  
169 maximum emergent wetland vegetation above-ground biomass density (i.e., dry weight per unit  
170 area) and the subsequent loss of biomass from floodplain wetlands during the winter (Small et al.  
171 1990). In the PNW, the typical period of coastal wetlands flooding is during the late fall and  
172 early winter. Based on our field observations at the KF site and two other wetland sites over the  
173 period of 2004–2012, the majority of H-POM exchange between the site of production and  
174 offsite areas (Fig. 1b) appeared to occur as a flood pulse of material during these seasons.

175

### 176 *Hydrodynamic Modeling*

177 We employed deterministic results from a previously developed hydrodynamic model of the  
178 Grays River to evaluate the effect of hydraulic reconnection at restoration sites on the flooding of  
179 adjacent areas (Breithaupt and Khangaonkar 2008; Breithaupt and Lee 2011). The model domain  
180 included Grays River, Seal Slough, and the floodplain from the mouth of Grays River to  
181 approximately 8 km upstream (Fig. 2). The modeling geometry was based on high-resolution  
182 light detection and ranging topography data for the Grays River floodplain (Breithaupt and  
183 Khangaonkar 2008), field-surveyed cross sections of the Grays River and Seal Slough channels

184 (Diefenderfer et al. 2008), and hourly measurements of Grays River flow. Here, we further  
185 develop this model to assess the fate of H-POM derived at the KF site to the model domain  
186 through key processes: POM mobilization from fluid shear stress during tidal exchange,  
187 flooding, and variable river flow; entrainment in the water column; transport via channel and  
188 overland flow; and entrapment when wetted surfaces dry. The model was calibrated with field  
189 measurements of key water and vegetation variables (Appendix S1).

190 We used the hydrodynamic model Finite-Volume Community Ocean Model (FVCOM)  
191 (Chen et al. 2006) to simulate flow in Grays River including Seal Slough and Grays Bay.  
192 FVCOM is a three-dimensional finite-volume model that uses an unstructured grid (composed of  
193 triangular elements) for defining the system's complex geometry (Fig. 2). The hydrodynamic  
194 model solves depths, velocities, and water-surface elevations (WSEs) within the model domain  
195 based on the geometry of the system and the boundary conditions specified in the analysis. The  
196 model includes wetting and drying to control the inundation of land surfaces due to WSE  
197 changes from tidal and runoff forcing. FVCOM calculates friction losses at the bed-water  
198 interface via turbulent shear stress equations. These internal calculations of shear stress are  
199 critical to the simulation of the mobilization of H-POM from the study site, and are outlined in  
200 detail by Chen et al. (2006).

201 River flow and tidal inundation of wetlands directly affect mobilization and transport of H-  
202 POM, and increases in both flow and tidal elevation occur during the late fall and winter months  
203 (Jay et al. 2015). This is highly relevant to the level of inundation that could occur from the  
204 combined events. The boundary condition inputs for the hydrodynamic model were Grays River  
205 stream flow and tidal elevations at Grays Bay (Fig. 1). We obtained streamflow data from the  
206 Grays River gage station (ID 25B060) from the Washington Department of Ecology (WDOE)  
207 (H. Christensen, personal communication, April 1, 2008) for the period of record, including the  
208 H-POM analysis period from June 2006 through February 2007 (Fig. 3a). Note that flows above  
209 approximately  $147 \text{ m}^3 \text{ s}^{-1}$  were estimated by WDOE. The largest measured discharge was  
210  $75.9 \text{ m}^3 \text{ s}^{-1}$  for developing the stage-flow rating curve (H. Christensen, personal communication,  
211 April 17, 2006). Larger discharge estimates were based on the floodplain cross section at the  
212 gage station. The flow records for Grays River show a distinct dry period during the summer and  
213 early fall of 2006 when the flows were less than  $20 \text{ m}^3 \text{ s}^{-1}$ . This low-flow period lasted until early  
214 November 2006, at which time there was an abrupt change to a wet period during which flows

215 peaked at  $467 \text{ m}^3 \text{ s}^{-1}$  on 7 November 2006. Several smaller peak flow events occurred during the  
216 remainder of the H-POM analysis period (Fig. 3a). These episodic peaks in streamflow are the  
217 result of winter storms, which result in varying levels of floodplain inundation.

218 We obtained water-level data for the Columbia River and near Grays Bay, Washington, from  
219 the National Oceanic and Atmospheric Administration (NOAA) station near Astoria, Oregon, at  
220 Tongue Point (ID 9439040) located approximately 6.4 km southwest of Grays Bay. Data from  
221 this station include the effects of upstream flow from Bonneville Dam releases as well as tidal  
222 influences. We also acquired tidal predictions for Harrington Point, Washington, the station  
223 closest to Grays Bay, using the NOAA tide prediction software to provide the water-level time  
224 series for Grays Bay. The largest estimated elevations in Grays Bay were approximately 3.0 m  
225 North American Vertical Datum 1988 (NAVD88) and the minimum elevations were  
226 approximately -0.5 m NAVD88, giving a maximum tidal range of about 3.5 m. Comparison of  
227 the Grays River flows (Fig. 3a) and the tidal elevation plots (Fig. 3b) shows that the largest flows  
228 in the Grays River occurred during a period characterized by large tidal range and corresponding  
229 high tidal elevations. That is, the largest tidal elevations occur during periods of greatest flow.

230 The investigation of flooding in the Grays River by Breithaupt and Khangaonkar (2008) and  
231 Breithaupt and Lee (2011) included calibration of the model to WSEs measured at the KF site  
232 (locations shown in Fig. 1b). Subsequent FVCOM model predictions visibly closely matched the  
233 measured water levels at the sensor locations in and near the site (Fig. 4). While the vertical  
234 datum of the WDOE gage was arbitrary, the trend of modeled WSE matched that of the  
235 measured stage. In general, these comparisons indicated that the model represented the water-  
236 surface variations and the hydrodynamics of the Grays River over the whole model domain,  
237 thereby validating the model.

238

### 239 *Vegetation and H-POM Flux*

240 We used vegetation data from the KF site to calibrate the biomass transport component of the  
241 model. We collected the above-ground herbaceous biomass density from  $0.1 \text{ m}^2$  plots located  
242 within 23 of the 127 random  $1.0 \text{ m}^2$  vegetation cover plots in the  $4,800 \text{ m}^2$  sampling area. This  
243 sampled area was reasonably representative of the vegetation community over the majority of the  
244 site. For each sample plot, we clipped all live and dead vegetation, rinsed the sample over a 1–2  
245 mm mesh sieve, dried ( $\sim 104^\circ\text{C}$ ) the sample until its weight did not change, and weighed the

sample after cooling. During the June 2006 summertime maximum, the average dry-weight biomass density was  $0.78 \text{ kg m}^{-2}$  ( $n = 23$ ). During the February 2007 winter senescent period, the estimated biomass density from the same sampling area using the same methods was  $0.37 \text{ kg m}^{-2}$  ( $n = 22$ ), indicating a loss of  $0.41 \text{ kg m}^{-2}$  (52%) over the 246-day interval. We assume that this loss was from export, not on site decomposition or grazing. For comparison, two other times we sampled biomass and computed flux at the KF site using the same methods used in 2006/2007. From summer 2005 to winter 2006, the flux estimate was  $0.38 \text{ kg m}^{-2}$  (64%), and during summer 2009 to winter 2010, the flux estimate was  $0.66 \text{ kg m}^{-2}$  (65%). Within year and plot, range in above-ground biomass density was high (i.e., on the order of 80% of the mean; our unpublished data). However, we felt that the mean dry-weight biomass density changes between winter and summer represented a reasonable estimate of central tendency for our overall flux estimates. The estimate of the material flux used in model calibration lie within the 95% confidence interval around the mean for the three samplings ( $0.44 \pm 0.24 \text{ kg m}^{-2}$ ). The field measurement of mean biomass loss was used to calibrate the H-POM model to produce the estimated loss of biomass due to fluid shear stress on standing biomass during inundation periods between June 2006 and February 2007 (see Appendix S1).

The vegetation biomass calibration was conducted in two steps to reduce the number of iterations of complete 246-day simulations. For both steps, the calibration was done on an area corresponding to the size and location of biomass sampling (Fig. 2c). The first step involved simulation over a 2-week period (late October 2006) during the dry period and a 4-week period (November 2006) during the wet period. We extrapolated the loss results for this short-duration simulation to the entire H-POM analysis period. We adjusted the loss rate coefficient until the extrapolated biomass loss from the model was close to the measured biomass density loss of  $0.41 \text{ kg m}^{-2}$ . After this adjustment, the second step was a simulation over the complete 246 days between June 1, 2006 and February 28, 2007. This second step confirmed that the modeled biomass loss using the extrapolated loss rate coefficient produced a result similar to the measured biomass loss.

For the H-POM flux analysis, we specified an initial biomass density of  $0.78 \text{ kg m}^{-2}$  for the entire KF site (Fig. 5a, blue background). We computed the flux from the biomass density loss, which provided the upper bound of biomass available for transport. To calculate the H-POM flux at the KF site from biomass density loss, the average biomass density over the restoration area at

277 hourly intervals was multiplied by the area of the KF site to compute total biomass remaining,  
278 and the difference between biomass over each interval provided the average transport ( $\text{kg s}^{-1}$ )  
279 from the whole KF site for each hourly interval. In the model, loss is a function of the constant  
280 coefficient, variable velocity, and variable depth; therefore, channels are the areas where the H-  
281 POM loss is greatest, and less is lost from the central parts of the site that are farthest from the  
282 channels. Although the biomass was set as constant across the site despite the certainty of spatial  
283 variation, these physics-based variations across the site in the model produced a large downward  
284 reduction in the estimated flux.

285 After mobilization of the H-POM within the KF site during inundation, the model transported  
286 H-POM through the water column into Seal Slough, the Grays River, and wetland channels. Grid  
287 cells became wet and dry as tidal elevations and river discharge changed. H-POM was stranded  
288 when a grid cell became dry. H-POM flux through the water column was computed as the mass  
289 of H-POM passing through a boundary line (i.e., transect) at hourly intervals.

