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A R T I F I C I A L  I N T E L L I G E N C E

A robotic Intelligent Towing Tank for learning complex 
fluid-structure dynamics
D. Fan1,2*, G. Jodin3, T. R. Consi1,2, L. Bonfiglio2, Y. Ma1, L. R. Keyes1,2,  
G. E. Karniadakis2,4*, M. S. Triantafyllou1,2*

We describe the development of the Intelligent Towing Tank, an automated experimental facility guided by 
active learning to conduct a sequence of vortex-induced vibration (VIV) experiments, wherein the parameters of 
each next experiment are selected by minimizing suitable acquisition functions of quantified uncertainties. This 
constitutes a potential paradigm shift in conducting experimental research, where robots, computers, and 
humans collaborate to accelerate discovery and to search expeditiously and effectively large parametric spaces 
that are impracticable with the traditional approach of sequential hypothesis testing and subsequent train-and-
error execution. We describe how our research parallels efforts in other fields, providing an orders-of-magnitude 
reduction in the number of experiments required to explore and map the complex hydrodynamic mechanisms 
governing the fluid-elastic instabilities and resulting nonlinear VIV responses. We show the effectiveness of 
the methodology of “explore-and-exploit” in parametric spaces of high dimensions, which are intractable with 
traditional approaches of systematic parametric variation in experimentation. We envision that this active learning 
approach to experimental research can be used across disciplines and potentially lead to physical insights and a 
new generation of models in multi-input/multi-output nonlinear systems.

INTRODUCTION
It is 3:00 a.m. in mid-winter in Cambridge, Massachusetts. The 
Massachusetts Institute of Technology (MIT) Sea Grant Hydro-
dynamics Laboratory is pitch black and vacant, but a periodic sound 
comes from the Intelligent Towing Tank (ITT) every 2 to 4 min, 
lasting 1 min. The ITT works continuously day and night without 
any interruption or supervision.

Here, we describe the robotic ITT, which we began operating only 
last year. The ITT has already conducted about 100,000 experiments, 
essentially completing the equivalent of all of a Ph.D. student’s ex-
periments every 2 weeks. Over the past 30 years at a similar MIT 
laboratory, a typical doctoral student would finish her Ph.D. in about 
5 years, having completed no more than a thousand laborious ex-
periments (1).

The total number of experiments completed by the ITT in its 
first year of operation is perhaps comparable with all experiments 
done collectively to date by all of the different laboratories in the world 
on the subject of vortex-induced vibrations (VIVs). By deploying the 
Gaussian process regression (GPR) as the learning algorithm in the 
ITT, we experimentally studied VIV problems within a much wider 
parametric input space than previously explored. In doing so, we 
demonstrated a potential paradigm shift in conducting experimental 
research, where computers [advancement in artificial intelligence (AI) 
technology (2)], robots [increasing use of laboratory automation (3–5)], 
and humans can collaborate in real time to accelerate scientific dis-
covery. In such a shift, robots, computers, and humans may expe-
ditiously and effectively explore very large parametric spaces not 

possible with the traditional approach of sequential hypothesis testing 
and train-and-error execution.

Our laboratory is not the only one using this symbiosis between 
research, machines, and science. At Carnegie Mellon University, re-
searchers are training robots to conduct chemical work. The “robot 
researcher” will decide how to modify substances and reactions with-
out the need for human intervention (6). A number of similar tools 
have also been developed and used in the life sciences (7), e.g., 
involving an intelligent “robot scientist,” “Adam,” whose role is 
to generate new hypotheses for functional genomics and test them 
(8, 9). Another robot scientist, “Eve,” has reportedly tested drugs 
successfully for malaria (10). These robot scientists are similar to 
what we have achieved with the ITT, where the computer decides 
which combination of parameters (e.g., speed, amplitude, and fre-
quency) will be investigated and executed next by robots based on 
the targeted quantity of interest (QoI).

A further development along these lines is the Big Mechanism 
program of the Defense Advanced Research Projects Agency (DARPA) 
(11). The computer reads tens of thousands of papers and synthe-
sizes a hypothesis that can then be tested in a laboratory by humans, 
robots, or a combination of all three—computers, robots, and humans. 
A vivid manifestation of this vision, at least in part of the upstream 
process, is the recent publication of a book authored by “Beta Writer” 
on a machine-generated summary of current research on lithium- 
ion batteries (12). The Big Mechanism of DARPA is another up-
stream component of the entire robot-computer-human research 
process to accelerate scientific inquiry and discovery. In the current 
paper, however, we focus on the formulation of the hypothesis test-
ing and particularly on its effective execution, i.e., a downstream 
process.

Fifty years ago, this type of paradigm shift and potential revolution 
in scientific research and beyond was envisioned by the interactive 
computing pioneer J. C. R. Licklider, who hoped that, “in not too 
many years, human brains and computing machines will be coupled 
together very tightly, and that the resulting partnership will think as 
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no human brain has ever thought and process data in a way not 
approached by the information-handling machines we know” (13). 
Today, 20 years into the 21st century, we see such a vision being 
finally realized, with different scientific fields contributing creatively 
to this metamorphosis of scientific inquiry and discovery.

In the following sections, we first describe the problem to study, 
provide an overview of our approach, and present the results. Then, 
we discuss conclusions and limitations of the current research and 
main future directions. The Materials and Methods section reviews 
the GPR learning algorithm used in our facility and defines the 
hydrodynamic quantities studied in the paper.

Problem description
The field of fluid-structure interactions is very rich in physical com-
plexity in both hydrodynamic and aerodynamic flows, and one 
of the canonical problems in the field is VIV (14, 15). VIV occurs 
when a flexibly mounted bluff body is placed within an oncoming 
cross-stream that a spontaneous instability in the wake of the body, 
above a Reynolds number (Re) of about Re = 50, causes the formation 
of asymmetric vortical patterns, which induce unsteady loads on the 
body and hence a vibratory response (16). More than a hundred years 
ago, Strouhal showed that, for subcritical Re, alternating sign vortices 
form behind a circular cylinder at a distinct nondimensional fre-
quency fd/U of about 0.20 (17), where d is the diameter of the cylinder, 
f is the frequency of vortex formation, and U is the stream velocity. 
When the cylinder is flexibly mounted, it vibrates harmonically but 
at a frequency somewhat different than the Strouhal frequency, in-
fluenced by the natural frequency of the structure and the effective 
added mass of the cylinder, which varies with frequency.

