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Abstract

Street flooding is problematic in urban areas, where impervious surfaces, such as concrete, brick,
and asphalt prevail, impeding the infiltration of water into the ground. During rain events, water
ponds and rise to levels that cause considerable economic damage and physical harm. Previous
urban flood studies and models have evaluated the factors contributing to street flooding, such as
precipitation, slope, elevation, and the drainage network. Yet, due to the complexity of the
interconnectedness of these factors and lack of available data, difficulty remains in ascertaining
the localized areas prone to and experiencing street flooding. Thus, residents and city management
of problem areas are unaware and unable to prepare for street flooding events. This study presents
an evaluation of New York City’s 311 street flooding reports, via an inference model, as a way to
detect the zip codes where street flooding is prevalent. The potential explanatory variables for
street flooding complaints were precipitation amounts and 311 sewer back up (water arising from
home drains as a result of rainfall), manhole overflow (water arising from manhole covers on the
street) and catch basin (a clogged basin preventing rainwater from entering storm drains)
complaints. Using Stage IV radar precipitation data and 311 sewer reports, spanning a 10-year
period, a Least Absolute Shrinkage and Selection Operator (LASSO) regression analysis, with an
embedded Zero-Inflation model is used to detect the variables statistically significant as predictors
of flood complaint counts, specific to each zip code. The model is also tested using an Out-of-
Sample prediction scheme by training it with the detected explanatory variables. Precipitation was
found to be a predictor in 81% of the zip codes. For the infrastructural variables, manhole overflow
complaints were significant to street flood complaints in 21% of the zip codes, back up complaints
were significant in 41% of the zip codes, and catch basin complaints were significant in 47% of
the zip codes. Thus, for an appreciable number of zip codes, infrastructural complaints were found
to be predictors of street flooding complaints. This is the first study of its kind to investigate the
infrastructural contributions of street flooding by 311 analysis, thereby identifying factors of street
flooding, aside from precipitation. Leading contributions of the study include the demonstration
of infrastructural impact towards the occurrence of street flooding and also the circumscription to
the zip code and borough levels, allowing for tailored preventative actions in critical areas.

Highlights
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* Crowd-sourced data (311 street flooding complaints) were analyzed to detect key
explanatory variables that explain New York City’s street flooding complaints.

* Catch Basin and Sewer Back-Up variables were shown as predictors in over 40% of the
tested zip codes, revealing the adverse contributions of the drainage network towards street
flooding occurrence in New York City.

* Some boroughs have a low frequency of reports; yet, in those areas, street flooding
complaints are strongly influenced by small increases in the predictors.

1 Introduction

Flooding events result in multiple fatalities and considerable property losses each year.
Particularly, within the urban environment, the effects are pronounced. Urban watersheds, lined
with impervious surfaces, such as concrete, asphalt, and stone, have a limited amount of infiltration
and recharge during heavy rainfall; thus, surface flow dominates the hydrological response
(Serrano, 2010). Also, as the drainage system becomes overwhelmed, water overflows as runoff,
and pluvial flooding, or what is commonly known as street flooding, occurs. Furthermore, as urban
areas are densely populated, the consequences of flooding are oftentimes more severe than those
of coastal or tidal flooding events. Indeed, for a given storm, more economic damage and injuries
have been shown to occur in urban areas, as opposed to rural areas (Sharif, Yates, Roberts, &
Mueller, 2006). For example, the National Weather Service (NWS) reported that, in 2014, a single,
urban flooding event in Detroit, Michigan, resulted in $1.8 billion of direct damages, representing
60% of the total flood damages for that year in the United States (NWS, 2020a). In addition, in a
study by the Chicago’s Center for Neighborhood Technology (CNT), the economic costs of urban
flooding for the densely populated area of Cook County, Illinois, totaled more than $773 million
over a five-year period. (CNT, 2020). Thus, due to the unique physical and social characteristics

of an urban area, flooding has acute impact.

The modeling of street flooding has the potential to reduce the economic and social effects
of severe storms in urban developments. Specifically, the estimation and projection of flooded
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areas has great benefit, as it allows for the implementation of early warnings, which, in turn,
provides people with the opportunity to take shelter and perform preventative measures. In recent
years, urban models, based on a variety of methodologies, including cellular automata, image
processing, and physically based systems have been introduced (Guidolin et al., 2016, Lo, Wu,
Lin, & Hsu, 2015). Generally, these models include analyses of rainfall, infiltration, and the sewer
system. In urban flood simulations, it is common to evaluate extended surcharge and other aspects
of the drainage network by dual drainage modeling, which incorporates the interaction between
surface flow and the sewer flow of surcharged sewer systems (Djordjevi¢, Prodanovi¢, &
Maksimovi¢, 1999). Distinctly, extended surcharge occurs when water is held under pressure
within a sewer system during a rain event, thereby preventing the surface water to enter the
drainage system or causing the water from the drainage system to escape to the surface (Schmitt,
Thomas, & Ettrich, 2004). Within the United States, the most widely used flood forecasting model
is the Flash Flood Guidance of the NWS, which offers a deterministic, physically-based,
hydrologic model, utilizing real-time radar and satellite precipitation estimates (Ntelekos,
Georgakakos, & Krajewski, 2006, World Meteorological Organization, 2020). Thus, as shown,
there are various models, and the ongoing research demonstrates the interest of emergency

management to produce an effective model, customized to the metropolitan area.