290 To simulate H-POM flux, we used the sediment transport model in FVCOM version 2.5.3,  
291 with the following assumptions (see also Appendix S1): 1) Because no base flow enters Seal  
292 Slough from tributary streams, during dry conditions all of the flow is due to tidal exchange. 2)  
293 Settling of H-POM from the water column does not occur during transport; however, H-POM  
294 can become stranded in grid cells that have dried after floodwaters have subsided or the tide has  
295 receded. 3) Plant biomass density data from vegetation sampling plots within 100 m of the main  
296 channel at the KF site were considered representative of biomass for the site. Some of the site  
297 had been classified as wet pasture in the U.S. Fish and Wildlife Service National Wetlands  
298 Inventory prior to restoration. Only the above-ground herbaceous and leafy portion of the  
299 vegetation at the KF site was included in the analysis, not loss or transport of woody debris. 4)  
300 The H-POM mass loss from the vegetation can be approximated using a functional relation  
301 between fluid velocity, bed shear stress, and mass loss, the form of which is the same for that of  
302 sediment transport. Calibration of the model to POM loss was made using a median particle size  
303 of 0.6 mm. 5) All of the plant biomass lost between summer and late winter was mobilized as H-  
304 POM. After being stripped from the vegetation, the transport of H-POM was determined by the  
305 transport equation and there was no loss from H-POM decay.

306 To evaluate the potential capture of H-POM in various locations in the floodplain due to  
307 stranding, three transects across the floodplain and channels were established in the model

308 downstream of the KF site (Fig. 2d). We calculated H-POM flux through the system at hourly  
309 intervals at four locations: 1) at the KF site, 2) downstream of the KF site (Below KF transect),  
310 3) downstream of the confluence of Seal Slough with the Grays River (Confluence transect), and  
311 4) at the mouth of the Grays River (Mouth transect). Total flux across each transect was  
312 computed by summing the individual cell-face fluxes at hourly intervals. The velocity of each  
313 grid cell was multiplied by the width and average depth at each cell face to estimate flow ( $\text{m}^3 \text{ s}^{-1}$ )  
314 through the cell face. The average H-POM concentration ( $\text{kg m}^{-3}$ ) at the grid cell face was  
315 multiplied by the flow to compute H-POM mass flux ( $\text{kg s}^{-1}$ ) through each cell face. Negative  
316 values indicated that flow was outward from the system (i.e., downstream from the KF site).  
317 Values in cells along the transect were summed to compute total transport of H-POM through the  
318 system.

319

320 *Assumptions*

321 We assumed the following: (1) the OM behaves similarly to inorganic matter in that sediment  
322 transport processes are similar; (2) OM decay is not included in the model but would be expected  
323 to be most significant within the model domain in those regions where OM is stranded; while the  
324 OM transported in the pulses down the channel into the Columbia River would not be so  
325 significant because of the short, in-channel transport time during the flood pulse; (3)  
326 removal/erosion of the OM from the restoration site implicitly includes removal of OM from  
327 restoration-site vegetation throughout the water column; and, (4) the density of OM is low  
328 enough to prevent significant settling through the water column so that stranding becomes the  
329 primary loss from fluid transport. We offer that each of these assumptions should be evaluated in  
330 future research, which should include further review of available literature and potentially  
331 laboratory or field studies.

332

333 **Results**

334 Above-ground herbaceous vegetative biomass density at the KF site decreased over the  
335 simulation period between June 2006 and February 2007 (Fig. 5a-c). At three times during the  
336 simulation, the cumulative H-POM mass change was partitioned between the channels and the  
337 floodplain: 3 November 2006, 8 November 2006, and 16 February 2007 (Table 1). Prior to peak  
338 flooding, mobilization of H-POM mass at the KF site was notable ( $27.4 \times 10^3 \text{ kg}$ ), but featured

339 very little mass transport out of the site. The largest biomass losses occurred during the wet  
340 period between early November 2006 and mid-February 2007, primarily during riverine flooding  
341 events when high flows entered the KF site at the northeast corner and exited through dike  
342 breaches and the west-side culverts. After the peak flooding period, cumulative H-POM  
343 mobilization had increased to  $76.2 \times 10^3$  kg, and a total of  $22.0 \times 10^3$  kg of H-POM was  
344 transported through the Below KF transect. Of the transport through this transect, about 21%  
345 ( $4.54 \times 10^3$  kg) of the H-POM flux was through Seal Slough, and the bulk of H-POM transport  
346 was down the Grays River or over the floodplain. At the Confluence transect, the bulk of H-  
347 POM transport was down the Grays River (96%), and a little H-POM flux occurred over the  
348 floodplain. During the peak flood there was only a short period during which the dike along the  
349 south bank of Seal Slough was overtopped, and only 4% of the H-POM mass transport washed  
350 through the floodplain portion of the transect.

351 The spatial distribution of H-POM concentration also changed over the simulation period due  
352 to loss of biomass from the KF site and its transport downstream (Fig. 5d-f; Video S1). At the  
353 onset of the simulation (hour 1, Fig. 5b), H-POM concentrations were negligible due to the initial  
354 concentration being set to zero and the short duration of simulation up to this time. By the end of  
355 the dry period and before the onset of the wet period in November 2006, H-POM concentration  
356 had increased within the KF site, increases in H-POM concentration in Seal Slough and the  
357 Grays River were negligible (Fig. 5e). During the dry period, tidal exchange was the dominant  
358 driver of the mobilization and redistribution of H-POM within the KF site, and little H-POM was  
359 exported from the site. Export occurred only after the onset of the wet period in November 2006.

360 The peak flood in the Grays River during November 2006 was followed by episodes of high  
361 flow in the Grays River through February 2007 (Fig. 3a), and both produced a greater range of  
362 inundation within the site. The periods of high flows through the KF site have larger bed shear  
363 stress, which mobilizes more H-POM, transports it from the KF site into Seal Slough and the  
364 Grays River, and carries it downstream (Fig. 5f). Because floodwaters inundate the floodplain, as  
365 well as the KF site, H-POM became distributed across most of the floodplain downstream (Fig.  
366 5f). Exceptions were areas behind dikes. As floodwaters receded, H-POM was stranded at  
367 locales that became dry. Tidal exchange or later floodwater was able to transport stranded  
368 H-POM farther through the system. Some H-POM was transported upstream (northeast) from the  
369 KF site (Fig. 5f) by flood tides, which caused flow reversals in Grays River.

370 Instantaneous flow across the three H-POM flux transects (Fig. 2d) varied according to tidal  
371 forcing and pulsed periods of flow driven by strong flood events (Fig. 6a, b). Prior to November  
372 2006, the flow across transects was essentially in balance and tidal exchange dominated the  
373 system's hydrodynamics. The peak flood event of the simulation period was composed of two  
374 events separated by about 12 hours in early November 2006, and other smaller floods occurred  
375 later during the late fall and winter. The peak flood overtopped the dike upstream (northeast) of  
376 the KF site, which resulted in a flush of floodwater through the site. During this event and the  
377 remainder of November 2006, net flows at all transects were directed downstream (negative  
378 flows). After mid-January 2007 the flow returned to conditions similar to the period prior to the  
379 peak flood (largely tidally dominated). Note the increase in tidal exchange from upstream  
380 (Below KF transect) to downstream (Mouth transect) as indicated by the larger range of flows  
381 (Fig. 6a, b).

382 The largest instantaneous H-POM flux was at the KF site and the smallest was at the Mouth  
383 transect (Fig. 6c). At the KF site, the pulses of increased flux prior to the peak flood did not  
384 result in transport downstream, but instead any H-POM entrained in the water column was  
385 redistributed around the KF site (Fig. 5e). It was not until the peak flood event that transport  
386 occurred through the downstream transects. After the pulse of efflux during the peak flood event,  
387 the Confluence transect (Fig. 2d) exhibited oscillating transport (Fig. 6c), with positive (inflow)  
388 and negative (outflow) exchange, indicating net H-POM flux from the system was reduced. We  
389 attribute this to the reduction in outflow after mid-January 2007 (Fig. 6a, b).

390 Closer examination of the H-POM flux with the onset of the wet period and around the  
391 period of the peak flood revealed changes in the magnitude of flux and changes in the relative  
392 spatial distribution of fluxes at transects downstream (Fig. 6b). During this period, river flows  
393 increased, resulting in larger inundations of the KF site at flood tides that produced large spikes  
394 in H-POM mobilization. As the peak floodwaters overtopped dikes downstream and began  
395 flowing through the KF site on 6 November 2006, H-POM flux at the KF site continued to  
396 respond to tidal exchange, but the additional influence of the floodwaters produced longer  
397 periods of mobilization. The increased H-POM flux from the KF site produced increased flux  
398 through the Below KF transect, which was followed by smaller increases in fluxes at transects  
399 downstream of the Confluence transect during tidal ebb, although H-POM flux at the Mouth  
400 transect increased only slightly. A larger pulse of H-POM flux occurred on 7 November 2006

401 with the passage of the flood peak at the KF site, and sequentially decreasing magnitudes  
402 occurred through each downstream transect. This decrease is attributed to storage due to  
403 stranding in the Grays River system, i.e., the floodplain and channels.

404 The peak flood produced H-POM mass change at the four locations and a sharp increase in  
405 cumulative H-POM loss from the system (i.e., negative mass change), and by the end of the  
406 simulation approximately  $94.2 \times 10^3$  kg of H-POM had been mobilized at the KF site (Fig. 6c).  
407 At the Below KF transect, the estimated cumulative H-POM mass change was approximately  
408  $96.2 \times 10^3$  kg. At the Mouth transect,  $49.6 \times 10^3$  kg (52%) of H-POM had been transported from  
409 one wetland in the Grays River into Grays Bay by the end of the simulation. The remaining  $46.6 \times 10^3$  kg (48%) of H-POM was deposited in the Grays River and floodplain.

