

1

2 DR. ERANGA K. GALAPPATHTHI (Orcid ID : 0000-0002-3926-2206)

3

4

5 Article type : Original Article

6

7

8 **Title Page**

9 Title: Climate change adaptation in fisheries

10

11 Co-authors:

12 Eranga K. Galappaththi ^{1,2}; Vasantha B. Susarla ²; Samantha J. T. Loutet ²; Stephanie T. Ichien
13 ³; Amanda A. Hyman ⁴; James D. Ford ⁵

14

15 Author affiliations:

16 ¹ Department of Geography, Virginia Tech, Blacksburg, VA, USA

17 ² Department of Geography, McGill University, Montreal, QC, Canada

18 ³ Oregon Sea Grant, Oregon State University, Corvallis, OR, USA

19 ⁴ Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN,
20 USA

21 ⁵ Priestley International Centre for Climate, University of Leeds, Leeds, UK

22

23 ORCID:

24 Eranga K. Galappaththi: <https://orcid.org/0000-0002-3926-2206>

25 Vasantha B. Susarla: <https://orcid.org/0000-0002-2152-7843>

This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: [10.1111/FAF.12595](https://doi.org/10.1111/FAF.12595)

This article is protected by copyright. All rights reserved

26 Samantha J. T. Loutet: <https://orcid.org/0000-0001-7677-0982>

27 Stephanie T. Ichien: <https://orcid.org/0000-0002-9288-7301>

28 Amanda A. Hyman: <https://orcid.org/0000-0002-3317-4774>

29 James D. Ford: <https://orcid.org/0000-0002-2066-3456>

30

31 Correspondence:

32 Name: Eranga K. Galappaththi

33 Address: 903-2-300 Regina Street North, Waterloo, Ontario N2J 4H2 Canada

34 E-mail: eranga.research@gmail.com

35

36 Short running title: Climate change adaptation in fisheries

37

38

39 **Abstract:**

40 We conducted a global systematic literature review of climate change adaptation in fisheries. We
41 addressed three specific questions: (i) What are fisheries adapting to? (ii) How are fisheries
42 adapting? and (iii) What research gaps need to be addressed? We identified, characterised, and
43 examined case studies published between 1990 and 2019 that lie at the intersection of the
44 domains of climate change, adaptation, and fisheries. We characterised the documented climate
45 change effects in fisheries that are being adapted to: multiple stressors, general climate impacts,
46 extreme events, ocean conditions, marine system shifts, climate variability, fishery dynamics,
47 species distribution, and atmospheric warming. Three categories of adaptive responses came to
48 light: coping mechanisms (e.g., changing fishing location, use of traditional knowledge);
49 adaptive strategies (e.g., livelihood diversification, incorporation of technology); and
50 management responses (e.g., adaptive management, adaptation planning). We identified key
51 potential areas for future research, including studies on the limits and barriers for adaptation,
52 studies using specific conceptual and methodological approaches, and studies focusing on the
53 top-producing countries such as China, Indonesia, Peru, and Russia. This analysis gives broader
54 insights to the fisheries industry as well as to climate change adaptation research to proceed in
55 the face of new global challenges.

56 **Keywords:** adaptation limits, adaptation tracking, global assessment, management approaches,
57 research directions, systematic literature review

58

59 **Table of contents:**

60 1.0 Introduction.....
61 2.0 Methods.....
62 3.0 Results.....
63 3.1 Descriptive results.....
64 3.2 Types of targeted fisheries.....
65 3.3 Theoretical approach towards studying climate adaptation in fisheries.....
66 3.4 Climate change impacts.....
67 3.5 Coping responses in fisheries.....
68 3.6 Adaptive strategies in fisheries.....
69 3.7 Management responses in fisheries.....
70 3.8 Limits to adaptation in fisheries.....
71 3.9 Policy contributions.....
72 3.10 Grey literature assessment.....
73 4.0 Discussion.....
74 5.0 Opportunities and directions for future research.....

75

76 1. Introduction

77 Fisheries is one of the sectors most vulnerable to climate change because of its sensitivity to
78 environmental conditions and substantial role in feeding people and supporting livelihoods. The
79 industry is crucial for the nutrition and food security of the growing world population. Over 87%
80 of global fish production is used for human consumption, which totals to 156 million tonnes and
81 equates to ~20.5 kg per capita (FAO, 2020; Loring et al., 2019). In 2018, the industry was worth
82 over USD 401 billion, supporting ~60 million people in capture fisheries alone (FAO, 2020).
83 Climate change impacts, however, generate various adverse effects on aquatic systems,
84 vulnerable fisher populations, and associated industries relying on fisheries, along with creating
85 potential opportunities in some regions. Many of these projected climate implications will be

86 novel; therefore, implementing some degree of adaptation is essential for global food and
87 livelihood security, poverty alleviation, and sustainable fisheries (de Coninck et al., 2018).

88

89 Adaptation to climate change in fisheries requires a greater understanding of what adaptations
90 are needed, occurring, and viable, as well as those that need further support to manage the
91 ongoing and future challenges of the industry. The impacts of climate change will continue to
92 add to the complexity and uncertainty of fisheries systems (the social-ecological systems
93 associated with fisheries operation), which can result in various unfavourable conditions (e.g.,
94 social, ecological, and economic impacts) (Johnson et al., 2019). Climate change impacts under
95 other multiple stressors (e.g., COVID, overfishing, pollution) will further augment the need for
96 resilience of fisheries systems (Nathan. J. Bennett et al., 2020; Bindoff et al., 2019). With an
97 increase in research focused on the human dimensions of climate change adaptation, limited
98 research assesses and characterises adaptations specific to the fisheries sector (with the
99 exceptions of FAO reports) (Barange & Cochrane, 2018; Daw et al., 2009; FAO, 2018, 2020;
100 Seggel & De Young, 2016). To the best of our knowledge, no global systematic assessment of
101 the climate change adaptation literature in the fisheries sector is available (excluding
102 aquaculture) (Galappaththi et al., 2020). We however also acknowledge the assessments on
103 changing aquatic ecosystems (Bindoff et al., 2019), climate-ready fisheries (Bell et al., 2020),
104 and adaptation strategies in marine systems (Miller et al., 2018). Against this backdrop, an
105 examination of global fisheries systems is necessary to advance the understanding of how they
106 experience shocks and stressors and how such systems respond and adapt to climate change
107 impacts.

108

109 In this article, we identify and examine 230 case studies across the globe that were published
110 between 1990 and 2019 and lie at the intersection of fisheries, climate change, and adaptation.
111 This allows us to develop understanding on the emergence and nature of research on climate
112 change adaptation in the social-ecological systems associated with fisheries operations around
113 the world. Climate change adaptation in a fisheries context is a growing research field that has
114 received increasing attention, but no comprehensive assessment has been conducted. We sought
115 to fill this gap by addressing three primary questions related to global fisheries: i) What are
116 fisheries systems adapting to? ii) How are fisheries systems adapting? and iii) What research

117 gaps need to be addressed? There is a growing interest in tracking and systematically assessing
118 adaptation with sectoral coverage (e.g., aquaculture) (Galappaththi et al., 2020), though none of
119 these works focuses more broadly on fisheries. Thus, this study brings novel insights to the field
120 of fisheries and climate change adaptation.

121

122 2. Methods

123 We used a systematic literature review approach to examine the literature of adaptation to
124 climate change in the context of fisheries between 1990 and 2019. Unlike a traditional literature
125 review, a systematic literature review uses an explicit and rigorous methodology involving
126 transparent and objective criteria (J. D. Ford & Pearce, 2010). The climate change adaptation
127 literature has increasingly adopted this approach to synthesize prior results and identify
128 knowledge gaps for future work (J. D. Ford & Pearce, 2010; Petticrew & McCartney, 2011).
129 Following Berrang-Ford et al. (2015), we first identified the data source, with documentation of
130 the search and selection process. The authors then developed the inclusion and exclusion criteria
131 for literature in a collaborative approach. In the second phase, we defined the methods used for
132 analysis and critical appraisal of the information quality of this study.

133

134 To meet the aim of the research, we evaluated literature at the intersection of climate change,
135 adaptation, and fisheries. Previous fisheries assessments on global climate change adaptation
136 have focused on both fisheries and aquaculture (Barange et al., 2018; FAO, 2019; Johnson et al.,
137 2019). Yet, we excluded aquaculture from the broader fisheries scope, as climate change
138 adaptation in aquaculture has recently been examined (Galappaththi et al., 2020). We included
139 peer-reviewed publications from academic journals as well as book chapters from any discipline
140 that met the search criteria. Using the search engine Web of Science (WOS), one search was
141 conducted. The search terms were “climat* chang*”, “fish*”, and “adapt*” in the TOPIC
142 category in the time frame 1990-2019 (Supplementary materials: Table S1). The search was
143 conducted in January 2020 and captured all publications in the specified timeframe. The search
144 terms returned peer-reviewed publications that included ALL of the word fragments in the search
145 string as part of the publications’ TOPIC, and the Digital Object Identifier was used to eliminate
146 duplicates.

147

148 The initial dataset included 2401 publications and was exported to Microsoft Excel. In the first
149 screening of the dataset, the authors read the titles and abstracts of the publications (and the full
150 text in cases in which the classification was doubtful) to determine which publications would be
151 included in the final dataset (Table 1: inclusion criteria). For example, studies that used
152 vulnerability as the primary analysis approach were excluded because adaptation and
153 vulnerability are similar but distinctly separate approaches to climate change research.

154

155 The authors then characterised the 1211 publications that were retained in the dataset for a more
156 detailed screening. Throughout the screening and data collection process, the authors met
157 virtually on a weekly schedule to ensure consistency in characterisation. Careful documentation
158 of reasons for eliminating a publication at this stage was captured on the Excel sheet. The final
159 set of publications explicitly addressed the impacts of climate change and the various adaptation
160 strategies used in fisheries. By contrast, all excluded publications did not address topics at the
161 intersection of adaptation, climate change, and fisheries or focused on only one or two of those
162 domains. Based on this secondary analysis, 230 articles were retained for final review. In
163 addition to the citation data, the authors collected specific data on each retained publication, i.e.,
164 first author affiliation, key funding sources, research location, target population of study, type of
165 fisheries, and policy implications (Table S2). Finally, before data analysis, the lead author
166 conducted a comprehensive review of the final dataset for consistency in characterisation.

167

168 Two hundred and thirty articles focused on individual and multiple case studies, though the term
169 ‘paper’ is used as a unit of analysis. The term ‘case studies’, used in the remainder of the text,
170 refers to the number of papers reviewed rather than the specific case studies of focus within any
171 given paper. A qualitative content analysis was used for the final analysis, which is often used to
172 analyze selected text (Krippendorff, 2018; Vaismoradi et al., 2016). ‘Manifest’ and ‘latent’
173 content analysis (Krippendorff, 2018) were used as the primary techniques, supplemented by
174 with ‘discourse’ analysis (Fairclough, 2013) to reveal themes and linkages within the dataset.
175 Direct quotations from the papers were also used to capture the original content. Most of the
176 descriptive statistics reported were formulated in Microsoft Excel 2013, with percentages
177 referring to the total sample size (n=230). Percentages in the text refer to the number of
178 respondents from the immediately mentioned sub-sample.

179

180 [Insert Table 1 here.]