While the production of urban flood models, particularly physically-based models, is in
continuum, nonetheless, there are obstacles. For instance, the NWS model may forecast floods;
yet it does not consider urban factors. Also, the NWS and other models incorporate rainfall;
however, they do not include some infrastructural factors, such as back up flooding. Moreover,
with the building of a flood forecasting model, other hurdles, including cost effectiveness and data

availability present. Specifically, in older metropolitan cities, the design of the drainage system is
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oftentimes unavailable (Al-Suhili, Cullen, & Khanbilvardi, 2019). For instance, Zahura et al found
that physics-based models, such as TUFLOW, also suffered impairments by insufficient drainage
data (Zahura et al., 2020). In addition, urban flood forecasting models (including flash flood
models) have the distinct challenge with the validation of accuracy. For example, flash floods are
often caused by severe storms occurring only within six hours of rainfall (NWS, 2020b); hence,
there is a difficulty in quantifying measurements in the brief timespan. Urban flood forecasting
models, at timescales longer than that of the flash floods, also have limitations as they might not
be benchmarked with real observations. Consequently, there is a hinderance in the comparison of
model results with the physical system. Therefore, there is a need for a low-cost, empirical/data-
driven analysis which would illuminate the exact urban areas flooded during a rain event, in

addition to providing insight into the specific sewer infrastructure issues within those areas.

Accounts by persons directly experiencing street flooding may resolve some of the issues
and provide clarity into the occurrence, extent and driving mechanisms of street flooding particular
to an urban place. In New York City (NYC), there is a platform, referred to as 311, where residents,
business owners, and visitors are able to file issue reports to the NYC government, via phone,
website, or social media (Minkoff, 2015). For instance, an observer who notices street flooding
may enter the NYC 311 website and input the description, nature, address, and date and time of
the occurrence. These filings by New Yorkers are invaluable, as the 311 complaints, via catch
basin, manhole, and sewer back up reports, offer infrastructural insight, into the response of NYC
sewer system, of which available drainage data is insufficient. Moreover, street flooding reports
may serve an additional benefit. As time, date, and exact location of a complaint is listed, the 311

street flooding complaints may serve as tool for urban flooding model validation, as a model’s
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prediction of flooding in an area may be supported by an analysis of the local reports. Thus, the

data provided by 311 is a way to understand the causes and effects of street flooding.

This study presents an inference model, which highlights the key climate and
infrastructural variables that govern street floods in NYC. Of NYC, the 311 complaints are
aggregated over seven days (weekly time-scale) and to the zip code level. Street Flooding reports
are taken as the response variable, whereas Precipitation amounts, Sewer Back-Up, Manhole
Overflow, and Catch Basin reports serve as predictors or explanatory variables. Utilizing the Least
Absolute Shrinkage and Selection Operator (LASSO) regression analysis (Tibshirani, 1996), with
an embedded Zero-Inflation (ZI) model, per zip code, the variables effecting street flooding
complaints are selected. By identifying the climate and infrastructural issues, areas prone to street
flooding and their particular vulnerabilities are revealed, thereby providing direction and clarity
for city management and forecasters. Furthermore, such an analysis complements the physical

modeling endeavors and provides tools of validation.

There have been a few studies, of which crowd sourcing was applied in flood analyses. In
one such paper, Sadler et al., flood severity had been analyzed and the data reported by residents
and individual observers was utilized to provide an inference model. As Sadler et al. delved
extensively into environmental factors, such as water table level and rainfall intensity (Sadler et
al., 2018), this study differs by reviewing infrastructural factors, such as issues involving the
drainage network and external catch basins. Additionally, there have also been flood analyses,
which have specifically used the NYC 311 format. For instance, Kelleher and McPhillips
employed NYC 311 complaints to explore the relationships between topographic indices and
pluvial flooding (Kelleher & McPhillips, 2020). While the study highlights the value of citizen

reports as a validation tool, it, however, does not analyze 311 street flood complaints in regards to
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climatic or drainage sources. In another study by Smith and Rodriguez, street flooding complaints
were used to investigate topographic issues, in addition to serving as a validation method for a
proposed rainfall dataset (Smith & Rodriguez, 2017). Yet, as only street flooding and highway
flooding complaints were compiled, the infrastructural related 311 complaints were not assessed.
In contrast to previous research, this study is unique in its evaluation of sewer-related issues and

their effect on street flooding.

The paper is outlined in the following manner. In Section 2, the study area and data
processing are described. Relative information on NYC is set forth, with a focus on the climatic
and topographic elements, population density, borough and Sewershed delineations, and drainage
networks. Next, the data collection of the 311 complaints and radar precipitation is discussed,
along with the tools and methods involved with the pre-processing. Section 3 offers the
methodology of the analysis. There is an evaluation of the quantity and frequency of complaints
at the zip code and borough levels. In the methodology section, the Lasso ZI is introduced as well,
along with the Negative Binomial Generalized Linear Regression Model (nbGLM) ZI, where the
prior identifies the infrastructural and climatic predictors, which feeds into the latter for Out-of-
Sample (OOS) predictions. In Section 4, the results of the model are presented, including the
mapping and tabulations of coefficients, variability, and error determinations and their
implications are discussed and interpreted. Finally, in Section 6, summary and major conclusions

are presented.
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2 Study Area and Data
2.1 Study Area

NYC is located in the northeastern United States, at the coast of the Atlantic Ocean. It is
markedly impervious and populous, which makes it an ideal study area for urban flooding.
Spanning only 800 square kilometers, NYC has the highest population of any U.S. city, and it also
has the greatest density (United States Census Bureau, 2012). Moreover, dissimilar to other U.S.
cities, NYC is comprised of five boroughs (each representing a separate county): Queens,
Brooklyn, Manhattan, Bronx, and Staten Island. Of the boroughs, Queens and Brooklyn have the
highest populations, at approximately 2,200,000 and 2,500,000 people, respectively; Manhattan,
with approximately 1,500,000 residents, has the highest population density; Bronx has
approximately 1,300,000 residents; and, Staten Island is the least populous at 470,000 residents
(United States Census Bureau, 2020). In regards to ground topography, approximately 72% of the
land area of NYC is covered with impervious surfaces (City of New York, 2020a). A map of

percentage impervious surfaces is shown in Figure 1a.

