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Abstract 12 

Street flooding is problematic in urban areas, where impervious surfaces, such as concrete, brick, 13 
and asphalt prevail, impeding the infiltration of water into the ground. During rain events, water 14 
ponds and rise to levels that cause considerable economic damage and physical harm. Previous 15 
urban flood studies and models have evaluated the factors contributing to street flooding, such as 16 
precipitation, slope, elevation, and the drainage network. Yet, due to the complexity of the 17 
interconnectedness of these factors and lack of available data, difficulty remains in ascertaining 18 
the localized areas prone to and experiencing street flooding. Thus, residents and city management 19 
of problem areas are unaware and unable to prepare for street flooding events. This study presents 20 
an evaluation of New York City’s 311 street flooding reports, via an inference model, as a way to 21 
detect the zip codes where street flooding is prevalent. The potential explanatory variables for 22 
street flooding complaints were precipitation amounts and 311 sewer back up (water arising from 23 
home drains as a result of rainfall), manhole overflow (water arising from manhole covers on the 24 
street) and catch basin (a clogged basin preventing rainwater from entering storm drains) 25 
complaints. Using Stage IV radar precipitation data and 311 sewer reports, spanning a 10-year 26 
period, a Least Absolute Shrinkage and Selection Operator (LASSO) regression analysis, with an 27 
embedded Zero-Inflation model is used to detect the variables statistically significant as predictors 28 
of flood complaint counts, specific to each zip code. The model is also tested using an Out-of-29 
Sample prediction scheme by training it with the detected explanatory variables. Precipitation was 30 
found to be a predictor in 81% of the zip codes. For the infrastructural variables, manhole overflow 31 
complaints were significant to street flood complaints in 21% of the zip codes, back up complaints 32 
were significant in 41% of the zip codes, and catch basin complaints were significant in 47% of 33 
the zip codes. Thus, for an appreciable number of zip codes, infrastructural complaints were found 34 
to be predictors of street flooding complaints. This is the first study of its kind to investigate the 35 
infrastructural contributions of street flooding by 311 analysis, thereby identifying factors of street 36 
flooding, aside from precipitation. Leading contributions of the study include the demonstration 37 
of infrastructural impact towards the occurrence of street flooding and also the circumscription to 38 
the zip code and borough levels, allowing for tailored preventative actions in critical areas.  39 
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• Crowd-sourced data (311 street flooding complaints) were analyzed to detect key 42 
explanatory variables that explain New York City’s street flooding complaints. 43 

• Catch Basin and Sewer Back-Up variables were shown as predictors in over 40% of the 44 
tested zip codes, revealing the adverse contributions of the drainage network towards street 45 
flooding occurrence in New York City. 46 

• Some boroughs have a low frequency of reports; yet, in those areas, street flooding 47 
complaints are strongly influenced by small increases in the predictors. 48 

 49 

1 Introduction 50 

Flooding events result in multiple fatalities and considerable property losses each year. 51 

Particularly, within the urban environment, the effects are pronounced. Urban watersheds, lined 52 

with impervious surfaces, such as concrete, asphalt, and stone, have a limited amount of infiltration 53 

and recharge during heavy rainfall; thus, surface flow dominates the hydrological response 54 

(Serrano, 2010). Also, as the drainage system becomes overwhelmed, water overflows as runoff, 55 

and pluvial flooding, or what is commonly known as street flooding, occurs. Furthermore, as urban 56 

areas are densely populated, the consequences of flooding are oftentimes more severe than those 57 

of coastal or tidal flooding events. Indeed, for a given storm, more economic damage and injuries 58 

have been shown to occur in urban areas, as opposed to rural areas (Sharif, Yates, Roberts, & 59 

Mueller, 2006). For example, the National Weather Service (NWS) reported that, in 2014, a single, 60 

urban flooding event in Detroit, Michigan, resulted in $1.8 billion of direct damages, representing 61 

60% of the total flood damages for that year in the United States (NWS, 2020a). In addition, in a 62 

study by the Chicago’s Center for Neighborhood Technology (CNT), the economic costs of urban 63 

flooding for the densely populated area of Cook County, Illinois, totaled more than $773 million 64 

over a five-year period. (CNT, 2020). Thus, due to the unique physical and social characteristics 65 

of an urban area, flooding has acute impact. 66 

The modeling of street flooding has the potential to reduce the economic and social effects 67 

of severe storms in urban developments. Specifically, the estimation and projection of flooded 68 
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areas has great benefit, as it allows for the implementation of early warnings, which, in turn, 69 

provides people with the opportunity to take shelter and perform preventative measures. In recent 70 

years, urban models, based on a variety of methodologies, including cellular automata, image 71 

processing, and physically based systems have been introduced (Guidolin et al., 2016, Lo, Wu, 72 

Lin, & Hsu, 2015). Generally, these models include analyses of rainfall, infiltration, and the sewer 73 

system. In urban flood simulations, it is common to evaluate extended surcharge and other aspects 74 

of the drainage network by dual drainage modeling, which incorporates the interaction between 75 

surface flow and the sewer flow of surcharged sewer systems (Djordjević, Prodanović, & 76 

Maksimović, 1999). Distinctly, extended surcharge occurs when water is held under pressure 77 

within a sewer system during a rain event, thereby preventing the surface water to enter the 78 

drainage system or causing the water from the drainage system to escape to the surface (Schmitt, 79 

Thomas, & Ettrich, 2004). Within the United States, the most widely used flood forecasting model 80 

is the Flash Flood Guidance of the NWS, which offers a deterministic, physically-based, 81 

hydrologic model, utilizing real-time radar and satellite precipitation estimates (Ntelekos, 82 

Georgakakos, & Krajewski, 2006, World Meteorological Organization, 2020). Thus, as shown, 83 

there are various models, and the ongoing research demonstrates the interest of emergency 84 

management to produce an effective model, customized to the metropolitan area. 85 