181

182 We also conducted a separate mini-assessment of grey literature to understand how differently
183 (or similarly) peer-reviewed literature documents climate change adaptation in fisheries. The
184 inclusion of grey literature is essential to the study because much of the evidence on climate
185 change adaptation is documented there. We conducted a grey literature search using multiple
186 search engines such as university library resources, Google Scholar, and various public-facing
187 databases (e.g., FAO) (Piggott-McKellar et al., 2019). We used purposive sampling (Etikan et
188 al., 2016) for the grey literature search due to the scattered nature of the non-peer-reviewed
189 literature. However, we used the same exclusion criteria (Table 1) with adjustments for the
190 publication types by including grey literature such as reports and conference proceedings. We
191 screened 111 documents and yielded 43 items for final coding. Coding questions were designed
192 to capture highlighted topics that emerged from the peer-reviewed assessment and to collect
193 additional data under the “other” category to capture data specific to grey literature. The coded
194 data was analyzed using the same techniques used for the peer-reviewed assessment.

195

196 3. Results

197 3.1 Descriptive results

198 Our study collects insights from 230 publications studying the intersection of climate change,
199 fisheries, and adaptation. From 2006, the total number of articles at this intersection increased
200 until 2018, after which it dropped off slightly (Figure 1). North America and Oceania lead in
201 number of publications, while South America shows relatively slow progress. At the country
202 level, the USA (23%), Australia (19%), and Canada (11%) have the highest number of
203 publications. Based on the first author’s affiliation, the top four institutions that produced
204 publications are: The Commonwealth Scientific and Industrial Research Organisation (CSIRO)
205 Australia (n=11); Stanford University, USA (n=6); and James Cook University (n=4) and the
206 University of Tasmania (n=4), Australia. Most of the case studies are published in leading peer-
207 reviewed disciplinary journals such as *Marine Policy* (11%), *Ocean and Coastal*
208 *Management* (7%), *Ecology and Society* (6%), and *ICES Journal of Marine Science* (4%). The

209 top five research destination countries recoded are the USA (16%), Australia (11%), India (5%),
210 Bangladesh (5%), and Canada (4%).

211

212 [Insert Figure 1 here.]

213

214 The majority (62%) of case studies used a mixed approach with both qualitative and quantitative
215 research designs, while the rest of the studies used either qualitative (26%) or quantitative (12%)
216 approaches. The majority (57%) of studies were based on primary data; and 27% of them were
217 based on secondary data, while 17% were mixed. The use of primary data for research became
218 increasingly popular from 2006 to 2019. In terms of funding sources, governments funded the
219 majority (66%) of the literature, with the three most common funders being the National Science
220 Foundation (6.0%), Social Sciences and Humanities Research Council of Canada (4.3%), and
221 Fisheries Research and Development Corporation of Australia (3.8%).

222

223 3.2 Types of targeted fisheries

224 Studies focused on various fisheries systems across 56 countries. We analyzed the continent-
225 level distribution of targeted fisheries using three categories: marine (salt-water) fisheries; inland
226 (fresh-water) fisheries; and brackish (mixed-water) fisheries (Figure 2). We found 178 marine
227 fisheries and equal amounts (n=33) of inland and brackish water systems across six continents.
228 Marine fisheries are the most studied fisheries among all the continents. Oceania and Africa
229 consist of the highest (96%) and lowest (47%) proportions of studied marine fisheries. Inland
230 fisheries are the least studied fisheries on many continents, with exceptions being Africa (39%).
231 Oceania shows the lowest proportion of inland (2%) studies and brackish water (2%) fisheries.

232

233 Species-specific studies indicate a large range of species diversity. For example, North America
234 has the highest portion (37%) of species-specific studies, including Eastern Oyster (*Crassostrea*
235 *virginica*, Ostreidae), Groupers (*Epinephelus malabaricus*, Serranidae), Parrotfish (*Scarus*
236 *frenatus*, Scaridae), Spiny lobster (*Panulirus argus*, Palinuridae), Atlantic cod (*Gadus morhua*,
237 Gadidae), Greenland Halibut (*Reinhardtius hippoglossoides*, Pleuronectidae), and Atlantic
238 Salmon (*Salmo salar*, Salmonidae). The most studied marine species groups are Lobster (family:
239 Nephropidae), Mackerel (family: Scombridae), Herring (family: Clupeidae), Tuna (family:

240 Scombridae), and Cod (family: Gadidae). The most studied inland fisheries species groups are
241 Tilapia (family: Cichlid) and Catfish (family: Ictalurids). The most studied brackish water
242 species groups were Oyster (family: Ostreidae) and Crabs (order: Decapoda).

243

244 In terms of the scale of targeted fisheries, many (93%) of the fisheries are at the community
245 (30%) and regional (63%) levels. Only 4% of studies represent national- and international-level
246 marine fisheries, and this varies from 0-3% for inland and brackish water fisheries.

247

248 [Insert Figure 2 here.]

249

250 3.3 Theoretical approach towards studying climate adaptation in fisheries
251 The majority (>50%) of studies adopted integrated approaches to study climate change
252 adaptation in fisheries. For example, to examine the impact of tropical cyclone *Winston* on
253 female mud crab (*Scylla serrata*, Portunidae) fishers in Fiji, researchers used multiple
254 approaches of social-ecological systems, economic assessments, supply chain management, and
255 gender differences (Thomas et al., 2019).

256

257 We identified four primary thematic areas based on the conceptual approach used to study
258 climate adaptation: systems approach; management; economics; and anthropogenic (Figure 3).
259 The guiding question used for the thematic area development is: What is the relevance of the
260 conceptual approach to the specific area of climate adaptation discussed in the study? First, the
261 systems approach is consistent with four main theoretical bodies: social-ecological systems,
262 resilience, ecosystem services, and adaptive capacity. Many (34%) of the studies used a systems
263 approach; for example, Forbes (2013) used a social-ecological systems lens to study the cultural
264 resilience of hunting and fishing practices of the Nenets and Yamal-Nenets of Russia. Second,
265 the thematic area of management (27%) consists of co-management, community-based
266 management, climate-ready fisheries management, participatory management, conservation, and
267 multi-level resource management. The overarching focus of these papers is to investigate how to
268 better manage fisheries (in light of multiple stresses). For instance, Ensor et al. (2018) found that
269 the application of community-based adaptation improved the resilience of coastal fisheries in the
270 Timor-Leste and Solomon Islands.

271
272 Third, the conceptual areas of game theory, economic development, risk analysis, and economic
273 assessments are characterised under the thematic area of economic (21%). For example,
274 Chaijaroen (2019) applied a framework of labour supply/consumption to assess long-lasting
275 income shocks and food security-related adaptations in the context of coral bleaching in
276 Indonesia. Fourth, in the thematic area of anthropogenic (18%), we recorded conceptual
277 approaches, including climate change perceptions, livelihoods, traditional and local knowledge
278 systems, gender, and monitoring (e.g., (Codjoe et al., 2012), (Vogt et al., 2016)). Further, we
279 identified distinct integrated conceptual approaches that overlap among the four primarily
280 identified thematic areas (e.g., common-pool resource management, socio-economic systems,
281 community-based adaptation, sustainable livelihoods, and ecosystem-based management) (e.g.,
282 (Blanco et al., 2015)).

283

284 [Insert Figure 3 here.]

285

286 3.4 Climate change impacts

287 The majority (63%) of studies identified climate change as the key driver for changes in fisheries
288 systems (Figure 4; Table S3). Over one-third (36%) of case studies identified multiple stressors
289 of climate change, which created complex problems for fisheries. For example, Frawley et al.
290 (2019) found that changes in wind and weather patterns, physical changes to the marine
291 environment, and variation in animal behaviours were commonly reported as barriers to the
292 livelihoods of small-scale fishers off the Gulf of California in Mexico. The broad implications of
293 general climate change impacts were also studied (12%); if no specific stressors were mentioned,
294 climate change was analyzed as a single macro-impact. Other papers examined individual
295 stressors including extreme events (13%; e.g., marine heatwaves), ocean conditions (13%; e.g.,
296 ocean acidification), shifting marine systems (9%; e.g., food web changes), climate variability
297 (5%; e.g., changes in weather patterns), fishery dynamics (4%; e.g., changing fishing seasons),
298 species distributions (4%; e.g., changes in fish migration patterns), and atmospheric warming
299 (3%; e.g., changes in average temperature). Some studies revealed that pollution from boat
300 traffic and human development, on top of climate change, had a combined influence on fisheries
301 and their adaptive capacity (van Putten et al., 2013, 2016).

302

303 Tied to ocean conditions, extreme events accounted for the most recorded individual climate
304 change impact. These are some of the most visible consequences of climate change for fishers in
305 the field; there is no way to ignore the effects of El Niño Southern Oscillation, tropical storms,
306 floods, droughts, and other natural disasters, which can decrease catch and result in long-term
307 fluctuations in fishing activities (Arias Schreiber et al., 2011; Thomas et al., 2019). As these
308 natural disasters continue to threaten the feasibility of the fishing industry, inland fisheries are
309 often studied alongside the agricultural sector to examine viable alternative livelihoods (Bahadur
310 et al., 2019; Limuwa et al., 2018). For marine and coastal fisheries, changing ocean conditions
311 such as acidification, rising sea levels, increasing sea surface temperatures, and ice melt are
312 driving factors for adaptation. These water conditions impact ecosystem prosperity across the
313 globe. Marine system shifts such as coral bleaching, the introduction of invasive or outsider
314 species, harmful algae blooms, and lessening biodiversity can result in the closure of entire
315 fishing areas and lasting changes to biophysical systems (Camargo et al., 2009; Collin et al.,
316 2015).

317

318 Moreover, climate variability can cause unpredictability in ecosystem patterns upon which
319 fishers may have previously relied, affecting their ability to plan for the future (Zhang et al.,
320 2012). Changing ecosystems can also drive socio-economic factors such as tourism, poverty, and
321 reduced employment, which affect internal fishery dynamics (Klain et al., 2014). Established
322 species cannot continue to thrive in their traditional regions when climates fluctuate, impacting
323 oceans from tropical coral reefs to the Arctic by changing species distributions (Galappaththi et
324 al., 2019). Many species have even migrated outside of fishable regions to escape an unwanted
325 climate, thereby forcing fisheries to adapt (Cisneros-Montemayor et al., 2016). Atmospheric
326 warming can be a cause of these changing species distributions and presents its own host of
327 additional complications. This type of warming alone, independent of rising sea-surface
328 temperatures, is examined in just 3% of cases and has an increased impact on inland fisheries,
329 which lack the moderating effects of the ocean on atmospheric temperatures (Magee et al.,
330 2019).

331

332 [Insert Figure 4 here.]

333

334 3.5 Coping responses in fisheries

335 Coping responses refers to short-term responses, including autonomous responses to climate
336 change and associated impacts (Arias Schreiber et al., 2011). We found that documented coping
337 measures are mostly in response to climate impact categories related to extreme events (n=13)
338 and marine systems (n=9) (Table S5). Coping measures are responses to complex and multiple
339 impacts that represent direct and indirect climate change impacts (Table 2). For example,
340 skippers in the areas of Newlyn, Cornwall, Southwest England are responding to increasing fuel
341 prices by adopting various reactions, including: use tidal current more often to save fuel; reduce
342 steaming and towing speed; reduce the number of days at sea; take more risk with weather to
343 increase fishing days at sea; and attempt to increase the quality of fish caught to improve income
344 (Abernethy et al., 2010). We also found strategies to cope with the hardship of fisheries
345 undergoing multiple stressors including fish species migration and fish market volatilities. For
346 example, many Southern Cape line-fishers in South Africa proceed to sea only when a profitable
347 catch is guaranteed, which relied on feedback from other fishers as well as one's own knowledge
348 of sea conditions and local weather (Gammage et al., 2017).