Concerning the climate of NYC, the classification is humid subtropical (NWS, 2020c),
according to Koppen-Geiger Climate Subdivisions. The mean daily temperature is 13 °C, and the
yearly rainfall in NYC is roughly 1270 millimeters (NWS, 2020d). Annually, the mean number of
days with precipitation of 0.254 millimeters or higher is 120 days (National Oceanic and
Atmospheric Administration, 2020a), and the mean number of days with precipitation of 25.4
millimeters or higher is 13-14 days (State of New York, 2020). In New York and areas of the
Northeast, annual precipitation is uniformly distributed (Petersen, Devineni, &
Sankarasubramanian, 2012). According to the New York State Climate Hazards Profile, NYC has

experienced between 90-102 severe storms between the years 1960 through 2014, and the
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subsequent costs ranged between $4 to $17 million (State of New York, 2020). In addition, due to
climate change, it is projected that precipitation extremes are expected to increase in the future

(Gonzalez et al., 2019).

With respect to infrastructure, the catch basins of NYC connect the storm water to the
underground sewer system. A map of the number of catch basins per square kilometer is shown in
Figure 1b. Of the sewer connections, there are two types of drainage systems in NYC: Combined
Sewer System and Separate Storm Sewer System. The Separate Storm Sewer System uses separate
pipes: one pipe to carry wastewater to the wastewater plant, and a different pipe to carry
stormwater to the waterways (City of New York, 2020b). Most of NYC is comprised of the
Combined Sewer System, which uses a single pipe to transport both wastewater and stormwater
to a wastewater treatment plant (City of New York, 2020b). Servicing drainage areas, ranging from
13 to 102 square kilometers, there are fourteen wastewater treatment plants, which are also known
as Sewersheds (City of New York, 2020c). In addition, for the Combined Sewer System, when
there is heavy rainfall and capacity is exceeded, overflows occur, and a portion of the water

discharges to a Combined Sewer Outfall and enters a waterway (State of New York, 2020).
2.2 NYC 311 Platform

The NYC 311 sewer complaints data may be accessed via the NYC Open Data website:
data.cityofnewyork.us, where data is available from January 1, 2010 onwards. The complaints are
geocoded with the latitude and longitude of the location from where the complainant had stated
the issue had taken place. The date and time the complaints are also recorded. Through 311, a
person may file a complaint and categorize sewer complaint as follows: Street Flooding (SF), to
report flooding or ponding on a street; Sewer Back-Up (BU), to report, during heavy rainfall or

flooding, water arising from a toilet, sink drain or bathtub drain; Manhole Overflow (MO), to
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report a manhole overflowing with water or sewage; or Catch Basin (CB), to report a clogged or
damaged Catch Basin. For sewer back-ups, it shows a relationship between the private drains and
the public sewer system, as back up flooding occurs when either the height of the water in the
public pipes are greater than that of the gravity inlets inside the private property or when the inlet
level of the storm drains are below the water level of the sewer (Schmitt, Thomas, & Ettrich, 2004).
Regarding manhole issues, the overflowing of a manhole signifies surcharge, as water from the
sewer system has travelled to the surface; thus, MO complaints may be indicative of infrastructural
issues. Lastly, as catch basins are the grates allowing for the collection of storm water, CB reports
provide useful knowledge to street flooding behavior. If catch basins are blocked or malformed in
certain areas, surface water level increases, and this may be indicative of city maintenance

problems.

2.3 Radar Data

The National Center for Atmospheric Research (NCAR)/Earth Observing Laboratory
(EOL) website offers NCEP/EMC 4KM Gridded Data (GRIB) Stage IV datasets, where hourly,
6-hour, 12-hour, 24-hour totals of millimeter precipitation amounts are available from years 2001
through 2020. As the Stage IV data is unable to adjust for severe snow events, the data in the
northeastern United states include only rainfall data (Hamidi et al., 2017). From the EOL website,
24-hour radar precipitation data, from years 2010 through 2019 were ordered. The Thiessen
Polygon Method (Viessman & Lewis, 2003) was employed, with each radar point as center, to
aggregate the gridded radar precipitation data available at the 4 km by 4 km resolution to the zip
code resolution. With the use of the Thiessen Polygon method of Arc GIS Pro, a weighted average

of radar points within a zip code boundary was calculated. Then, the rainfall amount per zip code
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was determined using this weighted average. The data was finally aggregated to the weekly time

scale, i.e., total precipitation (in millimeters) per week (PRCP).

