

1 **Persistent Organic Pollutants (POPs) in Blood and Blubber of Common Bottlenose**
2 **Dolphins (*Tursiops truncatus*) at three northern Gulf of Mexico sites following the**
3 ***Deepwater Horizon* Oil Spill**

4

5 Jennifer E. Balmer^{a,b,1,*}, Gina M. Ylitalo^c, Teresa K. Rowles^d, Keith D. Mullin^e, Randall S.
6 Wells^f, Forrest I. Townsend^g, Ronald W. Pearce^c, Jennie L. Bolton^c, Eric S. Zolman^b, Brian C.
7 Balmer^{b,2}, Lori H. Schwacke^{b,2}

8

9 ^aIndustrial Economics, Incorporated, 2067 Massachusetts Avenue, Cambridge, MA 02140, USA

10 ^bNational Centers for Coastal Ocean Science, National Oceanic and Atmospheric
11 Administration, 331 Fort Johnson Road, Charleston, SC 29412, USA

12 ^cNorthwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and
13 Atmospheric Administration, 2725 Montlake Boulevard East, Seattle, WA 98112, USA

14 ^dOffice of Protected Resources, National Marine Fisheries Service, National Oceanic and
15 Atmospheric Administration, 1315 East West Highway, Silver Spring, MD 20910, USA

16 ^eSoutheast Fisheries Science Center, National Oceanic and Atmospheric Administration,
17 National Marine Fisheries Service, 3209 Frederic Street, Pascagoula, MS 39567, USA^{[L]_{SEP}}

18 ^fChicago Zoological Society's Sarasota Dolphin Research Program, c/o Mote Marine
19 Laboratory, 1600 Ken Thompson Parkway, Sarasota, FL 34236, USA^{[L]_{SEP}}

20 ^gBayside Hospital for Animals, 251 Racetrack Road NE, Fort Walton Beach, FL 32547, USA

21 *Corresponding author: jbalmer@citadel.edu; phone: (843) 953-1093; fax: (843) 953-7264

22 ¹Current affiliation: Department of Biology, The Citadel, 171 Moultrie Street, Charleston, SC,
23 29409, USA

24 ²Current affiliation: National Marine Mammal Foundation, 2240 Shelter Island Drive, Suite 200,
25 San Diego, CA 92106, USA

26

27 **Abstract.**

28 Common bottlenose dolphins (*Tursiops truncatus*), including those impacted by the 2010
29 *Deepwater Horizon* (DWH) oil spill, inhabit the coastal and estuarine waters of the northern Gulf
30 of Mexico (GoM). In response to the spill, dolphin health assessments conducted in Barataria
31 Bay, Louisiana – a site that experienced heavy and prolonged oiling – uncovered a high
32 prevalence of health abnormalities and individuals in poor body condition. Although the health
33 effects observed were suggestive of petroleum toxicity, a lack of pre-spill information regarding
34 dolphin health raises the possibility that other environmental factors may have contributed to the
35 adverse health of dolphins in this oil-impacted area. To assess how exposure to other
36 environmental pollutants may affect the health of northern GoM dolphin populations impacted
37 by the DWH oil spill, a suite of 68 persistent organic pollutants (POPs), including PCBs, PBDEs
38 and organochlorine pesticides, was determined in blood and a subset of blubber samples
39 collected during health assessments of 145 bottlenose dolphins at three GoM sites: two oil
40 impacted sites -Barataria Bay, LA (BB), and Mississippi Sound, MS (MS) and an unimpacted
41 reference site - Sarasota Bay, FL (SB). Overall, levels of POPs at all three sites appeared
42 comparable or lower than concentrations previously reported for coastal bottlenose dolphin
43 populations outside of the northern GoM. POP levels measured in BB dolphins were also
44 comparable or lower than those measured at the unimpacted reference site (SB) within the
45 northern GoM. Additionally, the relationship between blubber and blood contaminant levels in a
46 smaller subset of BB and SB suggests that BB animals were not experiencing elevated blood-
47 contaminant concentrations as a result of their poor body condition. Cumulatively, these results
48 suggest that background levels of POPs measured are unlikely to produce the health
49 abnormalities previously reported for BB dolphins.

50

51

52 **Keywords:** persistent organic pollutants, contaminants, marine mammals, dolphins, Gulf of
53 Mexico, Deepwater Horizon

54 **1. Introduction**

55 Common bottlenose dolphins (*Tursiops truncatus*) inhabit the bays, sounds, estuaries,
56 and coastal waters of the northern Gulf of Mexico (GoM) where they are exposed to a variety of
57 anthropogenic threats, including the residual effects from the 2010 *Deepwater Horizon* (DWH)
58 oil spill (Vollmer and Rosel, 2013). The explosion and subsequent sinking of the DWH drilling
59 rig, located approximately 60 km off the coast of southeastern Louisiana, resulted in the release
60 of an estimated 3.19 million barrels (134 million gallons) of crude oil and 1.84 million gallons of
61 dispersants into the northern GoM over a three-month period (DWH NRDA Trustees, 2016). The
62 spill led to the direct oiling of more than 1600 km of wetlands, shoreline, and barrier islands
63 from western Louisiana to the Florida Panhandle and unknown impacts to deep sea waters and
64 benthic ecosystems (Kujawinski et al., 2011; McNutt et al., 2012; Michel et al., 2013). Several
65 years later, remnants of the spill and its effects were still evident {Michel et al., 2013; Hsing et
66 al., 2013; Smith et al., 2017}).

67 In 2011, health assessments of bottlenose dolphins were conducted at two locations
68 within the northern GoM - Barataria Bay, LA (BB), an area that received heavy and prolonged
69 oiling, and an unimpacted (unoiled) reference site, Sarasota Bay, FL (SB) where oil was not
70 observed (Schwacke et al., 2014). Veterinary examinations of BB dolphins uncovered a high
71 prevalence of severe lung disease, as well as evidence of other health abnormalities, such as poor
72 body condition, abnormally low levels of adrenal hormones, and elevated markers of
73 inflammation that were non-existent or less prevalent in dolphins of SB and other western
74 Atlantic locations unaffected by oil (Schwacke et al., 2014). Subsequent health assessments of
75 bottlenose dolphins in Barataria Bay in 2013 and 2014 found that lung disease and impaired
76 stress response persisted for at least 4 years post-spill (Smith et al., 2017). Furthermore, follow-

77 up monitoring showed that BB dolphins also experienced reduced reproductive success and
78 higher mortality rates relative to dolphins in unimpacted locations in the years following the spill
79 (Lane et al., 2015).

80 The uncommon and severe health effects observed in BB dolphins are strongly
81 suggestive of petroleum toxicity in other species and strongly suggestive of impacts caused by
82 exposure to oil. However, without knowledge of the health of BB dolphins prior to the spill, the
83 possibility that pre-existing and/or co-existing environmental stressors have influenced the
84 severity of the observed health effects must be considered.

85 As inhabitants of inshore waters, bottlenose dolphins are particularly vulnerable to
86 exposure to anthropogenic contaminants such as persistent organic pollutants (POPs) (Houde et
87 al., 2005). POPs are lipophilic chemicals that bioaccumulate readily in tissues, such as blubber,
88 and blood of bottlenose dolphins (Yordy et al., 2010a; Yordy et al., 2010b), potentially
89 predisposing them to adverse reproductive, immunological and endocrine-related effects
90 (Schwacke et al., 2002; Schwacke et al., 2012). The degree of POP exposure can vary both
91 within sympatric populations (Litz et al., 2007; Wells et al., 2005; Yordy et al., 2010c) and
92 between allopatric populations (Balmer et al., 2011; Balmer et al., 2015; Hansen et al., 2004;
93 Kucklick et al., 2011) as a result of differences in environmental concentrations, life histories,
94 feeding ecologies, and individual movements, making POPs an important factor to consider
95 when assessing environmental impacts on dolphin health.

96 Blubber serves as the primary repository for POPs in cetaceans, holding more than 90%
97 of an individual's total body burden of contaminants (Yordy et al., 2010b). A previous study was
98 undertaken to examine POP concentrations in blubber of bottlenose dolphins from several
99 northern GoM sites following the DWH oil spill (Balmer et al., 2015). However, it has been

100 established that for individuals experiencing a decline in body condition – such as those observed
101 following the spill – changes in lipid can result in a redistribution of contaminants, leading to a
102 concomitant increase of blood contaminant levels (Yordy et al., 2010a), and a heightened risk of
103 systemic toxic effects (Kim et al., 2010; Lassiter and Hallam, 1990). Therefore, knowledge of
104 both blubber and blood contaminant levels is important for assessing potential health risks in
105 stressed populations.

106 To better understand how exposure to environmental pollutants affects the health of
107 northern GoM dolphin populations impacted by the DWH oil spill, POP levels were determined
108 in blood samples collected from capture-release health assessments of bottlenose dolphins during
109 2011 health assessments in BB and SB (Schwacke et al., 2014) as well as from follow-up health
110 assessments conducted in 2013 and 2014 at each location, and a third site in 2013, Mississippi
111 Sound, MS (MS), which received moderate shoreline oiling relative to BB (Michel et al., 2013).
112 Our objectives were to evaluate differences in background POP exposure levels between the
113 dolphins from the three northern GoM locations and to compare the relationship between
114 contaminant concentrations in a subset of matching blubber and blood samples collected during
115 the 2011 health assessments to determine whether the BB dolphins experienced an increase in
116 bioavailable POP concentrations in blood as a result of their poor body condition.