The complexity of the physical mechanisms that lead to the 
vibrations of the structure makes prediction very difficult. Bishop 
and Hassan made the successful hypothesis that, when a cylinder is 
forced to vibrate in the cross-flow direction at the frequency and 
amplitude of a freely vibrating cylinder, it is subjected to identical 
forces (18). Under the assumption that free vibrations are steady state 
and harmonic, exploring the fluid force dependence in forced vi-
brations as a function of the principal parameters—viz. the ampli-
tude and frequency of oscillation—would allow the prediction of 
free vibrations as well. As a result, several studies (1, 19–22) fol-
lowed that mapped the force dependence and made the connection 
of the force parametric dependence with changes in the vortical pat-
terns (23, 24).

Hence, using force vibration data was shown to be a powerful tool 
to predict VIV. Re was found to influence the vibrational properties, 
leading to higher amplitudes of free vibrations in the subcritical 
regime with increasing Re (25) and then sharp changes within the 
critical Re range, with a return to smooth amplitude variations in 
the supercritical regime (26, 27); therefore, extensive forced vibra-
tion testing as a function of Re was required (28). The discovery that 
in-line motions affect cross-flow vibrations substantially (29) added 
further parametric complexity, requiring inclusion of the amplitude 
of in-line vibration and the phase angle between in-line and cross-
flow response. Also, long flexible structures placed in shear currents, 
such as cables and risers, are subject to multifrequency vortex-induced 
responses (30, 31); it is fortuitous that strip theory is found to be 
largely valid; hence, again, forced vibrations can be used to explore 
the properties of VIV.

In summary, forced vibrations have become a uniquely effective 
tool in exploring the very complex properties of VIV (32), leading 

to the discovery of important properties and the development of 
comprehensive databases; however, the number of independent 
parameters required to predict the vibratory response of flexible 
structures in sheared flows is large, making a systematic para-
metric search intractable. That is, assuming that we typically have 
a 10- dimensional parametric space and we blindly conduct 10 mea-
surements per parameter, this brute-force approach would require 
10 billion experiments, which is clearly infeasible. Therefore, we 
hereby introduce active learning to endow the ITT with intelligence 
to automatically conduct a sequence of forced vibration experiments 
to study VIV, wherein the parameters of the next experiment to 
conduct are selected by minimizing suitable acquisition functions 
(33). In this way, we show that we reduced the experimental burden 
by several orders of magnitude, requiring only a few thousand 
experiments, whereas the choice of each next experiment is made 
by the computer, as we describe in detail in the next section, thus 
automating and accelerating the experimental effort.

Approach overview
The experimental facility constructed for our study is the ITT shown 
in Fig. 1. It consists of a towing tank, a robot, and a computer. The 
ITT has a towing length of 10 m and a 1 m by 1 m test cross section. 
The main carriage is installed on two rails aligned with the tank 
length and is able to reach a constant velocity from 0.01 to 1.50 m/s. 
On the carriage, a stage is installed with three degrees of freedom, 
allowing combined trajectories of in-line (align with the towing 
direction), cross-flow (perpendicular to the towing direction), and 
rotation motions. The software of the experimental facility is devel-
oped with integrated capability of the motion update and trajectory 
monitoring (Power PMAC system), force measurement (NI DAQ-
USB6218 with an ATI-Gamma six-axis force sensor), and GPR (34) 
learning in MATLAB.

Using disciplinary knowledge, we first identify the input parameters 
and their ranges that may affect the QoIs and pass this information to 
the ITT. In the future, this first step too could also be automated using 
approaches like the aforementioned Big Mechanism. Next, we can 
start exploration and exploitation of the parametric space adaptively 
and in sequence and automatically perform the corresponding ex-
periments to predict QoIs. The flowchart in Fig. 1 presents the main 
steps of the adaptive sequential experimentation by the ITT. The 
process starts with a small number of experiments with inputs ran-
domly selected in the parametric space (the initial number of tests 
has to be larger than the number of the parameters). After the new 
experiment, the ITT performs learning with GPR on the existing 
data to update its prediction on QoIs (a brief overview of GPR is 
provided in Materials and Methods). Meanwhile, we find the inputs 
of the next experiment by minimizing the acquisition function, which 
describes the uncertainty through the standard deviation (SD) as a 
function of the parameters (35). Before running the next experiment, 
a pause period is enforced to quiet the fluid motion and avoid cross- 
contamination of the results. Then, after the new data have been 
gathered, the next iteration of learning process begins.

The learning stops when the prediction of the QoIs is converged. 
Here, we track the maximum of the SD max in the iteration to 
be stably smaller than a reference level. Because GPR learning is 
a stochastic process, such a reference of the convergence should 
be associated with the inherent system uncertainty. We classify 
the system uncertainty into two types due to (i) modeling and (ii) 
measurement. The modeling uncertainty arises from the selection of 
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Fig. 1. Schematic image of the ITT with the key steps for sequential learning of complex fluid-structure dynamics. The image of the ITT (A) shows the 
experimental model consisting of a cylinder and sensors mounted on the main carriage, which can be driven to perform combined in-line, cross-flow, and 
rotational motions. The graphic user interface (GUI) of the ITT controller, recording motion, and force signals is shown at bottom right. The process of the ITT 
commences once a hypothesis is proposed (such a hypothesis is human-generated or, in the future, may be synthesized in coordination by robots, computers, 
and humans). Then, the ITT performs the adaptive sequential experiment to learn target QoIs, interrupted only by pause periods between experiments to avoid 
cross-contamination of the results between successive experiments. Upon convergence, the results of learned QoIs are further post-processed to examine the 
validity of the hypothesis. During sequential experimental testing, there is no human in the loop. (B) Overview of the ITT with main components of a 10-m tank, 
a carriage of three-axis robotic linear stage, a computer, and motor controllers.
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the surrogate model and the optimization methods for the learning, 
whereas the measurement uncertainty comes from the sensor noise 
as well as the physical uncertainty associated with the problem, e.g., 
background turbulence in the water. Ideally, if we can map the 
unknown function of the QoI perfectly, there will be a zero modeling 
error, and hence, the predicted uncertainty will converge to the 
measurement uncertainty. The measurement uncertainty is an in-
herent property of the experimental facilities (varies by facility) and 
has to be calibrated beforehand.