411 We attribute the slightly larger value of mass mobilized at the Below KF transect relative to  
412 the KF site to the difference in methods (mass loss rates at the KF site and mass transfer rates  
413 across each transect) used to calculate flux at the KF site and the other three locations. The  
414 difference in error between the methods is approximately 2% and often negligible. The internal  
415 computations of the models were made at 5-second time steps while the results are given at  
416 hourly intervals. Variations in velocity and H-POM concentrations at intervals smaller than 1  
417 hour are likely, which could produce cumulative errors in flux estimates. However, the overall  
418 trend shows the mass change was smaller at the Below KF, Confluence, and Mouth transects  
419 than the mass mobilized at the KF site. There was a decrease between each successive transect  
420 downstream (Fig. 6c), which is attributed to storage in the Grays River system floodplain and  
421 channels. The Confluence transect exhibited no further increase after mid-January 2007, which is  
422 attributed to the change in flow regime (Fig. 6a) and the oscillatory H-POM flux (Fig. 6b).

423 In summary, according to the model, the fate of biomass produced per unit area at the site  
424 breaks down as follows (Fig. 7): 1) Peak summer biomass density at the KF site averaged  $0.78$   
425  $\text{kg m}^{-2}$ , which equals a total of  $506.4 \times 10^3$  kg for the entire 65 ha site. 2) Biomass reduction due  
426 to H-POM mobilization equaled  $0.301 \text{ kg m}^{-2}$  or 38.7% of the peak summer biomass density  
427 (i.e., this value represents the portion of the lost biomass that was mobilized). 3) Biomass not  
428 mobilized equaled  $0.478 \text{ kg m}^{-2}$  or 61.3% of the peak summer biomass density. 4) Mobilized H-  
429 POM retained on the site equaled  $0.153 \text{ kg m}^{-2}$  or 19.6% of the peak summer biomass density,  
430 and 50.8% of all mobilized H-POM. 5) Mobilized H-POM exported equaled  $0.148 \text{ kg m}^{-2}$  or  
431 19.0% of the peak summer biomass density, and 49.2% of all mobilized H-POM. 6) Mobilized

432 H-POM retained in the Grays River and floodplain equaled  $0.071 \text{ kg m}^{-2}$  or 9.1% of the peak  
433 summer biomass density, and 48.0% of all exported H-POM. 7) Mobilized H-POM distributed to  
434 the main stem Columbia River estuary equaled  $0.077 \text{ kg m}^{-2}$  or 9.9% of the peak summer  
435 biomass density, and 52.0% of all exported H-POM. This demonstrates that enhanced  
436 hydrological connection to a formerly diked wetland resulted in transport of H-POM from the  
437 KF site to the floodplain, main stem river, and estuary.

438

## 439 **Discussion**

440 Restoring an ecosystem function such as H-POM export is among a set of paradigms  
441 commonly put forward as drivers of ecosystem recovery (Duarte et al. 2013a). The mass-  
442 transport modeling in this study demonstrated that POM produced in a tributary floodplain  
443 wetland cumulatively affects the main stem estuary 7 km downstream, nearby restoration sites,  
444 and even areas upstream of the wetland through tidal reversals. These indirect and cross-  
445 boundary effects (CEQ 1997; Diefenderfer et al. 2016) occurred throughout the floodplain  
446 riverscape. The modeling showed that the new culverts, as well as a flood event that overtopped  
447 the levee, were important conduits for the exchange of a large mass of organic material. This  
448 supports the hypothesis that restoring hydrological connections is a viable strategy for enhancing  
449 marsh macrodetritus contributions to the food web in the Columbia River estuary (Maier and  
450 Simenstad 2009).

451

## 452 *Limitations of Results*

453 Although we did not conduct a similar simulation for the conditions with the tide gate in  
454 place, we assume that exchange was far less than with the new culverts based on the relative  
455 dimensions of the openings, the elevation of the tide gate, and the dampening effect of its lid.  
456 According to our post-construction modeling, between summer and mid-winter, approximately  
457  $96.2 \times 10^3 \text{ kg}$  of H-POM was exported downstream of the KF site. Of this mobilized H-POM,  
458 100% passed the Below KF transect, 65% passed through the Confluence of Seal Slough and the  
459 Grays River, and about 52% passed through the mouth to Grays Bay (Figure 2d), which is  
460 located on the main stem of the Columbia River in the estuary system zone (Jay et al. 2016). H-  
461 POM was redistributed to the floodplain during the peak flood events, and was then available for  
462 transport during moderate flow conditions. The mobilized H-POM that was not transported

463 through a sampling transect was apparently stored in the Grays River system floodplain and  
464 channels, and was presumably susceptible to transport downstream in future events until further  
465 breakdown or uptake of materials occurred.

466

#### 467 *Marsh Plant Community*

468 Mobilization of vegetation depends on a variety of factors (i.e., death, fragmentation, and  
469 decay) some of which are not taken into account in our model. For example, the breakdown of  
470 reed canarygrass is complex in that stems may or may not die over the winter and that the stems  
471 can re-sprout in the spring even after appearing to be dead in the winter (leaves generally die  
472 every year). Ultimately the whole 1–2 m tall plant dies and falls over, and may or may not form a  
473 dense mat. In any case, the stems begin to break down and, over the course of a year, break into  
474 increasingly smaller pieces. The stem fragments initially float because they are hollow.  
475 Eventually the stems become waterlogged and sink, but we are not sure how long that takes. We  
476 used biomass loss data from the site during the period for which the model was run, thereby  
477 capturing the bulk of the vegetation being mobilized and transported. That said, further study is  
478 warranted to partition the contribution of floating and waterlogged fragments to H-POM fluxes  
479 and fate.

480 Variability in biomass production and loss is significant in the Columbia River estuary. Our  
481 estimate of the summer vascular plants standing crop ( $0.78 \text{ kg m}^{-2}$ ) from data collected at the KF  
482 site is within the range reported by Small et al. (1990) of 0.27 to  $1.65 \text{ kg m}^{-2}$ . Like Small et al.  
483 (1990), who sampled several sites in the lower estuary, our data on H-POM production on  
484 similar high marshes on the Columbia floodplain indicate a very high range and variability of  
485 macrodetritus production: minimum = 0.03, maximum = 1.59, median =  $0.72 \text{ kg dry weight m}^{-2}$   
486  $\text{yr}^{-1}$  for 32 sampling areas across 7 sites over 5 years (A. Borde, unpublished data, PNNL,  
487 Sequim, WA). Data for the KF and two other restoration sites and their paired reference sites are  
488 also highly variable between sites, within sites, and among years (Diefenderfer et al. 2016).  
489 Based on observations of the entire KF site over many years, we believe that the variability in  
490 production across the site, which we simplified to a single estimate based on subsampling of one  
491 part of the site, is also dwarfed by the variability throughout the ecosystem such that the  
492 simplification for modeling purposes is irrelevant. Our long-term sampling of sites has shown  
493 that high variability in annual production in these marshes is driven by seasonal and interannual

494 variability in hydrologic conditions (Borde et al. 2013). In addition, the range of plant biomass  
495 density during summer and in winter in reference marshes indicates that much higher or lower  
496 quantities may be produced and lost in some sites, parts of sites, or years. Based on these  
497 additional data from across the floodplain and our modeling, we conclude that, in general,  
498 detritus is exported from restoration sites on tributaries to nearby wetlands and perhaps over  
499 longer distances to the main stem over a larger inference space, i.e., restoration and reference  
500 marshes on the tidally influenced Columbia River floodplain.

501 Simenstad et al. (1990) estimated for the Columbia estuary that herbivores remove 15% of  
502 annual emergent plant carbon production, and that translocation to the roots removes 38%,  
503 leaving approximately 47% to enter the H-POM pool. For the Fraser River tidal delta in southern  
504 British Columbia, Kistritz et al. (1983) showed that approximately 37% of the sedge marsh  
505 biomass was exported off the marsh plain annually, and that virtually all of that took place  
506 during winter. Our measurements and model only treated the potential H-POM pool and we did  
507 not measure loss via herbivory, translocation, or burial. Our estimate that 19% of the annual  
508 emergent plant carbon produced is exported is somewhat low compared to these other regional  
509 estimates. We wonder if this may be due to differences in wetland species. After hydrological  
510 connection, the KF site became dominated by reed canarygrass, a species that develops thick,  
511 tough mats that may be more recalcitrant to mobilization (e.g., Griffiths et al. 2012) than those  
512 dominating sites studied by Simenstad et al. (1990) and Kistritz et al. (1983), e.g., *Carex*  
513 *lyngbyei*. Reed canarygrass has a faster decomposition rate than *Typha latifolia* (common  
514 cattail), *Juncus effusus* (soft rush), and *Alnus rubra* (red alder) leaves (Gingerich and Anderson  
515 2011), which are common elsewhere including in other parts of the Columbia River estuary.  
516 Additionally, the model only removes POM via physical means (erosion and transport), which  
517 are governed by fluid motion, and produces the greatest velocity and potential for erosion in the  
518 channels. The model does not include biological processes that would lead to losses observed in  
519 the field in areas distant from channels, which do not show losses in this modeling (Fig. 5f). In-  
520 channel transport would have limited time for decay before H-POM is flushed into the Columbia  
521 River. The stranded OM would be subject to decay within the modeling analysis domain. The  
522 stranded H-POM could be flushed and transported further depending on the recurrence rate and  
523 size of flood pulses. This is consistent with efforts by others who have shown that biogenic  
524 influences on physical processes increase farther from marsh channels (Collins et al. 1987).

525

526 *Ecosystem Connectivity and Spatial Subsidies of Restoration*

527 While delivery of H-POM to estuaries and near-coastal systems is generally viewed as a key  
528 aspect of global biogeochemical cycles, the role of storm-driven pulsed delivery is less well  
529 appreciated (Hope et al. 1997; Mooney and McClelland 2012). We believe that the pulsed  
530 redistribution of H-POM in the Grays River floodplain and channels and then to the main stem  
531 Columbia River in the estuary zone is an important nuance associated with defragmentation of  
532 estuarine ecosystems through restoration of hydrological interconnections. Climatic fluctuation  
533 resulting in variation in winter flood magnitude and frequency, or changes to the level of ocean  
534 water relative to land elevation, thus may regulate detrital pathways throughout the ecosystem.