349

350 Responses across studies vary based on the type of fishery and geographical region, but we
351 found specific behavioral responses commonly used at the local level. Changing fishing
352 locations, targeting other species, using different gear, and decreasing/increasing fishing days
353 and time on fishing grounds are standard practices among artisanal fisheries, mostly in the
354 developing context. For example, based on the research into small-scale coastal and floodplain
355 fishing communities in Bangladesh, Deb and Haque (2017) found that communities apply
356 numerous coping strategies, including psychological preparation and planning for the worst case
357 scenario; storage of dry foods and essential items for difficult times; and the repair of small boats
358 or the making of rafts with banana plants or bamboo. Further, widely used short-term responses
359 are informal and temporary livelihood options such as sharing fish (for food) and fishing-related
360 information, compromising (or switching) gender roles in fisheries, and using traditional fishing
361 techniques.

362

363 [Insert Table 2 here.]

364

365 3.6 Adaptive strategies in fisheries

366 Adaptive strategies are long-term responses or shifts in livelihood strategies in response to
367 multiple stressors, including climate change (M. J. Marschke & Berkes, 2006). Twenty-two
368 percent of studies were analyzed and documented adaptive strategies of fisheries systems at
369 various scales (community, regional, and national) (Table 2). Many of these strategies (74%) are
370 from 23 global south countries, the top three of which were Bangladesh, India, and Ghana.
371 Global north countries include the USA, Canada, and Australia. For instance, 33% of the studies
372 are led by North American institutions, yet only 25% of these papers target adaptation strategies
373 in North America. We identified a diverse range of adaptive strategies. For example,
374 modifications of fishing operations, adaptive capacity building, income diversification,
375 ecosystem-based approaches, change in rules and regulations, community involvement,
376 migration, and application of modern and traditional knowledge systems.

377

378 We found that documented adaptive strategies are responding to multiple climate change impacts
379 such as extreme events (n=9), climate variability (n=3), and temperature increases (n=1) (Table
380 S5). For example, to respond to climate variability and atmospheric warming in Lake Wamala
381 fisheries in Uganda, Musinguzi et al. (2016) found fishers apply multiple strategies such as
382 livelihood diversification, traditional knowledge, increasing access to climate information, and
383 shifting gender roles in fisheries. Further, Galappaththi et al. (2019) found fishers use community
384 adaptive responses, such as new technology, collective action, and collaboration, and combine
385 different kinds of knowledge systems in Arctic Char (*Salvelinus alpinus*, Salmonidae) and
386 Greenland Halibut (*Reinhardtius hippoglossoides*, Pleuronectidae) fisheries undergoing rapid
387 social-ecological change in the Canadian Arctic. We also found adaptive strategies responding to
388 specific climate impacts. For example, Chaijaroen (2019) found communities are switching to
389 non-fisheries industries in response to long-lasting income shocks related to coral bleaching in
390 Indonesian coastal fisheries. Also, Sultana and Thompson (2010) found that the creation of
391 social influence through local institutions to the Flood Action Plan is a viable strategy for
392 floodplain management in Bangladesh.

393

394 Many of the recorded fisheries are responding to multiple stressors using a combination of
395 multiple adaptive strategies. For instance, numerous strategies were developed and implemented
396 by the management authorities of the Peruvian anchovy (*Engraulis ringens*, Engraulidae) fishery
397 to deal with anchovy stock variations due mainly to El Niño Southern Oscillation and serious
398 warming events. Some of these strategies are intended to improve the geographical distribution
399 of fish processing plants at different sites along the coast to address changes in the distribution of
400 anchovy shoals; use low-cost unloading facilities; and implement rapid and flexible management
401 programs to improve out-of-date fisheries regulations (Arias Schreiber et al., 2011).
402 Furthermore, Sarkar et al. (2018) found fishers applied six Indigenous adaptive strategies to
403 improve floodplain fisheries management in West Bengal, India. These six climate-smart fishery
404 strategies are i) temporary pre-summer enclosure, ii) submerged branch pile (*Kata*) refuge, iii)
405 autumn stocking, iv) torchlight fishing, v) deep pool (*Komor*) refuge, and vi) floating aquatic
406 macrophyte refuge fishery (*Pana chapa*).

407

408 3.7 Management responses in fisheries

409 We identified long-term collective responses that involve planning, coordinating, organizing, and
410 monitoring at various scales that support climate adaptation as management responses (Table 3).
411 We found that documented management responses are specifically responding to general climate
412 change impacts (n=50), ocean conditions (n=14), climate variability (n=5), fishery dynamics
413 (n=5), species distribution (n=5), and temperature increases (n=6) (Table S5). Among these
414 studies (31%, n=71), we identified four key management approaches, which are adaptive
415 management, adaptation planning, community-based management, and government support
416 (including co-management).

417

418 *Adaptive management* is recorded largely (n=38) at multiple levels (community to national) in
419 marine, freshwater, and brackish water fisheries in various forms, such as ecosystem-based
420 management, precautionary management for resilient ecosystems, implementation of integrated
421 adaptive management, and integrated coastal management (d'Armengol et al., 2018). *Adaptation*
422 *planning* is the second most recorded management approach, yet the majority of planning is
423 recorded from global north countries (with the exception being Thailand), such as the USA,
424 Germany, Norway, Australia, and Spain. *Adaptation planning* is recorded mostly as a

425 participatory process co-led by the municipal- to national-level government actors, with the
426 various levels of community involvement (Pearce et al., 2012). *Community-based management*
427 approaches are limited (n=12) but recorded across different types of fisheries in the global north
428 and south. Community-based management/adaptation occurs when locals respond to climate
429 impacts using a bottom-up systematic approach that employs collective action and collaboration
430 (implementation of flexible fishery control rules through community-based institutions) (Hung et
431 al., 2018). *Government support* in the fisheries setting comes in various forms, such as formal
432 collaborative management (co-management), adaptive co-management, and adaptive co-
433 governance, for example, strengthening existing local management institutions and established
434 new community organizations (Fidelman et al., 2017). These regional-level studies (n=7) are
435 limited to Canada, the USA, Australia, South Africa, and Brazil. Most of these studies show the
436 use of multiple management responses at the same time to respond to multiple climate change
437 impacts (e.g., integration of community-based management with co-management).

438

439 Moreover, we found many other management approaches and terms used for climate adaptation
440 in fisheries, such as the use of adaptive institutions, ecosystem-based management, climate-ready
441 fisheries management, monitoring and evaluation, adaptation processes, and adaptation measures
442 and pathways. For example, in response to climate change impacts and multiple stressors,
443 Schemmel et al. (2016) found a low-cost and low-tech community-based fish monitoring
444 approach to assess the seasonal spawning peaks, lunar spawning cycles, and size at maturity for
445 key targeted reef fish in Hawaiian reef fisheries.

446

447 [Insert Table 3 here.]

448

449 3.8 Limits to adaptation in fisheries

450 Limits, barriers, and constraints to adaptation will restrict the adaptive responses of fisheries
451 systems and their ability to address the negative impacts of climate change. Over 35% of articles
452 mentioned various aspects related to limits, and we placed commonly recorded limits into six
453 categories: place, agency, collective action and collaboration (societal), institutions, knowledge
454 systems, and learning (Table 4). Yet, there are limited articles studying limits as their primary
455 focus. For example, Whitney and Ban (2019) found the importance of recognizing governance

456 and policy-related barriers when incorporating climate change adaptation into the marine
457 protected area management and planning in British Columbia. Additionally, Islam et al. (2014)
458 found five forms of obstacles to the adaptation of fishing activities to cyclones in Padma and
459 Kutubdia Para Bangladeshi coastal fishing communities: natural, technological, social,
460 economic, and formal institutional.

461

462 [Insert Table 4 here.]

463

464 3.9 Policy contributions

465 Seventy-nine percent (n=182) of studies address the specific aspects of policy implications
466 related to climate adaptations in fisheries. Many of these (56%) articles refer to policy in general.
467 For example, Belhabib et al. (2014) found how illegal fishing in coastal Senegal leads to the
468 misrepresentation of fish catch data. This article does not directly address the policy implications
469 of inaccurate catch data for climate adaptation, yet indirectly generates policy insights. We found
470 a limited number of studies that address specific policy implications. For example, Khan et al.
471 (2018) found how municipal adaptation policy initiatives can complement sector-based
472 adaptation policy at both local and regional levels through various entry points across
473 commodity production chains in Canada. These policy integrations across place-based and
474 sector-based adaptation processes can lead to multiple benefits such as conserving marine
475 biodiversity, protecting essential infrastructure, and securing fisheries livelihoods. Further,
476 Barragán and Lazo (2018) found 10 key elements of the national coastal management policy in
477 the context of climate change adaptation in the context of integrated coastal zone management in
478 Peru: policy, institutions, normative management, instruments, information, education,
479 strategies, resources, managers, and participation.

480

481 3.10 Grey literature assessment

482 Our grey literature includes professional reports and conference proceedings with a broader
483 scope of study aims (e.g., market and value chain, mixed systems, social-cultural, livelihoods,
484 and fish catches), which further contextualized this study. The results summarized below show
485 that the grey literature extended the findings given in the peer-reviewed assessment and had

486 similar outcomes. In terms of target fisheries, marine fisheries are the most studied (>80%)
487 among grey literature, while inland (12%) and brackish (7%) systems are studied less.
488 Most of the studies used multiple or integrated theoretical approaches (>30%), followed by
489 management (28%), anthropogenic (16%), systems (14%), and economic (11%). We found that
490 most documented climate change impacts are general climate impacts (40%) or multiple
491 stressors (38%). Climate impacts related to ocean conditions (14%) and climate variability (10%)
492 are also recorded in grey literature. For instance, Mulyasari et al. (2018) reported perceptions and
493 local adaptation strategies responding to general climate impacts in marine capture fisheries in
494 Bengkulu Province, Indonesia.

495

496 Many of the grey literature did not assess coping responses (65%). Documented types of coping
497 responses are most like the results of the peer-review assessment (e.g., increasing fishing
498 time/distance and changing fishing species). Over half of all the studies used multiple adaptive
499 strategies. One-third of the documented adaptive strategies are related to building adaptive
500 capacity (e.g., strengthening assets, improving information sharing). Other documented adaptive
501 strategies are scattered among various categories, including significant changes in fishing
502 operation, adjustments in fisheries management rules and regulations, livelihood diversification,
503 and the use of multiple adaptive strategies. In terms of management responses, grey literature
504 heavily discussed six types. We found that the use of multiple management strategies (e.g.,
505 community-based adaptation and co-management) was the most (28%) documented. The rest of
506 the management responses were: co-management (19%), ecosystem-based management (15%),
507 community-based management (15%), adaptive management, (15%), and adaptation planning
508 (9%). For example, Johnson et al. (2019) report various adaptation responses from 27 research
509 locations across the globe include the use of local knowledge, capacity building, and adaptive
510 institutions.

511

512 We found that climate adaptation limits are rarely discussed in grey literature. When they are
513 discussed, limits related to institutions (e.g., inadequate regulations), human agency (e.g., limited
514 management capacities), knowledge systems (e.g., information barriers), and learning (e.g.,
515 access to education) are documented themes. For instance, Barange et al. (2018) report that poor
516 enforcement systems are a barrier for adaptation in fisheries. Most grey literature (72%) did not

517 assess policy recommendations. Twenty-eight percent of studies address the specific aspects of
518 policy implications related to climate adaptations in fisheries.