While the production of urban flood models, particularly physically-based models, is in 86 

continuum, nonetheless, there are obstacles. For instance, the NWS model may forecast floods; 87 

yet it does not consider urban factors. Also, the NWS and other models incorporate rainfall; 88 

however, they do not include some infrastructural factors, such as back up flooding. Moreover, 89 

with the building of a flood forecasting model, other hurdles, including cost effectiveness and data 90 

availability present. Specifically, in older metropolitan cities, the design of the drainage system is 91 
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oftentimes unavailable (Al-Suhili, Cullen, & Khanbilvardi, 2019). For  instance, Zahura et al found 92 

that physics-based models, such as TUFLOW, also suffered impairments by insufficient drainage 93 

data (Zahura et al., 2020). In addition, urban flood forecasting models (including flash flood 94 

models) have the distinct challenge with the validation of accuracy. For example, flash floods are 95 

often caused by severe storms occurring only within six hours of rainfall (NWS, 2020b); hence, 96 

there is a difficulty in quantifying measurements in the brief timespan. Urban flood forecasting 97 

models, at timescales longer than that of the flash floods, also have limitations as they might not 98 

be benchmarked with real observations. Consequently, there is a hinderance in the comparison of 99 

model results with the physical system. Therefore, there is a need for a low-cost, empirical/data-100 

driven analysis which would illuminate the exact urban areas flooded during a rain event, in 101 

addition to providing insight into the specific sewer infrastructure issues within those areas. 102 

Accounts by persons directly experiencing street flooding may resolve some of the issues 103 

and provide clarity into the occurrence, extent and driving mechanisms of street flooding particular 104 

to an urban place. In New York City (NYC), there is a platform, referred to as 311, where residents, 105 

business owners, and visitors are able to file issue reports to the NYC government, via phone, 106 

website, or social media (Minkoff, 2015). For instance, an observer who notices street flooding 107 

may enter the NYC 311 website and input the description, nature, address, and date and time of 108 

the occurrence. These filings by New Yorkers are invaluable, as the 311 complaints, via catch 109 

basin, manhole, and sewer back up reports, offer infrastructural insight, into the response of NYC 110 

sewer system, of which available drainage data is insufficient. Moreover, street flooding reports 111 

may serve an additional benefit. As time, date, and exact location of a complaint is listed, the 311 112 

street flooding complaints may serve as tool for urban flooding model validation, as a model’s 113 
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prediction of flooding in an area may be supported by an analysis of the local reports. Thus, the 114 

data provided by 311 is a way to understand the causes and effects of street flooding. 115 

This study presents an inference model, which highlights the key climate and 116 

infrastructural variables that govern street floods in NYC. Of NYC, the 311 complaints are 117 

aggregated over seven days (weekly time-scale) and to the zip code level. Street Flooding reports 118 

are taken as the response variable, whereas Precipitation amounts, Sewer Back-Up, Manhole 119 

Overflow, and Catch Basin reports serve as predictors or explanatory variables. Utilizing the Least 120 

Absolute Shrinkage and Selection Operator (LASSO) regression analysis (Tibshirani, 1996), with 121 

an embedded Zero-Inflation (ZI) model, per zip code, the variables effecting street flooding 122 

complaints are selected. By identifying the climate and infrastructural issues, areas prone to street 123 

flooding and their particular vulnerabilities are revealed, thereby providing direction and clarity 124 

for city management and forecasters. Furthermore, such an analysis complements the physical 125 

modeling endeavors and provides tools of validation.  126 

There have been a few studies, of which crowd sourcing was applied in flood analyses. In 127 

one such paper, Sadler et al., flood severity had been analyzed and the data reported by residents 128 

and individual observers was utilized to provide an inference model. As Sadler et al. delved 129 

extensively into environmental factors, such as water table level and rainfall intensity (Sadler et 130 

al., 2018), this study differs by reviewing infrastructural factors, such as issues involving the 131 

drainage network and external catch basins. Additionally, there have also been flood analyses, 132 

which have specifically used the NYC 311 format. For instance, Kelleher and McPhillips 133 

employed NYC 311 complaints to explore the relationships between topographic indices and 134 

pluvial flooding (Kelleher & McPhillips, 2020). While the study highlights the value of citizen 135 

reports as a validation tool, it, however, does not analyze 311 street flood complaints in regards to 136 
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climatic or drainage sources. In another study by Smith and Rodriguez, street flooding complaints 137 

were used to investigate topographic issues, in addition to serving as a validation method for a 138 

proposed rainfall dataset (Smith & Rodriguez, 2017). Yet, as only street flooding and highway 139 

flooding complaints were compiled, the infrastructural related 311 complaints were not assessed. 140 

In contrast to previous research, this study is unique in its evaluation of sewer-related issues and 141 

their effect on street flooding. 142 

The paper is outlined in the following manner. In Section 2, the study area and data 143 

processing are described. Relative information on NYC is set forth, with a focus on the climatic 144 

and topographic elements, population density, borough and Sewershed delineations, and drainage 145 

networks. Next, the data collection of the 311 complaints and radar precipitation is discussed, 146 

along with the tools and methods involved with the pre-processing. Section 3 offers the 147 

methodology of the analysis. There is an evaluation of the quantity and frequency of complaints 148 

at the zip code and borough levels. In the methodology section, the Lasso ZI is introduced as well, 149 

along with the Negative Binomial Generalized Linear Regression Model (nbGLM) ZI, where the 150 

prior identifies the infrastructural and climatic predictors, which feeds into the latter for Out-of-151 

Sample (OOS) predictions. In Section 4, the results of the model are presented, including the 152 

mapping and tabulations of coefficients, variability, and error determinations and their 153 

implications are discussed and interpreted. Finally, in Section 6, summary and major conclusions 154 

are presented. 155 
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2 Study Area and Data 156 

2.1 Study Area 157 

NYC is located in the northeastern United States, at the coast of the Atlantic Ocean. It is 158 

markedly impervious and populous, which makes it an ideal study area for urban flooding. 159 

