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Abstract: The National Wetlands Inventory (NWI) is the most comprehensive wetland geospatial
dataset in the United States. However, it can be time-consuming and costly to maintain. This study
introduces automated algorithms and methods to support NWI maintenance. Through a wall-to-wall
comparison between NWI and Coastal Change Analysis Program (C-CAP) datasets, a pixel-level
difference product was generated at 1 m resolution. Building upon this, supplementary attributes
describing wetland changes were incorporated into each NWI polygon. Additionally, new water
polygons were extracted from C-CAP data, and regional statistics regarding wetland changes were
computed for HUC12 watersheds. The 1 m difference product can indicate specific wetland change
locations, such as wetland loss to impervious surfaces, the gain of open water bodies from uplands,
and the conversion of drier vegetated wetlands to open water. The supplementary attributes can
indicate the amount and percentage of wetland loss or water regime change for NWI polygons.
Extracted new water polygons can serve as preliminary materials for generating NWI standard-
compliant products, expediating NWI maintenance processes while reducing costs. Regional statistics
of wetland change can help target watersheds with the most significant changes for maintenance,
thereby reducing work areas. The approaches we present hold significant value in supporting
NWI maintenance.

Keywords: NWI; maintenance; C-CAP; wetland loss; open water gain; water regime change

1. Introduction

Wetlands are among the most important ecosystems, providing habitat for a wide va-
riety of plant and animal species [1]. Wetlands across the globe have undergone substantial
losses [2]. Wetland degradation and loss are occurring at a greater rate compared to other
ecosystem types [3]. These changes are caused by natural drivers [4], such as sea level
rise [5], droughts [6], and climate change [7], as well as anthropogenic drivers [4], such as
land-use change [8], dam construction [9], and population growth [10]. The U.S. Fish and
Wildlife Service National Wetland Inventory (NWI) is the most comprehensive wetland
geospatial dataset for the U.S. [11]. However, a significant portion of the NWI geospatial
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dataset is outdated [11]. Wetlands across the United States have changed substantially
since the NWI Program first started mapping wetlands in the 1970s. During this time
period, some wetlands have been lost, while others have been created [12]. Additionally,
the geometry of some NWI polygons created decades ago have lower accuracy, which can
lead to geospatial mismatches between the old NWI polygons and current high-resolution
geospatial datasets.

Accurate and contemporary wetland geospatial datasets are indispensable to stake-
holders in decision making regarding wetland conservation, wildlife habitat protection,
and sustainable land use and land cover management [13]. There is a need to bring the
NWI dataset up to date. Generating standard-compliant NWI products, following the
requirements of the Federal Geographic Data Committee [14], involves acquiring high-
resolution images, conducting field surveys, collecting ancillary data, manually delineating
most wetland polygons, and classification of wetland type by experts. Although more
accurate than fully automated processes, this mainly manual workflow is time-consuming
and costly. Updating the entire NWI dataset using this approach likely take several years.
By the time the processes are finished, new wetland changes may have already occurred.

Early wetland mapping and change studies relied heavily on field surveys [15,16].
In an examination of 233 Oregon NWI features mapped in 1981, field surveys uncovered
that, within a decade, 40% of them had succumbed to destruction due to human activities,
primarily through conversion to urban and agricultural land uses [15]. Field surveys can
collect the most accurate wetland status and change information, which is valuable for
wetland updates and maintenance. However, due to their labor-intensive, costly, and
time-consuming nature, field surveys often cover only limited areas. To overcome these
challenges, during the initial stages, moderate-resolution satellite imagery, such as 30 m
Landsat data and 20 m SPOT-XS data, emerged as a solution for detecting wetland changes
across large regions [17]. Various methodologies were employed, including image differ-
encing [18], outlier pixel detection [19], and rule-based classification [17]. For instance,
logical rules were developed by combining SPOT-XS pixel mean modulus value, majority
land-cover value, and NWI wetland class, enabling the classification of wetland polygons
into ‘changed’ and ‘not-changed’ categories. Although moderate-resolution satellite im-
agery serves well in regional-scale wetland monitoring, it falls short for the kind of detailed,
parcel-scale wetland mapping and classification that is performed by the NWI Program [19].
This inadequacy arises because modern NWI wetland features are established based on
high-resolution aerial photos at meter or submeter scales.