519

520 4.0 Discussion

521 This paper systematically assesses the state of the peer-reviewed literature on global climate
522 change adaptation in a fisheries context. Many intergovernmental reports continue to
523 demonstrate the importance of fisheries in providing food, nutrition, and food security (Barange
524 et al., 2018; FAO, 2020; IPCC, 2018). Based on peer-reviewed empirical evidence on climate
525 adaptation (n=230), we advance understanding to inform the ongoing and future fisheries
526 adaptation efforts and policy. Many of these studies are initiated and funded by three countries:
527 the USA, Australia, and Canada. Our results reveal both mismatches and complementarities with
528 other literature. For instance, the top marine species catches in 2018 are Anchovies (*Engraulis*
529 *ringens*), Alaska Pollock (*Gadus chalcogrammus*), and Skipjack Tuna (*Katsuwonus pelamis*)
530 (FAO, 2020), while the most studied species groups in climate adaptation are Lobster, Tuna, and
531 Cod. These studies focus mostly on how fisheries support livelihoods and the sector's importance
532 for food systems. Many studies that focus on the human dimensions of climate adaptation do not
533 have a species focus to investigate climate impacts and adaptation responses.

534

535 Global fisheries systems adapt to a wide range of climate change impacts (Figure 4). Our
536 findings support the previous global assessment reports of climate change impacts and aquatic
537 systems (Barange & Cochrane, 2018; Kalikoski et al., 2018). For example, Bahri et al. (2018)
538 synthesized the implications of climate impacts in aquatic systems, including water temperature,
539 oxygen content, ice coverage, sea level, ocean circulation, ocean acidification, and primary
540 production. We identified three types of documented ways in which people experience climate
541 change impacts in a fisheries setting: multiple simultaneous impacts (e.g., extreme weather
542 events and sea-level rise); interrelated and mixed impacts (e.g., economic and market volatility in
543 the context of climate variability); and geographically specific effects (e.g., sea-level rise in
544 Pacific Islands, sea ice melting in the Arctic). Most peer-reviewed literature published between
545 1990-2019 examining climate impacts has a strong focus on marine ecosystems and devotes less
546 attention to the human dimensions of climate impacts. For example, Brander (2010) identified
547 direct and indirect climate impacts on fisheries by investigating physical and chemical factors in

548 marine systems. It is also notable that this review did not identify overfishing as a major stressor
549 that interacts with climate change and influences adaptive capacity and adaptation options
550 (Sumaila & Tai, 2020).

551
552 We categorized three critical ways of responding to climate change impacts in the global
553 fisheries setting: i) coping mechanisms, ii) adaptive strategies, and iii) management approaches
554 for adaptation. Coping responses are practiced mainly by fishers across the world to deal with the
555 various climate impacts at the local level (e.g., behavioral responses such as changing fishing
556 location). These responses were recorded from a diverse range of geographical regions (e.g.,
557 Honduras, India, the USA, Cambodia, French Polynesia, and Ghana). Coping responses are
558 characterized by their short-term nature, the autonomous nature of reactions, low/no-regret-type
559 responses, and a technical focus. Further, most coping mechanisms respond to specific climate
560 change impacts, responding to multiple- or mixed-effects (e.g., Southern USA oyster industry
561 looking for new harvesting locations to deal with flooding, erosion, and increased saltwater
562 intrusion). Previous synthesis exercises and grey literature have also recognized coping
563 mechanisms in the fisheries and aquaculture setting (Barange et al., 2018). Both peer-reviewed
564 literature and grey literature indicate the indistinct difference between recorded coping and
565 adaptive strategies (Dzantor et al., 2020; Johnson et al., 2019). Coping responses must be
566 complemented by the adaptive strategies and management responses to build resilience in
567 fisheries.

568
569 Second, we identified diverse adaptive strategies in global fisheries to deal with the implications
570 of climate change impacts. More geographically generalizable adaptive strategies include
571 livelihood diversification (within and outside fisheries), technology and the modification of
572 fishing activities (e.g., fishing gear, target species), investments in physical capital (e.g.,
573 infrastructure), insurance, the preservation and application of traditional and local knowledge
574 systems, the improvement of community involvement (e.g., community-based resource
575 monitoring), the addressing of information gaps, and education and training. Also, we identified
576 place-specific adaptation strategies (Khan et al., 2018), including migration, early warning
577 systems, changes in markets, and the integration of Indigenous and local knowledge for decision-
578 making. These adaptive strategies are compatible with the documented adaptations in the grey

579 literature assessment, which includes the previous global fisheries and aquaculture assessments
580 led by the FAO (Barange et al., 2018; Daw et al., 2009).

581
582 Third, we found four management approaches used in response to climate change impacts: i)
583 adaptive management, ii) adaptation planning, iii) community-based management, and iv)
584 government support (including co-management). These recorded management responses are key
585 to generating and supporting coping efforts at the local level and adaptive strategies at multiple
586 levels (community to global) through multi-level institutions and actors (Daw et al., 2009;
587 Koontz et al., 2015). Most of these responses (Table 3) are related to widely documented
588 management responses in other sectors and the climate change adaptation literature in general
589 (Galappaththi et al., 2020; Miller et al., 2018; Paukert et al., 2016). For example, in terms of the
590 recorded number of studies, *adaptive management* emerges as the most dominant management
591 response in fisheries, whereas Galappaththi et al. (2020) found *adaptation planning* to be the
592 most prominent in the aquaculture sector following community-based adaptation. We were also
593 surprised at how some of the themes, such as climate-ready fisheries management, are not
594 highlighted in the systematic review (Bell et al., 2020).

595
596 We identified three characteristics of adaptive strategies and management responses: (i) applied
597 in a multilevel context (community to global/mostly top to bottom), (ii) of a long-term nature
598 (bring present and future benefits), and (iii) responds to a large range of climate impacts
599 (sometimes across sectors). For example, to align with the National Flood Action Plan,
600 Bangladesh has established new local institutions for flood management building on community-
601 level fisheries organizations (Sultana & Thompson, 2010). Yet, practicing on the ground is not
602 limited to the identified responses in the study. Adaptation can be seen as an ongoing and
603 iterative social process (Wolf, 2011). The progress and effectiveness of adaptation responses are
604 influenced by the geographical, environmental, institutional, and socio-economic contexts of
605 specific fisheries; they could also rely on current adaptation progress at various levels (Barange
606 et al., 2018; Lesnikowski et al., 2016). Also, new or modified regulations, policies (e.g., FAO
607 fisheries guidelines), and their enforcement, are integral parts of successful climate adaptation as
608 well as sustainable fisheries management (Hilborn, 2007; Selig et al., 2017).

609

610 5.0 Opportunities and directions for future research
611 A systematic review like this is often used to understand and communicate significant research
612 gaps, thereby identifying future research opportunities. Our study is based on 230 peer-reviewed
613 articles chosen using a specific selection criterion (section 2). To our knowledge, limited
614 systematic review assessments aimed at climate change adaptation in fisheries (excluding
615 aquaculture) are available. Thus, the area of climate change adaptation in fisheries has the
616 potential for further development in various aspects. For example, according to the FAO data,
617 the top five producers for capture fisheries are China (15%), Indonesia (7%), Peru (7%), India
618 (6%), and Russia (5%), comprising up to 40% (>38 million tonnes) of the global production
619 (FAO, 2020). In our study, these five countries are not among the top five research destination
620 countries (except India) and represent only 11% (25 articles out of 230) of the sample (India
621 dominates with 15 studies).

622
623 We identified gaps related to theoretical and methodological approaches adopted to study climate
624 change adaptation in fisheries. We identified three conceptual gap areas based on the Venn
625 diagram analysis (Figure 3), which used four conceptual categories (i.e., *systems*, *management*,
626 *economics*, and *anthropogenic*). First, we identified the gap in the overlapping area
627 of *management*, *systems*, and *economics*. Second, there is an opportunity to link various
628 *anthropogenic* approaches with *management* approaches. Third, there is a large gap for
629 conceptual integration among the four identified thematic conceptual areas and beyond. Though
630 FAO (2015) investigates theoretical frameworks and methodologies available to examine climate
631 change adaptation in fisheries and aquaculture, we identified gaps in methodological approaches
632 for future research. We found a dearth of quantitative studies for climate adaptation in fisheries.
633 Many of the studies were built on primary data; thus, there is a gap for studies using secondary
634 data and a mix of primary and secondary data.

635
636 We identified various opportunities for future research in different types of fisheries (i.e., marine,
637 inland, and brackish). Inland and brackish water fisheries have limited studies compared to
638 marine fisheries, which apply across the globe. For example, Oceania represents a relatively
639 limited number of inland and brackish water studies as compared to marine fisheries, which
640 warrants further empirical attention. Results indicate that Europe also requires further attention

641 with regard to inland fisheries. Both Asia and North America have low numbers of inland and
642 brackish fisheries studies. Further, we identified a lack of explicit typology for global fisheries
643 types in climate adaptation that could limit the effective scaling-up of empirical lessons up to
644 global adaptation policy. Currently, global fisheries types are characterized in many ways, for
645 example, size-specific (e.g., small-scale, large-scale), economic purpose (e.g., subsistence,
646 commercial), species-specific (e.g., lobster or tuna fisheries), geographical specific (e.g., Mbenje
647 Island fishery, gulf fisheries), and gear-specific (e.g., trawl fisheries).

648

649 The ways in which the fisheries sector experiences climate change impacts in an adaptation
650 context are not well studied. Our analysis indicates specific categories of climate impacts require
651 more scholarly attention in particular regions, such as fish species distribution (from a human
652 dimension perspective) in Asia, Oceania, and South America. Also, marine system shifts in
653 South America and Africa, extreme climate events in Oceania, and general climate change
654 impacts in South America are understudied. We presume that regions such as South America
655 might have more relevant documented knowledge, but this knowledge is inaccessible due to
656 language barriers. The climate change impacts in the global fisheries adaptation context should
657 be continuously monitored because of the dynamic and complex nature of climate change
658 implications and the vulnerable fisheries populations. That being said, various FAO reports have
659 studied these impacts aimed at fisheries and aquaculture (Barange et al., 2018; FAO, 2015;
660 Johnson et al., 2019; Seggel & De Young, 2016).

661

662 We found various adaptive responses documented across the globe, but limited attention has
663 been paid to examining barriers, constraints, and limits for climate adaptation. Our study
664 identified very little evidence on adaptation limits as a primary study focus (Islam et al., 2014;
665 Whitney & Ban, 2019). We were able to analyze widely documented limitations across studies.
666 We believe that there is an opportunity to specifically assess global adaptation limits in fisheries
667 to inform climate change adaptation policy. Additionally, we identified specific study areas that
668 require attention in future research. There is a clear gap in which to carry out comparative case
669 studies to generate broader adaptation insights. Marginalized and underrepresented fisher
670 populations such as Indigenous fisheries must be further investigated given the potentially high

671 vulnerability of such fisheries systems. It is also important to synthesize and assess ongoing and
672 past empirical knowledge to inform global fisheries adaptation.