In our VIV studies, we quantified the measurement uncertainty 
of the ITT by evaluating the SD of a baseline case: repeated ex-
periments for the mean drag coefficient Cd of a stationary circular 
cylinder in uniform flow at Re = 12,000 (the mean and SD of the 
results are provided in table S1 and fig. S1). The mean and the SD of 
Cd are found to be equal to 1.198 and 0.0398, respectively. We must 
point out that the variation of Cd originates not only from sensor 
noise but also from the three-dimensional nature of the vortex 
shedding affecting the correlation length of the vortical structures 
in the wake of a stationary circular cylinder, whose length varies in 
the range of three to five diameters (36). In our experiment, our 
cylinder length-to-diameter aspect ratio is 12.3, and hence, the 
vortex shedding process is not fully correlated along the entire 
model span. This result is comparable with previous literature (1) of 
Re = 10,000 conducted in a different facility. We choose to multiply 
this baseline SD with a factor to define the convergence reference 
level for the measurement uncertainty of all QoIs in our study. 

Together with the physical arguments and the inherent uncertainty 
of the facility, the prediction of QoIs is considered converged, and 
therefore, the ITT learning stops when max of 10 successive itera-
tions is found to be smaller than 3r.

Typical results of the GPR learning process described above are 
shown in Fig. 2, where the QoI is the lift coefficient in-phase with 
the velocity Clv of a cross-flow only forced vibrating rigid cylinder in 
uniform flow at Re = 12,000. The definitions of the hydrodynamic 
coefficients are given in Materials and Methods. In Fig. 2, the arrows 
indicate the GPR learning sequence. With 15 experiments (Fig. 2A.1, 
the black dots denote the data used in the learning for the contour), 
the ITT finds that Clv can be both positive and negative, separated 
by the red contour line of Clv = 0. The quantified uncertainty guides 
the next experiment at fr = 0.1455 and Ay/d = 0.4571, where  is 
found as the maximum max in the SD plot (inset). After the new 
data have been gathered, the ITT updated both its prediction and 
the quantified uncertainty of the QoI. The ITT observed a larger 
positive region for Clv in Fig. 2A.2, and the next experiment selected 
was performed at fr = 0.1427 and Ay/d = 1.35. With the increase 
in the number of experiments, the ITT revealed more details about 
Clv versus fr and Ay/d. In the meantime, the value of max found 
in each iteration in Fig. 2B was shown to decrease approaching the 
3r reference line. Between Fig. 2A.3 of 36 and Fig. 2A.4 of 37 ex-
periments, a new feature of a second positive region of Clv emerged, 
accompanied with a slight increase of max shown in Fig. 2B. Even-
tually, upon convergence, the ITT has learned the Clv pattern, whose 

Fig. 2. A demonstration of GPR learning sequence for Clv of a rigid cylinder forced vibration in uniform flow at Re = 12,000. (A.1 to A.5) Contours of the mean of 
the predicted Clv versus reduced frequency fr (x axis) and nondimensional vibration amplitude Ay/d (y axis) along with the SD plot (inset). Black dots in each contour 
denote the existing data used for GPR learning at the current iteration. Black squares denote the new experiment performed for the current iteration, and the red stars 
represent the next experiment guided by the max in the SD. (B) Plot of the maximum SD max versus experiment number. The horizontal dashed line corresponds to 
3r, where r is the SD for a reference case as described in the text (see also table S1 and fig. S1).
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contours did not change by performing additional experiments. 
Figure 2A.5 selects the case of 80 experiments as a representative, 
and the entire evolution of the 176 experiments can be found in 
fig. S2. The process of the ITT sequential experimentation has been 
recorded and documented in movie S1.

Kernel selection
The GPR learning performance, viz. the convergence rate, depends 
on the selection of the surrogate model (see an overview of GPR in 
Materials and Methods). Figure 3 (A to C) plots the max over 
200 iterations of GPR learning QoI with different kernel functions 
for Cd, Clv, and Cmy, respectively, of a rigid cylinder forced vibration 
in uniform flow at Re = 12,000. We see that, in comparing the 
performance among different kernel functions with a fixed basis 
function, the learning processes for all three hydrodynamic coef-
ficients converged eventually but with different rates of convergence. 
After the test of the different basis and kernel function combinations, 
based on the convergence rate, we identified the best combinations 
for the different hydrodynamic coefficients and used them for the 
rest of our study (Table 1). 

RESULTS
Next, we demonstrate how GPR learning and the ITT accelerated 
the route to discovery by comparing with the traditional approach 
of manual uniform sampling of parametric space. We also demon-
strate how the ITT allows us to explore wider parametric spaces for 
possible new insights and universal scalings.

GPR adaptive learning versus uniform sampling
The ITT first learns the three hydrodynamic coefficients (Cd, Clv, 
and Cmy) versus fr and Ay/d of a rigid cylinder in cross-flow only 
forced vibration and uniform flow at Re = 12,000 using a multi-output 
GPR learning strategy. The results are compared with the reference 
experiment using uniform sampling on a lattice, which includes 2268 
experiments with 28 different values of fr, 27 different values of Ay/d, 
and three repeated runs for each fr and Ay/d combination. The multi- 
output GPR learning process updated the prediction of the multiple 
QoIs in batches, because between two iterations, multiple experiments 
were conducted on the basis of the searching of max for each QoI. 
The learning of a QoI stopped when the convergence criterion was 

met, and the whole process stopped when all QoIs converged on the 
basis of the aforementioned criteria.

The comparison of the results is shown in Fig. 4 for Cd (first row, 
75 experiments for GPR learning), Clv (second row, 77 experiments 
for GPR learning), and Cmy (third row, 90 experiments for GPR 
learning). To quantify the difference between the two sets of ex-
periments, we selected 30 points in the parametric space, denoted as 
the blue dots in Fig. 4A.2, to calculate their average value from the 
reference experiment, as well as the average of the prediction and 
SD at those 30 points for each iteration of the GPR learning se-
quential experiments, as follows

    ̄  C   =   ∑ 
i=1

  
30

     C  i  ,   ̄    =   ∑ 
i=1

  
30

       i    (1)

The results are plotted in Fig. 4 for Cd (A.3), Clv (B.3), and Cmy 
(C.3). We see that with the increase in the number of experiments, 
the difference of the prediction average of the corresponding 30 points 
between the reference experiments (red dashed line) and the GPR 
learning experiment (black dashed line) in each iteration became 
smaller, and the  2  ̄    margin (in blue shade) decreased. Furthermore, 
such a difference between the average value of the reference and GPR 
learning experiments was always in the  2  ̄     error margin (representing 
95% confidence).