117

118 **2. Materials and Methods**

119 *2.1 Study dates and locations*

120 In 2011, 2013, and 2014, health assessments of bottlenose dolphins (*Tursiops truncatus*) were
121 conducted at three locations within the northern GoM (Smith et al., 2017; Schwacke et al., 2014).
122 The three locations targeted included Barataria Bay, Louisiana (BB), an area that received

123 prolonged and heavy oiling (Michel et al., 2013); Mississippi Sound, Mississippi (MS), which
124 received a lesser degree of oiling (Michel et al., 2013); and Sarasota Bay, Florida (SB), where no
125 oil was observed following the DWH spill (Figure 1). Sampling was conducted in the summers
126 of 2011 (1 year post-spill; BB and SB only), 2013 (three years post-spill; BB, SB and MS) and
127 2014 (four years post-spill; BB only). Blood was collected from a total of 145 dolphins over
128 three years, including a limited number of dolphins (n = 16) repeatedly sampled in multiple
129 years. Although matching blubber samples were collected from each individual captured, only a
130 subset of those data (n = 22), collected from SB and BB in 2011 and previously used by
131 Schwacke et al. (2014) to assess potential health impacts of the DWH spill, is presented here for
132 comparison with concentrations in blood. Details regarding the timing of each health assessment
133 and a breakdown of the age and sex of dolphins sampled at each location are provided in
134 Supporting Information (Table S1).

135 *2.2 Life history data*

136 Capture methods have been described in detail elsewhere (Schwacke et al., 2014) and followed
137 those described for prior dolphin capture–release health assessments (Wells et al., 2004). From
138 each captured individual a suite of samples was collected for health assessment, contaminant
139 analysis, and life history determination. Sex was confirmed through direct examination while age
140 was determined by examination of growth layer groups in a tooth (Hohn et al., 1989) or from
141 knowledge of birth year from observational studies. Each individual was assigned to a life
142 history class (subadult, adult male, adult female) based on age and sex using previously
143 determined criteria (Schwacke et al., 2009; Schwacke et al., 2010). If age was unavailable, total
144 body length was used to categorize individuals.

145 *2.3 Sample collection*

146 Blubber and blood samples were obtained and stored as described previously (Wells et al., 2005;
147 Yordy et al., 2010a). Briefly, after application of anesthetic consisting of 2% lidocaine with
148 epinephrine and rinsing of the site with chlorhexiderm and methanol, a full-depth blubber biopsy
149 was surgically removed from the dolphin's left side, approximately 10 cm below and 10 cm
150 caudal to the posterior insertion of the dorsal fin. Blood was drawn from the tail fluke into glass
151 sodium heparin blood collection tubes (BD Vacutainer, Franklin Lakes, NJ). Immediately
152 following collection, blood was centrifuged to isolate the plasma fraction and blubber was sub-
153 sampled using solvent-rinsed instruments. Both plasma and blubber were placed in Teflon jars
154 and frozen in a liquid nitrogen vapor shipper. After transport to the analytical laboratory, samples
155 were stored at -80 °C until analysis.

156 *2.4 Contaminant analysis*

157 Plasma and blubber samples were extracted and analyzed for POPs using gas
158 chromatography/mass spectrometry (GC/MS) as described previously (Sloan et al., 2014). This
159 method involves: (1) extraction of tissues using dichloromethane in an accelerated solvent
160 extraction procedure, (2) clean-up of the dichloromethane sample extract on a single stacked
161 silica gel/alumina column, (3) separation of POPs from lipid and other biogenic materials by
162 high-performance size exclusion liquid chromatography, and (4) analysis on a low resolution
163 quadrupole GC/MS system equipped with a 60-meter DB-5 GC capillary column. The GC/MS
164 system was calibrated using sets of up to ten multi-level calibration standards of known
165 concentrations. Percent lipid was determined gravimetrically.

166 A method blank and a standard reference material (SRM) - either National Institute of
167 Standards and Technology (NIST) SRM 1945 Organics in Whale Blubber or NIST SRM 1958
168 Organic Contaminants in Fortified Human Serum - were analyzed with each dolphin sample set

169 as part of a performance-based quality assurance program (Kucklick et al., 2010; Sloan et al.,
170 2006). The procedural (method) blank consisted of a solvent (methylene chloride) run through
171 the extraction, cleanup and gas chromatography/mass spectrometry procedures along with field
172 samples. Concentrations of individual analytes measured in NIST SRM 1945 were in excellent
173 agreement with the certified or reference values published by NIST. For NIST SRM 1958, 59%
174 to 86% of the analytes were within 30% of either end of the 95% confidence interval of the NIST
175 reference values. All other quality control samples met established laboratory criteria except
176 where noted. The limit of quantification (LOQ) for each analyte was defined as the mass of the
177 analyte in the lowest detectable calibration divided by the sample mass.

178 *2.5 Statistics*

179 All statistics were performed using Statistica (Statsoft, 2006). A total of 184 compounds were
180 targeted during analysis. Prior to statistical analyses, analytes with a rate of detection <80% were
181 removed (PCBs 82, 200, 205; PBDEs 28, 49, 66, 85 and 183; and pesticides alpha-, beta- and
182 gamma-hexachlorohexane; *trans*-chlordan, aldrin; heptachlor, and endosulfan I) The remaining
183 compounds that were below the limit of detection were replaced with a value equal to $\frac{1}{2}$ the
184 LOQ. The resulting dataset included concentration data for 69 compounds: 48 polychlorinated
185 biphenyl (PCB) congeners (including some congeners that coelute) (17, 18, 28, 31, 33, 44, 49,
186 52, 66, 70, 74, 87, 95, 99, 101/90, 105, 110, 118, 128, 138/163/164, 149, 151, 153/132, 156, 158,
187 170, 171, 177, 180, 183, 187/159/182, 191, 194, 195, 196, 199, 201, 202, 206, 207, 208, 209),
188 six polybrominated diphenyl ether (PBDE) congeners (47, 99, 100, 153, 154, 155), six DDTs
189 (2,4'- and 4,4'- DDT, DDD and DDE), six chlordanes (CHLs; *cis*-chlordan, *cis*-nonachlor,
190 *trans*-nonachlor, nona-III-chlordan, heptachlor epoxide, oxychlordan), hexachlorobenzene

191 (HCB), dieldrin and mirex. Concentration data were lipid-normalized and log-transformed prior
192 to statistical analyses to meet assumptions of normality and equal variance.

193 POP concentrations have been shown to significantly decline following parturition and
194 lactation (Wells et al., 2005; Yordy et al., 2010c) and are therefore difficult to interpret in
195 reproductively mature female dolphins. Thus, differences in contaminant concentrations between
196 adult females and adult males/subadults were initially assessed using a multivariate analysis of
197 variance (MANOVA) followed by Tukey's Honestly Significant Difference test (HSD) before
198 excluding adult female dolphins from subsequent statistical comparisons. However, a summary
199 of contaminant concentrations for adult females is provided in Supporting Information (Table
200 S2) for reference.

201 For the two sites that were sampled on multiple occasions (SB and BB), a factorial
202 ANOVA including sampling year and location as covariates was used to determine whether
203 lipid-normalized concentrations of major contaminant groups varied between collection years
204 before making the decision to combine plasma data from multiple years for further analysis. Data
205 from 2014 were excluded from this analysis due to a lack of corresponding SB samples for this
206 year. Results of this analysis are provided as Supporting Information (Table S3).

207 To assess differences in contaminant concentrations between locations, the geometric
208 mean (GM) and 95% confidence interval (CI) were calculated for POP concentrations expressed
209 on a lipid-weight basis (ng/g lipid) in adult males and subadults of both sexes (Table 1). For
210 dolphins sampled in repeat years only one time point was selected at random for inclusion in
211 summary statistics. Concentrations of POPs were compared between the three sites using
212 multivariate analysis of covariance (MANCOVA) including length (a proxy for age) as a
213 covariate as described previously (Schwacke et al., 2014).

214 The relationship between blubber and blood concentrations was assessed using matched
215 blubber and plasma data from a subset of male dolphins from SB and BB in 2011. Blubber/blood
216 partition coefficients were calculated for each individual as the ratio of lipid-normalized
217 concentrations in blubber and matching plasma sample as described previously (Yordy et al.,
218 2010a). Site-specific differences in blubber/blood partition coefficients for major contaminant
219 classes were assessed by multivariate analysis of variance (MANOVA).

220 Strong and highly significant correlations between contaminant concentrations in blubber
221 and blood have been previously demonstrated for bottlenose dolphins in SB (Yordy et al.,
222 2010a). However, the strength and nature of this correlation has not been assessed for dolphins
223 elsewhere, and could be subject to environmental or physiological differences that alter the
224 relationship between tissues. Therefore, correlations between blubber and blood contaminant
225 concentrations were assessed for SB and BB both individually and jointly. To determine whether
226 the relationship between blubber and blood contaminant concentrations differed between the two
227 sites, the singular and interactive effects of location and blubber contaminant levels on plasma
228 contaminant levels were assessed using ANCOVAs. Regression parameters relating lipid-
229 normalized concentrations of major contaminant classes in blubber and plasma were then
230 calculated for SB and BB dolphins combined using major axis (Model II type) regression to
231 provide unbiased estimates for use in future calculations (Yordy et al., 2010a).

232

233 **3. Results and Discussion**

234 Plasma was collected from a total of 145 bottlenose dolphins at three northern GoM sites
235 between 2011 and 2014. Thirty dolphins were sampled in SB (13 ♀, 17 ♂) in 2011 ($N = 15$)
236 and 2013 ($N = 15$), ninety-five dolphins were sampled in BB (60 ♀, 35 ♂) in 2011 ($N = 32$),

237 2013 ($N = 31$), and 2014 ($N = 32$) and twenty dolphins were sampled in MS (9 ♀, 11 ♂) in
238 2013 only (Table S1).