673

674 Overall, much more attention and resources are likely needed to support the fisheries sector in
675 adapting to ongoing and future climate change. Our study highlights how climate change impacts
676 can affect fisheries systems and adaptation responses that can affect global fisheries production.
677 An inability to adapt and a decrease in fisheries production have implications for the industry, as
678 well as for a growing world population, as it is associated with food security (Béné et al., 2016;
679 Loring et al., 2019). Non-climatic stressors such as COVID-19 further complicate the
680 implications of climate change and create barriers for adaptation activities (Nathan. J. Bennett et
681 al., 2020). With the acknowledgement that the fishing sector may not be able to adapt to all the
682 impacts of climate change, it is essential to continue assessments and improve climate change
683 adaptation research in fisheries.

684

685 **Acknowledgements:** EKG acknowledges the financial support of the doctoral fellowship of the
686 Social Science and Humanities Research Council (SSHRC) of Canada. STI acknowledges the
687 financial support of a graduate research assistantship through the AquaFish Innovation Lab at
688 Oregon State University. AAH acknowledges the financial support of an assistantship through
689 the Department of Ecology and Evolutionary Biology at the University of Tennessee-Knoxville.

690

691 **Data availability statement:** N/A

692

693 References

694 Abernethy, K. E., Trebilcock, P., Kebede, B., Allison, E. H., & Dulvy, N. K. (2010). Fuelling the
695 decline in UK fishing communities? *ICES Journal of Marine Science*, 67, 1076–1085.
696 <https://doi.org/10.1093/icesjms/fsp289>

697 Arias Schreiber, M., Ñiquen, M., & Bouchon, M. (2011). Coping strategies to deal with
698 environmental variability and extreme climatic events in the Peruvian Anchovy Fishery.
699 *Sustainability*, 3, 823–846. <https://doi.org/10.3390/su3060823>

700 Bahadur, K. K., Seng, R., & Fraser, E. (2019). Should I stay or should I go? Fishers' ability and
701 willingness to adapt to environmental change in Cambodia's Tonle Sap Lake. *Fisheries
702 Management and Ecology*, 26(3), 211–223. <https://doi.org/10.1111/fme.12341>

703 Bahri, T. (2018). Climate change and aquatic systems. In M. Barange (Ed.), *Impacts of climate
704 change on fisheries and aquaculture: Synthesis of current knowledge, adaptation and
705 mitigation options*. FAO Fisheries and Aquaculture Technical Paper No. 627: 1-17.

706 Barange, M., Bahri, T., Beveridge, M. C., Cochrane, K. L., Funge-Smith, S., & Poulain, F.
707 (2018). *Impacts of climate change on fisheries and aquaculture, Synthesis of current
708 knowledge, adaptation and mitigation options*. Rome: Food and Agriculture
709 Organization of the United Nations, FAO Fisheries and Aquaculture Technical Paper
710 No. 627: 628pp.

711 Barange, M., & Cochrane, K. L. (2018). Impacts of climate change on fisheries and aquaculture:
712 Conclusions. In M. Barange (Ed.), *Impacts of climate change on fisheries and
713 aquaculture: Synthesis of current knowledge, adaptation and mitigation options*. FAO
714 Fisheries and Aquaculture Technical Paper No. 627: 611-628.

715 Barragán, J. M., & Lazo, Ó. (2018). Policy progress on ICZM in Peru. *Ocean & Coastal
716 Management*, 157, 203–216. <https://doi.org/10.1016/j.ocecoaman.2018.03.003>

717 Belhabib, D., Koutob, V., Sall, A., Lam, V. W., & Pauly, D. (2014). Fisheries catch misreporting
718 and its implications: The case of Senegal. *Fisheries Research*, 151, 1–11.
719 <https://doi.org/10.1016/j.fishres.2013.12.006>

720 Bell, R. J., Odell, J., Kirchner, G., & Lomonico, S. (2020). Actions to Promote and Achieve
721 Climate-Ready Fisheries: Summary of Current Practice. *Marine and Coastal Fisheries*,
722 12, 166–190. <https://doi.org/10.1002/mcf2.10112>

723 Béné, C., Arthur, R., Norbury, H., Allison, E. H., Beveridge, M., Bush, S., Campling, L.,
724 Leschen, W., Little, D., & Squires, D. (2016). Contribution of fisheries and aquaculture
725 to food security and poverty reduction: Assessing the current evidence. *World
726 Development*, 79, 177–196. <https://doi.org/10.1016/j.worlddev.2015.11.007>

727 Bennett, N., Kadfak, A., & Dearden, P. (2016). Community-based scenario planning: A process
728 for vulnerability analysis and adaptation planning to social-ecological change in coastal
729 communities. *Environment Development and Sustainability*, 18, 1771–1799.
730 <https://doi.org/10.1007/s10668-015-9707-1>

731 Bennett, Nathan. J., Finkbeiner, E. M., Ban, N. C., Belhabib, D., Jupiter, S. D., Kittinger, J. N.,
732 Mangubhai, S., Scholtens, J., Gill, D., & Christie, P. (2020). The COVID-19 Pandemic,
733 Small-Scale Fisheries and Coastal Fishing Communities. *Coastal Management*, 48, 336–
734 347. <https://doi.org/10.1080/08920753.2020.1766937>

735 Berrang-Ford, L., Pearce, T., & Ford, J. D. (2015). Systematic review approaches for climate
736 change adaptation research. *Regional Environmental Change*, 15, 755–769.
737 <https://doi.org/10.1007/s10113-014-0708-7>

738 Bindoff, N. L., Cheung, W. W., Kairo, J. G., Arístegui, J., Guinder, V. A., Hallberg, R., Hilmi,
739 N. J. M., Jiao, N., Karim, M. S., Levin, L., O'Donoghue, S., Purca Cuicapusa, S. R.,
740 Rinkevich, B., Suga, T., Tagliabue, A., & Williamson, P. (2019). Changing ocean,
741 marine ecosystems, and dependent communities. In *IPCC special report on the ocean
742 and cryosphere in a changing climate* (pp. 477–587). Intergovernmental Panel on
743 Climate Change.

744 Blanco, E., Lopez, M. C., & Villamayor-Tomas, S. (2015). Exogenous degradation in the
745 commons: Field experimental evidence. *Ecological Economics*, 120, 430–439.
746 <https://doi.org/10.1016/j.ecolecon.2015.03.028>

747 Brander, K. (2010). Impacts of climate change on fisheries. *Journal of Marine Systems*, 79, 389–
748 402. <https://doi.org/10.1016/j.jmarsys.2008.12.015>

749 Brewer, J. F., Molton, K., Alden, R., & Guenther, C. (2017). Accountability, transformative
750 learning, and alternate futures for New England groundfish catch shares. *Marine Policy*,
751 80, 113–122. <https://doi.org/10.1016/j.marpol.2016.09.015>

752 Camargo, C., Maldonado, J. H., Alvarado, E., Moreno-Sánchez, R., Mendoza, S., Manrique, N.,
753 Mogollón, A., Osorio, J. D., Grajales, A., & Sánchez, J. A. (2009). Community
754 involvement in management for maintaining coral reef resilience and biodiversity in
755 southern Caribbean marine protected areas. *Biodiversity and Conservation*, 18, 935–956.
756 <https://doi.org/10.1007/s10531-008-9555-5>

757 Carter, L. (2019). He korowai o Matainaka/The cloak of Matainaka. *New Zealand Journal of
758 Ecology*, 43, 1–8. <https://dx.doi.org/10.20417/nzjecol.43.27>

759 Chaijaroen, P. (2019). Long-lasting income shocks and adaptations: Evidence from coral
760 bleaching in Indonesia. *Journal of Development Economics*, 136, 119–136.
761 <https://doi.org/10.1016/j.jdeveco.2018.10.002>

762 Cisneros-Montemayor, A. M., Pauly, D., Weatherdon, L. V., & Ota, Y. (2016). A global estimate
763 of seafood consumption by coastal indigenous peoples. *PLoS One*, 11, e0166681.
764 <https://doi.org/10.1371/journal.pone.0166681>

765 Codjoe, S. N. A., Atidoh, L. K., & Burkett, V. (2012). Gender and occupational perspectives on
766 adaptation to climate extremes in the Afram Plains of Ghana. *Climatic Change*, 110,
767 431–454. <https://doi.org/10.1007/s10584-011-0237-z>

768 Collin, A., Nadaoka, K., & Bernardo, L. (2015). Mapping the Socio-Economic and Ecological
769 Resilience of Japanese Coral Reefscapes across a Decade. *ISPRS International Journal of
770 Geo-Information*, 4, 900–927. <https://doi.org/10.3390/ijgi4020900>

771 d'Armengol, L., Castillo, M. P., Ruiz-Mallén, I., & Corbera, E. (2018). A systematic review of
772 co-managed small-scale fisheries: Social diversity and adaptive management improve
773 outcomes. *Global Environmental Change*, 52, 212–225.
774 <https://doi.org/10.1016/j.gloenvcha.2018.07.009>

775 Daw, T., Adger, W. N., Brown, K., & Badjeck, M. C. (2009). Climate change and capture
776 fisheries: Potential impacts, adaptation and mitigation. In K. Cochrane, C. De Young, D.
777 Soto, & T. Bahri (Eds.), *Climate change implications for fisheries and aquaculture: Overview of current scientific knowledge*. FAO Fisheries and Aquaculture Technical
778 Paper. No. 530: 107-150.

780 de Coninck, H., Revi, A., Babiker, M., Bertoldi, P., Buckeridge, M., Cartwright, A., Dong, W.,
781 Ford, J., Fuss, S., Hourcade, J.-C., Ley, D., Mechler, R., Newman, P., Revokatova, A.,
782 Schultz, S., L. Steg, and, & Sugiyama, T. (2018). *Strengthening and Implementing the Global Response*. In: *Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty* [Masson-Delmotte, V., P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, and T. Waterfield (eds.)]. In Press.

791 Deb, A. K., & Haque, C. E. (2017). Multi-dimensional coping and adaptation strategies of small-
792 scale fishing communities of Bangladesh to climate change induced stressors.
793 *International Journal of Climate Change Strategies and Management*, 9, 446–468.
794 <https://doi.org/10.1108/IJCCSM-06-2016-0078>

795 Debnath, B., Krishnan, M., Ananthan, P., & Debnath, B. (2016). Awareness, perceptions and
796 adaptation strategies of women in urban fishing village in a climate change environment-
797 a case study in Versova, Mumbai. *Indian J. Fish*, 63, 120–125.
798 [10.21077/ijf.2016.63.3.40077-17](https://doi.org/10.21077/ijf.2016.63.3.40077-17)

799 Diedrich, A., Stoeckl, N., Gurney, G. G., Esparon, M., & Pollnac, R. (2017). Social capital as a
800 key determinant of perceived benefits of community-based marine protected areas.
801 *Conservation Biology*, 31, 311–321. <https://doi.org/10.1111/cobi.12808>

802 Diop, B., Sanz, N., Duplan, Y. J. J., Blanchard, F., Pereau, J.-C., & Doyen, L. (2018). Maximum
803 economic yield fishery management in the face of global warming. *Ecological
804 Economics*, 154, 52–61. <https://doi.org/10.1016/j.ecolecon.2018.07.027>

805 Donda, S., & Manyungwa-Pasani, C. L. (2018). Understanding indigenous knowledge: Its role
806 and potential in fisheries resources management in Malawi. *Aquatic Ecosystem Health
807 and Management*, 21, 176–184. <https://doi.org/10.1080/14634988.2018.1451187>

808 Dubik, B. A., Clark, E. C., Young, T., Zigler, S. B. J., Provost, M. M., Pinsky, M. L., & Martin,
809 K. S. (2019). Governing fisheries in the face of change: Social responses to long-term
810 geographic shifts in a US fishery. *Marine Policy*, 99, 243–251.
811 <https://doi.org/10.1016/j.marpol.2018.10.032>

812 Dzantor, S. A., Aheto, D. W., & Adetor, C. O. (2020). Assessment of Vulnerability and Coping
813 Livelihood Strategies of Fishermen in Elmina, Ghana. *East African Journal of
814 Interdisciplinary Studies*, 2, 71–88. <https://doi.org/10.37284/eajis.2.1.200>

815 Ensor, J. E., Park, S. E., Attwood, S. J., Kaminski, A. M., & Johnson, J. E. (2018). Can
816 community-based adaptation increase resilience? *Climate and Development*, 10, 134–
817 151. <https://doi.org/10.1080/17565529.2016.1223595>

818 Etikan, I., Musa, S. A., & Alkassim, R. S. (2016). Comparison of convenience sampling and
819 purposive sampling. *American Journal of Theoretical and Applied Statistics*, 5(1), 1–4.