Spanning only 800 square kilometers, NYC has the highest population of any U.S. city, and it also 160 

has the greatest density (United States Census Bureau, 2012). Moreover, dissimilar to other U.S. 161 

cities, NYC is comprised of five boroughs (each representing a separate county): Queens, 162 

Brooklyn, Manhattan, Bronx, and Staten Island. Of the boroughs, Queens and Brooklyn have the 163 

highest populations, at approximately 2,200,000 and 2,500,000 people, respectively; Manhattan, 164 

with approximately 1,500,000 residents, has the highest population density; Bronx has 165 

approximately 1,300,000 residents; and, Staten Island is the least populous at 470,000 residents 166 

(United States Census Bureau, 2020). In regards to ground topography, approximately 72% of the 167 

land area of NYC is covered with impervious surfaces (City of New York, 2020a). A map of 168 

percentage impervious surfaces is shown in Figure 1a. 169 

Concerning the climate of NYC, the classification is humid subtropical (NWS, 2020c), 170 

according to Köppen-Geiger Climate Subdivisions. The mean daily temperature is 13 °C, and the 171 

yearly rainfall in NYC is roughly 1270 millimeters (NWS, 2020d). Annually, the mean number of 172 

days with precipitation of 0.254 millimeters or higher is 120 days (National Oceanic and 173 

Atmospheric Administration, 2020a), and the mean number of days with precipitation of 25.4 174 

millimeters or higher is 13-14 days (State of New York, 2020). In New York and areas of the 175 

Northeast, annual precipitation is uniformly distributed (Petersen, Devineni, & 176 

Sankarasubramanian, 2012). According to the New York State Climate Hazards Profile, NYC has 177 

experienced between 90-102 severe storms between the years 1960 through 2014, and the 178 
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subsequent costs ranged between $4 to $17 million (State of New York, 2020). In addition, due to 179 

climate change, it is projected that precipitation extremes are expected to increase in the future 180 

(González et al., 2019).   181 

With respect to infrastructure, the catch basins of NYC connect the storm water to the 182 

underground sewer system. A map of the number of catch basins per square kilometer is shown in 183 

Figure 1b. Of the sewer connections, there are two types of drainage systems in NYC: Combined 184 

Sewer System and Separate Storm Sewer System. The Separate Storm Sewer System uses separate 185 

pipes: one pipe to carry wastewater to the wastewater plant, and a different pipe to carry 186 

stormwater to the waterways (City of New York, 2020b). Most of NYC is comprised of the   187 

Combined Sewer System, which uses a single pipe to transport both wastewater and stormwater 188 

to a wastewater treatment plant (City of New York, 2020b). Servicing drainage areas, ranging from 189 

13 to 102 square kilometers, there are fourteen wastewater treatment plants, which are also known 190 

as Sewersheds (City of New York, 2020c). In addition, for the Combined Sewer System, when 191 

there is heavy rainfall and capacity is exceeded, overflows occur, and a portion of the water 192 

discharges to a Combined Sewer Outfall and enters a waterway (State of New York, 2020).  193 

2.2 NYC 311 Platform 194 

The NYC 311 sewer complaints data may be accessed via the NYC Open Data website:  195 

data.cityofnewyork.us, where data is available from January 1, 2010 onwards. The complaints are 196 

geocoded with the latitude and longitude of the location from where the complainant had stated 197 

the issue had taken place. The date and time the complaints are also recorded. Through 311, a 198 

person may file a complaint and categorize sewer complaint as follows: Street Flooding (SF), to 199 

report flooding or ponding on a street; Sewer Back-Up (BU), to report, during heavy rainfall or 200 

flooding, water arising from a toilet, sink drain or bathtub drain; Manhole Overflow (MO), to 201 
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report a manhole overflowing with water or sewage; or Catch Basin (CB), to report a clogged or 202 

damaged Catch Basin. For sewer back-ups, it shows a relationship between the private drains and 203 

the public sewer system, as back up flooding occurs when either the height of the water in the 204 

public pipes are greater than that of the gravity inlets inside the private property or when the inlet 205 

level of the storm drains are below the water level of the sewer (Schmitt, Thomas, & Ettrich, 2004). 206 

Regarding manhole issues, the overflowing of a manhole signifies surcharge, as water from the 207 

sewer system has travelled to the surface; thus, MO complaints may be indicative of infrastructural 208 

issues. Lastly, as catch basins are the grates allowing for the collection of storm water, CB reports 209 

provide useful knowledge to street flooding behavior. If catch basins are blocked or malformed in 210 

certain areas, surface water level increases, and this may be indicative of city maintenance 211 

problems. 212 

2.3 Radar Data 213 

The National Center for Atmospheric Research (NCAR)/Earth Observing Laboratory 214 

(EOL) website offers NCEP/EMC 4KM Gridded Data (GRIB) Stage IV datasets, where hourly, 215 

6-hour, 12-hour, 24-hour totals of millimeter precipitation amounts are available from years 2001 216 

through 2020. As the Stage IV data is unable to adjust for severe snow events, the data in the 217 

northeastern United states include only rainfall data (Hamidi et al., 2017). From the EOL website, 218 

24-hour radar precipitation data, from years 2010 through 2019 were ordered. The Thiessen 219 

Polygon Method (Viessman & Lewis, 2003) was employed, with each radar point as center, to 220 

aggregate the gridded radar precipitation data available at the 4 km by 4 km resolution to the zip 221 

code resolution. With the use of the Thiessen Polygon method of Arc GIS Pro, a weighted average 222 

of radar points within a zip code boundary was calculated. Then, the rainfall amount per zip code 223 
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was determined using this weighted average. The data was finally aggregated to the weekly time 224 

scale, i.e., total precipitation (in millimeters) per week (PRCP).  225 

2.4 Data Collection, Processing, and Preliminary Analysis 226 

Sewer Complaints data using 311 reports, from January 1, 2010 through December 2019, 227 

were downloaded from the NYC Open Data, government website.  The data was geo-aggregated 228 

to the zip code level and only the issues relating to street flooding were extracted. In addition, to 229 

account for possible lags in the occurrence of an event and the report of the issue, weekly sums of 230 

each complaint were calculated. A reason for lags is that a person may take time to report an issue. 231 