On the basis of this comparison of the experiments using adaptive 
GPR learning and uniform sampling, we see that with <5% of the 
total reference experimental runs, the ITT using the GPR learning 
strategy was able to capture the major features of the hydrodynamic 
coefficients of a rigid cylinder in uniform flow at Re = 12,000, as 
follows: (i) Cd was found to vary from 1 to 4 and increase with fr and 
Ay/d; (ii) Clv had two positive regions in the parametric space; (iii) 
Cmy was found to change drastically from a negative to a large 
positive value around fr = 0.16. Previous research has shown, using 
flow visualization, that such changes are due to a wake mode change 
from the so-called 2P pattern to 2S pattern (37).

Re effect
The effects of the physical nonlinearities become stronger with Re 
for VIV, so next we focused on learning the Re effect of an oscillating 
cylinder in the cross-flow direction. Previous research has shown 
that Re has played a significant role in the Strouhal number (St) 

Fig. 3. Investigation of the GPR learning convergence for different types of kernels. The plots show max of each iteration with different kernel functions and 
a fixed basis function for (A) Cd, (B) Clv, and (C) Cmy. The horizontal dashed line corresponds to 3r, where r is the SD for a reference level as described in the text 
(see also table S1 and fig. S1).
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(nondimensional frequency) and the mean drag coefficient Cd of a 
stationary smooth circular cylinder (38, 39). However, only limited 
work has been performed on an oscillating cylinder at various Re 
values, because adding Re as a parameter substantially increases the 
number of experiments required and hence the complexity of the 
experimental problem. Nevertheless, limited available studies show 
that, even within the subcritical regime, Re plays an important role 
in affecting the fluid forces and the wake states (24). Hence, for the 
second set of experiments, in addition to fr and Ay/d, we included Re 
as the third input parameter, ranging from Re = 1200 to Re = 19,000 
of the subcritical regime.

Figure 5 plots the converged hydrodynamic coefficients (A, Cd; 
B, Clv; and C, Cmy) in the three-dimensional parametric space (fr, Ay/d, 
and Re) from Re = 1200 to Re = 19,000. We found that (i) Cd did not 
depend strongly on Re; (ii) at higher Re, the isosurface of Cmy = 0 
depended only on fr, whereas at lower Re, the isosurface of Cmy = 0 
was also a function of Ay/d; (iii) Clv had two separate positive regions 
consistently over the entire range of Re studied; and (iv) Clv described 
the average energy transfer over time between the fluid and structure. 
Therefore, if the structure has zero damping, when the flexibly mounted 
cylinder has reached a steady-state vibration, the fluid energy flux 
will be zero, and hence, Clv will be equal to zero. Figure 5B shows 
that with increasing Re, the maximum Ay/d associated with the 
Clv = 0 isosurface increased from Ay/d = 0.75 to Ay/d = 1.15 over the 
studied Re range (see also fig. S3, where we show contours of Clv 
from GPR learning at various Re number values, and contours of Cd 
and Cmy at various Re number values are shown in figs. S4 and S5). 
This results in an increasing amplitude response of the cylinder 
cross-flow only free vibration in the subcritical Re range when Re 
increases from 1200 to 19,000, which has been reported in previous 
work (25). This shows how the physics discovered in forced vibra-
tions with the ITT can explain established results in literature for 
free vibrations.

It should be noted that our experimental facility is typical of 
laboratory-size facilities that target subcritical Re. Testing at high 
Re requires large facilities, where cost and time required to conduct 
them rise as the third power of Re; our methodologies hold even 
greater promise for testing at high Re because few experiments are 
possible to cover a wide parametric range.

Larger parametric space
Using the assumption of strip theory, the hydrodynamic coefficients 
acquired from the rigid cylinder forced vibration experiment can be 
used to predict the VIV of a marine riser placed in sheared ocean 
current profiles (40). However, the riser response is not limited 
to cross-flow vibrations at a single frequency only; it involves an 
in-line response as well, which is coupled to the cross-flow motion, 
and, in addition, multiple frequencies may be excited (30, 31). Hence, 
in the third task, the ITT aimed to learn a single QoI of Clv for a 
rigid cylinder undergoing combined in-line and cross-flow forced 

vibration in uniform flow at Re = 5715 and at either a single fre-
quency or two, as follows

   
  ( C  lv  )  single   =  C  1   (     

 A  y   ─ d  ,    A  x   ─ d  ,  V  r  , θ )   
    

  ( C  lv  )  double   =  C  2   (   (     
 A  y   ─ d  ,    A  x   ─ d  ,  V  r  , θ )  ,  (     

 A  y2  
 ─ d  ,    A  x2   ─ d  ,  V  r2  ,  θ  2   )   )   

   (2)

where the ranges of Ay/d and Ay2/d were selected within [0.05, 1.2]; 
Ax/d and Ax2/d were selected within [0.05, 0.4];  and 2 were selected 
in [0, 2]; Vr = 1/fr is the reduced velocity, the inverse of the reduced 
frequency and was selected in [4, 8]; and Vr2 was selected in [2, 15]. 
This part is also an important step in parametric analysis and is based 
on disciplinary knowledge, but future work could also automate this 
part using the aforementioned concepts for the upstream prepa-
ration for experimentation to formulate proper hypotheses and 
scalings (11–13).