Recent wetland studies leveraged high-solution remote sensing data, including lidar
point cloud data [20], radar images [21], aerial photos [22], and topographic data [23].
These studies have harnessed computation-intensive methods, such as machine learning
algorithms [22,24] and deep learning models [20,23], which offer greater efficiency com-
pared to traditional approaches like aerial image interpretation and field surveys [21].
However, these automated wetland mapping approaches have not proved capable of pro-
ducing FGDC standard-compliant wetland data, perhaps in part due to differing research
objectives [25]. These experimental studies use distinct wetland classification systems,
input materials, and operational procedures, resulting in wetland maps that may exhibit
discrepancies of up to 50% when compared to NWI [11]. Consequently, it is challenging to
use these maps to update NWI datasets.

Although it does not meet FGDC Wetland Mapping Standards, The National Oceanic
and Atmospheric Administration (NOAA) Coastal Change Analysis Program (C-CAP) 1 m
land cover map employs a wetland classification compatible with NWI and is projected
to cover the entire coastal region of the CONUS in a couple of years [26], making it an
excellent candidate for detecting wetland changes and supporting NWI maintenance. This
study develops an automatic approach for creating difference products to support the
maintenance of the NWI geospatial dataset using 1 m C-CAP land cover maps. The goal is
to speed up the maintenance process and reduce costs. Since the generation of compliant
NWI products requires a lot of field sampling data, such as vegetation type, water regime,
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and substrate information [14], the entire process cannot be automated. Given these
constraints, our objectives for automated maintenance include identifying regions with
the greatest need for updates and improving the efficiency of updating NWI data in those
regions. In particular, some of the changes that can be easily identified are wetland loss
to impervious surfaces, the gain of open water from uplands, and the conversion of drier
vegetated wetlands to open surface water.

Wetland change is an ongoing phenomenon across the U.S., particularly in rapidly
developing suburban regions. It is urgent to update and maintain the NWI dataset. How-
ever, as previously noted, field survey methods are costly and time-consuming, wetland
products derived from moderate-resolution satellite imagery lack the precision needed for
NWI updates, and recent machine learning techniques often do not adhere to NWI wetland
protocols, rendering their resultant maps unsuitable for NWI maintenance. This study
seeks to address these gaps by developing cost-efficient and automated approaches to up-
date and maintain the NWI dataset, utilizing 1 m C-CAP data. The objectives of this study
are fourfold: (1) to generate pixel-level difference products at a 1 m resolution to pinpoint
wetland change locations; (2) to calculate new attributes that describe wetland changes
for NWI polygons; (3) to extract new water polygons from C-CAP data to expediate NWI
maintenance process; and (4) to compute regional statistics on wetland changes, aiming to
identify HUC12 watersheds with the most urgent maintenance needs.

2. Materials and Methods
2.1. Study Area

Our study was conducted around New Orleans, Louisiana, as shown in Figure 1a. The
study region covers approximately 20,500 km2. The study area includes the Mississippi
River Delta, New Orleans, and the Tangipahoa River basin, as indicated in Figure 1c.
Wetlands in these regions have important roles in protecting local communities from
hurricane storm surges and flooding [27]. However, wetlands in these regions are being
modified due to threats from development, sea level rise, subsidence, etc. Wetlands in the
Mississippi River Delta area have been affected by sea level rise [28] and the sediment load
discharge of the Mississippi River [29]. Wetlands in the New Orleans–Metairie metropolitan
region face pressure from urbanization [30]. In addition, the mining of sand and gravel
in floodplains of the Tangipahoa River has caused erosion and deposition, resulting in
changes in the rivers’ flow and shape [31]. The study area is one of the few regions across
the U.S. that currently have 1 m resolution C-CAP land cover maps. Furthermore, the
abundance of wetlands and various wetland types in this region makes it an ideal place to
carry out our research.
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Figure 1. Study area. (a) Study area boundary overlaid on U.S. state boundary. (b) NWI project years
of the study area. (c) C-CAP land cover map of the study area.