2.4 Data Collection, Processing, and Preliminary Analysis

Sewer Complaints data using 311 reports, from January 1, 2010 through December 2019,
were downloaded from the NYC Open Data, government website. The data was geo-aggregated
to the zip code level and only the issues relating to street flooding were extracted. In addition, to
account for possible lags in the occurrence of an event and the report of the issue, weekly sums of
each complaint were calculated. A reason for lags is that a person may take time to report an issue.
This may be especially true in urban areas, where warm season rainstorms producing short-
duration, heavy rainfall, oftentimes, take place in the evenings (Gonzélez et al., 2019). Also, there
may be lags between the rain event and the occurrence of street flooding, such as, for instance,
when the drainage system becomes more overwhelmed with debris as time passes. Since the exact
detection of the lag that measures the difference between the time of the event(s) and the time of
the complaint(s) may be arduous, for simplicity, a weekly timescale (Sunday to Saturday) was
decided as the unit of temporal aggregation for all the variables. It is assumed that a week is not
far removed to have lost the influence of precipitation resulting in street flooding complaints. The
same is true for infrastructure complaints where the infrastructure complaints within a week are

assumed the possible antecedents of the street flooding complaints that week.

Another measure taken was to ensure that the same complainant was not reporting a
specific location repeatedly. By the mechanism of the 311 website, a complainant may report the
same location more than once in a day. To see whether a location was reported more than once in
a day, the SF, MO, BU, and CB complaints over the ten-year period were processed for their

uniqueness. The 311 data lists each complaint as a row, containing latitude and longitude location
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coordinates. Only the unique location coordinates were retained in this study. Of the raw 311 data,
from January 1, 2010 through December 31, 2019, there were 25,574 SF, 6,042 MO, 137,974 BU,
and 85,607 CB total collective reports, and it was determined that 25,378 (99.2%), 5,687 (94.1%),

128,751 (93.3%), and 82,191 (96.0%) were unique, respectively.

Zip code, borough, and catch basin shapefiles were downloaded from NYC Open Data and
processed via ArcGIS Pro. After all data was processed, 174 zip codes, 530 weeks of precipitation
totals and 311 SF, BU, CB, MO complaint totals, over the ten-year period, from January 1, 2010

through December 31, 2019, were used for analysis.

Before the development of the model, a complaint frequency analysis was conducted. Per
zip code, the number of SF complaints over 10 years were computed and examined (Figure 2).
The median of total complaints per zip code was 87, with 1300 being the max and zero being the
minimum. The histogram (Figure 2a) shows that the majority of zip codes reported under 200
complaints during the 10-year period (136 zip codes, 78%). To illustrate the zip codes most
frequently reporting SF complaints, the average of the total complaint for all zip codes were taken
(average total complaints = 139), and the zip codes with a total complaint value greater than the
average of 139 complaints were identified. Figure 2b presents a map of the total complaints per
zip code where the zip codes that have total complaints greater than the average total complaints
are highlighted. The illustration shows Staten Island, lower Brooklyn, and Queens as having the
highest frequencies of SF reports. Per borough, the number of complaints per 10,000 people are
98.4, 44.5, 24.6, 15.8, and 13.3 for Staten Island, Queens, Brooklyn, Manhattan, and Bronx,

respectively.
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3 Methodology

The NYC Department of Environmental Protection identifies Increased Precipitation,
Blocked Catch Basin Grates, and Surcharged Sewers [leading to Sewer Back Ups] as major causes
of flooding in NYC (City of New York, 2020d). With a yearly average precipitation of 1270
millimeters, NYC experiences significant precipitation through the year, with little intra-annual
variations. However, there is a considerable spatial variation within NYC (Hamidi et al., 2017),
which may result in localized street flooding. Blocked catch basin grates may also lead to street
flooding. Intense storms may push leaves and litter onto catch basins, where they could mold into
mats and obstruct the basins. Blocked catch basins prevent rainwater from entering the storm
sewer, thereby causing street flooding. Frequently, during intense rainfall events, the combined
volume of stormwater and wastewater exceeds the sewer system's capacity. Under such

circumstances, the excess stormwater remains in the streets leading to flooding.

The hypothesis of this study is that the climatic and infrastructural issues are statistically
significant predictors of the response, 311 SF complaints. Precipitation, the climatic feature, is the
primary cause of flooding. In addition, sewer surcharge, as indicated by back up and manhole
overflow issues, or the blockage of stormwater drains by catch basins, also contribute to street
flooding. For variable identification, a LASSO ZI, which imposes a penalty function, cancelling
out the coefficients of less important variables, was implemented. The LASSO method shares the
usual model assumptions concerning the nature of the relationship between response variable and
the explanatory variables, but adds an important L; constraint to the regression coefficients in least
squares optimization. The result is the inevitable shrinkage of certain coefficients to zero, allowing
the LASSO technique to enjoy advantageous properties of ridge regression and best subset

selection (Tibshirani, 1996; Hastie, Tibshirani and Friedman, 2001).
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Then, a Z1, generalized linear modeling framework was used to perform OOS predictions,
using an eight-two-year training and testing data set, as to show the variability in the SF complaints
using PRCP, CB complaints, BU complaints, and MO complaints. Since the SF complaints data
is discrete, and since the counts per week are being measured, a Negative Binomial model was
employed as the link function. The Negative Binomial model is a generalization of the Poisson

regression models that accounts for overdispersion (Lawless, 1987).

For variable selection, the Multicollinearity-adjusted Adaptive LASSO for Zero-inflated
Count Regression (AMAZonn) package in R was used. The algorithm allows for the
implementation of LASSO, with a Z1 nbGLM element (Mallick, 2018). By shrinking the
coefficients of the predictors or tuning the coefficients to zero, LASSO creates a subset of the
predictors that have the most effect on the response, allowing for more interpretable results and
higher prediction accuracy (Tibshirani, 1996), and ZI models accommodate excess zeroes, of
which the nbGLM cannot, by providing a two-component model, a point mass at zero and a
Poisson, geometric, or negative binomial (Zeileis, Kleiber, & Jackman, 2008). As the 311 count
data is discrete, and there are many weeks with zero complaints, the LASSO with a ZI nbGLM

was appropriate.