239 Age, sex, and reproductive status can have a significant influence on POP concentrations
240 in bottlenose dolphins (Wells et al., 2005; Yordy et al., 2010c). Contaminant levels in mature
241 females are particularly influenced by age and reproductive history as a result of the offloading
242 of contaminants concomitant with parturition and, predominantly, lactation (Wells et al., 2005;
243 Yordy et al., 2010c). Female dolphins typically offload 80% of their organic contaminant burden
244 to their first calf through lactation, whereafter, her tissue concentrations tend to remain low, but
245 may increase between subsequent calves (Wells et al., 2005; Yordy et al., 2010c). Consistent
246 with previous observations in bottlenose dolphins, total contaminant concentrations decreased
247 with age (proxied by length) in GoM female bottlenose dolphins (Figure S1) and were lower in
248 adult females than in adult male and subadult dolphins (Tables 1 and S2). Plasma concentrations
249 of total POPs (Σ POP) for adult female dolphins in SB ($N = 7$; geometric mean = 7,180 ng/g lw;
250 95% CI 3,100 – 16,700 ng/g lw) and BB ($N = 38$; geometric mean = 9,340 ng/g lw; 95% CI
251 7,010 – 12,500 ng/g lw) were significantly lower relative to adult males and subadults from their
252 respective locales (95% CIs of 41,500 – 59,800 ng/g lw and 32,000 – 40,800 ng/g lw,
253 respectively; Tables 1 and S2; MANOVA, $p < 0.05$). In contrast, contaminant levels in adult
254 females from MS were closer to concentrations measured in adult males and subadults from the
255 same locale; Σ POP concentrations in plasma of MS adult females ($N = 7$, geometric mean =
256 33,700 ng/g lw, 95% CI 13,000 – 87,600 ng/g lw) were at the lower end but overlapped with the
257 range of concentrations measured in the plasma of adult male and subadult dolphins (95% CI
258 68,100 – 107,000 ng/g lw; Table 1, MANOVA, $p > 0.05$), emphasizing the importance of
259 knowing the reproductive history of female cetaceans before interpreting associated contaminant

260 data. To avoid the bias that can originate from the use of contaminant data from reproductively
261 mature female dolphins of unknown history, only samples from adult males and (non-pregnant)
262 subadults were used in following comparisons.

263 Plasma contaminant concentrations did not vary significantly between sampling years in
264 SB and BB (males and subadults, lipid-normalized concentrations, ANOVA, $p > 0.05$), with the
265 exception of mirex ($p = 0.02$) and \sum PBDEs ($p = 0.016$), which were significantly higher in BB
266 dolphins sampled in 2011 compared to those sampled in 2013 (Table S3). Given the minimal
267 influence of sampling year on contaminant concentrations, the time points for each location were
268 merged for subsequent analyses (Table 1).

269 *3.1. Comparison with populations outside the northern Gulf of Mexico.* Few published
270 contaminant values for bottlenose dolphin plasma are available to compare the concentrations
271 measured in the current study; however, those available suggest that concentrations of POPs in
272 northern GoM dolphin populations are either lower than, or comparable, to those of dolphin
273 populations from the western North Atlantic (Houde et al., 2006). Total plasma PCBs for all
274 adult males and subadults sampled in the current study (geometric mean, 30,400 ng/g lw; 95%
275 CI 26,800 -34,500 ng/g lw) are lower than those previously reported for plasma of bottlenose
276 dolphins from the east coast of Florida, South Carolina, New Jersey, and Bermuda in 2003-2004
277 (Houde et al., 2006). Direct comparisons between the two studies must be interpreted cautiously,
278 given the near ten-year elapse in time and variations in the number and selection of PCBs
279 included in the analysis (i.e., this study, 42 congeners; Houde et al. 2006, 121 congeners).
280 However, other analyses comparing blubber contaminant levels in bottlenose dolphins across
281 southeastern U.S. sites yielded similar observations. A spatial analysis of blubber contaminant
282 levels in bottlenose dolphins across multiple GoM and Atlantic locations, including two of the

283 three sites in the current study (MS and SB), found GoM dolphin populations exhibited POP
284 levels at the lower end of the range reported for populations found in the inshore waters of the
285 eastern US for the majority of contaminant classes measured (Kucklick et al., 2011).
286 Furthermore, a more recent analysis of remotely collected bottlenose dolphin blubber biopsies
287 from northern GoM sites, including BB and MS, in 2010 and 2011 also concluded that POP
288 levels were within the lower half of concentrations reported for other southeastern U.S. sites
289 (Balmer et al., 2015).

290 *3.2. Site specific differences within the northern Gulf of Mexico.* Significant differences
291 were also detected between plasma contaminant levels of SB, BB and MS dolphins (Table 1,
292 Figure 2). Plasma lipid content, which can influence contaminant levels in blood, did not vary
293 significantly between sites (Table 1, ANOVA, $p > 0.05$); therefore, contaminant concentrations
294 were expressed on a lipid-normalized basis to facilitate geographic comparisons.

295 Located along the eastern shoreline of the GoM, SB received no visible oiling following
296 the DWH spill, and is also the site of a resident dolphin population for which numerous years of
297 health and contaminant exposure data exist (Scott et al., 1990; Wells, 2014). The plasma POP
298 concentrations for SB dolphins reported here (Tables 1 and S4, Figure 2) fell within the range of
299 those previously reported for juvenile and adult male dolphins sampled at this location from
300 2002 to 2005 (Yordy et al., 2010a) suggesting that the levels of legacy POPs have not changed
301 significantly within the resident dolphin population over the past decade. Also consistent with
302 previous reports, SB dolphins tended to have elevated levels of chlordanes relative to other
303 locations, both within and outside of the GoM (Kucklick et al., 2011).

304 In comparison to the other two GoM sites, MS dolphins exhibited the highest overall
305 plasma contaminant levels (Σ POPs; MANOVA, $p < 0.005$), which were on average, nearly one

306 and one half times higher than concentrations detected in dolphins from the SB reference site
307 (Tables 1 and S4, Figure 2). This difference was predominantly driven by higher concentrations
308 of \sum PCBs, \sum DDTs, and \sum PBDEs in MS dolphins (MANOVA, $p \leq 0.005$). The elevated levels
309 of POPs measured in MS animals is explicable given the area's longstanding involvement in the
310 shipbuilding trade, an industry which has been associated with historical use of these chemicals
311 elsewhere (Maruyama et al., 1983; Xin et al., 2011).

312 In stark contrast to the high contaminant levels measured in the plasma of MS dolphins,
313 concentrations measured in the dolphins of BB were the lowest of all three sites (Tables 1 and
314 S4, Figure 2). Concentrations of all measured contaminant groups were either comparable
315 (\sum PCBs, \sum PBDEs) or significantly lower (\sum DDTs, \sum CHLs, HCB, mirex, dieldrin) than
316 concentrations measured at the SB reference site. These results are consistent with the statistical
317 differences detected by Schwacke et al. (2014) in a smaller set of blubber samples collected from
318 male bottlenose dolphins in SB in 2010/2011 and BB in 2011. Cumulatively, these results add to
319 growing evidence that the background levels of POPs are insufficient to produce the health
320 abnormalities previously reported for BB dolphins (Schwacke et al., 2014).

321 In the current study, concentrations of all contaminant groups measured in BB dolphins
322 were found to be significantly lower than those measured in dolphins from MS (Tables 1 and S4,
323 Figure 2), which is in contrast to findings from a previous study examining POP concentrations
324 in blubber of bottlenose dolphins from northern GoM sites that found no significant differences
325 in exposure between the two sites (Balmer et al., 2015). It is unclear why the two studies have
326 conflicting observations, however, despite superficial similarities between the analyses, notable
327 differences in their methodologies exist, including tissue types used for comparisons (this study -
328 plasma; previous study - blubber), and time periods covered (this study - 2011-2014; previous

329 study - 2010-2011). Future analysis of stored blubber samples collected from 2013 and 2014
330 health assessments in BB and MS should help to resolve the reason for these differences.

331 *3.3. Relationship of blubber and plasma concentrations.* The relationship between
332 blubber and plasma POP concentrations has been previously examined in SB dolphins and has
333 been shown to be significantly influenced by changes in blubber lipid content (Yordy et al.,
334 2010a). As blubber lipid stores are reduced, lipophilic contaminants, such as POPs, may
335 redistribute from blubber into blood (Yordy et al., 2010a), potentially increasing the risk of
336 experiencing health effects. Health assessments of dolphins following the DWH spill observed a
337 higher proportion of underweight individuals in BB (25%) as compared to SB (4%), prompting
338 concern that BB dolphins may have undergone an increase in bioavailable POPs as a result of
339 their poor body condition (Schwacke et al., 2014).

340 Blubber/plasma partition coefficients, which provide an indication of the distribution of
341 POPs between the two tissue compartments, averaged 0.939 for BB dolphins (95% CI 0.844 –
342 1.03) and 0.867 for SB dolphins (range, 0.798 – 0.935; Table S5). At both sites, blubber/blood
343 partition coefficients for \sum DDTs and \sum CHLs averaged ~1, indicating these contaminant groups
344 were equally distributed between blubber and blood. The remainder of contaminants analyzed,
345 including PCBs and PBDEs, exhibited partition coefficients < 1, indicating these groups were
346 generally more concentrated in plasma than blubber (Table S5).