Compared with approximately 108 experiments required for 
double-frequency tests using uniform sampling strategy, the ITT 
obtained converged results of Clv with 3944 experiments. To show 
the effect of the second vibration frequency on Clv associated with the 
first frequency, we define j to be the average value of Clv for the 
double-frequency experiment with input ((Ay/d, Ax/d, Vr, )i, 
(Ay2/d, Ax2/d, Vr2, 2)j) that 2400 (Ay/d, Ax/d, Vr, ) combinations 
are randomly selected in the parametric space

   

  χ   j  (     
 A  y2  

 ─ d  ,    A  x2   ─ d  ,  V  r2  ,  θ  2   )   =   1 ─ N     Σ  
i=1

  
N

    ( C  lv  ) double  
i,j   = 

     
                    1 ─ N     Σ  

i=1
  

N
    C  2   

(
     
(

     
 A  y   ─ d  ,    A  x   ─ d  ,  V  r  , θ 

)
     
i

 ,   
(

     
 A  y2  

 ─ d  ,    A  x2   ─ d  ,  V  r2  ,  θ  2   
)

     
j

  
)

   
  (3)

where N = 2400 and standard Morris sensitivity analysis (41) is 
performed on , with 100 discrete levels along each dimension of 
the parametric space and 1000 elementary effects per parameters, 
resulting in j = 1, 2, … 5000.

Figure 6 plots the comparison of Clv versus Vr and / for rigid 
cylinder in-line and cross-flow combined forced vibration in uni-
form flow at Re = 5715 between single- and double-frequency ex-
periments at fixed Ax/d = 0.15 and Ay/d = 0.75, as well as the sensitivity 
analysis on j. The results reveal that (i) with the existence of the 
second frequency component, Clv associated with the first frequency 
was found to be dependent on . More specifically, positive Clv was 
found to be mainly associated with  ∈ [0, ] of counterclockwise 
in-line and cross-flow trajectory, similar to that of the single-frequency 
vibration (26, 29) shown in Fig. 6A. (iii) The sensitivity analysis in 
Fig. 6C indicates that Vr2 had a much stronger effect on Clv associated 
with the first frequency compared with Ay2/d, Ax2/d, and 2, where 
 on the x axis is the mean of the individual elementary effects (thus, 
the sensitivity of the parameter tested alone). Also,  on the y axis 
represents the SD of the elementary effects (thus, the sensitivity of 
the parameter tested in interaction with other parameters), which is 
also revealed by comparisons among panels B.1 to B.5 of Fig. 6.

DISCUSSION
Our results bear promise for accelerating discovery in experimental 
science and for a potential paradigm shift in experimental laboratories 
around the world for new research procedures based on a combination 

Table 1. Selected basis and kernel functions for different QoIs.  

Cd Clv Cmy

Basis Pure quadratic Linear Pure quadratic

Kernel ARD Matern 3/2 ARD Matern 5/2 ARD Matern 5/2
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of robots, machine learning, and humans synergistically. The idea is 
simple to implement as we resort to laboratory robots to perform 
automatic sequential learning tasks of studying the scientific hypotheses 
raised by humans or synthesized by both humans and AI technologies. 
With the newly constructed ITT, we studied one of the canonical 
fluid-structure interaction problems, VIV of bluff bodies, using rigid 
cylinder forced vibration experiments. The study serves as a realization 
of the not-so-new idea of the scientific robotic researcher. It demon-
strates that, with a careful calibration of the inherent uncertainty 
of the experimental facility and a selection of the proper machine 
learning tools (in the current research, basis and kernel functions 
of the GPR for QoIs), the ITT is capable of (i) adaptively and intel-
ligently designing and conducting sequential experiments to study 
targeted QoIs (in the current research, hydrodynamic coefficients 
of a forced vibrating cylinder in uniform flow); (ii) revealing the 

complex physics of the nonlinear system with the same level of ac-
curacy but a reduced number of experiments by orders of magnitude 
compared with the traditional experimental sampling strategy; and 
(iii) exploring a wider parametric space (in the current research, up to 
eight parameters) for new physical insights and scalings, which was 
infeasible in past research and thus accelerates the scientific discovery.

One of the benefits for the GPR learning results is not addressed 
but should be mentioned here: When the learning process stops, the 
ITT provided not only a collection of experiment data but also, 
more importantly, an accurate functional approximation of the tar-
geted QoI. Such a functional representation opens new possibilities 
to use various optimization tools while incorporating additional 
physical insights as constraints when applying the acquired data 
to predict or understand more complicated problems. For example, 
when predicting the VIV response of a long, slender marine riser in 

Fig. 4. GPR versus uniform sampling. Comparison of adaptive (A.1, B.1, and C.1) GPR learning (multi-output) versus uniform (lattice) sampling (A.2, B.2, and C.2). 
Contours of Cd (A.1, 75 experiments; A.2, 2268 experiments). Contours of Clv (B.1, 77 experiments; B.2, 2268 experiments). Contours of Cmy (C.1, 90 experiments; C.2, 2268 
experiments). (A.3 to C.3) Plots of the comparison of the average value of 30 randomly selected points (blue dots in A.2) between uniform sampling (red dashed line) 
and GPR learning (black dashed line) as a function of the experiment number. The blue shaded region denotes the 2-SD margin (averaged over the 30 selected points) 
as a function of the experiment number.
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the ocean current using the hydrodynamic coefficients acquired from 
the rigid cylinder forced vibration experiment, a method of searching 
data tables contained in databases and using parametric interpolation 
is currently used (40). The use of deep learning methods allows the 
application of effective optimization methods, expanding the para-
metric space to represent appropriate riser physical conditions and 

enabling the study of complex phenomena, such as the recently 
observed flexible cylinder VIV hysteretic response associated with 
mode switch (42) or extremely large vibrations observed in some 
experiments (43).

In the current active learning framework for adaptive sequential 
experimentations, shown in the flowchart of Fig. 1, we selected GPR 

Fig. 5. Re effect in three-dimensional parametric space. Converged hydrodynamic coefficients in the three-dimensional parametric space (fr, Ay/d, and Re) using GPR 
learning (multi-output) strategy. Isosurfaces of the hydrodynamic coefficients: (A) Cd of 207 experiments (blue surface, Cd = 1.3; black surface, Cd = 2; red surface, Cd = 3; 
green surface, Cd = 4). (B) Clv of 1036 experiments (green surface, Clv = −3; blue surface: Clv = −1; black surface, Clv = 0; red surface, Clv = 0.3). (C) Cmy of 1288 experiments 
(black surface, Cmy = 0; red surface, Cmy = 2).