The nbGLM part of the model, with y as the response variable with the four predictors for

each zip code i, is shown here:

Yie ~NB(pi,1i) ... (1)

where,

Ti
ri+/1it a

Pie = -2

Aip = B +BI*PRECIP 4+ B} +CB+B7 *BU 1+ B +MOy] (3)
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Equation (1) shows that the weekly aggregated street flooding complaints in each zip code (y;;) is
modeled as a Negative Binomial distribution with a success parameter (p;;) and an overdispersion
parameter (r;). The success parameter (p;;) relates to the rate of occurrence (4;;) [Equation (2)],
which is informed by a regression on the precipitation (PRECIP;;) and infrastructure covariates
(CBjt, BU;, MO;,) [Equation (3)]. B is the regression intercept for zip code i, and B}, BZ, 53, B
are the regression slopes representing the sensitivity of the street flooding complaints to
precipitation (PRECIP;;), catch basin complaints (CB;;), sewer back up complaints (BU;;), and
manhole overflow complaints (M O;;), respectively. These model parameters are estimated using

a maximum likelihood approach in R version 4.0.4 (Friedman et al., 2010).

2/n
The explained variance (pseudo-R?) of the nbGLM, which is estimated as 1 — (%) ,
where % is the ratio of the likelihood of the null model to the fitted model and # is the sample

size, demonstrates the extent to which the model explains the variability in the response (Cox and
Snell, 1989). As the 311 complaint data was discrete, the fit index for a redefined pseudo-R?,
proposed by Nagelkerke (Nagelkerke, 1991), was utilized. This redefined measure normalizes the

model pseudo-R? to the maximum possible achievable using the likelihood ratio estimate.

For the OOS predictions, eight years were used as training data, and two years as testing
data. Using a k-fold cross validation technique, the training data consisted of eight years of the SF,
BU, CB, MO, and PRCP weekly data, with the remaining two years serving as the testing set. The
years were randomly shuffled, such that the training set may consist of a different eight grouping
of years between 2010 through 2019 and a subsequent different two year grouping of the testing
set. Using the Lasso selected variables, the model is “trained” by the influence of the predictors

towards the outcome, SF, during the eight [not necessarily consecutive] years. Predictions of SF,
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based on the observed predictors for the two years, are then conducted using the trained nbGLM
Z1 model (For the nine zip codes where LASSO did not select a significant predictor, a standard
nbGLM is utilized, without LASSO selection, to obtain predicted values). The predicted SF values
are then compared to the actual SF Values. For each random selection of training and testing sets,
simulations were run 100 times, and the mean arctangent absolute percentage error (MAAPE)
values were determined per zip code. MAAPE accommodates data with zero values by the

application of slope as an angle, as opposed to slope as a ratio (Kim and Kim, 2016):

1 X Ot - Pt
MAAPE = —Z arctan( ) fort=1,2,..,106..(4)
106 = O;

O represents the observed SF weekly complaints for the two-year period (106 weeks), and P
represents the predicted SF values. By the equation, it is seen that a closer value between the

observed and predicted would result in a value closer to zero, and a larger difference between the

observed and predicted would result in a value converging to g radians.

In summary, the modeling framework has the following steps:

1. For each zip code, statistically significant predictors are identified by the use of the
multicollinearity-adjusted adaptive LASSO, implemented with the ZI nbGLM.

2. The statistically significant predictors by zip code are reported as the most important
features for understanding street floods in that zip code.

3. A ZInbGLM is trained using the LASSO inferred variables for each zip code, and the

model’s efficacy is tested using OOS predictions against the held-out data.

This final step provides additional robustness to the model and its selection.
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4 Results and Discussion

4.1 The Circumstance of NYC Street Flooding

By citizen imported data, this study first maps the locations where street flooding is often
reported. When examining the total SF reports over the 10-year period, the presence of flooding is
highest in Staten Island, lower Brooklyn, and various zip codes in Queens. The complaints are
localized to the zip code level to allow for a tailored insight into the areas where street flooding
occurs the most, as this would be necessary for flood forecasting at the neighborhood or street
level. As each borough represents a separate county within NYC, this study included a localization
to the borough level, as well. In addition, an examination of the reports at the broader borough
level is also beneficial to stakeholders and policy makers, as borough boards are able to create
bylaws and plans. In this consideration, Staten Island and Queens are of special interest. Per 10,000
residents, Staten Island has the most complaints, which is roughly double the complaints of
Queens, the second highest frequency borough. Likewise, Queens has almost twice the complaints
of Brooklyn, which follows in third. Moreover, as a 311 complaint, by its nature, is citizen
reported, street flooding is not only occurring, but is also adversely felt by the residents, especially

those in Staten Island and Queens.
4.2 Response to Predictors and Their Significance

The regression analysis provides a selection of predictors and the degree of their influence.
In Figure 3, the zip code level significant explanatory variables were based on the inference of the
regression coefficients (8}, B2, 57, Bi'). The strength of the association, (efi — 1) for infrastructure
and precipitation covariates, are expressed as percentage change in the expected weekly counts
per unit change in the explanatory variable, and it is shown in the graduated color scheme. The zip

codes designated in white did not have the variable selected as predictor by LASSO. The intercept
16



378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

from the model () for each zip code is also shown in Figure 3e (plotted as eh? ). As expected,
there is similarity to the frequency map, as the intercept exhibits an upward shift with more
complaints. Thus, insight into the behavior of the predictors is gained by the regression

coefficients.