2.2. Data
2.2.1. NWI

The U.S. Fish and Wildlife Service established the NWI Program, which includes poly-
gons of wetlands and deep-water habitats in its geospatial dataset. Trained image analysts
manually delineated these polygons from aerial and fine resolution satellite imagery. Wet-
land experts then determined the attributes of these polygons, such as information about
the wetland substrate type, vegetation type, water regime type, and water chemistry type,
based on their assessments of field sampling data and the Cowardin wetland classification
system [14,32]. The NWI dataset for the study area was obtained from the U.S. Fish and
Wildlife Service Wetlands Mapper in July 2021 [33]. There were approximately 146,000 NWI
wetland polygons within the study area. These wetland polygons were created by 84 projects
spanning several decades: 17 projects from the 1970s, 56 from the 1980s, 1 from the 1990s,
3 from the 2000s, 6 from 2010 to 2016, and 1 from 2017 (Figure 1b). The NWI project from
2017 was excluded from further analysis because it was created in the same year as the
C-CAP data.

2.2.2. C-CAP 1 m Dataset

The C-CAP 1 m land cover data used in this study were generated by the NOAA
Coastal Change Analysis Program [26]. The dataset includes 18 land cover categories, such
as impervious surface, open surface water, wetland, etc. (Figure 1c). The impervious surface
layer was derived from 15 to 30 cm imagery around 2017. The water layer was derived
using feature recognition classification technology with manual refinement. Wetlands
were classified through a modeling process that made use of NWI, soil data, topographic
derivatives, etc. [26]. The C-CAP data were obtained from the NOAA Office for Coastal
Management in January 2022 [26]. According to its accuracy assessment, the overall
accuracy of this product is 93.5% for all land cover categories.

2.2.3. Time Series Inundation Data

The Dynamic Surface Water Extent (DSWE) algorithms were developed to generate
water inundation products [34,35]. The DSWE algorithms employ several water classifi-
cation methods to detect water. A pixel with a higher number of water detections from
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these methods indicates a higher probability of this pixel being water. These pixels were
then divided into five categories: water of high confidence, water of moderate confidence,
partial water/potential wetland, low confidence water or wetland, and dry land [34]. We
translated the DSWE algorithms into JavaScript. All clear Landsat images captured dur-
ing 2016–2018 were used to create a time series of DSWE inundation frequency at 30 m
spatial resolution in the cloud computing platform of Google Earth Engine (GEE) [36].
Subsequently, these time series inundation datasets were downloaded from GEE to local
high-performance computers for further analysis.

2.3. Methods

The methodological approach used in this study is illustrated in Figure 2 and comprises
four main stages of analysis: (1) difference analysis between old NWI data and recent C-
CAP map through a wall-to-wall comparison at a 1 m scale; (2) wetland loss analysis for all
wetland polygons and water regime change analysis for drier vegetated wetland polygons;
(3) water body extraction from the 1 m C-CAP map and classification of new water bodies
based on their distance from the original NWI polygons; and (4) generation of statistics for
wetland changes at HUC12 watersheds.

Figure 2. Flow chart of this study.

2.3.1. Derivation and Validation of the Pixel Level Difference Product

We focused on wetland changes that can be easily detected and reliably mapped by
remote sensing images and land cover products. The impervious surface and open surface
water have very high mapping accuracy, approximately 98% and 100%, respectively [26].
This study detected wetland changes by carrying out a wall-to-wall comparison between
the NWI geospatial dataset and the impervious surface and water layers from the C-CAP
dataset (Figure 2). Specifically, we focused on three aspects: NWI wetland to C-CAP
impervious surface, NWI Upland to C-CAP open water, and NWI drier vegetated wetland
to C-CAP open water. We did not consider changes in wetland types between NWI and
C-CAP, such as emergent wetland to scrub/shrub wetland. This is because these wetland



Remote Sens. 2023, 15, 4075 6 of 18

ecosystems continue to provide important services, and it is challenging to verify these
changes using remote sensing images.