820 Fairclough, N. (2013). *Critical discourse analysis: The critical study of language* (Vol. 2).
821 Routledge: New York, pp. 608.

822 FAO. (2015). *Assessing climate change vulnerability in fisheries and aquaculture: Available*
823 *methodologies and their relevance for the sector, by Cecile Brugère and Cassandra De*
824 *Young. FAO Fisheries and Aquaculture Technical Paper No. 597.*

825 FAO. (2018). *The State of World Fisheries and Aquaculture 2018—Meeting the sustainable*
826 *development goals. Rome. Licence: CC BY-NC-SA 3.0 IGO.*

827 FAO. (2019). *FishStatJ - Software for Fishery and Aquaculture Statistical Time Series.* Fisheries
828 and Aquaculture Department, Food and Agriculture Organization of the United Nations.
829 <http://www.fao.org/fishery/statistics/software/fishstatj/en>

830 FAO. (2020). *The State of World Fisheries and Aquaculture 2020. Sustainability in action.*
831 *Rome. [Https://doi.org/10.4060/ca9229en](https://doi.org/10.4060/ca9229en).*

832 Fidelman, P., Van Tuyen, T., Nong, K., & Nursey-Bray, M. (2017). The institutions-adaptive
833 capacity nexus: Insights from coastal resources co-management in Cambodia and
834 Vietnam. *Environmental Science & Policy*, 76, 103–112.
835 <https://doi.org/10.1016/j.envsci.2017.06.018>

836 Forbes, B. C. (2013). Cultural resilience of social-ecological systems in the Nenets and Yamal-
837 Nenets Autonomous Okrugs, Russia: A focus on reindeer nomads of the tundra. *Ecology*
838 and *Society*, 18, 36. <http://dx.doi.org/10.5751/ES-05791-180436>

839 Ford, J. D., & Pearce, T. (2010). What we know, do not know, and need to know about climate
840 change vulnerability in the western Canadian Arctic: A systematic literature review.
841 *Environmental Research Letters*, 5, 014008. 10.1088/1748-9326/5/1/014008

842 Frawley, T. H., Crowder, L. B., & Broad, K. (2019). Heterogeneous perceptions of social-
843 ecological change among small-scale fishermen in the central Gulf of California:
844 Implications for adaptive response. *Frontiers in Marine Science*, 6, 78.
845 <https://doi.org/10.3389/fmars.2019.00078>

846 Freduah, G., Fidelman, P., & Smith, T. F. (2019). Adaptive capacity of small-scale coastal
847 fishers to climate and non-climate stressors in the Western region of Ghana. *The*
848 *Geographical Journal*, 185, 96–110. <https://doi.org/10.1111/geoj.12282>

849 Galappaththi, E. K., Ford, D. J., Bennett, E. M., & Berkes, F. (2019). Climate change and
850 community fisheries in the Arctic: A case study from Pangnirtung, Canada. *Journal of*
851 *Environmental Management*, 250(109534), 11.
852 <https://doi.org/10.1016/j.jenvman.2019.109534>

853 Galappaththi, E. K., Ichien, S. T., Hyman, A. A., Aubrac, C. J., & Ford, J. D. (2020). Climate
854 change adaptation in aquaculture. *Reviews in Aquaculture*, 12, 2160–2176.
855 <https://doi.org/10.1111/raq.12427>

856 Gammage, L. C., Jarre, A., & Mather, C. (2017). A case study from the southern Cape line
857 fishery 2: Considering one's options when the fish leave. *South African Journal of*
858 *Science*, 113, 1–10. <http://dx.doi.org/10.17159/sajs.2017/20160254>

859 Gourlie, D., Davis, R., Govan, H., Marshman, J., & Hanich, Q. (2018). Performing “A New
860 Song”: Suggested considerations for drafting effective coastal fisheries legislation under
861 climate change. *Marine Policy*, 88, 342–349.
862 <https://doi.org/10.1016/j.marpol.2017.06.012>

863 Hilborn, R. (2007). Managing fisheries is managing people: What has been learned? *Fish and*
864 *Fisheries*, 8, 285–296. https://doi.org/10.1111/j.1467-2979.2007.00263_2.x

865 Himes-Cornell, A., & Hoelting, K. (2015). Resilience strategies in the face of short-and long-
866 term change: Out-migration and fisheries regulation in Alaskan fishing communities.
867 *Ecology and Society*, 20(2). <http://dx.doi.org/10.5751/ES-07074-200209>

868 Hoerterer, C., Schupp, M. F., Benkens, A., Nickiewicz, D., Krause, G., & Buck, B. H. (2020).
869 Stakeholder Perspectives on Opportunities and Challenges in Achieving Sustainable
870 Growth of the Blue Economy in a Changing Climate. *Frontiers in Marine Science*, 6,
871 795. <https://doi.org/10.3389/fmars.2019.00795>

872 Hung, H.-C., Lu, Y.-T., & Hung, C.-H. (2018). The determinants of integrating policy-based and
873 community-based adaptation into coastal hazard risk management: A resilience approach.
874 *Journal of Risk Research*, 22, 1205–1223.
875 <https://doi.org/10.1080/13669877.2018.1454496>

876 IPCC. (2018). *De Coninck, H., A. Revi, M. Babiker, P. Bertoldi, M. Buckeridge, A. Cartwright,*
877 *W. Dong, J. Ford, S. Fuss, J.-C. Hourcade, D. Ley, R. Mechler, P. Newman, A.*
878 *Revokatova, S. Schultz, L. Steg, and T. Sugiyama, 2018: Strengthening and Implementing*
879 *the Global Response. In: Global Warming of 1.5°C. An IPCC Special Report on the*
880 *impacts of global warming of 1.5°C above pre-industrial levels and related global*
881 *greenhouse gas emission pathways, in the context of strengthening the global response to*
882 *the threat of climate change, sustainable development, and efforts to eradicate poverty*
883 *[MassonDelmotte, V., P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani,*

884 W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X.
885 Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, and T. Waterfield (eds.)]. *In Press*.

886 Islam, M. M., Sallu, S., Hubacek, K., & Paavola, J. (2014). Limits and barriers to adaptation to
887 climate variability and change in Bangladeshi coastal fishing communities. *Marine
888 Policy*, 43, 208–216. <https://doi.org/10.1016/j.marpol.2013.06.007>

889 Jackson, F. L., Fryer, R. J., Hannah, D. M., Millar, C. P., & Malcolm, I. A. (2018). A spatio-
890 temporal statistical model of maximum daily river temperatures to inform the
891 management of Scotland's Atlantic salmon rivers under climate change. *Science of the
892 Total Environment*, 612, 1543–1558. <https://doi.org/10.1016/j.scitotenv.2017.09.010>

893 Joarder, M. A. M., & Miller, P. W. (2013). Factors affecting whether environmental migration is
894 temporary or permanent: Evidence from Bangladesh. *Global Environmental Change*, 23,
895 1511–1524. <https://doi.org/10.1016/j.gloenvcha.2013.07.026>

896 Johnson, J., De Young, C., Bahri, T., Soto, D., & Virapat, C. (2019). *Proceedings of FishAdapt:
897 The Global Conference on Climate Change Adaptation for Fisheries and Aquaculture,
898 Bangkok, 8–10 August, 2016*.

899 Kaján, E. (2014). Community perceptions to place attachment and tourism development in
900 Finnish Lapland. *Tourism Geographies*, 16(3), 490–511.
901 <https://doi.org/10.1080/14616688.2014.941916>

902 Kalikoski, D. C., Jentoft, S., Charles, A., Salazar, D., Herrera, K. C., Béné, C., & Allison, E. H.
903 (2018). Understanding the impacts of climate change for fisheries and aquaculture:
904 Applying a poverty lens. In M. Barange (Ed.), *Impacts of climate change on fisheries and
905 aquaculture: Synthesis of current knowledge, adaptation and mitigation options* (p. 19).
906 FAO Fisheries and Aquaculture Technical Paper No. 627: 19-40.

907 Kalikoski, D. C., Neto, P. Q., & Almudi, T. (2010). Building adaptive capacity to climate
908 variability: The case of artisanal fisheries in the estuary of the Patos Lagoon, Brazil.
909 *Marine Policy*, 34, 742–751. <https://doi.org/10.1016/j.marpol.2010.02.003>

910 Khan, A., Charles, A., & Armitage, D. (2018). Place-based or sector-based adaptation? A case
911 study of municipal and fishery policy integration. *Climate Policy*, 18, 14–23.
912 <https://doi.org/10.1080/14693062.2016.1228520>

913 Klain, S. C., Beveridge, R., & Bennett, N. J. (2014). Ecologically sustainable but unjust?
914 Negotiating equity and authority in common-pool marine resource management. *Ecology*
915 and Society, 19, 52. <http://dx.doi.org/10.5751/ES-07123-190452>

916 Koontz, T. M., Gupta, D., Mudliar, P., & Ranjan, P. (2015). Adaptive institutions in social-
917 ecological systems governance: A synthesis framework. *Environmental Science &*
918 *Policy*, 53, 139–151. <https://doi.org/10.1016/j.envsci.2015.01.003>

919 Krippendorff, K. (2018). *Content analysis: An introduction to its methodology* (Vol. 4). Sage
920 publications: London, pp. 453.

921 Lesnikowski, A., Ford, J., Biesbroek, R., Berrang-Ford, L., & Heymann, S. J. (2016). National-
922 level progress on adaptation. *Nature Climate Change*, 6, 261.
923 <https://doi.org/10.1038/nclimate2863>

924 Lim-Camacho, L., Plagányi, E. E., Crimp, S., Hodgkinson, J. H., Hobday, A. J., Howden, S. M.,
925 & Loechel, B. (2017). Complex resource supply chains display higher resilience to
926 simulated climate shocks. *Global Environmental Change*, 46, 126–138.
927 <https://doi.org/10.1016/j.gloenvcha.2017.08.011>

928 Limuwa, M. M., Sitaula, B. K., Njaya, F., & Storebakken, T. (2018). Evaluation of small-scale
929 fishers' perceptions on climate change and their coping strategies: Insights from Lake
930 Malawi. *Climate*, 6, 34. <https://doi.org/10.3390/cli6020034>

931 Loring, P. A., Fazzino, D. V., Agapito, M., Chuenpagdee, R., Gannon, G., & Isaacs, M. (2019).
932 Fish and food security in small-scale fisheries. In R. Chuenpagdee & S. Jentoft (Eds.),
933 *Transdisciplinarity for Small-Scale Fisheries Governance* (pp. 55–73). Springer Nature:
934 Cham.