The spatial variability of the predictors is also observed. There was a total of 165 zip codes
of the 174 zip codes in the study, where at least one predictor was selected by LASSO. PRCP was
selected in 141 zip codes, of which 55, 12, 28, 20, and 26 zip codes were located in Queens, Staten
Island, Brooklyn, Bronx, and Manhattan, respectively. BU was selected in 72 zip codes, of which
29, 6, 17, 9, and 11 zip codes were located in Queens, Staten Island, Brooklyn, Bronx, and
Manbhattan, respectively. CB was selected in 82 zip codes, of which 25, 9, 20, 8, and 20 zip codes
were located in Queens, Staten Island, Brooklyn, Bronx, and Manhattan, respectively. MO was
selected in 37 zip codes, of which 17, 2, 4, 5, and 9 zip codes were located in Queens, Staten
Island, Brooklyn, Bronx, and Manhattan, respectively. Of the variables, PRCP was an explanatory
variable in the most zip codes, followed by CB. BU is the third most represented explanatory
variable. Lastly, MO is shown as an explanatory variable in the least amount of zip codes. Thus,
while climatic and infrastructural variability have high selection, there are also notable differences

among zip codes.

To further examine the spatial variability of the boroughs, each selected predictor’s
breakdown by borough is determined. In Table 1, for each predictor, where significance is found,
the percent of zip codes in each borough is shown. In addition, Table 1 shows the ratio of the mean
exponent of the § of each selected predictor of borough to the mean exponent of the  for NYC as
total (BT Ratio) - a measure to understand the expected sensitivity of a borough relative to the

expected sensitivity of NYC for each of the explanatory variables. A BT ratio greater than 1

17



401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417
418

419

420

421

422

423

signifies that the borough experiences a stronger reaction (greater increase in SF complaints), when
the LASSO selected predictor (either CB, BU, MO, or PRCP) experiences an increase in
complaints [or, in the case of PRCP, amounts], than that of NYC on average. A ratio lower than 1
signifies that the borough experiences a weaker reaction. By the table, the selected predictor and

strength of association is shown at the borough level and compared to the overall findings of NYC.

Plausibly, SF complaints may not be a comprehensive portrayal of the occurrence of street
flooding in NYC, as certain zip codes or boroughs may have residents with greater proclivities
towards addressing concerns. Yet, the selection of the predictor, PRCP, in 82% of the zip codes
(Table 1) demonstrate that, in the majority of NYC zip codes, the SF reports are consistent with
and heavily affected by rain events. In addition, the LASSO selection of the other predictors as
affecting SF reports further strengthens the validity of the 311 platform as an accurate portrayal
rainfall occurrence and effects. If reports were being made haphazardly, a connection between an
infrastructural element and street flooding would not be found by LASSO. Therefore, while there
may be additional factors affecting residents’ complaints, there is sufficient accuracy in the 311
complaint filings, as the connection between the predictors and SF reporting, found by the model,

further validify the platform.

4.3 Analysis of Model Parameters

An analysis of model parameters also provide insight into the different occurrences among
boroughs. When looking at the analysis, it shows that, although there are areas with a high
frequency of SF reports, these areas do not necessarily have the greatest rate of SF report increase
when its predictor experiences an increase. This lack of sharp increases in SF compared to the
increases in the LASSO selected variables (CB, BU, MO, or P), coupled with a high frequency of

complaints (indicating active engagement on the 311 platform), may signal a chronic problem in
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those areas, of which the residents appear to experience street flooding during moderate conditions
(due to low beta values), and subsequently, file more complaints. Indeed, this is evident, especially
in Staten Island. Examining Figure 2b, 10 of 12 Staten Island zip codes have a high frequency of
reports. Yet, when looking at the infrastructural variables of significance in Figures 3 b-d, none of
the zip codes have beta percentages in the highest quantile (Table 1). Thus, while BU and CB,
specifically, show significance in 50% and 75% of the Staten Island zip codes, respectively, an
increase in those complaints do not trigger the greatest increase in SF, as compared to zip codes in
other boroughs. Interestingly, one such borough is Manhattan. Manhattan has only two zip codes
with total complaints slightly greater than the average total complaints for NYC in total, when
looking at Figure 2b. Yet, for instance, in Figure 3c and Table 1, Manhattan has CB as predictor
in 48% of the zip codes, where, at least, eight zip codes are ranked in the highest quantile group,
based on sensitivity. It may be inferred that the residents are not reporting 311 complaints
(specifically SF reports, as shown in the frequency analysis) excessively in Manhattan. However,
when there is a CB report, SF reports are strongly influenced. This is apparent for BU in
Manhattan, as well; and, in Bronx, CB and MO, with high BT ratios (Table 1), respectively, also
behave in a similar manner to Manhattan. Finally, it can be seen that zip codes have different
sensitivities, as shown in the Figure 3 maps. This also supports the notion that zip codes suffer
from varying infrastructural issues at varying extents. When a predictor is selected, the parameter
analysis provides information regarding the severity of the effect, and at this study’s localized level

(an average area of 2.75 square kilometers per zip code), problem areas are pinpointed.