It should be noted that some NWI wetland and deep-water features, such as coastline
waters, submerged lagoons and estuaries, and large deep-water lakes (>8 ha in area, >2.5 m in
depth), are not expected to experience significant changes and have therefore been excluded
from the wetland loss assessment. Riverine features are a common type of wetland in the NWI
database. However, their elongated polygonal shape increases the likelihood of geospatial
mismatch between the NWI and the C-CAP datasets. Additionally, river networks are well
protected by law. As a result, all riverine features have been excluded from the assessment
of wetland loss. Approximately 130,000 NWI features within the study area were included
for analysis.

To speed up the data processing and apply parallel computing methods, the C-CAP
1 m dataset of the study area was subset into 187 HUC12 watersheds (Figure 2). Next, the
NWI polygons within each HUC12 watershed were selected from the entire NWI geospatial
dataset. These polygons were then converted into a 1 m raster format. Subsequently, the
NWI pixels and C-CAP pixels were compared at the 1 m scale to identify any differences
between them. Finally, the difference products for each HUC12 watershed were merged
to create a single mosaic that provides an overview of the discrepancies between the
two datasets.

The validation of different products focused on three categories: wetland to imper-
vious surface, upland to open water, and drier vegetated wetland to open water. We
used a stratified random sampling technique to select samples for validation. For each
category, we randomly selected 200 samples. Additionally, for the referencing categories of
wetland not changed to impervious surface, upland not changed to open water, and drier
vegetated wetland not changed to open water, we also randomly selected 200 samples for
each category. In total, 1200 random samples were selected and loaded into Google Earth.
A high-resolution image in Google Earth from around 2017 was chosen as the reference to
validate each sample.

When we examined the difference products, we observed geospatial mismatches
between the old NWI geospatial dataset and recent high-resolution data. The earlier NWI
projects were created on a smaller scale (1:250,000), using relatively coarser-resolution
images compared to later projects (1:24,000). As a result, some of the NWI polygons created
several decades ago may contain geospatial inaccuracies. We measured geospatial shifting
through a few samples taken across the study area.

2.3.2. Calculation of New Attributes for NWI Wetland Polygons

We overlaid the boundary of each NWI polygon on top of the difference products
to calculate the amount of wetland loss. Two new attributes were added to each NWI
polygon: the area of wetland loss within an NWI polygon and the percentage of this
NWI polygon that was converted to an impervious surface. Wetlands that have been
converted to impervious surfaces are difficult to restore and are considered permanent
losses [37]. Therefore, by using the two attributes mentioned above, we can identify NWI
polygons with the most significant permanent wetland loss, especially those with near
100% permanent loss.

The drier vegetated NWI polygons are wetland areas dominated by vegetation such
as emergent, scrub-shrub, and forest. They are characterized by relatively drier water
regimes. The list of all possible attributes of drier vegetated wetlands was acquired from
Fish and Wildlife Service NWI experts who generated the NWI dataset. Each NWI poly-
gon in the study area was compared to the list of drier vegetated wetland attributes to
determine whether it was a drier vegetated wetland polygon. The water regimes of NWI
polygons are listed in Table 1. Drier vegetated wetland polygons have water regimes that
include temporarily flooded (A), seasonally saturated (B), seasonally flooded (C), regularly
flooded (N), irregularly flooded (P), seasonally flooded–fresh tidal (R), and temporarily
flooded–fresh (S).
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Table 1. Water regime codes and their full names [32].