535 Notably, the transport of material to adjacent elements of the riverscape, including other  
536 restoration sites in the model domain, suggests that the effect of multiple hydrologic  
537 reconnections in a riverscape could be synergistic, as previously demonstrated (Diefenderfer et  
538 al. 2012). This “lateral” connectivity (Amoros and Bornette 2002) demonstrates the spatial  
539 subsidy of organic matter (Summerhayes and Elton 1923; Polis et al. 1997), an important process  
540 contributing to a wide array of ecosystem functions (Naiman and Décamps 1997; Nakano and  
541 Murakami 2001). Alone, however, lateral connectivity stops short of describing changes in the  
542 receiving system, i.e., “functional” connectivity (Talley et al. 2006). Further research remains to  
543 be done in the Columbia River estuary and other systems to elucidate the fate of material relative  
544 to environmental conditions such as seasonal temperature and flow and the temporal aspects of  
545 specific mechanisms by which material is taken up in the food web.

546

547 It is clear from studies in other systems that detritus from vascular plants and associated  
548 algae contributes to production of prey for estuarine-dependent fish species (e.g., Odum and  
549 Heald 1975; Nixon 1980; Boesch and Turner 1989). With recent information showing that the  
550 prey consumed by estuarine-dependent juvenile salmon in the Columbia use marsh detritus as a  
551 major source of energy (Maier and Simenstad 2009), our rough estimate of H-POM export to the  
552 estuary, not including aged detrital material export, provides guidance on the magnitude and type  
553 of restoration actions that could begin to have a significant effect on restoring the broader  
554 estuarine food web that is important to young salmon in the ecosystem. The mass-transport  
555 modeling also reinforces other evidence that the detrital-based part of the salmonid food web of

556 the Columbia River estuary is shaped by multiple sources and pathways from outside the main  
557 stem estuary (Maier and Simenstad 2009; Naiman et al. 2012). Moreover, Kukulka and Jay  
558 (2003) showed that diking and flow regulation have reduced the opportunity for shallow-water  
559 habitat access by young salmon by 62% during the critical freshet period. Simenstad et al. (2000)  
560 concluded that landscape structure and scale are important when designing restoration projects to  
561 benefit coastal and estuarine fishes that use shallow-water habitats. In the case of the Columbia  
562 River estuary, access to preferred prey resources depends on both direct access to shallow-water  
563 habitats and, under altered conditions, access to prey in main stem estuary portions of the system  
564 (Diefenderfer et al. 2016). Under these altered conditions, salmon access to prey feeding on  
565 marsh macrodetritus may depend more on H-POM exported to deeper areas than previously  
566 thought. Larger fish that may infrequently enter shallow tidal channels can still benefit from H-  
567 POM produced and exported from wetlands, especially if that flux includes insect prey.

568 Our estimate of total production by marsh macrophytes in the KF site was  $5.32 \times 10^5$  kg,  
569 which equals  $2.13 \times 10^5$  kg C (i.e., using the conversion factor 1 g biomass = 0.4 g C employed  
570 by Small et al. 1990). Thus, the KF site production represented about 2% of the total marsh  
571 macrophyte production estimate ( $1.13 \times 10^7$  kg C) made by Small et al. (1990) for the entire  
572 estuary. The 65 ha KF site represents 0.67% of the 9,747 ha of tidal herbaceous wetland lost  
573 from the system since the late 1800s (Marcoe and Pilson 2017). Scaling up to the broader  
574 estuary, we multiplied this yield estimate by the 9,747 ha of herbaceous wetlands lost and by the  
575 estimate that 23% of the macrophyte production that is exported. Our calculation resulted in an  
576 estimated annual loss of  $7.35 \times 10^6$  kg C ( $= 3.28 \times 10^3$  kg C  $\times 9,747$  ha  $\times 0.23$ ) to the ecosystem  
577 compared with roughly  $24 \times 10^6$  kg C lost annually in the late 1800s.

578 Diefenderfer et al. (2016) found that sediment accretion occurred after the levee breach, and  
579 contributed to restoring the elevation and vegetation structure of the subsided marsh plain at the  
580 KF site. At the same site, we found that pulsed flood events drove export of substantial amounts  
581 of POM and probably some sediment, marsh-associated invertebrates, and dissolved organic  
582 matter. Considering these results, hydrologically reconnecting a wetland to its main stem river  
583 not only results in wetland recovery it also results in re-establishing support to the system  
584 downstream, including, in this case, the main stem of the Columbia River estuary.

585

586 *Conclusion*

587 The processes of primary production and exchange of organic matter are of fundamental  
588 importance to maintaining the flow of energy among elements of the ecosystem, and material  
589 flux is essential for supporting the food web, biodiversity, and production of prey. Management  
590 plans that result in modification of the supply of organic matter to riverine, estuarine, and coastal  
591 food webs need to consider the effects of changes in the system on the amount and mix of the  
592 organic matter supply (e.g., Jassby et al. 1993; Sobczak et al. 2002; Hunsinger et al. 2010).  
593 Changes in the hydrodynamics of river systems are also relevant because, as we have shown,  
594 H-POM flux can be driven by river discharges that inundate the floodplain, while tidal exchange  
595 at low flows contribute less to flux. We believe that further studies aimed at quantifying this  
596 organic matter flow as a functional response to habitat restoration projects and pulsed events in  
597 the physical environment would prove a clear link between restoration actions and ecosystem  
598 services. Developing estimators of the effects of multiple actions on the restoration of organic  
599 matter flow will assist in quantification of the cumulative effects of multiple restoration projects  
600 on an ecosystem, perhaps one of the most daunting and relevant problems in restoration ecology.  
601 Modeling methods such as those demonstrated herein have the potential to help assess and  
602 predict material fluxes in hydrologically dynamic zones and evaluate landscape-scale effects  
603 attributable to the fragmentation or reconnection of terrestrial-aquatic ecosystems.

604

### 605 Acknowledgements

606 The research reported here was funded by the Portland District of the U.S. Army Corps of  
607 Engineers under the Columbia River Fish Project. We sincerely thank the late Blaine Ebberts,  
608 and Cindy Studebaker, of the Portland District for their support, encouragement, and direction of  
609 the research. We are grateful to the Columbia Land Trust, Vancouver, Washington, for  
610 permitting us to conduct research on wetlands that it conserved and restored on the Grays River.  
611 Taeyun Kim assisted with the model application and Luca Castrucci assisted with model  
612 extractions and aerial imagery overlays. Nathan Johnson provided overall graphics support. Field  
613 and logistical support were provided by Earl Dawley and Alan Whiting. Shannon Bates and  
614 Susan Ennor edited the final draft. Finally, we thank John Vavrinec, Bob Christian, Clayton  
615 Williams, Christer Nilsson and two anonymous reviewers for providing very helpful comments  
616 on various versions of the manuscript.

617 **Literature Cited**

618 Amoros, C., and G. Bornette. 2002. Connectivity and biocomplexity in waterbodies of riverine  
619 floodplains. *Freshwater Biology* 47:761-776.

620 Boesch, D. F., and R. E. Turner. 1984. Dependence of fisheries species on salt marshes: The role  
621 of food and refuge. *Estuaries* 7:460-468.

622 Borde, A. B., S. A. Zimmerman, R. M. Kaufmann, R. M. Thom, and C. L. Wright. 2013. Lower  
623 Columbia River and Estuary Habitat Monitoring Study: 2012 Annual Report. PNNL-22410.  
624 Prepared for the Lower Columbia River Estuary Partnership by Pacific Northwest National  
625 Laboratory, Richland, Washington.

626 Breithaupt, S., and T. Khangaonkar. 2008. Forensic Hydrodynamic Evaluation Following the  
627 Restoration of a Tidal Freshwater Wetlands. *Estuarine and Coastal Modeling*. doi:  
628 10.1061/40990(324)34.

629 Breithaupt, S. A., and C. Lee. 2011. Hydrodynamic Modeling Analyses for the Mill Road  
630 Restoration Project, Grays River, Washington. PNWD-4245. Prepared for Columbia Land  
631 Trust, Vancouver, WA.

632 Chen C., R. C. Beardsley, and G. Cowles. 2006. An Unstructured Grid, Finite-Volume Coastal  
633 Ocean Model, FVCOM User Manual. SMAST/UMASSD-06-060, University of  
634 Massachusetts-Dartmouth, Dartmouth, Massachusetts.

635 Childers, D. L., J. W. Day Jr., and H. N. McKellar Jr. 2000. Twenty more years of marsh and  
636 estuarine flux studies: revisiting Nixon (1980). In *Concepts and controversies in tidal marsh*  
637 *ecology*, eds. Michael P. Weinstein and Daniel A. Kreeger, 391-423. Dordrecht, Netherlands:  
638 Kluwer Academic Publishers.

639 Collins, L. M., J. N. Collins, and L. B. Leopold. 1987. Geomorphic processes of an estuarine  
640 marsh. Pages 1049–1072 in V. Gardiner (ed.), *International Geomorphology 1986: Part I.*  
641 *Proceedings of the First International Conference on Geomorphology*. John Wiley & Sons  
642 Ltd., Hoboken, New Jersey.

643 Council on Environmental Quality (CEQ). 1997. Considering cumulative effects under the  
644 *National Environmental Policy Act*. Executive Office of the President, Washington, D.C.

645 Correll, D.L. 1978. Estuarine productivity. *BioScience* 28:646-650.

646 Dahm, C. N., S. V. Gregory, and P. K. Park. 1981. Organic carbon transport in the Columbia  
647 river. *Estuarine, Coastal Shelf Science* 13:645-658.

648 Dame, R., T. Chrzanowski, K. Bildstein, B. Kjerfve, H. McKellar, D. Nelson, J. Spurrier, S.  
649 Stancyk, H. Stevenson, J. Vernberg, and R. Zingmark. 1986. The outwelling hypothesis and  
650 North Inlet, South Carolina. *Marine Ecology Progress Series* 33:217-229.

651 Diefenderfer, H. L., A. M. Coleman, A. B. Borde, and I. A. Sinks. 2008. Hydraulic geometry and  
652 microtopography of tidal freshwater forested wetlands and implications for restoration,  
653 Columbia River, U.S.A. *Ecohydrology & Hydrobiology* 8:339-361.

654 Diefenderfer, H. L., G. E. Johnson, J. R. Skalski, S. A. Breithaupt, and A. M. Coleman. 2012.  
655 Application of the diminishing returns concept in the hydroecologic restoration of  
656 riverscapes. *Landscape Ecology* 27:671-682.