4.4 Variable Importance
4.4.1 Catch Basin (CB)

Catch basin infrastructural issues are of noteworthiness, since they directly lead to street

flooding if they are not working properly. Catch basins are also an external component of the
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drainage network. Therefore, the public has direct access to the basins and are able to assist or
damage them. Consequently, an outreach effort by NYC to the residents may be of help. One such
partnership exists in Newark, NJ, where there is a program called Adopt a Catch Basin (City of
Newark, 2021). The program offers residents the opportunity to use an ArcGIS Solutions mapping
platform to select a catch basin to adopt; they care for the basin, cleaning and removing debris;

then, they are also encouraged to paint and decorate the basin (City of Newark, 2021).

In this study, CB was selected as a predictor in almost half of the NYC zip codes in total.
While, similar to the frequency trend, Staten Island had the highest percentage of zip codes, at
75%, where CB was selected as a predictor. Queens and Brooklyn followed, at 42% and 54 %,
respectively. Finally, there were also many zip codes in Manhattan where CB was selected as a
predictor (48%), despite Manhattan having a low number of total complaints. Furthermore, in
Manhattan, the difference between zip codes with PRCP selected as a predictor (60%) to the
number with CB selected (48%) was smallest of the boroughs. It is possible to infer that the
contrast of model results from one borough, such as Manhattan to the others, highlights specific
issues within the zones. When looking at the map of impervious surface percentage (Figure 1a), it
is seen that Manhattan has the highest percentage of impervious surfaces. Thus, a possible theory
for CB in Manhattan having a high BT ratio and selection percentage is that the storm runoff may
be carrying trash into the stormwater drains, thereby clogging the catch basins. Specifically,
Manhattan has more active construction sites than any other borough (City of New York, 2020),
and waste from sites are a contributing factor to runoff debris in urban areas (Environmental
Protection Agency, 2003). Overall, for an infrastructural category, CB complaints were selected

as predictors in a large number of zip codes. This is an impactful finding, as it indicates that,
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oftentimes, when one person observes and reports a street flooding event, there is another person

observing and reporting water ponding from a clogged catch basin, within that time period.

4.4.2 Sewer Back-Ups (BU) and Manhole Overflows (MO)

Concerning BU, when looking at Figure 3b, there appears to be a noticeable shift inland, when
comparing the areas to those of CB selected predictor, as shown in Figure 3c. For Bronx, the results
were similar to the other boroughs in regards to BU selection; whereas, for CB, the Bronx had a
much lower number of zip codes showing significance. Also, Manhattan appears to have the lowest
BU issues. Aside from location, BU performed similarly to CB, with 41% of zip codes having the
variable selected as a predictor. For zip codes experiencing explanatory power from a combined
PRCP, with BU or MO issues, it signifies a chaotic condition, where it is not only raining and the
streets are flooded, but internal drains are being overwhelmed and working in reverse order. An
internal drainage issue may not be as easily remedied, as with catch basins, where maintenance
and public awareness may have a positive effect; however, areas shown on the maps, where BU
and MO issues are signified, should be investigated, monitored, or modeled, as it may facilitate

long term planning improvements.

It has been theorized that a difference between the topographic wetness index concerning
flood reports of Staten Island and Manhattan is due to the type of construction of the combined
sewer overflow system in Manhattan, compared to that of the separate sewer system in Staten
Island (Kelleher & McPhillips, 2020). However, with the inclusion of all boroughs, the results in
this paper show that the zip codes in Brooklyn, which are mostly comprised of the combined sewer
system, have back up issues as a predictor of street flooding in 46% of its zip codes. When
reviewing the Open Sewer Atlas data (Open Sewer Atlas NYC, 2021), a web resource directed

from the NYC Open Data website (City of New York, 2020e), 80% of the zip codes in this study
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are within the combined sewer system. When reviewing the results of this study, 81% of the zip
codes with BU as a selector are located in a combined sewer system. Thus, there appears to be no
difference in NYC between the combined sewer system and separate sewer system in regards to
SF reporting. Finally, concerning manhole overflow complaints, there is significance in few zip
codes. As these areas are variously located throughout NYC, there is indication that the sewer
issues are area-specific. Localized to the manhole level, the mapping of these particular zip codes
would be of aid to city management in the investigation of issues within the internal drainage

network.

4.4.3 Precipitation (PRCP)
As expected, PRCP is the primary driver of street flooding. PRCP is shown as an

explanatory variable in 81% of the zip codes. Regarding the beta results, street flooding reports
respond greatest to changes in precipitation in Staten Island and Brooklyn. However, many zip
codes in Queens and Bronx also exhibit strong increases to street flooding complaints due to
increases in precipitation amounts. Figure 3a highlights the zip codes prone to dramatic increases
in street flooding; as thus, particularly in those areas, precautions may necessary to take in the
advent of a forecasted severe rain event. Our future modeling will include rainfall intensity, in

addition to duration, as they are key elements in flash flooding (NWS, 2020e).
4.5 Explained Variability

Pseudo-R? and MAAPE determinations were used for an understanding of variability. To
illustrate the dependence of explained variability on the number of complaints, pseudo-R? values
were mapped against total complaints in Figure 4. In addition, the pseudo-R? values are depicted

in Table 2 and mapped in Figure 5 to show an aspect of variability. As an additional measure of

22



515

516

517
518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

variability, MAAPE values, determined from the observed and predicted values by the OOS

predictions, are illustrated in Figure 6.