Fig. 6. Exploration of large parametric space (in this example: eight parameters). Comparison of Clv for a rigid cylinder undergoing combined in-line and 
cross-flow forced vibrations in uniform flow at Re = 5715 obtained in single-frequency (involving four parameters, total of 755 experiments) and two-frequency 
(involving eight parameters, total of 3944 experiments) experiments. (A) Contours of Clv versus Vr and / for experiments of single frequency at fixed Ax/d = 0.15 
and Ay/d = 0.75. (B.1) Contours of Clv versus Vr and / for experiments of double frequency at Ax/d = 0.15 and Ay/d = 0.75, same as in (A), and fixed second frequency 
component of Ay2/d = 0.34, Ax2/d = 0.14, Vr2 = 11.75, and 2/ = 1.5. (B.2 to B.5) Contours of Clv versus fr and / with only one fixed input changed; compare with 
(B.1): (B.2), Ay2/d = 0.93; (B.2), Ax2/d = 0.25; (B.3), Vr2 = 5.25; (B.4), 2/ = 0.5. (C) Results of the sensitivity analysis on . The sensitivity measures (∣∣,∣∣) for each 
parameter have been normalized by the value of the highest sensitivity measure (∣∣max,∣∣max) of the most sensitive parameter Vr2.
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as the main learning tool. As we have shown, the performance of 
the GPR learning, such as the convergence rate, depends heavily 
on the choice of the kernel functions. In our current study, the 
candidates were drawn from several standard kernel functions of 
the Matern family. Other models, such as the newly developed 
neural net–induced Gaussian process (44), should be tested to 
improve the GPR learning performance, especially for rare events. 
The selection of the “best” kernel of each QoI in the current re-
search is merely via brute force by comparing the performance 
of the converged GPR learning results with different kernels of 
the same experiment. Several recent studies (45, 46) on learning 
the kernel from the data could be exploited so that, in a sequential 
experiment, not only the prediction of the QoIs but also the kernels 
are updated. With an increasing number of experiments, a “better” 
form of the kernel will emerge to represent the experimental data, 
which may accelerate the learning process but, more interestingly, 
may better reveal or interpret the hidden physics of the data by 
examining the learned kernel form.

One limitation of using GPR is that the computational expense 
quickly increases with the number of experiments (47). This limits 
the total experiment number and the dimension for the input 
parametric space. Deep neural networks (NNs) are known for their 
high expressivity and the ability to handle large dimensions of input 
parameters and big data (48). Hence, the next generation of the 
ITT should include a deep NN that can handle problems with 
hundreds of input parameters, unlike GPR. This will require robust 
methods of uncertainty quantification of NN (49), which is a sub-
ject of ongoing work (50).

The searching strategy is another key component in the active 
learning for the sequential experimentation. In the current study, 
we found the parameters of the next experiment input by merely 
applying the strategy of finding the maximum of the SD. In the fu-
ture, prior knowledge of the problem (51), such as the well-understood 
physics and/or the engineering requirements, can be incorporated 
to form acquisition functions with multiple objectives and/or ad-
ditional physical-informed constraints (52).

Although the robotic part of the apparatus described here is rel-
atively simple, consisting of automatically conducting forced vibration 
experiments with prescribed motions, our laboratory has pioneered 
and made available the use of a more complex apparatus for fluid 
mechanics research involving simultaneous experimental testing of 
models connected with virtual systems through real-time simulation 
(53, 54), which we can use within the same scheme. Our methodology 
has been emulated in other laboratories, denoted as cyber-testing 
(55–57), enabling complex system representation in the laboratory. 
Hence, the same procedure is applicable with complex cyber-physical 
systems that constitute an elaborate robotic apparatus.

The machine learning methodology in this paper is not limited 
to fluid mechanics and can be easily transferred to other areas, e.g., 
in experimental solid mechanics, where a large number of specimens 
are required to quantify the modulus of elasticity, the yield stress, 
and the onset of fracture. Hence, combined with advanced manu-
facturing technologies (58–60) that are capable of generating versatile 
prototypes in a short amount of time, we foresee great potential for 
automatic sequential experimentation to map material and structural 
properties (61) to obtain understanding that may lead to new advances, 
such as developing the next generation of morphing wings for avia-
tion (62). Similarly, this methodology is readily applicable to non-
destructive evaluation of materials, where uncertainty quantification 

and automation will accelerate considerably such testing. Furthermore, 
in an application outside the well-controlled environment of the lab-
oratory, the methodology can be used with multiple, inexpensive robots 
to form dynamic swarms (63, 64) that will enable adaptive and swift 
monitoring and exploration of the environment (65).

In conclusion, robotic scientists should be playing a greater role in 
the automation of science, in particular in engineering, where there are 
many opportunities to implement machine learning methodologies 
analogous to the one presented here.

MATERIALS AND METHODS
In this section, we first review GPR, the learning algorithm selected 
in the current research. Then, we define the hydrodynamic coef-
ficients of the rigid cylinder in the forced vibration experiments 
conducted, followed by the review of Morris method for global 
sensitivity analysis.

Gaussian process regression
GPR is a nonparametric method of modeling unknown functions 
from a finite set of training points to make predictions, and it has 
been successfully applied in various fields to explore hidden physics 
from data (65–69). Furthermore, GPR provides quantification of the 
uncertainty based on the selected kernel function and the estimated 
measurement uncertainty, which can guide the sequential experi-
mentation adaptively to explore the parametric space and predict 
QoIs. We briefly review GPR because it is an essential component of 
ITT’s algorithm, but we refer readers to the book by Rasmussen and 
Williams (34) for a detailed exposition.