657 Diefenderfer, H. L., G. E. Johnson, R. M. Thom, K. E. Buenau, L. A. Weitkamp, C. M.  
658 Woodley, A. B. Borde, and R. K. Kropp. 2016. Evidence-Based Evaluation of the  
659 Cumulative Effects of Ecosystem Restoration. *Ecosphere* 7(3): Article e012421.

660 Diefenderfer H. L., R. M. Thom, G. E. Johnson, J. R. Skalski, K. A. Vogt, B. D. Ebberts, G. C.  
661 Roegner, and E. M. Dawley. 2011. A levels-of-evidence approach for assessing cumulative  
662 ecosystem response to estuary and river restoration programs. *Ecological Restoration*  
663 29:111-132.

664 Duarte, C. M., A. Borja, J. Carstensen, M. Elliott, D. Krause-Jensen, and N. Marbá. 2013a.  
665 Paradigms in the recovery of estuarine and coastal ecosystems. *Estuaries and Coasts* DOI  
666 10.1007/s12237-013-9750-9.

667 Duarte, C. M., I. J. Losada, I. E. Hendriks, I. Mazarrasa, and N. Marbá. 2013b. The role of  
668 coastal plant communities for climate change mitigation and adaptation. *Nature Climate  
669 Change* 3:961-968.

670 Ebberts B. D., B. D. Zelinsky, J. P. Karnezis, C. A. Studebaker, S. Lopez-Johnston, A. M.  
671 Creason, L. Krasnow, G. E. Johnson, and R. M. Thom. 2017. Estuary ecosystem  
672 restoration: Implementing and institutionalizing adaptive management. *Restoration  
673 Ecology*. doi: 10.1111/rec.12562

674 Emmett, R., R. Llanso, J. Newton, R. Thom, M. Hornberger, C. Morgan, C. Levings, A.  
675 Copping, and P. Fishman. 2000. Geographic signatures of North American west coast  
676 estuaries. *Estuaries* 23:765-792.

677 Gingerich, R. T., and J. T. Anderson. 2011. Decomposition trends of five plant litter types in  
678 mitigated and reference wetlands in West Virginia, USA. *Wetlands*, 31:653-662.

679 Griffiths, N.A., J.L. Tank, S.S. Roley, and M.L. Stephen. 2012. Decomposition of maize leaves  
680 and grasses in restored agricultural streams. *Freshwater Science* 31:848-864.

681 Haines, E.B. 1977. The origins of detritus in Georgia salt marsh estuaries. *Oikos* 29: 254-260.

682 Healy, M.C. 1979. Detritus and juvenile salmon production in the Nanaimo estuary: I.  
683 Production and feeding rates of juvenile chum salmon. *J. Fish. Res. Board Can.* 36:488-496.

684 Hope, D., M. F. Billett, R. Milne, and T. A. W. Brown. 1997. Exports of organic carbon in  
685 British rivers. *Hydrological Processes* 11:325-344.

686 Hunsinger, G. B., S. Mitra, S. E. G. Findlay, and D. T. Fischer. 2010. Wetland-driven shifts in  
687 suspended particulate organic matter composition of the Hudson River estuary, New York.  
688 *Limnology and Oceanography* 55:1653-1667.

689 Irving, A. D., S. D. Connell, and B. D. Russell. 2011. Restoring coastal plants to improve global  
690 carbon storage: reaping what we sow. *Plos One* 6:1-3.

691 Jassby, A. D., J. E. Cloern, and T. M. Powell. 1993. Organic carbon sources and sinks in San  
692 Francisco Bay: Variability induced by river flow. *Marine Ecology Progress Series* 95:39-54.

693 Jay, D. A., A. B. Borde, and H. L. Diefenderfer. 2016. Tidal-fluvial and estuarine processes in  
694 the lower Columbia River: II. Water level models, floodplain wetland inundation, and reach  
695 classification. *Estuaries and Coasts* 39:1299-1324.

696 Jay, D. A., K. Leffler, H. L. Diefenderfer, and A. B. Borde. 2015. Tidal-fluvial and estuarine  
697 processes in the lower Columbia River: I. Along-channel water level variations, Pacific  
698 Ocean to Bonneville Dam. *Estuaries and Coasts*. 38:415-433. doi 10.1007/s12237-014-9819-  
699 0 published online 2014.

700 Johnson, G. E., and J. J. Gonor. 1982. The tidal exchange of *Callianassa californiensis*  
701 (*Crustacea, Decapoda*) larvae between the ocean and the Salmon River estuary, Oregon.  
702 *Estuarine Coastal and Shelf Science* 14:501-516.

703 Junk, W. J., P. B. Bailey, and R. E. Sparks. 1989. The flood pulse concept in river-floodplain  
704 systems. *Canadian Special Publication of Fisheries and Aquatic Sciences* 106:110-127.

705 Ke, Y., A. M. Coleman, and H. L. Diefenderfer. 2013. Temporal land cover analysis for net  
706 ecosystem improvement. *Ecohydrology and Hydrobiolgy* 13:84-96.

707 Kistritz, R. U., K. J. Hall, and I. Yesaki. 1983. Productivity, detritus flux, and nutrient cycling in  
708 a *Carex lyngbyei* tidal marsh. *Estuaries* 6:227-236.

709 Kukulka, T. and D. A. Jay. 2003. Impacts of Columbia River discharge on salmonid habitat 2:  
710 Changes in shallow-water habitat. *Journal of Geophysical Research* 108(C9):3294.

711 Maier, G. O. and C. A. Simenstad. 2009. The role of marsh-derived macrodetritus to the food  
712 webs of juvenile Chinook salmon in a large altered estuary. *Estuaries and Coasts* 32:984–  
713 998.

714 Maier, G. O., J. D. Toft, and C. A. Simenstad. 2011. Variability in isotopic ( $\square\text{13C}$ ,  $\square\text{15N}$ ,  
715  $\square\text{34S}$ ) composition of organic matter contributing to detritus-based food webs of the  
716 Columbia River estuary. *Northwest Science* 85:41–54.

717 Mannino, A., and H. R. Harvey. 2000. Terrigenous dissolved organic matter along an estuarine  
718 gradient and its flux to the coastal ocean. *Organic Geochemistry* 31:1611–1625.

719 Marcoe, K. and S. Pilson. 2017. Habitat change in the lower Columbia River estuary, 1870–2009.  
720 *Journal Coastal Conservation*. Published online June 16, 2017. DOI 10.1007/s11852-017-  
721 0523-7.

722 Mitsch W. J. and J. G. Gosselink. 2007. *Wetlands*, 4th ed. Hoboken, NJ: Wiley.

723 Mooney, R.F. and J.W. McClelland. 2012. Watershed export events and ecosystem responses in  
724 the Mission-Aransas National Estuarine Research Reserve. *Estuaries and Coasts*. 35:1468–  
725 1485.

726 Nakano, S., and M. Murakami. 2001. Reciprocal subsidies: Dynamic interdependence between  
727 terrestrial and aquatic food webs. *Proceedings of the National Academy of Sciences*  
728 98:166–170.

729 Naiman, R. J., J. R. Alldredge, D. A. Beauchamp, P. A. Bisson, J. Congleton, C. J. Henny, N.  
730 Huntly, R. Lamberson, C. Levings, E. N. Merrill, W. G. Pearcy, B. E. Rieman, G. T.  
731 Ruggerone, D. Scarneccia, P. E. Smouse, and C. C. Wood. 2012. Developing a broader  
732 scientific foundation for river restoration: Columbia River food webs. *Proceedings of the*  
733 *National Academy of Sciences* 109:21201–21207.

734 Naiman R. J., and H. Décamps. 1997. The ecology of interfaces: riparian zones. *Annual Review*  
735 *of Ecology and Systematics* 28:621–58.

736 Nixon, S. W. 1980. Between coastal marshes and coastal waters—a review of twenty years of  
737 speculation and research on the role of salt marshes in estuarine productivity and water  
738 chemistry. In *Estuarine and Wetland Processes*, P. Hamilton and K.B. MacDonald (eds.),  
739 437–525. New York: Plenum Press.

740 Odum, H. T. 1956. Primary production in flowing waters. *Limnology & Oceanography* 1:102–  
741 117.

742 Odum, W. E. 1984. Dual-gradient concept of detritus transport and processing in estuaries.  
743 *Bulletin of Marine Science* 35:510–521.

744 Odum, W. E. and E. J. Heald. 1975. The detritus-based food web of an estuarine mangrove  
745 community. In *Estuarine Research*, Vol. 1, ed. L.E. Cronin, 265–286. New York: Academic  
746 Press.

747 Odum, W. E., E. P. Odum, and H. T. Odum. 1995. Nature's pulsing paradigm. *Estuaries* 18: 47–  
748 555.

749 Polis, G. A., W. B. Anderson, and R. D. Hold. 1997. Toward an integration of landscape and  
750 food web ecology: The dynamics of spatially subsidized food webs. *Annual Review of  
751 Ecology and Systematics* 28:289-316.

752 Roegner, G. C. 2000. Transport of molluscan larvae through a shallow estuary. *Journal of  
753 Plankton Research* 22:1779-1800.

754 Roegner G. C., H. L. Diefenderfer, A. B. Borde, R. M. Thom, E. M. Dawley, A. H. Whiting, S.  
755 A. Zimmerman, and G. E. Johnson. 2009. *Protocols for Monitoring Habitat Restoration  
756 Projects in the Lower Columbia River and Estuary*. U.S. Department of Commerce, National  
757 Oceanic and Atmospheric Administration Technical Memorandum NMFS-NWFSC-97,  
758 Northwest Fisheries Science Center, Seattle, Washington.

759 Roegner, G. C., C. Seaton, and A. M. Baptista. 2011. Climatic and tidal forcing if hydrography  
760 and chlorophyll concentrations in the Columbia River estuary. *Estuaries and Coasts* 34:281–  
761 296.

762 Sherwood, C. R., D. A. Jay, R. B. Harvey, P. Hamilton, and C. A. Simenstad. 1990. Historical  
763 changes in the Columbia River estuary. *Progress in Oceanography* 25:299-352.

764 Sibert, J. R. 1979. Detritus and juvenile salmon production in the Nanaimo estuary: II.  
765 Meiofauna available as food to juvenile chum salmon (*Oncorhynchus keta*). *Journal of the  
766 Fisheries Research Board of Canada* 36:497-503.