This may be especially true in urban areas, where warm season rainstorms producing short-232 

duration, heavy rainfall, oftentimes, take place in the evenings (González et al., 2019). Also, there 233 

may be lags between the rain event and the occurrence of street flooding, such as, for instance, 234 

when the drainage system becomes more overwhelmed with debris as time passes. Since the exact 235 

detection of the lag that measures the difference between the time of the event(s) and the time of 236 

the complaint(s) may be arduous, for simplicity, a weekly timescale (Sunday to Saturday) was 237 

decided as the unit of temporal aggregation for all the variables. It is assumed that a week is not 238 

far removed to have lost the influence of precipitation resulting in street flooding complaints. The 239 

same is true for infrastructure complaints where the infrastructure complaints within a week are 240 

assumed the possible antecedents of the street flooding complaints that week.   241 

Another measure taken was to ensure that the same complainant was not reporting a 242 

specific location repeatedly. By the mechanism of the 311 website, a complainant may report the 243 

same location more than once in a day. To see whether a location was reported more than once in 244 

a day, the SF, MO, BU, and CB complaints over the ten-year period were processed for their 245 

uniqueness. The 311 data lists each complaint as a row, containing latitude and longitude location 246 
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coordinates. Only the unique location coordinates were retained in this study.  Of the raw 311 data, 247 

from January 1, 2010 through December 31, 2019, there were 25,574 SF, 6,042 MO, 137,974 BU, 248 

and 85,607 CB total collective reports, and it was determined that 25,378 (99.2%), 5,687 (94.1%), 249 

128,751 (93.3%), and 82,191 (96.0%) were unique, respectively.  250 

Zip code, borough, and catch basin shapefiles were downloaded from NYC Open Data and 251 

processed via ArcGIS Pro. After all data was processed, 174 zip codes, 530 weeks of precipitation 252 

totals and 311 SF, BU, CB, MO complaint totals, over the ten-year period, from January 1, 2010 253 

through December 31, 2019, were used for analysis.  254 

Before the development of the model, a complaint frequency analysis was conducted. Per 255 

zip code, the number of SF complaints over 10 years were computed and examined (Figure 2). 256 

The median of total complaints per zip code was 87, with 1300 being the max and zero being the 257 

minimum. The histogram (Figure 2a) shows that the majority of zip codes reported under 200 258 

complaints during the 10-year period (136 zip codes, 78%). To illustrate the zip codes most 259 

frequently reporting SF complaints, the average of the total complaint for all zip codes were taken 260 

(average total complaints = 139), and the zip codes with a total complaint value greater than the 261 

average of 139 complaints were identified. Figure 2b presents a map of the total complaints per 262 

zip code where the zip codes that have total complaints greater than the average total complaints 263 

are highlighted. The illustration shows Staten Island, lower Brooklyn, and Queens as having the 264 

highest frequencies of SF reports. Per borough, the number of complaints per 10,000 people are 265 

98.4, 44.5, 24.6, 15.8, and 13.3 for Staten Island, Queens, Brooklyn, Manhattan, and Bronx, 266 

respectively. 267 
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3 Methodology 268 

The NYC Department of Environmental Protection identifies Increased Precipitation, 269 

Blocked Catch Basin Grates, and Surcharged Sewers [leading to Sewer Back Ups] as major causes 270 

of flooding in NYC (City of New York, 2020d). With a yearly average precipitation of 1270 271 

millimeters, NYC experiences significant precipitation through the year, with little intra-annual 272 

variations. However, there is a considerable spatial variation within NYC (Hamidi et al., 2017), 273 

which may result in localized street flooding. Blocked catch basin grates may also lead to street 274 

flooding. Intense storms may push leaves and litter onto catch basins, where they could mold into 275 

mats and obstruct the basins. Blocked catch basins prevent rainwater from entering the storm 276 

sewer, thereby causing street flooding. Frequently, during intense rainfall events, the combined 277 

volume of stormwater and wastewater exceeds the sewer system's capacity. Under such 278 

circumstances, the excess stormwater remains in the streets leading to flooding. 279 

The hypothesis of this study is that the climatic and infrastructural issues are statistically 280 

significant predictors of the response, 311 SF complaints. Precipitation, the climatic feature, is the 281 

primary cause of flooding. In addition, sewer surcharge, as indicated by back up and manhole 282 

overflow issues, or the blockage of stormwater drains by catch basins, also contribute to street 283 

flooding. For variable identification, a LASSO ZI, which imposes a penalty function, cancelling 284 

out the coefficients of less important variables, was implemented. The LASSO method shares the 285 

usual model assumptions concerning the nature of the relationship between response variable and 286 

the explanatory variables, but adds an important L1 constraint to the regression coefficients in least 287 

squares optimization. The result is the inevitable shrinkage of certain coefficients to zero, allowing 288 

the LASSO technique to enjoy advantageous properties of ridge regression and best subset 289 

selection (Tibshirani, 1996; Hastie, Tibshirani and Friedman, 2001).  290 



 

13 
 

Then, a ZI, generalized linear modeling framework was used to perform OOS predictions, 291 

using an eight-two-year training and testing data set, as to show the variability in the SF complaints 292 

using PRCP, CB complaints, BU complaints, and MO complaints. Since the SF complaints data 293 

is discrete, and since the counts per week are being measured, a Negative Binomial model was 294 

employed as the link function. The Negative Binomial model is a generalization of the Poisson 295 

regression models that accounts for overdispersion (Lawless, 1987).  296 

For variable selection, the Multicollinearity-adjusted Adaptive LASSO for Zero-inflated 297 