347 Despite a higher prevalence of individuals in poor body condition, BB dolphins did not
348 exhibit reduced blubber lipid content (%) relative to SB dolphins (Student's t-test, $p > 0.05$).
349 Additionally, blubber/blood partition coefficients were not significantly different for the majority
350 of contaminants measured in SB and BB dolphins (MANOVA, $p > 0.05$), suggesting that the
351 relative tissue distribution of these chemicals did not differ between dolphins from the two sites

352 at the time of sampling. The two exceptions for which significant differences between SB and
353 BB dolphins were observed - PCBs and mirex - were lower for SB animals, indicating that
354 dolphins from this location were experiencing elevated blood levels in relation to blubber for
355 these select classes of contaminants (Table S5).

356 POP concentrations in blubber and plasma were significantly and positively correlated
357 for all contaminant groups measured at both sites individually and together. (Tables 2 and S6,
358 Figure 3). The R^2 values ranged from 0.789 to 0.932 for BB ($p<0.001$) and from 0.794 to 0.957
359 for SB ($p <0.001$) (Table S6). The regression parameters relating blubber and blood for SB
360 dolphins as mentioned in Table 2 agree strongly with those previously reported for the area (R^2
361 values range: 0.824 to 0.970, $p<0.001$; Yordy et al., 2010a), supporting the use of these
362 parameters for reliably estimating tissue concentrations in this population. Furthermore, location
363 did not have a significant effect on the slope of the regression equation relating blubber and
364 blood contaminant levels, indicating that the nature of this relationship did not significantly vary
365 between sites (ANCOVA, $p>0.05$). The similar blubber-blood relationship observed for the two
366 locations provides further support that at the time of sampling, BB dolphins were not
367 experiencing elevated blood POP levels stemming from their observed poor body condition(s).

368

369 **4. Conclusions**

370 Similar to other marine mammal populations around the world, bottlenose dolphins
371 inhabiting BB have measurable exposure to POPs. However, several findings from the current
372 study suggest that the level of background exposure to POPs in BB dolphins is unlikely to
373 significantly contribute to the health abnormalities observed in this population (Schwacke et al.,
374 2014). First, concentrations of POPs in BB dolphins are either lower, or comparable, to those of

375 presumably healthy dolphin populations found within and beyond the northern Gulf of Mexico.
376 Secondly, BB dolphins do not appear to be experiencing elevated blood contaminant levels;
377 consequently, observed health effects are unlikely to be related to the mobilization of POPs as a
378 result of a decline in body condition. Cumulatively, these results add to the weight of evidence
379 suggesting health impacts observed in BB dolphins are the result of exposure to oil (Schwacke et
380 al, 2014; Smith et al., 2017; Lane et al., 2015).

381 Additionally, the strength and the nature of the relationship between contaminant levels
382 in blubber and blood reported here strongly agrees with that previously reported for SB dolphins
383 (Yordy et al., 2010a) and does not vary significantly between SB and BB dolphin populations,
384 providing further support for the use of these regression parameters for reliably estimating
385 contaminant concentrations in one tissue given the other. The ability to use blubber for
386 predicting blood-level exposures, and vice-versa, expands the capacity to make comparisons and
387 assess risks to wild dolphin populations subject to sampling constraints.

388

389 **Acknowledgements:** We greatly appreciate the efforts of the many researchers who provided
390 support for the dolphin health assessment fieldwork, especially Larry Fulford, Todd Speakman,
391 James Daugomah, Larry Hansen, Jay Sweeney, and Deborah Fauquier. We thank Bernadita
392 Anulacion, Catherine Sloan, Keri Baugh and their colleagues at the Northwest Fisheries Science
393 Center for chemical contaminant and lipid results. We also recognize organizations that provided
394 staff and logistical support, including SeaWorld and Busch Gardens, National Institute of
395 Standards and Technology, Louisiana Department of Wildlife and Fisheries, Texas Marine
396 Mammal Stranding Network, and Georgia Aquarium. Portions of this work were part of the
397 *Deepwater Horizon* NRDA being conducted cooperatively among NOAA, other Federal and

398 State Trustees, and BP. The dolphin health assessments in Sarasota Bay were conducted by the
399 Chicago Zoological Society's Sarasota Dolphin Research Program and collaborators under
400 NMFS Permit Nos. 522-1785 and 15543 and were supported by additional funding from Office
401 of Naval Research Marine Mammals and Biology Program, Dolphin Quest, Morris Animal
402 Foundation's Betty White Wildlife Rapid Response Fund, Disney's Animal Programs and
403 Environmental Initiatives, and Georgia Aquarium. The dolphin health assessments in Barataria
404 Bay and Mississippi Sound were conducted under NMFS Permit No. 932-1905/MA-009526.
405 Protocols were reviewed and approved by Mote Marine Laboratory and NOAA Institutional
406 Animal Care and Use Committees for Sarasota Bay and Barataria Bay/Mississippi Sound,
407 respectively.

408

409 **Supporting Information Available:** Additional summary tables and statistical details of results.

410

411 **Disclaimer:** This publication does not constitute an endorsement of any commercial product,
412 and use of trade, firm, or product names is for descriptive purposes only. The scientific results
413 and conclusions, as well as any views or opinions expressed herein, are those of the authors and
414 do not necessarily reflect the views of NOAA.

415

416

417

418

419

420

421
422
423
424
425**Table 1.** Plasma POP concentrations (ng/g lipid) and percent lipid content in adult male and subadult bottlenose dolphins from three sites in the northern Gulf of Mexico. Values are geometric means (95% confidence intervals) computed at a mean body length of 229.8 cm.

	Sarasota Bay, FL	Barataria Bay, LA	Mississippi Sound, MS
Sampling years	2011, 2013	2011, 2013, 2014	2013
Sample ¹	20 (2)	46 (9)	13
Age range	2 - 30	3 - 27	6 - 30
Lipid (%)	0.29 (0.26 – 0.32) ^a	0.26 (0.25 – 0.28) ^a	0.26 (0.23 – 0.29) ^a
ΣPCBs ²	27000 (22300 - 32500) ^a	26900 (23900 - 30400) ^a	55500 (44300 - 69500) ^b
ΣDDTs ³	11000 (8930 - 13500) ^a	5600 (4890 - 6420) ^b	19600 (15200 - 25300) ^c
ΣCHLs ⁴	8000 (6640 - 9700) ^a	1540 (1360 - 1750) ^b	4210 (3330 - 5330) ^c
ΣPBDEs ⁵	1490 (1220 - 1810) ^a	1390 (1220 - 1580) ^a	3800 (2980 - 4860) ^b
HCB ⁶	97.7 (83.8 – 114) ^a	68.6 (62.0 – 75.9) ^b	162 (134 - 196) ^c
Mirex	794 (624 - 1000) ^a	74.4 (63.4 – 87.1) ^b	553 (410 - 745) ^a
Dieldrin	805 (668 – 969) ^a	413 (365 – 467) ^b	919 (730 - 1158) ^a
ΣOCPs ⁷	20900 (17200 – 25400) ^a	7770 (6840 - 8840) ^b	25900 (20300 - 32900) ^a
ΣPOPs ⁸	49800 (41500 - 59800) ^a	36100 (32000 - 40800) ^b	85500 (68100 – 107000) ^c

Note: Statistical differences were evaluated using MANCOVA using length (a proxy for age) as a covariate followed post hoc by Tukey's HSD. Groups sharing the same letter are not statistically different.

¹ Summary statistics include only one sample from each individual. For individuals sampled repeatedly, only one timepoint selected at random is included. The number of replicate samples omitted are indicated in parentheses.

² ΣPCBs includes 48 PCB congeners (including congeners that coelute). See Materials and Methods for full list.

³ ΣDDTs includes 2,4'- and 4,4'-DDT, DDE and DDD.

⁴ ΣCHLs includes *alpha*-chlordane, *cis*-nonachlor, *trans*-nonachlor, nonachlor III, heptachlor epoxide, and oxychlordane.

⁵ ΣPBDEs includes congeners 47, 99, 100, 153, 154, and 155.

⁶ Hexachlorobenzene

⁷ ΣOCPs includes ΣDDTs, ΣCHLs, HCB, mirex and dieldrin.

⁸ ΣPOPs is sum of all measured analytes.

426
427
428
429

430 **Table 2.** Model II regression parameters relating POP concentrations (log, ng/g lipid) in blubber
 431 and plasma of bottlenose dolphins from Sarasota Bay, FL and Barataria Bay, LA¹.
 432

	R ²	slope (b1)	intercept (b0)	p-value
ΣPCBs	0.875	1.07	- 0.217	<0.001
ΣDDTs	0.947	1.11	- 0.492	<0.001
ΣCHLs	0.970	1.09	- 0.341	<0.001
ΣPBDEs	0.847	1.03	0.005	<0.001
HCB	0.824	0.926	0.338	<0.001
mirex ²	0.959	1.07	- 0.009	<0.001
dieldrin	0.919	1.11	- 0.160	<0.001
ΣPOPs	0.919	1.10	- 0.431	<0.001

¹Concentrations were log-transformed for regression analyses to improve normality. Regression parameters relate to the specific function: log concentration_{plasma} = b0+ b1*log concentration_{blubber}.

²Model II regression could not converge on a solution therefore results of Model I regression are shown.