The experiment dataset  𝔻 = {( x  i  ,  y  i   )∣i = 1, … , n}  consists of 
n observations of the output y with the input x ∈ ℝs of s dimensions. 
Let us consider the following map between the inputs and output

  y(x ) = h  (x)   T   + f (x ) +   (4)

where h(x) are a set of fixed basis functions that transform the input 
x ∈ ℝs into new vectors of h(x) ∈ ℝq and  is a q-by-1 vector of basis 
function coefficients. f (x) ∼ GP(0, k(x, x′)) is the bias of a zero mean 
GP with the covariance (kernel) function k(x, x′) parameterized by 
a set of hyperparameters ϑ, and thus k(x, x′∣ϑ), and the measure-
ment noise  ∼ N (0, 2) is assumed independent between every two 
outputs. Therefore, the probability distribution of outputs y of n 
observations given X (matrix of size r × n) and f (vector of size n × 1) 
can be modeled as follows

  P(y∣X, f ) ∼ N(H + f,     2  I)  (5)

where

   X =  

⎛

 ⎜ 

⎝

   

 x 1  T 

   x 2  T   
⋮
  

 x n  T 

   

⎞

 ⎟ 

⎠

  , y =  

⎛

 ⎜ 

⎝

    

 y  1  

  
 y  2  

  ⋮  
 y  n  

  

⎞

 ⎟ 

⎠

  , H =  

⎛

 ⎜ 

⎝

    

h  ( x  1  )   T 

  h  ( x  2  )   T   
⋮
  

h  ( x  n  )   T 

  

⎞

 ⎟ 

⎠

  , f =  

⎛

 ⎜ 

⎝

    

f ( x  1  )

  f ( x  2  )  
⋮
  

f ( x  n  )

  

⎞

 ⎟ 

⎠

     (6)

The joint distribution of f = (f (x1), f (x2), …, f (xn))T given X is

  P(f∣X ) ∼ N(0, K (X, X ))  (7)
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where K (X, X) is the covariance matrix of the following form

   K (X, X ) =  

⎛

 ⎜ 

⎝

    

k ( x  1  ,  x  1  )

  

k ( x  1  ,  x  2  )

  

…

  

k ( x  1  ,  x  n  )

    k ( x  2  ,  x  1  )  k ( x  2  ,  x  2  )  …  k ( x  2  ,  x  n  )    
⋮
  

⋮
  

⋮
  

⋮
    

k ( x  n  ,  x  1  )

  

k ( x  n  ,  x  2  )

  

…

  

k ( x  n  ,  x  n  )

  

⎞

 ⎟ 

⎠

     (8)

To estimate the parameters , ϑ, and 2, given the dataset  𝔻 , 
we maximize the marginal likelihood P(y∣X) = P(y∣f, X) P( f ∣X) ∼ 
N(H, 2I + K(X, X∣ϑ)) as a function of , ϑ, and 2. Therefore, the 
best estimate   ̂    ,   ̂  𝛝  , and    ̂      2   take the form

   ̂   ,  ̂  𝛝 ,   ̂      2  =  arg min  
,𝛝,    2 

    [ − log P(y∣X ) ]  (9)

where the negative log marginal likelihood function is shown as 
follows

  
− logP(y ∣ X ) =   1 ─ 2    (y − H)   T   [    2  I + K(X, X ∣ 𝛝 ) ]   

−1
 (y − H ) +               

      
                        n ─ 2   log2                  +   1 ─ 2   log ∣     2  I + K(X, X ∣ 𝛝 ) ∣

    

                                                                                                              
(10)

 

With the best estimate of   ̂    ,   ̂  𝛝  , and    ̂      2  , given the dataset  𝔻 , we 
make the prediction on the distribution of the output y* with the 
input x* as follows

  P( y   *  ∣ y, X,  x   *  )=   
P( y   * , y ∣ X,  x   * )

  ─ 
P(y ∣ X,  x   * )

   ∼ N(   ̄  y     * ,     *   ( x   * )   2 )  (11)

where

  

   ̄  y     *  = h  ( x   * )   
T
   ̂    + K  ( x   * , X ∣  ̂  𝛝 )   

T
 

     [  ̂      2  I + K (X, X ∣  ̂  𝛝  ) ]   
−1

 (y − H ̂   )    
    *   ( x   * )   

2
  =   ̂      2  + k ( x   * ,  x   *  ∣  ̂  𝛝  ) − K  ( x   * , X ∣  ̂  𝛝 )   

T
 
     

 [  ̂      2  I + K (X, X ∣  ̂  𝛝  ) ]   
−1

  K ( x   * , X ∣  ̂  𝛝 )

    (12)

Therefore, the parameters of the next experiment input    ̂  x    *   can 
be found by finding the maximum of *(x*) as a function of x* as 
follows

    ̂  x    *  =  arg max  
 x   * 

    [     * ( x   *  ) ]  (13)

Using the rigid cylinder forced oscillation to study VIV
In this section, we describe the three types of rigid cylinder forced 
vibration experiment performed in the current study and define the 
corresponding hydrodynamic coefficients.
Cross-flow only forced vibration
A cylinder of length l and diameter d is forced to follow a sinusoidal 
trajectory in the cross-flow direction to the uniform inflow with 
velocity U as follows

  Y(t ) =  Y  0   cos(2  f  0   t)  (14)

where Y0 and f0 are the cross-flow oscillation amplitude and fre-
quency, respectively. The lift and drag forces on the cylinder can be 
modeled as follows

  L(t ) =  L  0   cos(2  f  0   t +    0  )  (15)

  D(t ) =  D  m   +  D  0   cos(4  f  0   t +  φ  0  )  

where Dm is the magnitude of the mean drag force; L0 and D0 are the 
magnitudes of the oscillating lift and drag forces at frequencies f0 
and 2f0, respectively; 0 is the phase difference measured between 
the cross-flow motion and the oscillating lift force; and φ0 is the 
phase difference measured between the cross-flow motion and the 
oscillating drag force. Therefore, the hydrodynamic coefficients— 
i.e., mean drag coefficient Cd, lift coefficient in phase with velocity 
Clv, and added mass coefficient in the cross-flow direction Cmy—are 
functions of the nondimensional cross-flow amplitude Ay/d = Yo/d 
and the reduced frequency fr = fod/U as follows

   C =  C  0   (     
 A  y   ─ d  ,  f  r   )     (16)

Therefore, from the experiments, we can measure the three 
hydrodynamic coefficients as follows

   

 C  d   =   2  D  m   ─ 
  ldU   2 

  

   C  lv   =   2  L  0   sin(   0  ) ─ 
  ldU   2 

     

 C  my   =    L  0   cos(   0  ) ─ 2 ∀  Y  o    f  0    

    (17)

where  is the fluid density and ∀ is the cylinder fluid displacement 
of  ∀ =   _ 4    d   2  l .
In-line and cross-flow combined forced vibration
When the rigid cylinder is forced to oscillate harmonically in uni-
form inflow, its trajectory can be described as follows