Count Regression (AMAZonn) package in R was used. The algorithm allows for the 298 

implementation of LASSO, with a ZI nbGLM element (Mallick, 2018). By shrinking the 299 

coefficients of the predictors or tuning the coefficients to zero, LASSO creates a subset of the 300 

predictors that have the most effect on the response, allowing for more interpretable results and 301 

higher prediction accuracy (Tibshirani, 1996), and ZI models accommodate excess zeroes, of 302 

which the nbGLM cannot, by providing a two-component model, a point mass at zero and a 303 

Poisson, geometric, or negative binomial (Zeileis, Kleiber, & Jackman, 2008). As the 311 count 304 

data is discrete, and there are many weeks with zero complaints, the LASSO with a ZI nbGLM 305 

was appropriate. 306 

The nbGLM part of the model, with y as the response variable with the four predictors for 307 

each zip code i, is shown here: 308 

���   ~ ��(	�� , ��) … (1) 309 

where,  310 

	�� =  ��
������

  … (2) 311 

��� = �[�������∗������������∗� �����!∗ "�����#∗$%��] … (3) 312 
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Equation (1) shows that the weekly aggregated street flooding complaints in each zip code (���) is 313 

modeled as a Negative Binomial distribution with a success parameter (	��) and an overdispersion 314 

parameter (��). The success parameter (	��) relates to the rate of occurrence (���) [Equation (2)], 315 

which is informed by a regression on the precipitation ('()*+'��) and infrastructure covariates 316 

(*���, �,�� , -.��) [Equation (3)]. /�0 is the regression intercept for zip code i, and /�1, /�2, /�3, /�4 317 

are the regression slopes representing the sensitivity of the street flooding complaints to 318 

precipitation ('()*+'��), catch basin complaints (*���), sewer back up complaints (�,��), and 319 

manhole overflow complaints (-.��), respectively.  These model parameters are estimated using 320 

a maximum likelihood approach in R version 4.0.4 (Friedman et al., 2010).  321 

The explained variance (pseudo-R2) of the nbGLM, which is estimated as 1 − 78(0)
8(9):

2/<
, 322 

where 
8(0)
8(9) is the ratio of the likelihood of the null model to the fitted model and n is the sample 323 

size, demonstrates the extent to which the model explains the variability in the response (Cox and 324 

Snell, 1989). As the 311 complaint data was discrete, the fit index for a redefined pseudo-R2, 325 

proposed by Nagelkerke (Nagelkerke, 1991), was utilized. This redefined measure normalizes the 326 

model pseudo-R2 to the maximum possible achievable using the likelihood ratio estimate.  327 

For the OOS predictions, eight years were used as training data, and two years as testing 328 

data. Using a k-fold cross validation technique, the training data consisted of eight years of the SF, 329 

BU, CB, MO, and PRCP weekly data, with the remaining two years serving as the testing set. The 330 

years were randomly shuffled, such that the training set may consist of a different eight grouping 331 

of years between 2010 through 2019 and a subsequent different two year grouping of the testing 332 

set. Using the Lasso selected variables, the model is “trained” by the influence of the predictors 333 

towards the outcome, SF, during the eight [not necessarily consecutive] years. Predictions of SF, 334 
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based on the observed predictors for the two years, are then conducted using the trained nbGLM 335 

ZI model (For the nine zip codes where LASSO did not select a significant predictor, a standard 336 

nbGLM is utilized, without LASSO selection, to obtain predicted values). The predicted SF values 337 

are then compared to the actual SF Values. For each random selection of training and testing sets, 338 

simulations were run 100 times, and the mean arctangent absolute percentage error (MAAPE) 339 

values were determined per zip code. MAAPE accommodates data with zero values by the 340 

application of slope as an angle, as opposed to slope as a ratio (Kim and Kim, 2016): 341 

-==') = 1
106 @ A�BCAD E.� − '�

.�
F

10G

�H1
 IJ� C = 1, 2, … ,106 … (4) 342 

O represents the observed SF weekly complaints for the two-year period (106 weeks), and P 343 

represents the predicted SF values. By the equation, it is seen that a closer value between the 344 

observed and predicted would result in a value closer to zero, and a larger difference between the 345 

observed and predicted would result in a value converging to 
N
2 radians. 346 

In summary, the modeling framework has the following steps: 347 

1. For each zip code, statistically significant predictors are identified by the use of the 348 

multicollinearity-adjusted adaptive LASSO, implemented with the ZI nbGLM. 349 

2. The statistically significant predictors by zip code are reported as the most important 350 

features for understanding street floods in that zip code. 351 

3. A ZI nbGLM is trained using the LASSO inferred variables for each zip code, and the 352 

model’s efficacy is tested using OOS predictions against the held-out data.  353 

This final step provides additional robustness to the model and its selection.  354 
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4 Results and Discussion 355 

4.1 The Circumstance of NYC Street Flooding 356 

By citizen imported data, this study first maps the locations where street flooding is often 357 

reported. When examining the total SF reports over the 10-year period, the presence of flooding is 358 

highest in Staten Island, lower Brooklyn, and various zip codes in Queens. The complaints are 359 

localized to the zip code level to allow for a tailored insight into the areas where street flooding 360 

occurs the most, as this would be necessary for flood forecasting at the neighborhood or street 361 

level. As each borough represents a separate county within NYC, this study included a localization 362 

to the borough level, as well. In addition, an examination of the reports at the broader borough 363 

level is also beneficial to stakeholders and policy makers, as borough boards are able to create 364 

bylaws and plans. In this consideration, Staten Island and Queens are of special interest. Per 10,000 365 

residents, Staten Island has the most complaints, which is roughly double the complaints of 366 

Queens, the second highest frequency borough. Likewise, Queens has almost twice the complaints 367 

of Brooklyn, which follows in third. Moreover, as a 311 complaint, by its nature, is citizen 368 

reported, street flooding is not only occurring, but is also adversely felt by the residents, especially 369 

those in Staten Island and Queens. 370 

4.2 Response to Predictors and Their Significance 371 

The regression analysis provides a selection of predictors and the degree of their influence. 372 