433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457

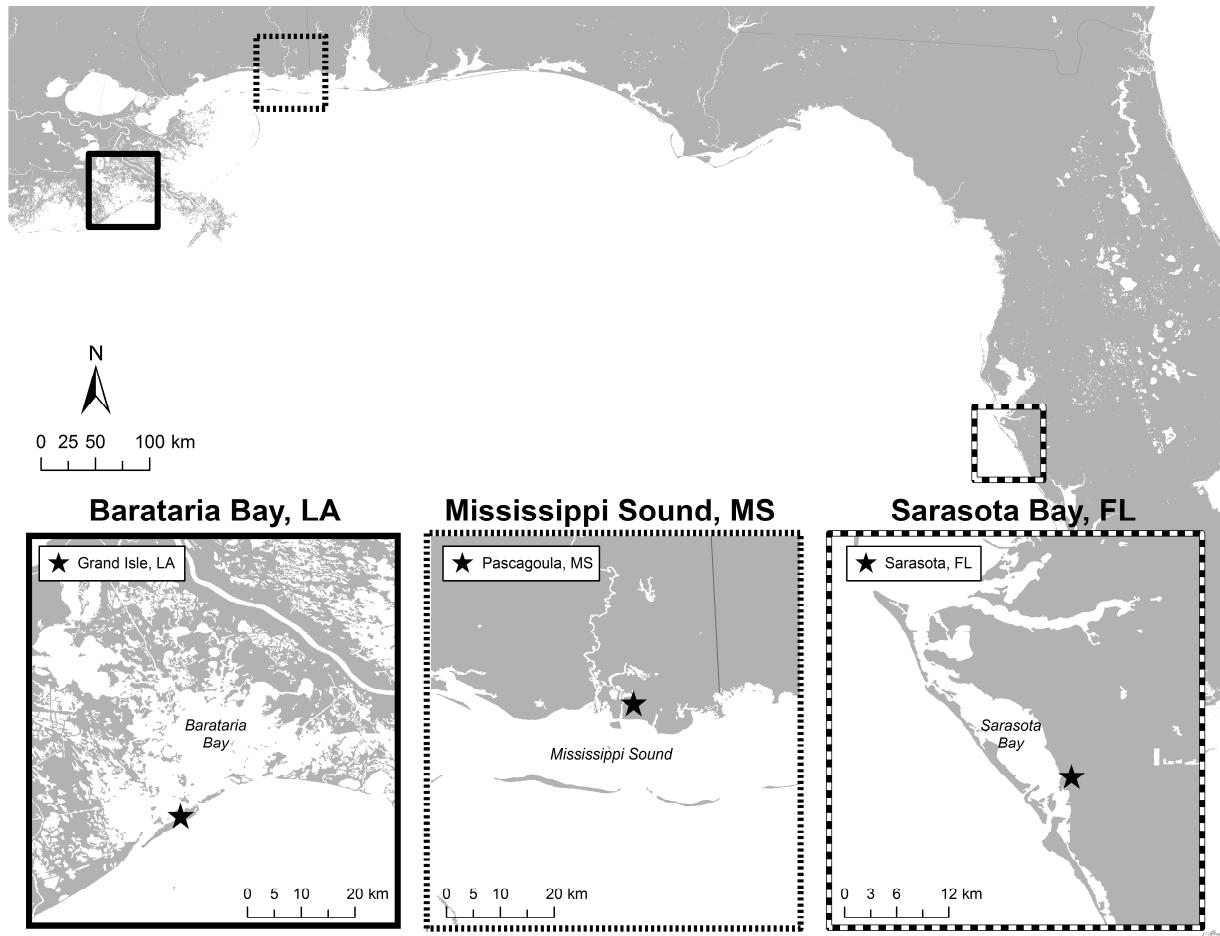
458
459
460

Figure Captions.

461 **Figure 1.** Map of study sites within the northern Gulf of Mexico.

462

463 **Figure 2.** Persistent organic pollutant concentrations measured in plasma of adult male and
464 subadult bottlenose dolphins from Sarasota Bay, FL (n = 20), Barataria Bay, LA (n = 46) and
465 Mississippi Sound, MS (n = 13). Bars represent geometric mean concentration computed at the
466 mean body length (229.8 cm) and whiskers represent 95% CI around the mean. Asterisks
467 represent locations having concentrations significantly different than the reference site, Sarasota
468 Bay, FL (*ANOVA, p <0.001).


469

470 **Figure 3.** Relationship of blubber and plasma contaminant levels in dolphins from Sarasota Bay,
471 FL and Barataria Bay, LA. Model II regression and 95% confidence region describing matched
472 blubber and blood concentrations of (A) \sum PCBs, $R^2= 0.875$, p < 0.001; (B) \sum DDTs, $R^2= 0.947$,
473 p < 0.001; (C) \sum CHLs, $R^2= 0.970$, p < 0.001; and (D) \sum PBDEs, $R^2= 0.847$, p < 0.001.