767 Simenstad, C. A., W. G. Hood, R. M. Thom, D. A. Levy, and D. Bottom. 2000. Landscape  
768 structure and scale constraints on restoring estuarine wetlands for Pacific coast juvenile  
769 fishes. In *Concepts and Controversies in Tidal Marsh Ecology*, eds. M. P. Weinstein and D.  
770 A. Kreeger, 597-630. Dordrecht: Kluwer Academic Publishers.

771 Simenstad, C. A., L. F. Small, and C. D. McIntire. 1990. Consumption processes and food web  
772 structure in the Columbia River estuary. *Progress in Oceanography* 25:271-297.

773 Simenstad, C. A., and R. M. Thom. 1996. Functional equivalency trajectories of the restored  
774 Gog-Le-Hi-Te estuarine wetland. *Ecological Applications* 6:38-56.

775 Simenstad, C. A., and R. C. Wissmar. 1985.  $\delta^{13}\text{C}$  evidence of origins and fates of organic carbon  
776 in estuarine and nearshore food webs. *Marine Ecology Progress Series* 22:141-152.

777 Small, L. F., C. D. McIntire, K. B. Macdonald, J. R. Lara-Lara, B. E. Frey, M. C. Amspoker, and  
778 T. Winfield. 1990. Primary production, plant and detrital biomass, and particle transport in  
779 the Columbia River estuary. *Progress in Oceanography* 25:175-210.

780 Small, L. F., and F. G. Prahl. 2004. A particle conveyor belt process in the Columbia River  
781 estuary: Evidence from chlorophyll a and particulate organic carbon. *Estuaries* 27:999-1013.

782 Sobczak, W. V., J. C. Cloern, A. D. Jassby, and A. B. Muller-Solger. 2002. Bioavailability of  
783 organic matter in a highly disturbed estuary: The role of detrital and algal resources.  
784 *Proceeding of the National Academy of Sciences* 99:8101-8105.

785 Summerhayes, V. S., and C. S. Elton. 1923. Contributions to the ecology of Spitsbergen and  
786 Bear Island. *Journal of Ecology* 11:214-286.

787 Talley, D. M., G. R. Huxel, and M. Holyoak. 2006. Connectivity at the land-water interface. In  
788 *Connectivity Conservation*, eds. K.R. Crooks and M. Sanjayan, 97-129. Cambridge:  
789 Cambridge University Press.

790 Teal, J. M. 1962. Energy flow in the salt marsh ecosystem of Georgia. *Ecology* 43:614-624.

791 Thom, R. 1984. Primary production in Grays Harbor estuary, Washington. *Bulletin of the*  
792 *Southern California Academy of Sciences* 83:99-105.

793 Walsh, E. M., A. E. Ingalls, and R. G. Keil. 2008. Sources and transport of terrestrial organic  
794 matter in Vancouver Island fjord and the Vancouver-Washington margin: A multiproxy  
795 approach use  $\delta^{13}\text{C}_{\text{org}}$  lignin phenols, and ether lipid BIT index. *Limnology and Oceanography*  
796 53:1054-1063.

797 Wheatcroft, R. A., M. A. Goni, J. A. Hatten, G. B. Pasternack, and J. A. Warrick. 2010. The role  
798 of effective discharge in the ocean delivery of particulate organic carbon by small,  
799 mountainous river streams. *Limnology and Oceanography* 55:161-171.

800 Zedler, J. B., ed. 2001. *Handbook for Restoring Tidal Wetlands*. CRC Press, Boca Raton,  
801 Florida.

802  
803  
804

805  Supporting Information

806 Additional supporting information may be found in the online version of this article at  
807 <http://onlinelibrary.wiley.com/doi/10.1002/eap.xxxx/suppinfo>

## Tables

**Table 1. Cumulative H-POM mass ( $\times 10^3$  kg) change during the simulation (June 2006 – February 2007).**

Negative values indicate H-POM mass exiting through the transect. The H-POM mass exiting the Mouth transect enters the main stem estuary. KF = Kandoll Farm site. See also Fig. 2d.

| Time <sup>a</sup> | KF Site <sup>b</sup> | Transect: Downstream of KF Site<br>(Below KF) |             |             |                    | Transect: Downstream of<br>Confluence (Confluence) |             |        |       | Transect:<br>(Mouth) |  |
|-------------------|----------------------|-----------------------------------------------|-------------|-------------|--------------------|----------------------------------------------------|-------------|--------|-------|----------------------|--|
|                   |                      | Seal Slough                                   | Grays River | Flood-plain | Total              | Grays River                                        | Flood-plain | Total  |       |                      |  |
| Prior to Peak     | -27.4                | -0.111                                        | -0.020      | 0.0         | -0.131             | -0.003                                             | 0.0         | -0.003 | 0.0   |                      |  |
| Flood             |                      |                                               |             |             |                    |                                                    |             |        |       |                      |  |
| After Peak        | -76.2                | -4.54                                         | -9.21       | -8.26       | -22.0              | -11.9                                              | -0.485      | -12.4  | -5.16 |                      |  |
| Flood             |                      |                                               |             |             |                    |                                                    |             |        |       |                      |  |
| End               | -94.2 <sup>c</sup>   | -1.50                                         | -86.4       | -8.29       | -96.2 <sup>c</sup> | -61.7                                              | -0.476      | -62.2  | -49.6 |                      |  |

<sup>a</sup> Start of simulation = 15 June 2006, 00:00; prior to peak flood = hr 3394, 3 November 2006, 10:00; following peak flood = hr 3504, 8 November 2006, 00:00; end of simulation = hr 5904, 16 February 2007, 00:00.

<sup>b</sup> The H-POM mass change at the KF site is the mobilization from the H-POM source.

<sup>c</sup> End of simulation. The difference between these two values is attributed to differences in computational methods. See text for explanation.

## Figure Legends

**Fig. 1** A) Location of the study area in the Columbia River estuary. The H-POM flux study was conducted at the Kandoll Farm site in the Grays River, which empties into Grays Bay. Tidal influence extends to Bonneville Dam, located at the extreme bottom right corner of the figure (not shown). B) Locations of water-level stations, the Kandoll Farm site within the Grays River watershed, and waterbody features used in the H-POM modeling analysis. KF = Kandoll Farm site, which is also the location of the culverts installed in 2005; RC = reference

channel; CH1 = channel 1, a tidal channel; WDOE = Washington State Department of Ecology.

**Fig. 2** The lower Grays River watershed showing A) the model domain, B) the elevation (relative to NAVD88), including the Kandoll Farm site, Seal Slough, Grays River, and Grays Bay, C) patch grid cells (indicated in red) used for calibration of biomass loss based on field measurements between June 2006 and February 2007, D) locations of transects for H-POM flux calculations and the “mask” (black mesh grid) used for the model.

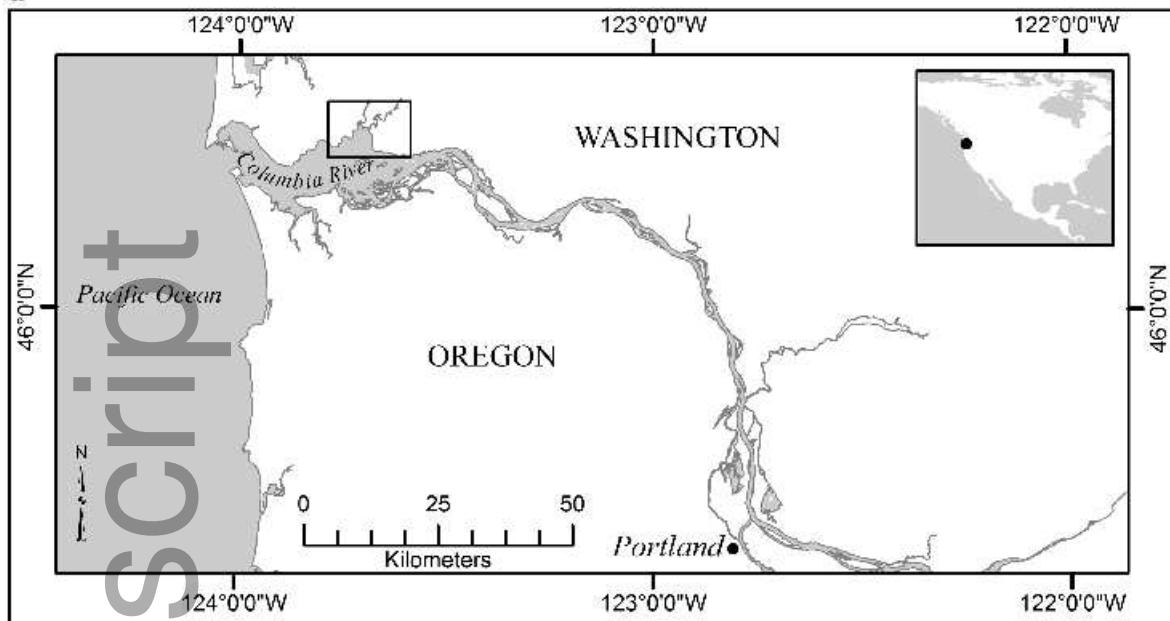
**Fig. 3** A) Grays River discharge from Station ID 25B060 for Grays Bay and B) the tidal elevations derived from NOAA Tide Measurements and Predictions.

**Fig. 4** Comparisons of measured water-surface elevation and model results at water-level sensor and gage stations. Locations (see Fig. 1b) are A) Channel 1, B) upper Seal Slough inside culverts on Kandoll Farm, C) Reference Channel, and D) Washington State Department of Ecology (WDOE) Grays River flow gage. KF = Kandoll Farm site; GR = Grays River. The vertical datum of the WDOE gage was arbitrary and was adjusted to align with the model during calibration.