In Figure 3, the zip code level significant explanatory variables were based on the inference of the 373 

regression coefficients (/�1, /�2, /�3, /�4). The strength of the association, (��� − 1) for infrastructure 374 

and precipitation covariates, are expressed as percentage change in the expected weekly counts 375 

per unit change in the explanatory variable, and it is shown in the graduated color scheme. The zip 376 

codes designated in white did not have the variable selected as predictor by LASSO. The intercept 377 
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from the model (/�0) for each zip code is also shown in Figure 3e (plotted as ����). As expected, 378 

there is similarity to the frequency map, as the intercept exhibits an upward shift with more 379 

complaints. Thus, insight into the behavior of the predictors is gained by the regression 380 

coefficients. 381 

The spatial variability of the predictors is also observed. There was a total of 165 zip codes 382 

of the 174 zip codes in the study, where at least one predictor was selected by LASSO. PRCP was 383 

selected in 141 zip codes, of which 55, 12, 28, 20, and 26 zip codes were located in Queens, Staten 384 

Island, Brooklyn, Bronx, and Manhattan, respectively. BU was selected in 72 zip codes, of which 385 

29, 6, 17, 9, and 11 zip codes were located in Queens, Staten Island, Brooklyn, Bronx, and 386 

Manhattan, respectively. CB was selected in 82 zip codes, of which 25, 9, 20, 8, and 20 zip codes 387 

were located in Queens, Staten Island, Brooklyn, Bronx, and Manhattan, respectively. MO was 388 

selected in 37 zip codes, of which 17, 2, 4, 5, and 9 zip codes were located in Queens, Staten 389 

Island, Brooklyn, Bronx, and Manhattan, respectively. Of the variables, PRCP was an explanatory 390 

variable in the most zip codes, followed by CB. BU is the third most represented explanatory 391 

variable. Lastly, MO is shown as an explanatory variable in the least amount of zip codes. Thus, 392 

while climatic and infrastructural variability have high selection, there are also notable differences 393 

among zip codes. 394 

To further examine the spatial variability of the boroughs, each selected predictor’s 395 

breakdown by borough is determined. In Table 1, for each predictor, where significance is found, 396 

the percent of zip codes in each borough is shown. In addition, Table 1 shows the ratio of the mean 397 

exponent of the β of each selected predictor of borough to the mean exponent of the β for NYC as 398 

total (BT Ratio) - a measure to understand the expected sensitivity of a borough relative to the 399 

expected sensitivity of NYC for each of the explanatory variables. A BT ratio greater than 1 400 
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signifies that the borough experiences a stronger reaction (greater increase in SF complaints), when 401 

the LASSO selected predictor (either CB, BU, MO, or PRCP) experiences an increase in 402 

complaints [or, in the case of PRCP, amounts], than that of NYC on average. A ratio lower than 1 403 

signifies that the borough experiences a weaker reaction. By the table, the selected predictor and 404 

strength of association is shown at the borough level and compared to the overall findings of NYC. 405 

Plausibly, SF complaints may not be a comprehensive portrayal of the occurrence of street 406 

flooding in NYC, as certain zip codes or boroughs may have residents with greater proclivities 407 

towards addressing concerns. Yet, the selection of the predictor, PRCP, in 82% of the zip codes 408 

(Table 1) demonstrate that, in the majority of NYC zip codes, the SF reports are consistent with 409 

and heavily affected by rain events. In addition, the LASSO selection of the other predictors as 410 

affecting SF reports further strengthens the validity of the 311 platform as an accurate portrayal 411 

rainfall occurrence and effects. If reports were being made haphazardly, a connection between an 412 

infrastructural element and street flooding would not be found by LASSO. Therefore, while there 413 

may be additional factors affecting residents’ complaints, there is sufficient accuracy in the 311 414 

complaint filings, as the connection between the predictors and SF reporting, found by the model, 415 

further validify the platform.  416 

4.3 Analysis of Model Parameters 417 

An analysis of model parameters also provide insight into the different occurrences among 418 

boroughs. When looking at the analysis, it shows that, although there are areas with a high 419 

frequency of SF reports, these areas do not necessarily have the greatest rate of SF report increase 420 

when its predictor experiences an increase. This lack of sharp increases in SF compared to the 421 

increases in the LASSO selected variables (CB, BU, MO, or P), coupled with a high frequency of 422 

complaints (indicating active engagement on the 311 platform), may signal a chronic problem in 423 
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those areas, of which the residents appear to experience street flooding during moderate conditions 424 

(due to low beta values), and subsequently, file more complaints. Indeed, this is evident, especially 425 

in Staten Island. Examining Figure 2b, 10 of 12 Staten Island zip codes have a high frequency of 426 

reports. Yet, when looking at the infrastructural variables of significance in Figures 3 b-d, none of 427 

the zip codes have beta percentages in the highest quantile (Table 1). Thus, while BU and CB, 428 

specifically, show significance in 50% and 75% of the Staten Island zip codes, respectively, an 429 

increase in those complaints do not trigger the greatest increase in SF, as compared to zip codes in 430 

other boroughs. Interestingly, one such borough is Manhattan. Manhattan has only two zip codes 431 

with total complaints slightly greater than the average total complaints for NYC in total, when 432 

looking at Figure 2b. Yet, for instance, in Figure 3c and Table 1, Manhattan has CB as predictor 433 

in 48% of the zip codes, where, at least, eight zip codes are ranked in the highest quantile group, 434 

based on sensitivity. It may be inferred that the residents are not reporting 311 complaints 435 

(specifically SF reports, as shown in the frequency analysis) excessively in Manhattan. However, 436 

when there is a CB report, SF reports are strongly influenced. This is apparent for BU in 437 

Manhattan, as well; and, in Bronx, CB and MO, with high BT ratios (Table 1), respectively, also 438 

behave in a similar manner to Manhattan. Finally, it can be seen that zip codes have different 439 

sensitivities, as shown in the Figure 3 maps. This also supports the notion that zip codes suffer 440 

from varying infrastructural issues at varying extents. When a predictor is selected, the parameter 441 

analysis provides information regarding the severity of the effect, and at this study’s localized level 442 