474

475
476

477 **Figure 1.**

478

479

480

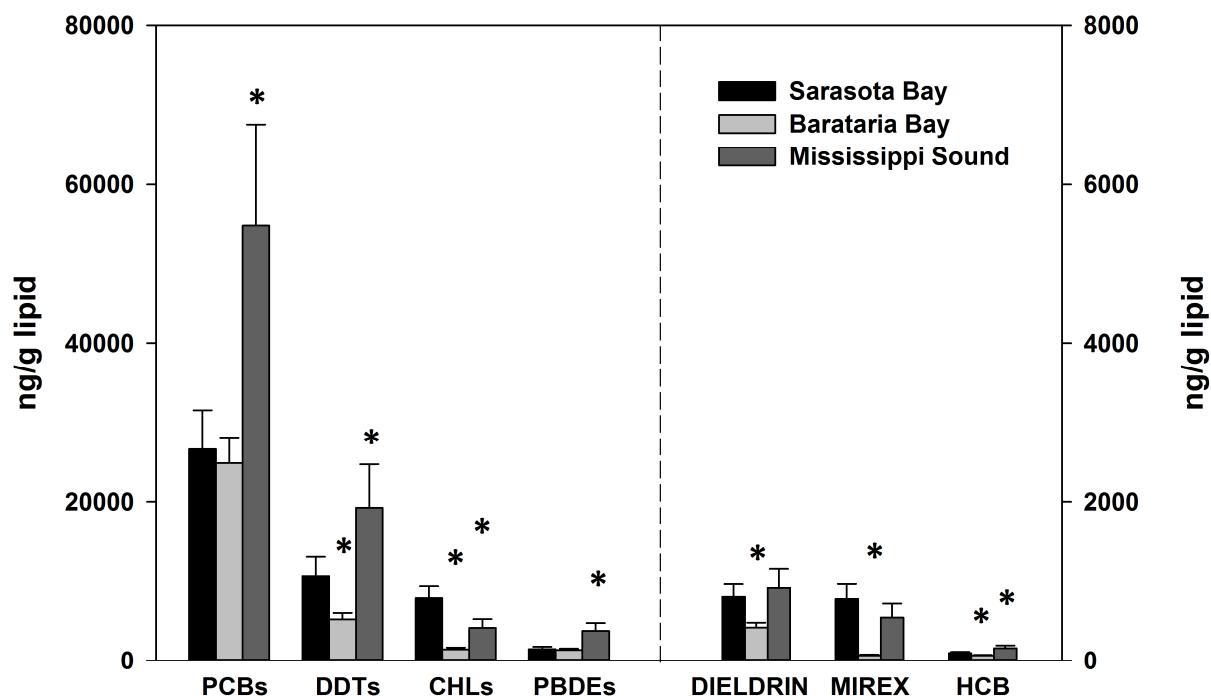
481

482

483

484

485


486

487

488

489 **Figure 2.**

490

491

492

493

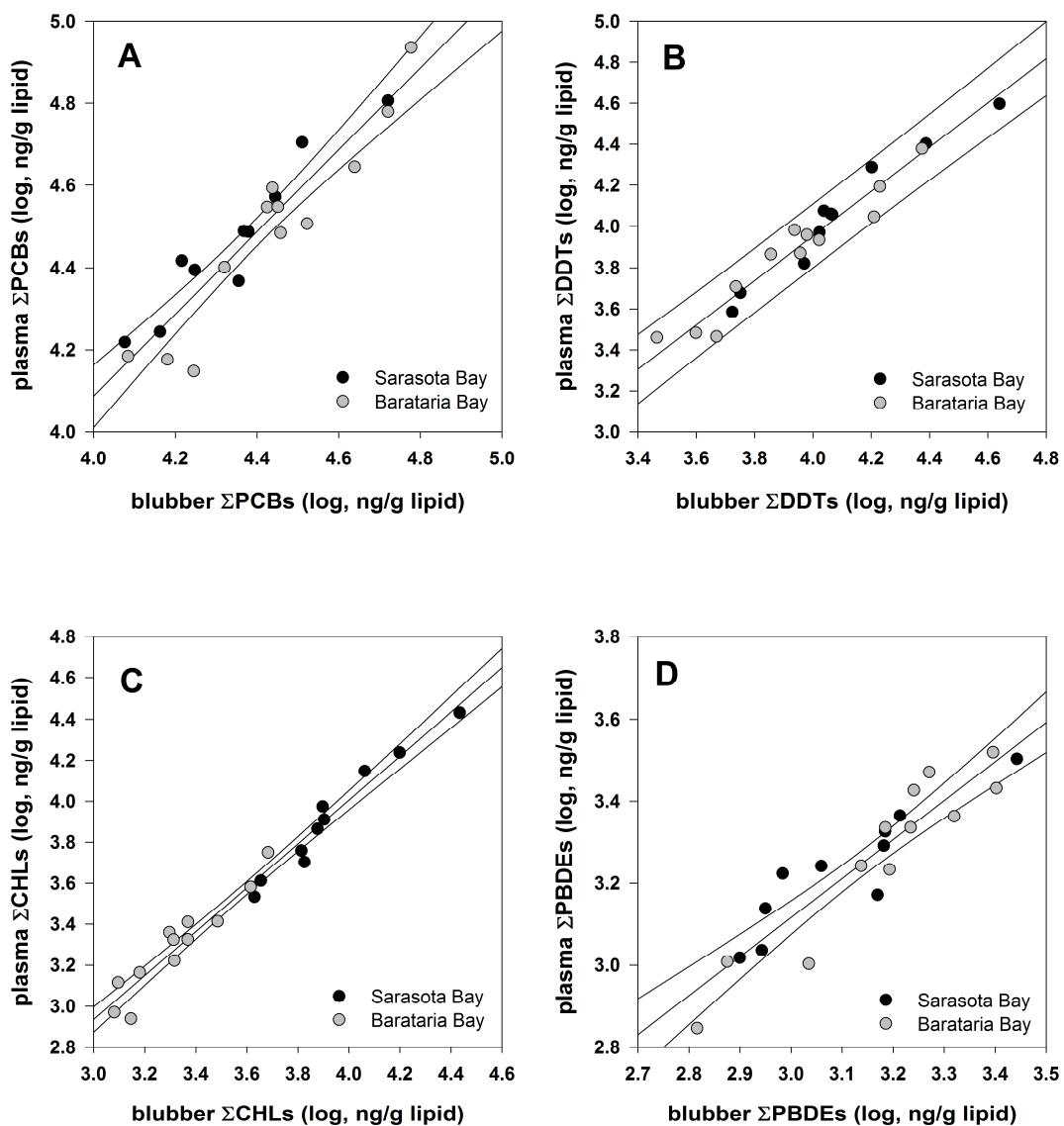
494

495

496

497

498


499

500

501

502 **Figure 3.**

503

504 **References**

505 Balmer BC, Schwacke LH, Wells RS, George RC, Hoguet J, Kucklick JR, et al. Relationship
506 between persistent organic pollutants (POPs) and ranging patterns in common bottlenose
507 dolphins (*Tursiops truncatus*) from coastal Georgia, USA. *Sci Total Environ* 2011; 409:
508 2094-101.

509 Balmer BC, Ylitalo GM, McGeorge LE, Baugh KL, Boyd D, Mullin KD, et al. Persistent organic
510 pollutants (POPs) in blubber of common bottlenose dolphins (*Tursiops truncatus*) along
511 the northern Gulf of Mexico coast, USA. *Science of The Total Environment* 2015; 527:
512 306-312.

513 DWH NRDA (Deepwater Horizon Natural Resource Damage Assessment) Trustees (2016).
514 Deepwater Horizon oil spill: final programmatic damage assessment and restoration plan
515 and final programmatic environmental impact statement. NOAA, Silver Spring, MD.
516 www.gulfspillrestoration.noaa.gov/restoration-planning/gulf-plan. Accessed 23 August
517 2017.

518 Hansen LJ, Schwacke LH, Mitchum GB, Hohn AA, Wells RS, Zolman ES, et al. Geographic
519 variation in polychlorinated biphenyl and organochlorine pesticide concentrations in the
520 blubber of bottlenose dolphins from the US Atlantic coast. *Sci Total Environ* 2004; 319:
521 147-172.

522 Hohn A, Scott M, Wells R, Sweeney J, Irvine A. Growth layers in teeth from free-ranging,
523 known-age bottlenose dolphins. *Mar Mamm Sci* 1989; 5: 315-342.

524 Houde M, Hoekstra PF, Solomon KR, Muir DC. Organohalogen contaminants in delphinoid
525 cetaceans. *Rev Environ Contam Toxicol* 2005; 184: 1-57.

526 Houde M, Pacepavicius G, Wells RS, Fair PA, Letcher RJ, Alaee M, et al. Polychlorinated
527 biphenyls and hydroxylated polychlorinated biphenyls in plasma of bottlenose dolphins
528 (*Tursiops truncatus*) from the Western Atlantic and the Gulf of Mexico. Environ Sci
529 Technol 2006; 40: 5860-6.

530 Hsing P, Fu B, Larcom E, Berlet S, Shank T, Govindarajan A, et al. Evidence of lasting impact
531 of the Deepwater Horizon oil spill on a deep Gulf of Mexico coral community. Elementa
532 2013; 1: 1-15.

533 Kim M-J, Marchand P, Henegar C, Antignac J-P, Alili R, Poitou C, et al. Fate and complex
534 pathogenic effects of dioxins and polychlorinated biphenyls in obese subjects before and
535 after drastic weight loss. Environmental health perspectives 2010; 119: 377-383.

536 Kucklick J, Schantz M, Pugh R, Porter B, Poster D, Becker P, et al. Marine mammal blubber
537 reference and control materials for use in the determination of halogenated organic
538 compounds and fatty acids. Anal Bioanal Chem 2010; 397: 423-432.

539 Kucklick J, Schwacke L, Wells R, Hohn A, Guichard A, Yordy J, et al. Bottlenose dolphins as
540 indicators of persistent organic pollutants in the western North Atlantic Ocean and
541 northern Gulf of Mexico. Environ Sci Technol 2011; 45: 4270-7.

542 Kujawinski E, Kido Soule M, Valentine D, Boysen A, Longnecker K, Redmond M. Fate of
543 dispersants associated with the *Deepwater Horizon* oil spill. Environ Sci Technol 2011;
544 45: 1298-1306.

545 Lane SM, Smith CR, Mitchell J, Balmer BC, Barry KP, McDonald T, et al. Reproductive
546 outcome and survival of common bottlenose dolphin sampled in Barataria Bay,
547 Louisiana, USA, following the Deepwater Horizon oil spill. Proc. R. Soc. B 2015; 282:
548 20151944

549 Lassiter RR, Hallam TG. Survival of the fittest: implications for acute effects of lipophilic
550 chemicals on aquatic populations. Environmental Toxicology and Chemistry 1990; 9:
551 585-595.

552 Litz J, Garrison L, Fieber L, Martinez A, Contillo J, Kucklick J. Fine-scale spatial variation of
553 persistent organic pollutants in bottlenose dolphin (*Tursiops truncatus*) in Biscayne Bay,
554 Florida. Environ Sci Technol 2007; 41: 7222-7228.

555 Maruyama K, Sahrul M, Tanabe S, Tatsukawa R. Polychlorinated biphenyl pollution from
556 shipbuilding in Nagasaki Bay, Japan. Ecotoxicol. Environ. Saf. 1983; 7: 514-520.

557 McNutt M, Camilli R, Crone T, Guthrie G, Hsieh P, Ryerson T, et al. Review of flow rate
558 estimates of the *Deepwater Horizon* oil spill. PNAS 2012; 109: 20260-20267.

559 Michel J, Owens EH, Zengel S, Graham A, Nixon Z, Allard T, et al. Extent and degree of
560 shoreline oiling: *Deepwater Horizon* oil spill, Gulf of Mexico, USA. PLoS One 2013; 8:
561 e65087.

562 Schwacke L, Voit E, Hansen L, Wells R, Mitchum G, Hohn A, et al. Probabilistic risk
563 assessment of reproductive effects of polychlorinated biphenyls on bottlenose dolphins
564 (*Tursiops truncatus*) from the southeast United States coast. Environ Toxicol Chem 2002;
565 21: 2752-2764.

566 Schwacke LH, Hall AJ, Townsend FI, Wells RS, Hansen LJ, Hohn AA, et al. Hematologic and
567 serum biochemical reference intervals for free-ranging common bottlenose dolphins
568 (*Tursiops truncatus*) and variation in the distributions of clinicopathologic values related
569 to geographic sampling site. Am. J. Vet. Res. 2009; 70: 973-985.

570 Schwacke LH, Smith CR, Townsend FI, Wells RS, Hart LB, Balmer BC, et al. Health of
571 common bottlenose dolphins (*Tursiops truncatus*) in Barataria Bay, Louisiana, following
572 the *Deepwater Horizon* oil spill. Environ Sci Technol 2014; 48: 93-103.

573 Schwacke LH, Twiner MJ, De Guise S, Balmer BC, Wells RS, Townsend FI, et al. Eosinophilia
574 and biotoxin exposure in bottlenose dolphins (*Tursiops truncatus*) from a coastal area
575 impacted by repeated mortality events. Environ. Res. 2010; 110: 548-555.

576 Schwacke LH, Zolman ES, Balmer BC, De Guise S, George RC, Hoguet J, et al. Anaemia,
577 hypothyroidism and immune suppression associated with polychlorinated biphenyl
578 exposure in bottlenose dolphins (*Tursiops truncatus*). Proc Biol Sci 2012; 279: 48-57.

579 Scott M, Wells R, Irvine A. A long term study of bottlenose dolphins on the west coast of
580 Florida. In: Leatherwood S, Reeves R, editors. The Bottlenose Dolphin. Academic Press,
581 San Diego, 1990, pp. 235-244.

582 Sloan C, Anulacion B, Baugh K, Bolton J, Boyd D, Boyer R, et al. Northwest Fisheries Science
583 Center's analyses of tissue, sediment and water samples for organic contaminants by gas
584 chromatography/mass spectrometry and analyses of tissue for lipid classes by thin layer
585 chromatography/flame ionization detection. U.S. Dept. of Commerce. NOAA Tech.
586 Memo., NMFS-NWFSC-125, 2014, pp. 61.