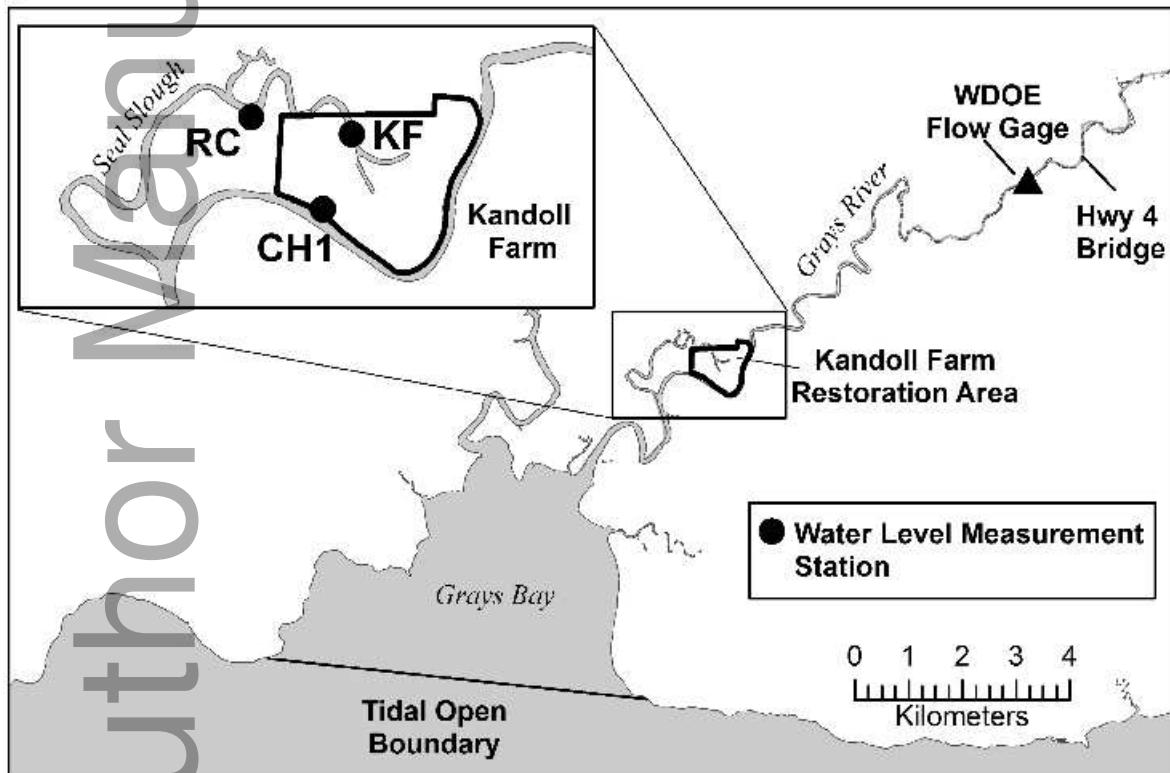
**Fig. 5** Biomass density and H-POM concentrations throughout the simulation. Biomass density ( $\text{kg dry mass m}^{-2}$ ) A) at the start of the simulation (Hour 1; 15 June 2006); B) prior to the onset of the wet season (Hour 3394; 03 November 2006); and C) at the end of the simulation (Hour 5904; 15 February 2007). H-POM concentration ( $\text{kg dry mass m}^{-3}$ ) D) at the start of the simulation (Hour 1; 15 June 2006); E) prior to the onset of the wet season (Hour 3394; 03 November 2006); and F) at the end of the simulation (Hour 5904; 15 February 2007).

**Fig. 6** A) Flow at the three transects where flux calculations were computed (the mouth of the Grays River [Mouth], downstream of the confluence of Seal Slough and Grays River [Confluence], and downstream of the Kandoll Farm (KF) site [Below KF]); B) instantaneous H-POM flux ( $\text{kg dry mass s}^{-1}$ ) at hourly intervals at four transect locations for the entire modeling period, and for the 9-day period illustrating details of the highly variable flux during the peak flood of November 2006 (negative values indicate export of material); and C) cumulative H-POM

mass change at the KF site and the Below KF, Confluence, and Mouth transects.

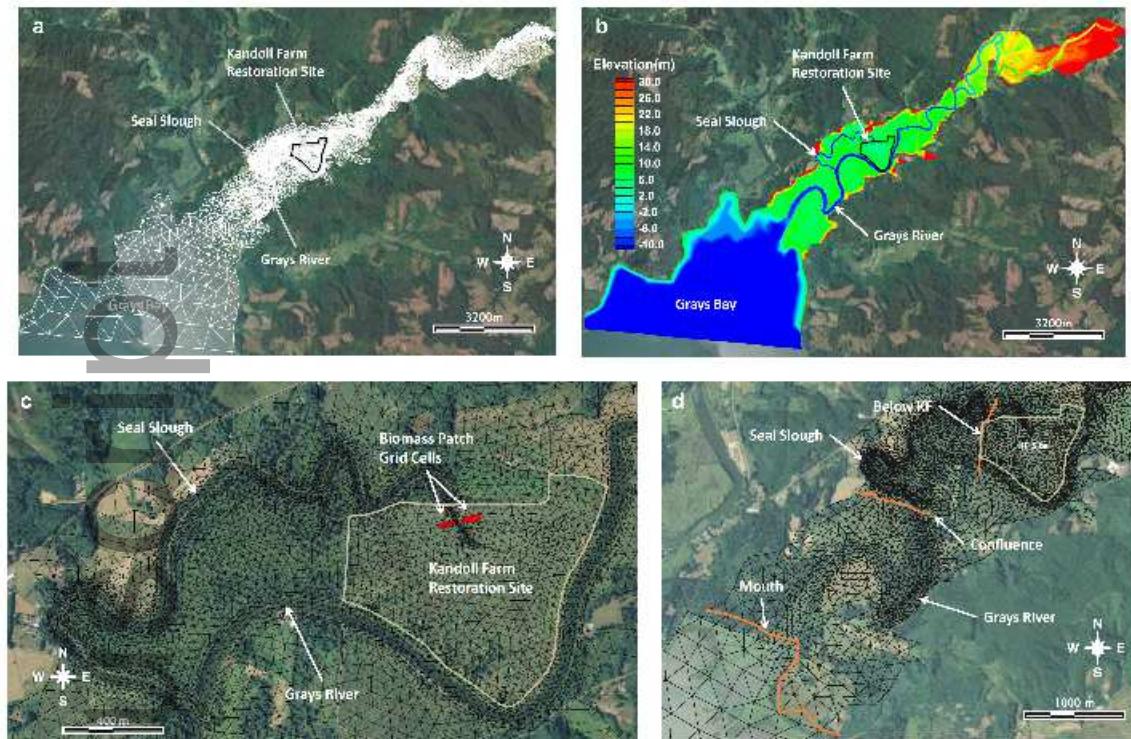

Note that the cumulative mass change at the KF site shows the total H-POM mass mobilized by hydrodynamic forces, measured as kilograms dry weight. See Fig. 2d for locations.

**Fig. 7** The flow of H-POM within the site and from the site to the estuary. The percentage values indicate the mass within each box relative to the total peak


- above-ground biomass density at the Kandoll Farm site.