Nontidal Saltwater Tidal Freshwater Tidal

Code Name Code Name Code Name
A Temporarily Flooded L Subtidal Q Regularly Flooded–Fresh Tidal
B Seasonally Saturated M Irregularly Exposed R Seasonally Flooded–Fresh Tidal
C Seasonally Flooded N Regularly Flooded S Temporarily Flooded–Fresh Tidal

D Continuously Saturated P Irregularly Flooded T Semi-Permanently Flooded–Fresh
Tidal

E Seasonally
Flooded/Saturated V Permanently Flooded–Fresh Tidal

F Semi-Permanently
Flooded

G Intermittently Exposed
H Permanently Flooded
J Intermittently Flooded
K Artificially Flooded

Within the study area, there were approximately 100,000 NWI polygons that had
vegetation and drier water regimes, and were thus classified as drier vegetated wetlands.
For each drier vegetated wetland polygon, we calculated the statistics of open surface
water based on the difference products. Two new attributes were then added to each drier
vegetated polygon: the area of open water within the drier vegetated wetland polygon
and the percentage of the polygon that had been converted to open water. The water
layer in the C-CAP dataset was based on single-temporal images rather than time series
images, meaning that some of the water bodies captured by the C-CAP dataset could be
temporary water.

To avoid the impacts of such temporary water, we calculated and added the average
DSWE inundation frequency attribute to each drier vegetated wetland polygon. Consid-
ering possible impacts of geospatial mismatches between the old NWI polygons and the
30 m DSWE inundation frequency dataset, we shrank the NWI polygons by 30 m before
calculating the average DSWE inundation frequency attribute. In this way, only the larger
NWI polygons with at least one pixel of DSWE inundation frequency data could have the
attribute of DSWE inundation information. Smaller NWI polygons will not have DSWE
inundation information. Therefore, if the average DSWE inundation frequency attribute is
available, the drier vegetated wetland polygons with permanent water coverage in C-CAP
should also have high average DSWE inundation frequency values.

The new attributes mentioned above enable us to quantify the extent of changes that
have occurred in NWI polygons, allowing for a more focused analysis of the wetland
polygons that have experienced the most significant changes.

2.3.3. Delineation of New Water Body Polygons

New water body polygons were derived from the C-CAP 1 m dataset. First, the land
cover maps were converted into a water/non-water map. Small water objects or holes
with an area of 5 pixels or fewer were then filtered out to remove any noise or irrelevant
features. Next, large water objects, including coastline waters, with a continuous area
greater than 100 km2 were masked out since they were outside the scope of this study. The
raster was then converted into polygons to create distinct and easily recognizable features.
The geospatial mismatch between old NWI polygons and recent high-resolution images has
made the classification of new water bodies more difficult. For example, a water body from
the C-CAP map may not be a new water body if it is close to or overlapping with old NWI
polygons. This is simply because the old NWI polygons could have undergone geospatial
shifting. Thus, we classified the derived water polygons into three categories based on their
distance from the original NWI polygons. The categories were polygons overlapping with
the original NWI polygons, polygons within a 30 m distance of the original NWI polygons,
and polygons located at least 30 m away from the original NWI polygons. Finally, the
water polygons were smoothed using ArcMap software with the PEAK algorithm. We
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also calculated and added the average DSWE inundation frequency attribute to water
polygons derived from the C-CAP dataset. This attribute could be used to remove temporal
inundation while keeping the permanent water bodies.

2.3.4. Calculation of Difference Statistics at the Watershed Scale

We calculated the statistics of total wetland change for HUC12 watersheds, including
the total area of wetland loss to impervious surface, upland to open water, and drier
vegetated wetland to open water. The size of the watershed affects the total area of wetland
change, so we normalized the area of wetland change by the area of the watersheds. This
gives us the area of wetland change per unit of watershed area, allowing for a comparison
across different watersheds. The total area of wetland change and normalized area of
wetland change are both useful in identifying regions that have experienced the most
significant wetland changes.

3. Results
3.1. Pixel Level Differences and Wetland Change

The pixel level difference product identified three classes that likely indicated wetland
changes, including wetland to impervious surface, upland to open water, and vegetated
wetland to open water. As discussed in Section 2.3.1, deep-water and riverine wetlands
were not analyzed in this study. Figure 3 shows the difference product and a zoomed-in
example together with high resolution digital aerial photos acquired in 1998 and 2017 over
the zoomed-in area. The NWI polygon in the zoomed-in window was a forested wetland
with water regime A (temporarily flooded). A large part of this wetland was converted to
a developed suburban area consisting of buildings, roads, storm water ponds/lakes, and
other urban fabrics. The difference product at 1 m resolution shows the specific locations
where wetlands have been converted to urban impervious surfaces or ponds, as well as
where uplands have been converted to open water.