587 Sloan C, Brown D, Ylitalo G, Buzitis J, Herman D, Burrows D, et al. Quality assurance plan for
588 analyses of environmental samples for polycyclic aromatic compounds, persistent organic
589 pollutants, fatty acids, stable isotope ratios, lipid classes, and metabolites of polycyclic
590 aromatic compounds. U.S. Dept. of Commerce. NOAA Tech. Memo., NMFS-NWFSC-
591 77, 2006, pp. 30.

592

593 Smith CR, Rowles TK, Hart LB, Townsend FI, Wells RS, Zolman ES, et al. Slow recovery of
594 Barataria Bay dolphin health following the Deepwater Horizon oil spill (2013-2014),
595 with evidence of persistent lung disease and impaired stress response. *Endangered
596 Species Research* 2017; 33: 127-142.

597 Vollmer N, Rosel P. A review of common bottlenose dolphins (*Tursiops truncatus truncatus*) in
598 the northern Gulf of Mexico: Population biology, potential threats and management.
599 *Southeastern Naturalist* 2013; 12: 1-43.

600 Wells R. Social structure and life history of bottlenose dolphins near Sarasota Bay, Florida:
601 Insights from four decades and five generations. In: Yamagawa J, Karczmarski L, editors.
602 *Primates and Cetaceans*. Springer Japan, 2014, pp. 149-172.

603 Wells R, Rhinehart H, Hansen L, Sweeney J, Townsend F, Stone R, et al. Bottlenose dolphins as
604 marine ecosystem sentinels: Developing a health monitoring system. *EcoHealth* 2004; 1:
605 246-254.

606 Wells RS, Tornero V, Borrell A, Aguilar A, Rowles TK, Rhinehart HL, et al. Integrating life-
607 history and reproductive success data to examine potential relationships with
608 organochlorine compounds for bottlenose dolphins (*Tursiops truncatus*) in Sarasota Bay,
609 Florida. *Sci Total Environ* 2005; 349: 106-19.

610 Xin J, Liu X, Liu W, Jiang L, Wang J, Niu J. Production and use of DDT containing antifouling
611 paint resulted in high DDTs residue in three paint factory sites and two shipyard sites,
612 China. *Chemosphere* 2011; 84: 342-347.

613 Yordy J, Wells RS, Balmer BC, Schwacke LH, Rowles TK, Kucklick JR. Partitioning of
614 persistent organic pollutants between blubber and blood of wild bottlenose dolphins:
615 Implications for biomonitoring and health. *Environ Sci Technol* 2010a; 44: 4789-4795.

616 Yordy JE, Pabst DA, McLellan WA, Wells RS, Rowles TK, Kucklick JR. Tissue-specific
617 distribution and whole-body burden estimates of persistent organic pollutants in the
618 bottlenose dolphin (*Tursiops truncatus*). Environ Toxicol Chem 2010b; 29: 1263-73.
619 Yordy JE, Wells RS, Balmer BC, Schwacke LH, Rowles TK, Kucklick JR. Life history as a
620 source of variation for persistent organic pollutant (POP) patterns in a community of
621 common bottlenose dolphins (*Tursiops truncatus*) resident to Sarasota Bay, FL. Sci Total
622 Environ 2010c; 408: 2163-72.

623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646

647 **Supporting Information for**
648 **Persistent Organic Pollutants (POPs) in Blood and Blubber of Common Bottlenose**
649 **Dolphins (*Tursiops truncatus*) at three northern Gulf of Mexico sites following the**
650 ***Deepwater Horizon* Oil Spill**
651
652

653 Jennifer E. Balmer, Gina M. Ylitalo, Teresa K. Rowles, Keith D. Mullin, Randall S. Wells,
654 Forrest I. Townsend, Ronald W. Pearce, Jennie L. Bolton, Eric S. Zolman, Brian C. Balmer, Lori
655 H. Schwacke
656
657
658 Table S1. Breakdown of sampled dolphins by age and sex class.
659
660 Table S2. Geometric means and 95% CI of plasma POP concentrations in adult female
661 bottlenose dolphins from three sites within the Gulf of Mexico.
662
663 Table S3. Statistical significance results (p-values) from factorial ANOVA examining effect of
664 year and location covariates on contaminant concentrations measured in plasma of subadult and
665 adult male dolphins from Sarasota Bay, FL and Barataria Bay, LA.
666
667 Table S4. Statistical significance results (p-values) from MANCOVA and subsequent Tukey's
668 HSD test examining concentrations of contaminants measured in plasma of subadult and male
669 dolphins from Sarasota Bay, Barataria Bay and Mississippi Sound with length as a covariate.
670
671 Table S5. Tissue partition coefficients (arithmetic mean, 95% CI) for blubber and plasma of
672 bottlenose dolphins and p-values of MANOVA comparing differences between sites.
673
674 Table S6. Model II regression parameters (slope, intercept, R^2 values) relating blubber and blood
675 concentrations separately for Sarasota Bay and Barataria Bay dolphins and statistical
676 significance results (p-values) from ANCOVA examining the singular and interactive effects of
677 location and blubber contaminant concentrations on plasma contaminant concentrations.
678
679 Figure S1. Total plasma persistent organic pollutants (Σ POPs) versus length in female dolphins
680 from Barataria Bay, LA.
681
682
683
684
685

686 **Table S1.** Number of plasma and (matching blubber) samples from Sarasota Bay, Barataria Bay,
 687 and Mississippi Sound dolphins grouped by life history class. Criteria for assigning age/sex class
 688 are the same used by Schwacke et al. 2014 and were adopted from Schwacke et al. 2009 and
 689 2010.
 690

Age/Sex class	Criteria ¹	Sarasota Bay		Barataria Bay			Mississippi Sound
Subadult	≥ 2 years and < 10 years; ≥ 200 cm and < 240 cm	May 2011	May 2013	June 2011	June 2013	June 2014	July 2013
Male		7 (7)	5	3 (3)	10	3	6
Female		1	4	7	7	6	2
Adult	≥ 10 years; ≥ 240 cm						
Male		3 (3)	2	9 (9)	5	5	5
Female		4	4	13	9	18	7
Total		15 (10)	15	32 (12)	31	32	20

691 ¹Age was used for assigning class; if age was not available, assignment was based on length.
 692 Pregnant females were always classified as adults, regardless of age or length.
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718

719 **Table S2.** Plasma POP concentrations (ng/g lipid) and percent lipid content (geometric mean,
 720 95% CI) in adult female bottlenose dolphins from three sites in the northern Gulf of Mexico.
 721
 722

	Sarasota Bay, FL	Barataria Bay, LA	Mississippi Sound, MS
Sampling years	2011, 2013	2011, 2013, 2014	2013
Sample size¹	7 (1)	38 (2)	7
Age range²	NA - 43	NA - 42	NA
Lipid (%)	0.27 (0.22 – 0.32)	0.25 (0.22 – 0.28)	0.27 (0.23 – 0.31)
ΣPCBs³	4590 (1960 - 10700)	7238 (5470 - 9570)	22600 (8970 - 57000)
ΣDDTs⁴	1050 (417 - 2660)	1150 (820 - 1630)	6970 (2500 - 19400)
ΣCHLs⁵	899 (400 -2020)	350 (257 - 476)	1430 (473 - 4330)
ΣPBDEs⁶	241 (110 - 531)	353 (258 - 482)	1600 (530 - 4850)
HCB⁷	24.9 (14.8 – 41.8)	28.6 (23.0 – 35.5)	81 (36.6 -179)
Mirex	162 (67.3 – 387)	26.7 (20.9 – 34.0)	298 (131 - 674)
Dieldrin	120 (49.5 – 290)	145 (113 – 185)	366 (147 - 912)
ΣOCPs⁸	2320 (992 – 5420)	1730 (1260 - 2380)	9310 (3380 - 25700)
ΣPOPs⁹	7180 (3100 - 16700)	9340 (7010 - 12500)	33700 (13000 – 87600)

Note: Statistical differences between locations were not evaluated given the potential bias originating from unknown reproductive history on contaminant concentrations.

¹ Summary statistics include only one sample from each individual. For individuals sampled in 2011 and 2013, only one timepoint selected at random is included. The number of replicate samples omitted are indicated in parentheses.

² Ages for some individuals were not available (NA).

³ Σ PCBs includes 48 PCB congeners. See Materials and methods for full list.

⁴ Σ DDTs includes 2,4'- and 4,4'-DDT, DDE AND DDD.

⁵ Σ CHLs includes alpha-chlordane, cis-nonachlor, trans-nonachlor, nonachlor III, heptachlor epoxide and oxychlordane.

⁶ Σ PBDEs includes 47, 99, 100, 153, 154, and 155.

⁷ Hexachlorobenzene

⁸ Σ OCPs includes Σ DDTs, Σ CHLs, HCB, mirex and dieldrin.

⁹ Σ POPs is sum of all measured analytes.