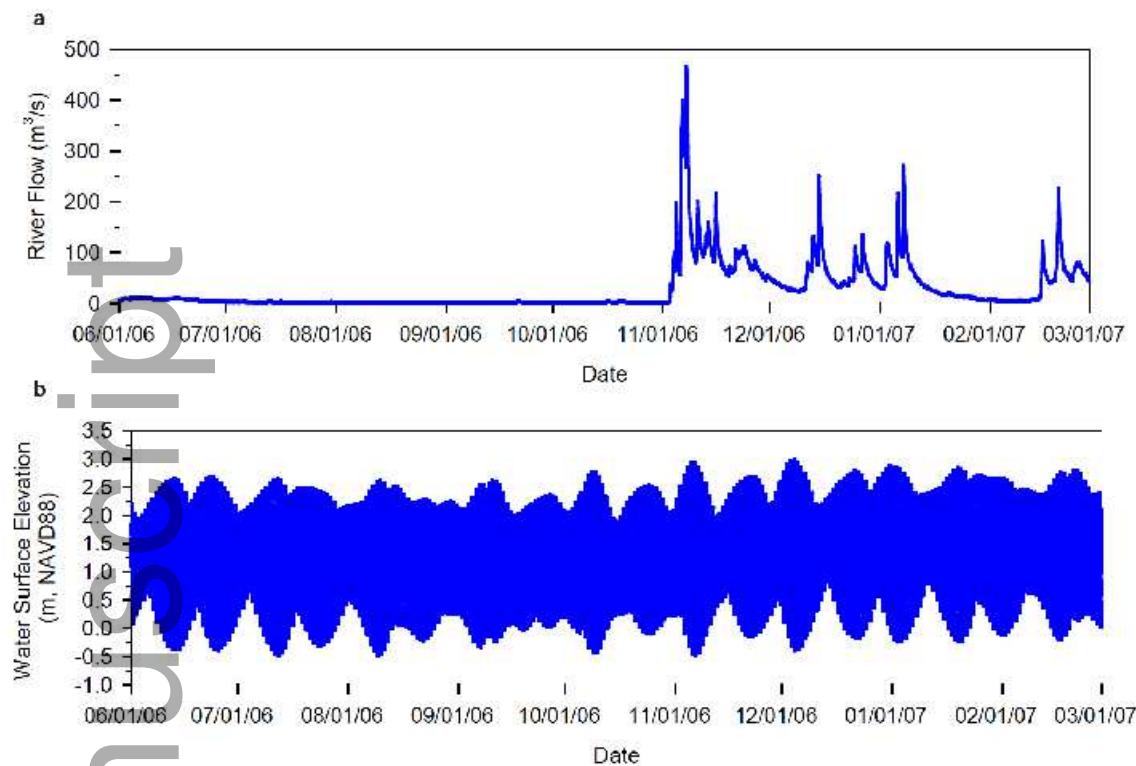
Author Manuscript

a

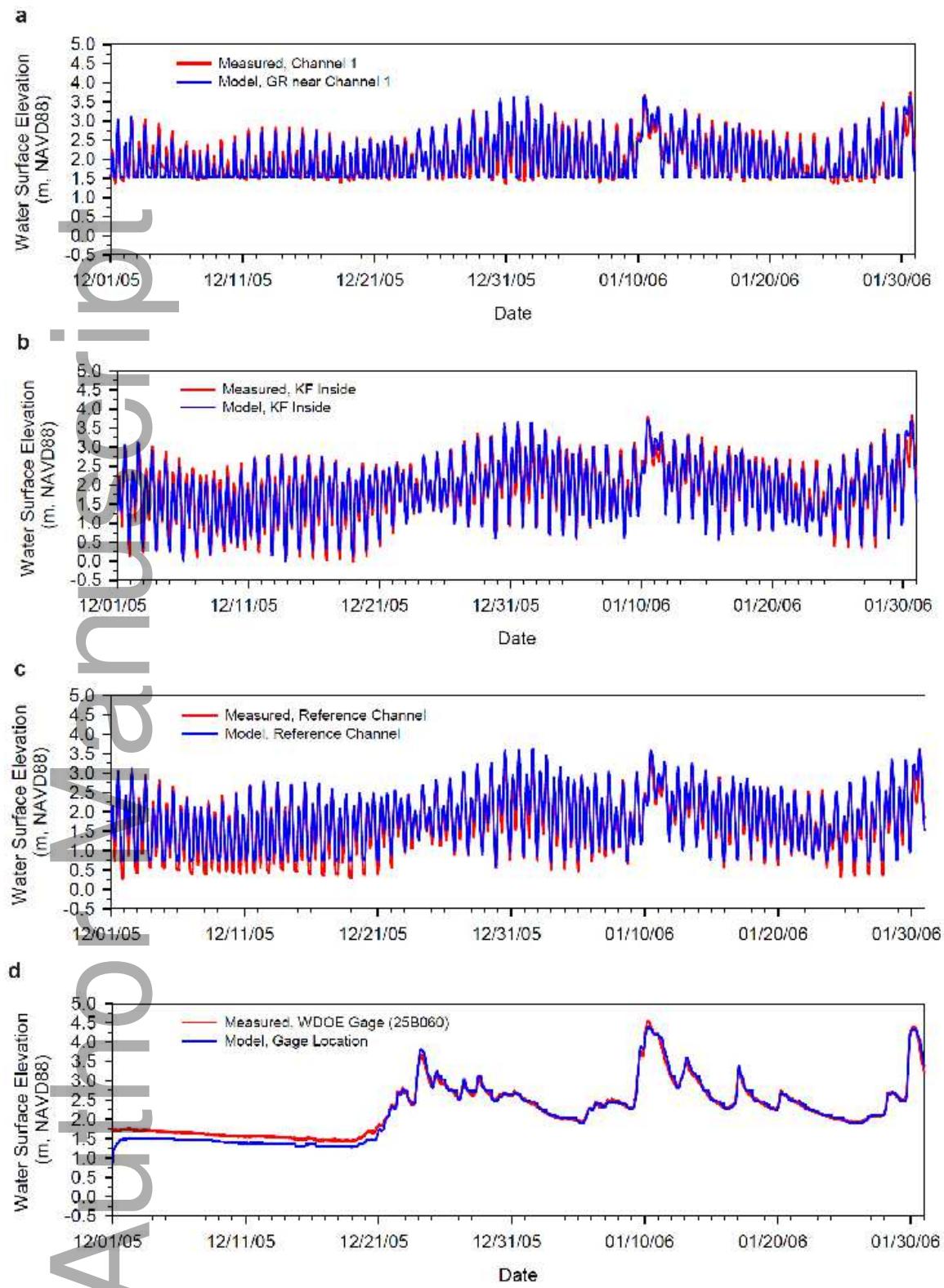



b



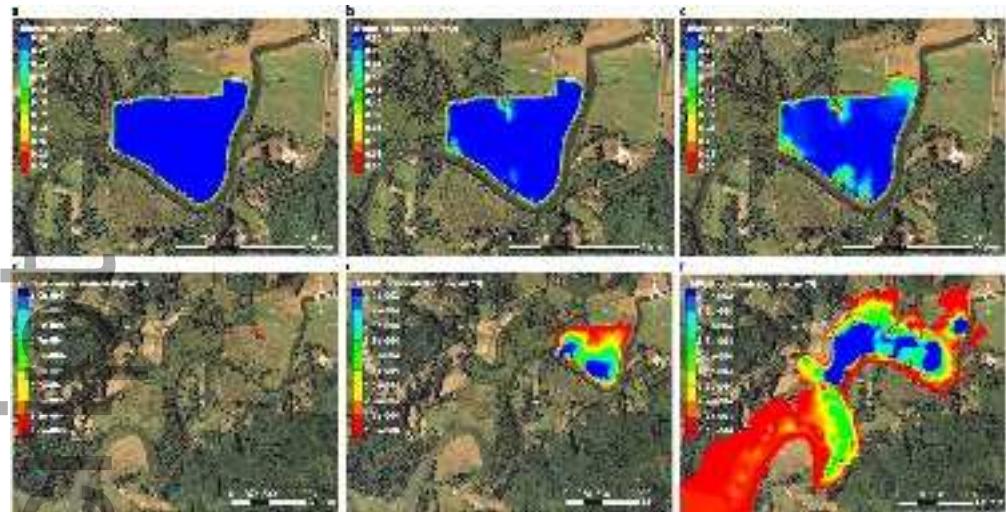

eap\_1759\_f1.jpg

# Author Man

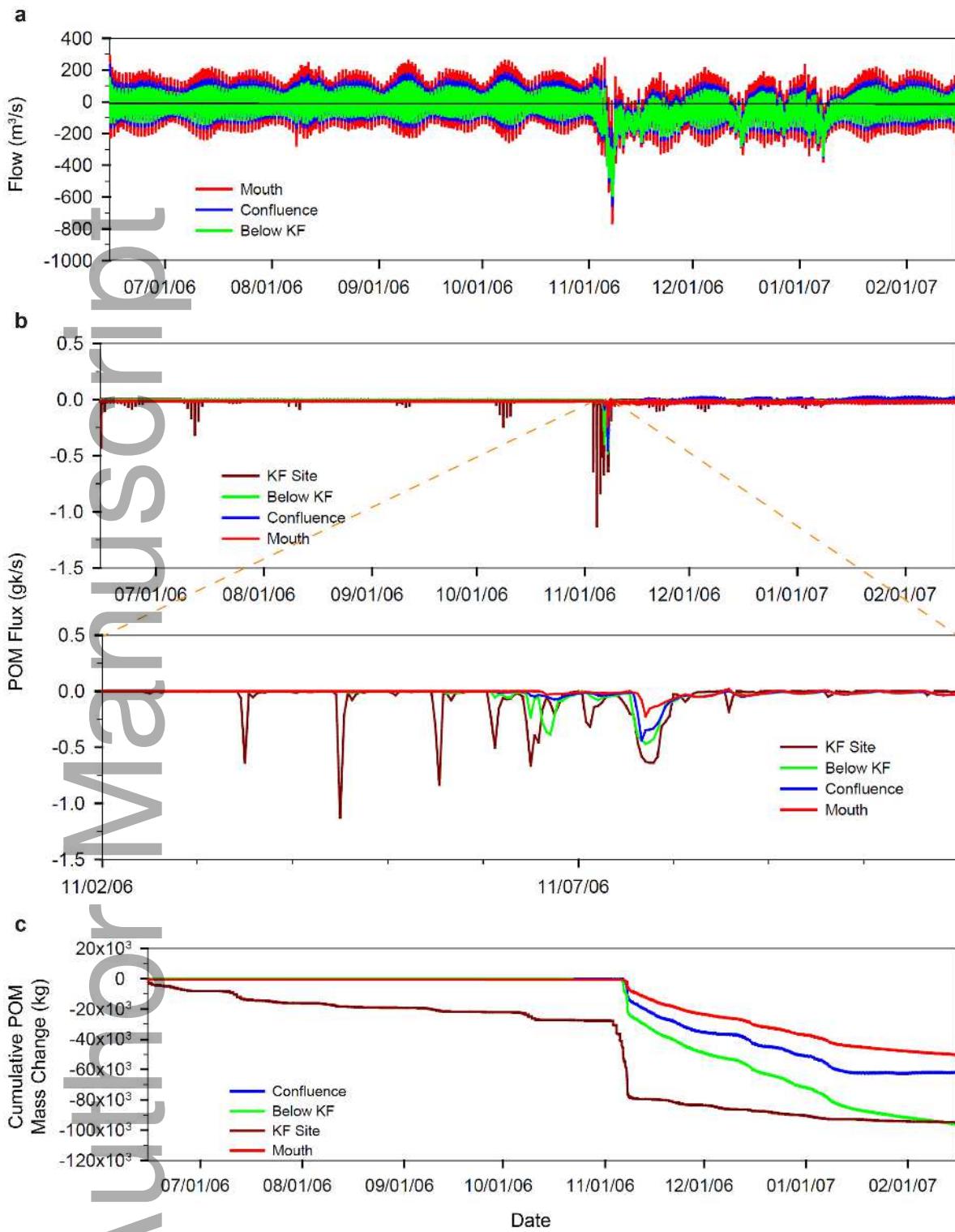



eap\_1759\_f2.jpg

Author Manuscript

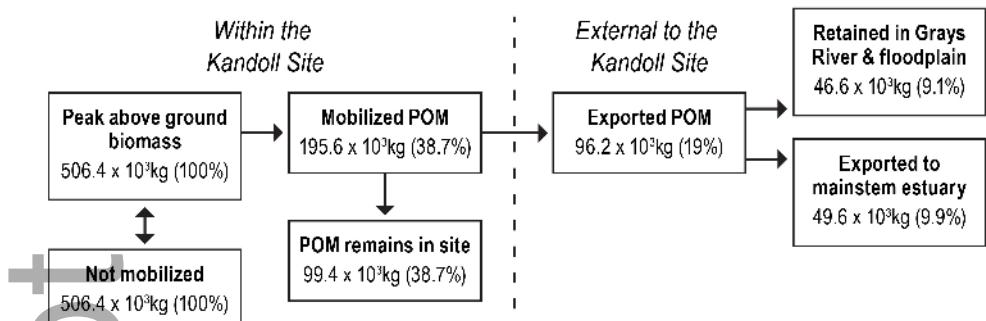



eap\_1759\_f3.jpg




eap\_1759\_f4.jpg

# Author Manuscript




eap\_1759\_f5.tif



eap\_1759\_f6.tif

# Author Manuscript



eap\_1759\_f7.jpg