935 Magee, M. R., Hein, C. L., Walsh, J. R., Shannon, P. D., Vander Zanden, M. J., Campbell, T. B.,
936 Hansen, G. J., Hauxwell, J., LaLiberte, G. D., & Parks, T. P. (2019). Scientific advances
937 and adaptation strategies for Wisconsin lakes facing climate change. *Lake and Reservoir*
938 *Management*, 35, 364–381. <https://doi.org/10.1080/10402381.2019.1622612>

939 Makame, M. O., & Shackleton, S. (2020). Perceptions of climate variability and change in
940 relation to observed data among two east coast communities in Zanzibar, East Africa.
941 *Climate and Development*, 12, 801–813. <https://doi.org/10.1080/17565529.2019.1697633>

942 Malakar, K., Mishra, T., & Patwardhan, A. (2018). Drivers of response to extreme weather
943 warnings among marine fishermen. *Climatic Change*, 150, 417–431.
944 <https://doi.org/10.1007/s10584-018-2284-1>

945 Mantyka-Pringle, C. S., Jardine, T. D., Bradford, L., Bharadwaj, L., Kythreotis, A. P., Fresque-
946 Baxter, J., Kelly, E., Somers, G., Doig, L. E., & Jones, P. D. (2017). Bridging science and
947 traditional knowledge to assess cumulative impacts of stressors on ecosystem health.
948 *Environment International*, 102, 125–137. <https://doi.org/10.1016/j.envint.2017.02.008>

949 Marschke, M. J., & Berkes, F. (2006). Exploring strategies that build livelihood resilience: A
950 case from Cambodia. *Ecology and Society*, 11, 1–16.
951 <http://www.ecologyandsociety.org/vol11/iss1/art42/>

952 Marschke, M., Lykhim, O., & Kim, N. (2014). Can local institutions help sustain livelihoods in
953 an era of fish declines and persistent environmental change? A Cambodian case study.
954 *Sustainability*, 6, 2490–2505. <https://doi.org/10.3390/su6052490>

955 Marshall, N., Bohensky, E., Curnock, M., Goldberg, J., Gooch, M., Nicotra, B., Pert, P., Scherl,
956 L., Stone-Jovicich, S., & Tobin, R. (2016). Advances in monitoring the human dimension
957 of natural resource systems: An example from the Great Barrier Reef. *Environmental
958 Research Letters*, 11, 114020. 10.1088/1748-9326/11/11/114020/meta

959 McGreavy, B., Randall, S., Quiring, T., Hathaway, C., & Hillyer, G. (2018). Enhancing adaptive
960 capacities in coastal communities through engaged communication research: Insights
961 from a statewide study of shellfish co-management. *Ocean & Coastal Management*, 163,
962 240–253. <https://doi.org/10.1016/j.ocecoaman.2018.06.016>

963 Merrifield, M., Gleason, M., Bellquist, L., Kauer, K., Oberhoff, D., Burt, C., Reinecke, S., &
964 Bell, M. (2019). eCatch: Enabling collaborative fisheries management with technology.
965 *Ecological Informatics*, 52, 82–93. <https://doi.org/10.1016/j.ecoinf.2019.05.010>

966 Miller, D. D., Ota, Y., Sumaila, U. R., Cisneros-Montemayor, A. M., & Cheung, W. W. (2018).
967 Adaptation strategies to climate change in marine systems. *Global Change Biology*, 24,
968 e1–e14. <https://doi.org/10.1111/gcb.13829>

969 Mohamed-Shaffril, H. A., Hamzah, A., D'Silva, J. L., Abu Samah, B., & Abu Samah, A. (2017).
970 Individual adaptive capacity of small-scale fishermen living in vulnerable areas towards
971 the climate change in Malaysia. *Climate and Development*, 9, 313–324.
972 <https://doi.org/10.1080/17565529.2016.1145100>

973 Monwar, M. M., Mustafa, M. G., Khan, N. A., Hossain, M. S., Hossain, M. M., Majumder, M.
974 K., Chowdhury, R. M., Islam, M. A., Chowdhury, M., & Alam, M. S. (2018). Indigenous
975 adaptation practices for the development of climate resilient ecosystems in the Hail Haor,
976 Bangladesh. *Global Social Welfare*, 5, 125–136. <https://doi.org/10.1007/s40609-014-0014-9>

977

978 Muchuru, S., & Nhamo, G. (2018). Climate change adaptation and the African fisheries:
979 Evidence from the UNFCCC National Communications. *Environment, Development and
980 Sustainability*, 20, 1687–1705. <https://doi.org/10.1007/s10668-017-9960-6>

981 Mulyasari, G., Waluyati, L., & Suryantini, A. (2018). Perceptions and local adaptation strategies
982 to climate change of marine capture fishermen in Bengkulu Province, Indonesia.
983 *International Conference on Climate Change* 200(1), 012037. 10.1088/1755-
984 1315/200/1/012037

985 Musinguzi, L., Efitre, J., Odongkara, K., Ongut-Ohwayo, R., Muyodi, F., Natugonza, V.,
986 Olokotum, M., Namboowa, S., & Naigaga, S. (2016). Fishers' perceptions of climate
987 change, impacts on their livelihoods and adaptation strategies in environmental change
988 hotspots: A case of Lake Wamala, Uganda. *Environment, Development and
989 Sustainability*, 18, 1255–1273. <https://doi.org/10.1007/s10668-015-9690-6>

990 Norman-López, A., Pascoe, S., Thébaud, O., Van Putten, I., Innes, J., Jennings, S., Hobday, A.,
991 Green, B., & Plaganyi, E. (2014). Price integration in the Australian rock lobster
992 industry: Implications for management and climate change adaptation. *Australian
993 Journal of Agricultural and Resource Economics*, 58, 43–59.
994 <https://doi.org/10.1111/1467-8489.12020>

995 Paukert, C. P., Glazer, B. A., Hansen, G. J., Irwin, B. J., Jacobson, P. C., Kershner, J. L., Shuter,
996 B. J., Whitney, J. E., & Lynch, A. J. (2016). Adapting inland fisheries management to a
997 changing climate. *Fisheries*, 41, 374–384.
998 <https://doi.org/10.1080/03632415.2016.1185009>

999 Pearce, T., Ford, J. D., Caron, A., & Kudlak, B. P. (2012). Climate change adaptation planning in
1000 remote, resource-dependent communities: An Arctic example. *Regional Environmental
1001 Change*, 12, 825–837. <https://doi.org/10.1007/s10113-012-0297-2>

1002 Petticrew, M., & McCartney, G. (2011). Using systematic reviews to separate scientific from
1003 policy debate relevant to climate change. *Am. J. Prev. Med.*, 40, 576–578.
1004 <http://dx.doi.org/10.1016/j.amepre.2010.12.022>

1005 Piggott-McKellar, A. E., McNamara, K. E., Nunn, P. D., & Watson, J. E. (2019). What are the
1006 barriers to successful community-based climate change adaptation? A review of grey
1007 literature. *Local Environment*, 24, 374–390.
1008 <https://doi.org/10.1080/13549839.2019.1580688>

1009 Rahman, S., Islam, M. S., Khan, M. N. H., & Touhiduzzaman, M. (2019). Climate change
1010 adaptation and disaster risk reduction (DRR) through coastal afforestation in South-
1011 Central Coast of Bangladesh. *Management of Environmental Quality: An International
1012 Journal*, 30, 498-517. <https://doi.org/10.1108/MEQ-01-2018-0021>

1013 Sarkar, U. K., Roy, K., Karnataka, G., & Nandy, S. K. (2018). Adaptive climate change resilient
1014 indigenous fisheries strategies in the floodplain wetlands of West Bengal, India. *Journal
1015 of Water and Climate Change*, 9, 449–462. <https://doi.org/10.2166/wcc.2018.271>

1016 Schemmel, E., Friedlander, A. M., Andrade, P., Keakealani, K., Castro, L. M., Wiggins, C.,
1017 Wilcox, B. A., Yasutake, Y., & Kittinger, J. N. (2016). The codevelopment of coastal
1018 fisheries monitoring methods to support local management. *Ecology and Society*, 21, 34.
1019 <https://doi.org/10.5751/ES-08818-210434>

1020 Seara, T., Clay, P. M., & Colburn, L. L. (2016). Perceived adaptive capacity and natural
1021 disasters: A fisheries case study. *Global Environmental Change*, 38, 49–57.
1022 <https://doi.org/10.1016/j.gloenvcha.2016.01.006>

1023 Seggel, A., & De Young, C. (2016). Climate change implications for fisheries and aquaculture:
1024 Summery of the findings of the Intergovernmental Panel on Climate Change fifth
1025 assessment report. In *FAO Fisheries and aquaculture technical paper* (p. 54). Food and
1026 Agriculture Organization of the United Nations.

1027 Seithi, S., Sundaray, J., Panigrahi, A., & Chand, S. (2011). Prediction and management of natural
1028 disasters through indigenous technical knowledge, with special reference to fisheries.
1029 *Indian Journal of Traditional Knowledge* 10, 167–172.
1030 <http://krishi.icar.gov.in/jspui/handle/123456789/42904>

1031 Selig, E. R., Kleisner, K. M., Ahoobim, O., Arocha, F., Cruz-Trinidad, A., Fujita, R., Hara, M.,
1032 Katz, L., McConney, P., & Ratner, B. D. (2017). A typology of fisheries management

1033 tools: Using experience to catalyse greater success. *Fish and Fisheries*, 18, 543–570.
1034 <https://doi.org/10.1111/faf.12192>

1035 Sultana, P., & Thompson, P. (2010). Local institutions for floodplain management in Bangladesh
1036 and the influence of the Flood Action Plan. *Environmental Hazards*, 9, 26–42.
1037 10.3763/ehaz.2010.SI05

1038 Sumaila, U. R., & Tai, T. C. (2020). End overfishing and increase the resilience of the ocean to
1039 climate change. *Frontiers in Marine Science*, 7, 523.
1040 <https://doi.org/10.3389/fmars.2020.00523>

1041 Thiault, L., Gelcich, S., Marshall, N., Marshall, P., Chlous, F., & Claudet, J. (2020).
1042 Operationalizing vulnerability for social–ecological integration in conservation and
1043 natural resource management. *Conservation Letters*, 13, e12677.
1044 <https://doi.org/10.1111/conl.12677>

1045 Thomas, A. S., Mangubhai, S., Vandervord, C., Fox, M., & Nand, Y. (2019). Impact of Tropical
1046 Cyclone Winston on women mud crab fishers in Fiji. *Climate and Development*, 11, 699–
1047 709. <https://doi.org/10.1080/17565529.2018.1547677>

1048 Utete, B., Phiri, C., Mlambo, S. S., Muboko, N., & Fregene, B. T. (2019). Vulnerability of
1049 fisherfolks and their perceptions towards climate change and its impacts on their
1050 livelihoods in a peri-urban lake system in Zimbabwe. *Environment, Development and
1051 Sustainability*, 21, 917–934. <https://doi.org/10.1007/s10668-017-0067-x>

1052 Vaismoradi, M., Jones, J., Turunen, H., & Snelgrove, S. (2016). Theme development in
1053 qualitative content analysis and thematic analysis. *Journal of Nursing Education and
1054 Practice*, 6, 100–110. 10.5430/jnep.v6n5p100