(an average area of 2.75 square kilometers per zip code), problem areas are pinpointed. 443 

4.4 Variable Importance 444 

4.4.1 Catch Basin (CB) 445 

Catch basin infrastructural issues are of noteworthiness, since they directly lead to street 446 

flooding if they are not working properly. Catch basins are also an external component of the 447 
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drainage network. Therefore, the public has direct access to the basins and are able to assist or 448 

damage them. Consequently, an outreach effort by NYC to the residents may be of help. One such 449 

partnership exists in Newark, NJ, where there is a program called Adopt a Catch Basin (City of 450 

Newark, 2021). The program offers residents the opportunity to use an ArcGIS Solutions mapping 451 

platform to select a catch basin to adopt; they care for the basin, cleaning and removing debris; 452 

then, they are also encouraged to paint and decorate the basin (City of Newark, 2021).  453 

In this study, CB was selected as a predictor in almost half of the NYC zip codes in total. 454 

While, similar to the frequency trend, Staten Island had the highest percentage of zip codes, at 455 

75%, where CB was selected as a predictor. Queens and Brooklyn followed, at 42% and 54%, 456 

respectively. Finally, there were also many zip codes in Manhattan where CB was selected as a 457 

predictor (48%), despite Manhattan having a low number of total complaints. Furthermore, in 458 

Manhattan, the difference between zip codes with PRCP selected as a predictor (60%) to the 459 

number with CB selected (48%) was smallest of the boroughs. It is possible to infer that the 460 

contrast of model results from one borough, such as Manhattan to the others, highlights specific 461 

issues within the zones. When looking at the map of impervious surface percentage (Figure 1a), it 462 

is seen that Manhattan has the highest percentage of impervious surfaces. Thus, a possible theory 463 

for CB in Manhattan having a high BT ratio and selection percentage is that the storm runoff may 464 

be carrying trash into the stormwater drains, thereby clogging the catch basins. Specifically, 465 

Manhattan has more active construction sites than any other borough (City of New York, 2020), 466 

and waste from sites are a contributing factor to runoff debris in urban areas (Environmental 467 

Protection Agency, 2003). Overall, for an infrastructural category, CB complaints were selected 468 

as predictors in a large number of zip codes. This is an impactful finding, as it indicates that, 469 
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oftentimes, when one person observes and reports a street flooding event, there is another person 470 

observing and reporting water ponding from a clogged catch basin, within that time period. 471 

4.4.2 Sewer Back-Ups (BU) and Manhole Overflows (MO) 472 

     Concerning BU, when looking at Figure 3b, there appears to be a noticeable shift inland, when 473 

comparing the areas to those of CB selected predictor, as shown in Figure 3c. For Bronx, the results 474 

were similar to the other boroughs in regards to BU selection; whereas, for CB, the Bronx had a 475 

much lower number of zip codes showing significance. Also, Manhattan appears to have the lowest 476 

BU issues. Aside from location, BU performed similarly to CB, with 41% of zip codes having the 477 

variable selected as a predictor. For zip codes experiencing explanatory power from a combined 478 

PRCP, with BU or MO issues, it signifies a chaotic condition, where it is not only raining and the 479 

streets are flooded, but internal drains are being overwhelmed and working in reverse order. An 480 

internal drainage issue may not be as easily remedied, as with catch basins, where maintenance 481 

and public awareness may have a positive effect; however, areas shown on the maps, where BU 482 

and MO issues are signified, should be investigated, monitored, or modeled, as it may facilitate 483 

long term planning improvements. 484 

It has been theorized that a difference between the topographic wetness index concerning 485 

flood reports of Staten Island and Manhattan is due to the type of construction of the combined 486 

sewer overflow system in Manhattan, compared to that of the separate sewer system in Staten 487 

Island (Kelleher & McPhillips, 2020). However, with the inclusion of all boroughs, the results in 488 

this paper show that the zip codes in Brooklyn, which are mostly comprised of the combined sewer 489 

system, have back up issues as a predictor of street flooding in 46% of its zip codes. When 490 

reviewing the Open Sewer Atlas data (Open Sewer Atlas NYC, 2021), a web resource directed 491 

from the NYC Open Data website (City of New York, 2020e), 80% of the zip codes in this study 492 
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are within the combined sewer system. When reviewing the results of this study, 81% of the zip 493 

codes with BU as a selector are located in a combined sewer system. Thus, there appears to be no 494 

difference in NYC between the combined sewer system and separate sewer system in regards to 495 

SF reporting. Finally, concerning manhole overflow complaints, there is significance in few zip 496 

codes. As these areas are variously located throughout NYC, there is indication that the sewer 497 

issues are area-specific. Localized to the manhole level, the mapping of these particular zip codes 498 

would be of aid to city management in the investigation of issues within the internal drainage 499 

network. 500 

4.4.3 Precipitation (PRCP) 501 

      As expected, PRCP is the primary driver of street flooding. PRCP is shown as an 502 

explanatory variable in 81% of the zip codes. Regarding the beta results, street flooding reports 503 

respond greatest to changes in precipitation in Staten Island and Brooklyn. However, many zip 504 

codes in Queens and Bronx also exhibit strong increases to street flooding complaints due to 505 

increases in precipitation amounts. Figure 3a highlights the zip codes prone to dramatic increases 506 

in street flooding; as thus, particularly in those areas, precautions may necessary to take in the 507 

advent of a forecasted severe rain event. Our future modeling will include rainfall intensity, in 508 

addition to duration, as they are key elements in flash flooding (NWS, 2020e). 509 