   
Y (t ) =  Y  0   cos(2  f  0   t)

   
X (t ) =  X  0   cos(4  f  0   t + )

   (18)

where X0 is the oscillation amplitude in the in-line direction and  
is the phase difference imposed between the in-line and cross-flow 
motions, and we define the trajectory as counterclockwise when  ∈ 
[0, ] and clockwise when  ∈ [, 2]. The lift and drag forces on the 
cylinder can be again modeled as in Eq. 2. The hydrodynamic coef-
ficients are hence functions of four parameters as follows

   C =  C  1   (     
 A  y   ─ d  ,    A  x   ─ d  ,  V  r  ,  )     (19)

where Ax/d = Xo/d is the nondimensional in-line amplitude and Vr = 
1/fr is the reduced velocity, inverse of the reduced frequency. The 
targeted QoI in the current paper, Clv, of rigid cylinder in-line and 
cross-flow combined forced vibration is the same as in Eq. 4.
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In-line and cross-flow combined forced vibration with 
double frequencies
Instead of single-frequency vibration, when vibrating simultaneously 
at two frequencies, the cylinder trajectory is prescribed as follows

   
Y (t ) =  Y  0   cos(2  f  0   t ) +  Y  2   cos(2  f  2   t)

    
X (t ) =  X  0   cos(4  f  0   t +  ) +  X  2   cos(4  f  2   t +    2  )

   (20)

where X2, Y2, and 2 are the in-line, cross-flow amplitude, and phase 
difference of the second vibration frequency f2. Therefore, the lift 
and drag forces on the cylinder can be modeled as

   
L(t ) =  L  0   cos(2  f  0   t +    0   ) +  L  2   cos(2  f  2   t +    2  )

     
D(t ) =  D  m   +  D  0   cos(4  f  0   t +  φ  0   ) +  D  2   cos(4  f  2   t +  φ  2  )

   (21)

where L2 and D2 are the magnitudes of the lift and drag forces asso-
ciated with second frequency f2 and 2 and φ2 are the phases between 
forces and motions of second frequency f2. The targeted QoI in the 
current paper, (Clv)double, is associated with the first vibration frequency 
f0, and it is a function of eight parameters, i.e.,

    ( C  lv  )  double   =  C  2   (   (     
 A  y   ─ d  ,    A  x   ─ d  ,  V  r  ,  )  ,  (     

 A  y2  
 ─ d  ,    A  x2   ─ d  ,  V  r2  ,    2   )   )     (22)

which can be calculated from the experiment as follows

   ( C  lv  )  double   =   2  L  0   sin(   0  ) ─ 
  ldU   2 

    (23)

Morris method for global sensitivity analysis
This method is widely used to screen the important input parame-
ters for a given model or problem (41). Given a normalized input 
space S = [0,1]s with an s-dimensional, p-level full factorial grid that 
is xi ∈ {0,1/(p − 1),2/(p − 1), …,1} for i = 1, …, s, for a given value of 
x ∈ S, the elementary effect of xi can be calculated as follows

     i   (x ) =   
y( x  1  ,  x  2  , … ,  x  i−1  ,  x  i   + ,  x  i+1  , … ,  x  s   ) −  y(x)

   ──────────────────────  


     
  (24)

where  is a predetermined multiple of 1/(p − 1) and therefore xi ≤ 
1 − . Given the output y with a screening plan X, the sample 
mean and SD of a set of i (x) values can be estimated for each 
input parameter.

The screening plan X is built from the sampling matrix B, where 
B is a (s + 1) × s matrix of 0’s and 1’s with the key property that, for 
every column i = 1, …, s, there are two rows of B that differ only in 
their ith entries. We denote    ̃  B    as the random orientation of B, and it 
can be expressed as follows

    ̃  B   = ( J  s+1,1    ̃  x  + ( / 2 ) [(2B −  J  s+1,s   ) ]   ̃  D   +  J  s+1,s   )   ̃  P    (25)

where Jl, m is l-by-m matrix of 1’s;    ̃  D    is an s-dimensional diagonal 
matrix where each element on the diagonal is either +1 or −1 with 
equal probability;    ̃  x   is a randomly selected point in s-dimensional, 
p-level discretized input space S;    ̃  P   is an s-by-s random permutation 
matrix, where each column contains only one element of 1 and 
all other equal to 0 and no two columns have 1’s in the same po-
sition. Therefore, to evaluate r elementary effects for each param-

eter, the screening plan X is constructed from r random orienta-
tions as follows

  X = [ 

   ̃  B    1  

     ̃  B    2    
⋮
  

   ̃  B    r  

  ]  (26)

SUPPLEMENTARY MATERIALS
robotics.sciencemag.org/cgi/content/full/4/36/eaay5063/DC1
Table S1. Statistics of hydrodynamic coefficients of a stationary rigid cylinder in uniform flow 
at Re = 12,000.
Fig. S1. Histogram of Cd of a stationary rigid cylinder in uniform flow at Re = 12,000.
Fig. S2. Evolution of GPR learning sequence for Clv of a rigid cylinder forced vibration in 
uniform flow at Re = 12,000.
Fig. S3. Clv of a rigid cylinder forced vibration from GPR learning at various Re number values.
Fig. S4. Cd of a rigid cylinder forced vibration from GPR learning at various Re number values.
Fig. S5. Cmy of a rigid cylinder forced vibration from GPR learning at various Re number values.
Data file S1. Sequential experimental data for hydrodynamic coefficients of a cross-flow only 
vibrating rigid cylinder at Re = 12,000.
Data file S2. Sequential experimental data for hydrodynamic coefficients of a cross-flow only 
vibrating rigid cylinder at various Re from 1200 to 19,000.
Data file S3. Sequential experimental data for hydrodynamic coefficients of a cross-flow and 
in-line combined single-frequency vibrating rigid cylinder at Re = 5715.
Data file S4. Sequential experimental data for hydrodynamic coefficients of a cross-flow and 
in-line combined double-frequency vibrating rigid cylinder at Re = 5715.
Movie S1. Experimental process of ITT sequential learning on Clv of a cross-flow only vibrating 
rigid cylinder at Re = 12,000.
Movie S2. ITT sequential experiment of Re effect on a cross-flow only vibrating rigid cylinder.
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