1055 van Putten, I. E., Farmery, A. K., Green, B. S., Hobday, A. J., Lim-Camacho, L., Norman-López,
1056 A., & Parker, R. W. (2016). The environmental impact of two Australian rock lobster
1057 fishery supply chains under a changing climate. *Journal of Industrial Ecology*, 20, 1384–
1058 1398. <https://doi.org/10.1111/jiec.12382>

1059 van Putten, I. E., Jennings, S., Frusher, S., Gardner, C., Haward, M., Hobday, A. J., Nursey-
1060 Bray, M., Pecl, G., Punt, A., & Revill, H. (2013). Building blocks of economic resilience
1061 to climate change: A south east Australian fisheries example. *Regional Environmental
1062 Change*, 13, 1313–1323. 10.1007/s10113-013-0456-0

1063 Vogt, N., Pinedo-Vasquez, M., Brondízio, E. S., Rabelo, F. G., Fernandes, K., Almeida, O.,
 1064 Riveiro, S., Deadman, P. J., & Dou, Y. (2016). Local ecological knowledge and
 1065 incremental adaptation to changing flood patterns in the Amazon delta. *Sustainability*
 1066 *Science*, 11, 611–623. <https://doi.org/10.1007/s11625-015-0352-2>

1067 Weeks, R., & Jupiter, S. D. (2013). Adaptive comanagement of a marine protected area network
 1068 in Fiji. *Conservation Biology*, 27, 1234–1244. <https://doi.org/10.1111/cobi.12153>

1069 Weir, T., Dovey, L., & Orcherton, D. (2017). Social and cultural issues raised by climate change
 1070 in Pacific Island countries: An overview. *Regional Environmental Change*, 17, 1017–
 1071 1028. [10.1007/s10113-016-1012-5](https://doi.org/10.1007/s10113-016-1012-5)

1072 Whitney, C. K., & Ban, N. C. (2019). Barriers and opportunities for social-ecological adaptation
 1073 to climate change in coastal British Columbia. *Ocean & Coastal Management*, 179,
 1074 104808. <https://doi.org/10.1016/j.ocecoaman.2019.05.010>

1075 Wolf, J. (2011). Climate change adaptation as a social process. In D. J. Ford & L. Berrang-Ford
 1076 (Eds.), *Climate Change Adaptation in Developed Nations: From Theory to Practice*,
 1077 *Advances in Global Change Research* (Vol. 42, pp. 21–32). Springer: London.

1078 Yanda, P. Z., Mabhuye, E., Johnson, N., & Mwajombe, A. (2019). Nexus between coastal
 1079 resources and community livelihoods in a changing climate. *Journal of Coastal*
 1080 *Conservation*, 23, 173–183. <https://doi.org/10.1007/s11852-018-0650-9>

1081 Zhang, J., Fleming, J., & Goericke, R. (2012). Fishermen's perspectives on climate variability.
 1082 *Marine Policy*, 36, 466–472. <https://doi.org/10.1016/j.marpol.2011.06.001>

1083

1084

1085 **Tables:**

1086 Table 1: Inclusion and exclusion criteria for document selection.

Particulars	Inclusion	Exclusion	No. of studies excluded
Language	English	Non-English	1
Publication type	Research articles, case studies	Synthesis, abstracts, editorials, reviews, meetings/workshops, insights, frameworks	119

Who adapts?	People/social adaptation	Natural systems, fish, plants (for example, studies on how fish adapt to temperature variations)	308
Responses, activities, and actions	Adaptation responses	Mitigation, vulnerability (for example, studies using vulnerability frameworks as the principal theoretical approach)	80
Focus	Practical	Conceptual, theoretical, models (for example, conceptual frameworks and adaptation modelling)	47
Time	Present	Prehistoric, future (for example, studies aimed at the prehistoric adaptation of fisheries and fish populations)	10
Industry	Fisheries and/or integrated systems	Others including aquaculture (for example, rice-fish culture, agriculture, forestry) and fish ecology	388
Change	Climate-change-related	Not related to climate change (for example, globalisation, impacts of economic recession)	27

1087

1088 Table 2: Common adaptive responses in fisheries (Table S4 defines response types and forms).

Response type	Response/strategy	Scale/level	Form	References
Coping responses				
No regret	Revival of traditional fishing techniques	Individual	Technical/ behavioural	Carter, 2019
	Changing fishing location or changing target species	Individual/ community	Behavioural	Deb & Haque, 2017
	Update with weather information before fishing trips	Individual/ community	Information	Malakar et al., 2018
	Sharing food and collaborating with fellow fishers	Community	Cultural	Brewer et al., 2017

	Increasing fishing gear diversity or using a different technology	Individual/ community	Technical	Galappaththi et al., 2019
Low regret	Using family members as labour	Household	Institutional	Sultana & Thompson, 2010
	Making the sale price of fish more responsive to fuel price fluctuations	Individual/ community	Financial	Brewer et al., 2017
	Taking actions to improve vessel fuel efficiency	Individual/ household	Technical	Abernethy et al., 2010
	Taking out small loans or pawning gold jewelry	Individual/ household	Financial	Rahman et al., 2019
	Temporarily migrating	Individual	Migration	Joarder & Miller, 2013
Common adaptive strategies				
Future benefit strategies	Increasing fishing effort to upgrade fishing yield in the long-term	Community	Financial	Diop et al., 2018
	Capacity building to inform/train fishers (e.g., workshops, education, research)	Community	Agency	Freduah et al., 2019
	Livelihood diversification within and outside the fisheries sector	Community	Financial	Yanda et al., 2019
	Fostering economic diversification within the fisheries sector	Regional/ subnational	Financial	Utete et al., 2019
	Using insurance schemes	Individual	Financial	Islam et al., 2014
	Building community resilience by increasing social capital (social cohesion, local fundraising, maintaining cultural identities)	Community	Social	Diedrich et al., 2017
	Establishing weather event warning systems	Regional/ community	Information	Malakar et al., 2018
	Altering fishing operation (e.g., catch-and-release practices, temporally/spatially shifting	Community	Technical	Abernethy et al., 2010

	trips)			
Easier- early strategies	Using new technology for collaboration (e.g., location-aware mobile devices, cloud-based computing, and visualization and query of geographic data over the web to capture, visualize, and share logbook data)	Community to national	Technical	Merrifield et al., 2019
	Accessing higher value, more stable markets	Community to international	Markets	Norman-López et al., 2014
	Market diversification	Community to international	Markets	Galappaththi et al., 2019
	Tree planting to reduce river temperatures	Community	Infrastructural	Jackson et al., 2018
	Strengthening local institutions and establishing new institutions	Community	Social	M. Marschke et al., 2014
Upfront strategies	Permanently migrating to urban areas for job opportunities	Regional/national	Migration	Himes-Cornell & Hoelting, 2015
	Quitting fisheries for other livelihoods/investments	Community	Institutional	Kaján, 2014
	Using different knowledge systems (e.g., Indigenous, local, and Western science)	Community	Knowledge	Mantyka-Pringle et al., 2017

1089

1090

Table 3: Common management responses in fisheries.

Response type*	Management response	References
Co-governance	Conservation of freshwater resources to preserve biodiversity	Thiault et al., 2020
	Inclusion of SSF guidelines into legislation to produce more effective management	Gourlie et al., 2018
	Across-scale management coordination (e.g., among place-based (municipal) and sector-based (fisheries) management and	Hoerterer et al., 2020

	governing bodies)		
	Integrating characteristics of adaptive management into conventional fisheries management	Weeks & Jupiter, 2013	
	Integration of monitoring systems into fisheries management (e.g., spatiotemporal data, increased stakeholder engagement)	Marshall et al., 2016	
Ecosystem-based	Prioritizing Indigenous people's fisheries management using adaptive co-management	Monwar et al., 2018	
	Create ecosystem-based fishery management for lagoon-based fisheries	Kalikoski et al., 2010	
Communication	Foster effective communication between policymakers and fishers	Muchuru & Nhamo, 2018	
	Invest in fisheries sector research communication to support better decision-making	McGreavy et al., 2018	
Community	Community-based adaptation for local fisheries management	N. Bennett et al., 2016	
	Community-based efforts to manage fish habitats	Diedrich et al., 2017	
Knowledge	Inclusion of local knowledge, and increasing resilience of fisheries management	Carter, 2019	
	Invest in fisheries research and knowledge co-production to support better decision-making	Donda & Manyungwa-Pasani, 2018	
Markets	More direct export routes and change in transport mode, value-adding	Lim-Camacho et al., 2017	
	More government support for finding new markets and strengthening existing fisheries markets	van Putten et al., 2016	
Infrastructure	Urban renewal through adaptive coastal infrastructures	Debnath et al., 2016	
1091	*The idea of climate-ready fisheries management overlaps with multiple response types.		
1092			
1093	Table 4: Commonly recorded limits to climate adaptation in fisheries.		
Category	Examples for limits	Implications of limits	References
Place	-limited livelihood diversification	The top-down adaptation action	Kaján, 2014; Khan et al.,

	within the local fisheries industry -fish migration and resource scarcity -natural disasters and physical barriers	developed for broader intentions might not be effective for place-specific barriers.	2018; Seara et al., 2016
Human agency	-financial capital -limited access and affordability to advanced technology -lack of access to credit	Lack of financial resources, technology, and assets will increase their exposure and vulnerability to climate change.	Islam et al., 2014; Merrifield et al., 2019; Mohamed-Shaffril et al., 2017
Societal	-communication and information sharing barriers -cultural barriers to collaboration and sharing -tragedy of the fisheries commons	Specific social norms, beliefs, and cultural values limit social reciprocity and cohesiveness, determining the effectiveness of adaptation responses.	Blanco et al., 2015; Makame & Shackleton, 2020; Weir et al., 2017
Institutions	-lack of leadership and innovation -top-down governance and outdated regulations -limited government support and conflict of interest	Limited institutional capacities and structural inefficiencies can constrain adaptation responses.	Dubik et al., 2019; M. Marschke et al., 2014; Sultana & Thompson, 2010
Knowledge systems	-weaken traditional knowledge systems -lack of knowledge co-production efforts -lack of education, training, and research	Weakening of knowledge systems and limited access to updates can prevent engagement with adaptive responses.	Carter, 2019; Mantyka-Pringle et al., 2017; Seithi et al., 2011
Learning	-limited access to learning opportunities -lack of capacity-building opportunities for co-learning	Lack of learning opportunities and communication barriers can create barriers for co-learning, learning-by-doing, and effective communication, which are	Brewer et al., 2017; Hoerterer et al., 2020; Whitney & Ban, 2019

-communication limits and
information gaps in local fisheries

integral to successful adaptive
responses.

1094

1095 **Figure legends:**

1096 **Figure 1:** Publications at the intersection of climate change, adaptation, and fisheries per journal per year from 2006
1097 to 2019. The figure illustrates the development of continent-level publications (based on the first-author affiliation).

1098 **Figure 2:** Types of fisheries studied (marine, freshwater, and brackish) on different continents. We found only one
1099 article related to the Antarctic continent but it is not included here. Further, the figure shows the top two research
1100 destination countries based on the number of fisheries studied related to each continent.

1101 **Figure 3:** Thematic Venn diagram of the key conceptual areas used for climate adaptation in fisheries.

1102 **Figure 4:** Climate change impact categories vs research continent.

1103 The donut chart shows climate change impact categories as a fraction of total papers. Each climate change impact is
1104 further broken down in a bar chart which shows the fraction of papers in that category from each research continent.

1105

1106 **Note:** All figures (figure 1 to 4) colour version is only available to view online; for example, a
1107 figure appears in colour in the online version only.