4.5 Explained Variability  510 

Pseudo-R2 and MAAPE determinations were used for an understanding of variability. To 511 

illustrate the dependence of explained variability on the number of complaints, pseudo-R2 values 512 

were mapped against total complaints in Figure 4. In addition, the pseudo-R2 values are depicted 513 

in Table 2 and mapped in Figure 5 to show an aspect of variability. As an additional measure of 514 
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variability, MAAPE values, determined from the observed and predicted values by the OOS 515 

predictions, are illustrated in Figure 6.  516 

4.6 Model Limitations 517 

There were factors which appeared to affect the pseudo-R2 and MAAPE values. The mean 518 

pseudo-R2, determined by the nbGLM was 0.14. Boroughs, such as Staten Island, Brooklyn, and 519 

Queens, had pseudo-R2 values greater than the mean, at 0.22, 0.16, and 0.15, respectively (Table 520 

2). As Figure 4 highlights, pseudo-R2 values trend greater when there are a higher number of SF 521 

complaints. Similarly, it is seen that lower MAAPE values (lower errors), as shown in Figure 6, 522 

occur in the zip codes with greater total of SF complaints. Thus, if the model were to be constructed 523 

on a larger grid scale, or if there was more data on the street flooding complaints, the pseudo-R2 524 

values would increase, and the OOS predictions would have improved results. However, this study 525 

sought a localized scale, as to identify problem areas. An additional insight gathered from the 526 

increase in variability due to low complaints is that the promotion of crowd-sourced platforms is 527 

important. This study was limited by date range. The 311 data is available from 2010 onwards, 528 

and if the data had been collected earlier, there would have been more complaints. This research 529 

may have also been limited by low resident participation. As the study indicates infrastructural 530 

complaints, oftentimes, are in relation with SF complaints, increasing awareness to residents and 531 

visitors of NYC, especially when there is forecasted precipitation, would facilitate modeling 532 

endeavors. It is essential to not just model the capacity and include the locations of the drainage 533 

network, but the assessment of the performance capability, or current conditions, of the network 534 

needs presence. Thus, encouraging residents to file reports when a sewer related issue occurs will 535 

be beneficial. As shown, the model experienced limitations due to the small scale; in addition, the 536 

model would benefit by increased resident participation. 537 
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Future research could include a predictive model, of which the findings of this inference 538 

model will lend insight into. This future study could also include rainfall intensity, as it is a key 539 

element in runoff. Furthermore, as the data have been aggregated to weekly values, a study 540 

utilizing a smaller range may have certain benefits. Similarly, a sewershed aggregated or city 541 

aggregated analysis would enable the better incorporation of spatial covariates and provide insights 542 

about its spatial variability. An example of such city aggregated model is presented in the 543 

Appendix (Table A). The results of the nbGLM conducted for NYC in whole, including 544 

topographical elements, such as slope and elevation, in addition to population. CB, BU, and 545 

elevation were found to be statistically significant, and the pseudo-R2 was found to be 0.53. 546 

5 Summary and Conclusions 547 

With the advent of social media and smart phones, crowd-sourcing has become an effective 548 

tool for scientists to access data, which would otherwise be difficult or impossible to obtain. This 549 

study has found insights regarding street flooding in NYC, one of the largest, metropolitan cities 550 

in the world. Moreover, as the analysis was performed at the zip code level, problem areas were 551 

identified, allowing for tailored interventions. While other papers have examined 311 street 552 

flooding reports, this is the first of its kind to include the infrastructural components of sewer back-553 

ups, catch basin complications, and manhole overflows. These factors were investigated as 554 

explanatory variables of the response, street flooding reports. The data, which included radar 555 

precipitation estimates, were modeled via LASSO regression, with the potentially significant 556 

predictors fed into a negative binomial generalized regression model, where the resulting 557 

coefficients were analyzed, allowing for the interpretation of each predictor’s significance. Finally, 558 

this paper conducted a geographical breakdown of total street flooding complaints, highlighting 559 

areas with the highest frequencies.   560 
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Major conclusions are drawn from this study. First, citizen reports are a valuable aid in 561 

detecting hydrological issues and offer first-hand insight into problematic areas. Second, the model 562 

illustrates that, while precipitation amounts are the largest factor in street flooding, back up and 563 

catch basin issues are also major contributors. This is not a comprehensive, predictive model; 564 

however, the pinpointed potential problem areas may give a starting point for agencies when 565 

installing sensors or Close Circuit Television footage. Finally, as infrastructural categories show 566 

significance, there is a potential for street flooding to be controlled in NYC by governmental 567 

actions. While there may not be actions to prevent the rainfall amounts, improving the internal and 568 

external components of the drainage network will reduce some of the physical and economic 569 

impacts of street flooding in metropolitan areas. 570 
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Tables & Figures 

Table 1. The percentage of zip codes with the significant predictor for each borough and NYC as total, per category, 

and the BT Ratio. 

Borough PRCP BU CB MO PRCP BU CB MO

All 81 41 47 21

Queens 93 49 42 29 1.1 0.83 0.79 0.74

Staten Island 100 50 75 17 1.1 0.56 0.65 0.39

Brooklyn 76 46 54 11 1.1 1.5 0.7 0.48

Bronx 83 38 33 17 0.81 0.78 1.8 1.5

Manhattan 60 26 48 21 0.71 1.5 1.4 1.6

Percent of Zip Codes with 

Category as Predictor

BT Ratio

 

Table 2. The average pseudo-R2, number of zip codes with pseudo-R2 values within stated intervals for all NYC and 

each borough. 
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Borough (0.43, 0.20] (0.20, 0.14] (0.14, 0.09] (0.09, 0.1] (No Predictors)

All 0.14 37 40 37 51 9

Queens 0.15 17 13 13 15 1

Staten Island 0.22 5 6 1 0 0

Brooklyn 0.16 14 9 7 6 1

Bronx 0.11 0 8 6 9 1

Manhattan 0.08 1 4 10 21 6

Number of Zip Codes

 

 

 

Table A: Predictors of significance of NYC by nbGLM  

Predictor p-Value

CB 9.76E-10

BU 7.58E-14

Elevation 5.34E-02  
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 6 

 