4.6 Model Limitations
There were factors which appeared to affect the pseudo-R? and MAAPE values. The mean

pseudo-R?, determined by the nbGLM was 0.14. Boroughs, such as Staten Island, Brooklyn, and
Queens, had pseudo-R? values greater than the mean, at 0.22, 0.16, and 0.15, respectively (Table
2). As Figure 4 highlights, pseudo-R? values trend greater when there are a higher number of SF
complaints. Similarly, it is seen that lower MAAPE values (lower errors), as shown in Figure 6,
occur in the zip codes with greater total of SF complaints. Thus, if the model were to be constructed
on a larger grid scale, or if there was more data on the street flooding complaints, the pseudo-R?
values would increase, and the OOS predictions would have improved results. However, this study
sought a localized scale, as to identify problem areas. An additional insight gathered from the
increase in variability due to low complaints is that the promotion of crowd-sourced platforms is
important. This study was limited by date range. The 311 data is available from 2010 onwards,
and if the data had been collected earlier, there would have been more complaints. This research
may have also been limited by low resident participation. As the study indicates infrastructural
complaints, oftentimes, are in relation with SF complaints, increasing awareness to residents and
visitors of NYC, especially when there is forecasted precipitation, would facilitate modeling
endeavors. It is essential to not just model the capacity and include the locations of the drainage
network, but the assessment of the performance capability, or current conditions, of the network
needs presence. Thus, encouraging residents to file reports when a sewer related issue occurs will
be beneficial. As shown, the model experienced limitations due to the small scale; in addition, the

model would benefit by increased resident participation.
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Future research could include a predictive model, of which the findings of this inference
model will lend insight into. This future study could also include rainfall intensity, as it is a key
element in runoff. Furthermore, as the data have been aggregated to weekly values, a study
utilizing a smaller range may have certain benefits. Similarly, a sewershed aggregated or city
aggregated analysis would enable the better incorporation of spatial covariates and provide insights
about its spatial variability. An example of such city aggregated model is presented in the
Appendix (Table A). The results of the nbGLM conducted for NYC in whole, including
topographical elements, such as slope and elevation, in addition to population. CB, BU, and

elevation were found to be statistically significant, and the pseudo-R? was found to be 0.53.

S Summary and Conclusions

With the advent of social media and smart phones, crowd-sourcing has become an effective
tool for scientists to access data, which would otherwise be difficult or impossible to obtain. This
study has found insights regarding street flooding in NYC, one of the largest, metropolitan cities
in the world. Moreover, as the analysis was performed at the zip code level, problem areas were
identified, allowing for tailored interventions. While other papers have examined 311 street
flooding reports, this is the first of its kind to include the infrastructural components of sewer back-
ups, catch basin complications, and manhole overflows. These factors were investigated as
explanatory variables of the response, street flooding reports. The data, which included radar
precipitation estimates, were modeled via LASSO regression, with the potentially significant
predictors fed into a negative binomial generalized regression model, where the resulting
coefficients were analyzed, allowing for the interpretation of each predictor’s significance. Finally,
this paper conducted a geographical breakdown of total street flooding complaints, highlighting

areas with the highest frequencies.
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Major conclusions are drawn from this study. First, citizen reports are a valuable aid in
detecting hydrological issues and offer first-hand insight into problematic areas. Second, the model
illustrates that, while precipitation amounts are the largest factor in street flooding, back up and
catch basin issues are also major contributors. This is not a comprehensive, predictive model;
however, the pinpointed potential problem areas may give a starting point for agencies when
installing sensors or Close Circuit Television footage. Finally, as infrastructural categories show
significance, there is a potential for street flooding to be controlled in NYC by governmental
actions. While there may not be actions to prevent the rainfall amounts, improving the internal and
external components of the drainage network will reduce some of the physical and economic

impacts of street flooding in metropolitan areas.
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7 Data Availability

The sources of the data (311 complaints) are available here:
https://data.cityofnewyork.us/Social-Services/311-Service-Requests-from-2010-to-Present/erm?2-

nwe9.

Radar data may be accessed here: https://data.eol.ucar.edu/cgi-

bin/codiac/fgr_form/id=21.093.

We are preparing a NOAA CESSERT server to host the data and the codes used in this

study to which access will be given upon request.
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Tables & Figures

Table 1. The percentage of zip codes with the significant predictor for each borough and NYC as total, per category,

and the BT Ratio.

Percent of Zip Codes with BT Ratio
Category as Predictor

Borough PRCP BU CB MO PRCP BU CB MO

All 81 41 47 21

Queens 93 49 42 29 1.1 0.83 0.79 0.74
Staten Island 100 50 75 17 1.1 0.56 0.65 0.39
Brooklyn 76 46 54 11 1.1 1.5 0.7 0.48
Bronx 83 38 33 17 0.81 0.78 1.8 1.5
Manhattan 60 26 48 21 0.71 1.5 1.4 1.6

Table 2. The average pseudo-R?, number of zip codes with pseudo-R? values within stated intervals for all NYC and

each borough.
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Number of Zip Codes

Borough (0.43,0.20] (0.20,0.14] (0.14,0.09] (0.09,0.1 (No Predictors)
All 0.14 3 40 3 51 9
Queens 0.15 17 13 13 15 1
Staten Island 0.2 5 6 1 0 0
Brooklyn 0.16 14 9 6 1
Bronx 0.11 0 8 9 1
Manhattan ~ 0.08 | 4 10 21 6

Table A: Predictors of significance of NYC by nbGLM

Predictor p-Value

CB 9.76E-10
BU 7.58E-14
Elevation 5.34E-02
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