723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733

734 **Table S3.** Statistical significance results (p-values) from factorial ANOVA examining effect of
 735 year and location covariates on contaminant concentrations measured in plasma of subadult and
 736 adult male dolphins from Sarasota Bay, FL and Barataria Bay, LA collected in 2011 and 2013.
 737 Plasma contaminant concentrations (ng/g lipid) were log-transformed prior to analysis. Red text
 738 (*) indicates significant p-value at the $\alpha=0.05$ level.
 739

	Year	Location	Year*Location
Σ PCBs	0.204	0.627	0.522
Σ DDTs	0.288	<0.001*	0.330
Σ CHLs	0.140	<0.001*	0.342
Σ PBDEs	0.016*	0.589	0.259
HCB	0.523	<0.001*	0.797
Mirex	0.022*	<0.001*	0.164
Dieldrin	0.102	<0.001*	0.280
Σ OCPs	0.206	<0.001*	0.383
Σ POPs	0.192	0.012*	0.477

740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767

768 **Table S4.** Statistical significance results (p-values) from MANCOVA and subsequent Tukey's
 769 HSD test examining concentrations of contaminants measured in plasma of subadult and male
 770 dolphins from Sarasota Bay (SB), Barataria Bay (BB) and Mississippi Sound (MS) with length
 771 as a covariate. Red text indicates significant p-value at the $\alpha=0.05$ level.
 772
 773

Contaminant Class	MANCOVA p-values		Tukey's HSD Pairwise Comparisons p-values		
	Length	Location	SB / BB	SB / MS	BB / MS
Σ PCBs	<0.001*	<0.001*	0.994	<0.001*	<0.001*
Σ DDTs	<0.001*	<0.001*	<0.001*	0.005*	<0.001*
Σ CHLs	<0.001*	<0.001*	<0.001*	<0.001*	<0.001*
Σ PBDEs	<0.001*	<0.001*	0.887	<0.001*	<0.001*
HCB	0.258	<0.001*	<0.001*	<0.001*	<0.001*
Mirex	<0.001*	<0.001*	<0.001*	0.092	<0.001*
Dieldrin	0.989	<0.001*	<0.001*	0.644	<0.001*
Σ OCPs	<0.001*	<0.001*	<0.001*	0.539	<0.001*
Σ POPs	<0.001*	<0.001*	0.02*	0.003*	<0.001*

774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801

802 **Table S5.** Tissue partition coefficients (arithmetic mean, 95% CI) for blubber and plasma of
 803 bottlenose dolphins and p-values of MANOVA comparing differences between sites. Red text
 804 (*) indicates significant p-value at the $\alpha=0.05$ level.

	Sarasota Bay (N = 10)	Barataria Bay (N= 12)	p-value
Σ PCBs	0.760 (0.700 – 0.822)	0.889 (0.797 – 0.982)	0.041*
Σ DDTs	1.09 (0.975 – 1.21)	1.15 (1.04 – 1.28)	0.463
Σ CHLs	1.04 (0.937 – 1.14)	1.09 (0.969 – 1.21)	0.539
Σ PBDEs	0.751 (0.676 – 0.826)	0.817 (0.741 – 0.893)	0.244
HCB	0.653 (0.586 – 0.721)	0.596 (0.543 – 0.648)	0.196
Mirex	0.615 (0.543 – 0.689)	0.830 (0.741 – 0.920)	0.002*
Dieldrin	0.735 (0.650 – 0.820)	0.777 (0.692 – 0.862)	0.503
Σ POPs	0.867 (0.798 – 0.935)	0.939 (0.844 – 1.03)	0.258

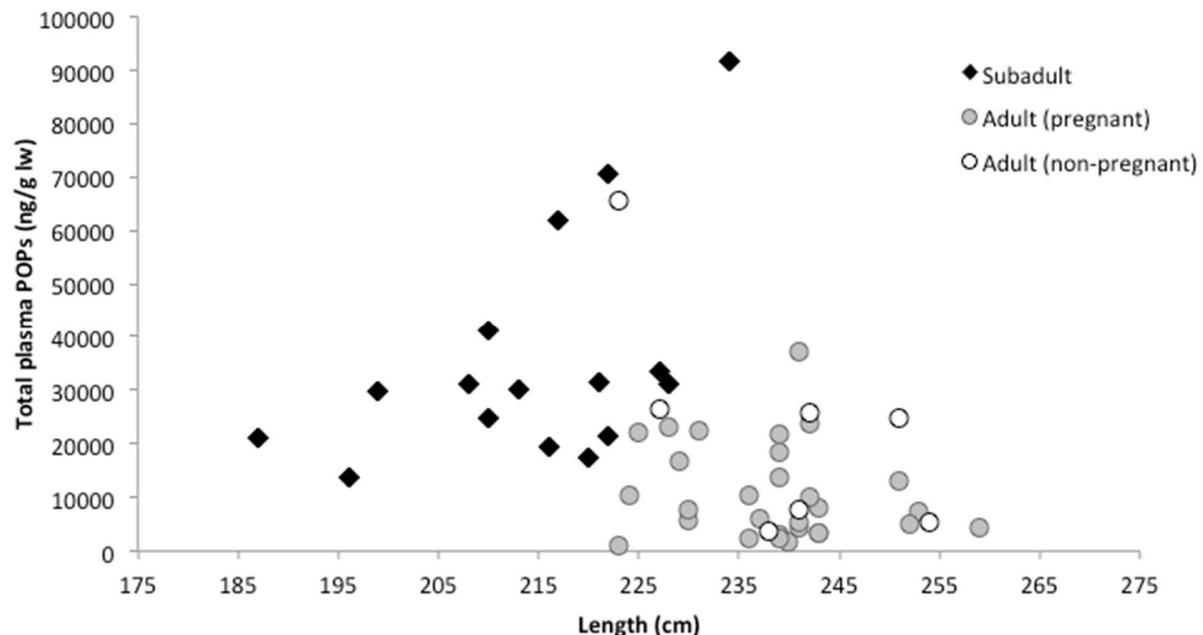
805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835

836 **Table S6.** Model II regression parameters (slope, intercept, R² values) relating blubber and blood
 837 concentrations separately for Sarasota Bay and Barataria Bay dolphins and statistical
 838 significance results (p-values) from ANCOVA examining the singular and interactive effects of
 839 location and blubber contaminant concentrations on plasma contaminant concentrations. Red text
 840 (*) indicates significant p-value at the $\alpha=0.05$ level.
 841

	Regression Parameters ^a			ANCOVA	
	Sarasota Bay (N = 10)		Barataria Bay (N= 12)	Location	Blubber concentration
	Slope (b1)	Intercept (b0)	R ²		
Σ PCBs	0.999	1.16	0.911	0.351	<0.001*
	0.128	-0.634			
	0.902				0.400
Σ DDTs	1.15	1.07	0.956	0.465	<0.001*
	-0.660	-0.324			
	0.932				0.450
Σ CHLs	1.17	1.24	0.957	0.978	<0.001*
	-0.696	-0.820			
	0.896				0.917
Σ PBDEs	0.884	1.15	0.828	0.144	<0.001*
	0.490	-0.379			
	0.888				0.159
HCB	0.770	1.31	0.794	0.061	<0.001*
	0.607	-0.270			
	0.789				0.057
Mirex	0.771	0.817 ^b	0.931	0.113	<0.001*
	0.841	0.440 ^b			
	0.910 ^b				0.565
Dieldrin	1.02	1.34	0.886	0.184	<0.001*
	0.073	-0.738			
	0.868				0.189
Σ POPs	1.05	1.13	0.939	0.659	<0.001*
	-0.146	-0.552			
	0.909				0.690

842 ^aConcentrations were log-transformed for regression analyses to improve normality. Regression
 843 parameters relate to the specific function: log concentration_{plasma} = b0+ b1*log concentration_{blubber},
 844 where concentrations are in units of ng/g lipid. All regressions were statistically significant (p
 845 <0.05) at the $\alpha=0.05$ level.

846 ^bModel II regression could not converge on a solution therefore results of Model I regression are
 847 shown.

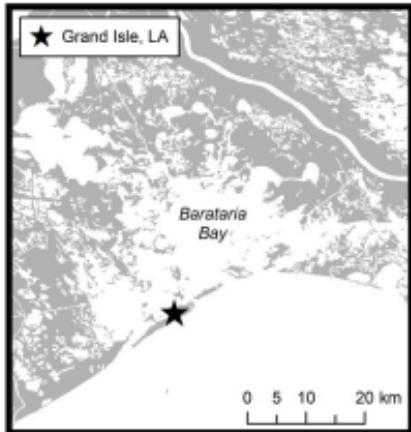

848
 849
 850

851 **Figure S1.** Total plasma persistent organic pollutants (Σ POPs) versus length in female dolphins
852 from Barataria Bay, LA.

853

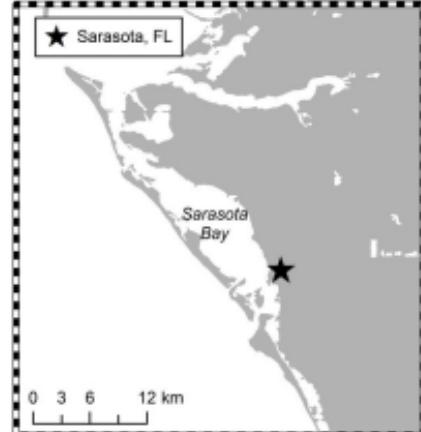
854

855


878 Schwacke LH, Twiner MJ, De Guise S, Balmer BC, Wells RS, et al. (2010) Eosinophilia and
879 biotoxin exposure in bottlenose dolphins (*Tursiops truncatus*) from a coastal area impacted by
880 repeated mortality events. Environ Res 110: 548-555.

881


882 Schwacke LH, Smith CR, Townsend FI, Wells RS, Hart LB, et al. (2014) Health of common
883 bottlenose dolphins (*Tursiops truncatus*) in Barataria Bay, Louisiana, following the *Deepwater*
884 *Horizon* oil spill. Environ Sci Technol 48: 93-103.


Barataria Bay, LA

Mississippi Sound, MS

Sarasota Bay, FL