Figure 3. Pixel level difference product: (a) difference product of the entire study area, (b) zoomed-in
area, (c) NWI (created in 1988 with an attribute of PFO1/4A) overlaid on image from 1998 of the
zoomed-in area, and (d) NWI overlaid on image from 2017 of the zoomed-in area.
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Based on the 1200 validation points selected using stratified random sampling meth-
ods, the overall accuracies of the wetland loss to impervious surface, upland to open water,
and drier vegetated wetland to open water area are 0.96, 0.99, and 0.94, respectively. Of
the 200 samples mapped as wetland loss to impervious surfaces, 185 had real changes
according to available high-resolution images (Table 2). For the upland to open water
change class, 197 out of 200 validation samples had real changes (Table 3), and for the
drier vegetated wetland to open water change class, 189 out of 200 samples had real
changes (Table 4).

Table 2. Confusion matrix of wetland to impervious surface.

Reference Data

Wetland to Impervious
(Reference)

Wetland Not Changed to
Impervious (Reference) Total User Accuracy

Wetland to impervious
(map) 185 15 200 0.925

Wetland not changed to
impervious (map) 0 200 200 1.000

Total 185 215 400 Overall Accuracy
Producer accuracy 1.000 0.930 0.963

Table 3. Confusion matrix of upland to open water.

Upland to Open Water
(Reference)

Upland Not Changed
to Water (Reference) Total User Accuracy

Upland to Open water (map) 197 3 200 0.985
Upland not changed to water

(map) 1 199 200 0.995

Total 198 202 400 Overall Accuracy
Producer accuracy 0.995 0.985 0.990

Table 4. Confusion matrix of drier vegetated wetland to open water.

Drier Vegetated
Wetland to Open Water

(Reference)

Drier Vegetated
Wetland Not Changed

to Open Water
(Reference)

Total User Accuracy

Driver vegetated wetland to
open water (map) 189 11 200 0.945

Driver vegetated wetland not
changed to open water (map) 15 185 200 0.925

Total 204 196 400 Overall Accuracy
Producer accuracy 0.926 0.944 0.935

By checking the NWI polygons against recent and historical high-resolution images
in Google Earth, we found that geospatial mismatches only occur sporadically and are
not systematic. They were randomly distributed across the study region. We measured
geospatial mismatch distances at 12 random locations within the study area. Based on
these limited measurements, geospatial mismatches range from a few meters to as large as
30 m in this region. However, in other regions, geospatial mismatches as large as 50 m have
been observed. Additionally, we observed that older NWI polygons tend to have relatively
larger geospatial mismatch distances, as shown in Figure 4.
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Figure 4. Geospatial mismatches: (a) the geospatial mismatch distance of several random locations,
(b) a zoomed-in view of an NWI polygon overlaid on a 2019 high-resolution image (there is a
geospatial mismatch distance of 18 m), and (c) a zoomed-in view of the same NWI polygon overlaid
on a 1977 high-resolution image.

The study area has experienced a total wetland loss of 18.97 km2 to impervious
surfaces, a total gain of 31.81 km2 of open water from uplands, and a total change of
232.54 km2 from drier vegetated wetland to open water. The area of drier vegetated
wetland converted to open water is much larger than the areas of wetland converted to
impervious surface and upland converted to open water. The study area encompasses
a large coastal region, and the significant conversion of drier vegetated wetland to open
water in this area may be attributed to sea level rise and the decline of sediment in the
Mississippi River Delta [29].

3.2. New Attributes for NWI Wetland Polygons

The two attributes of wetland loss to impervious surface for each NWI polygon are area
of wetland loss (in square meters) and the percentage of this NWI polygon that experienced
wetland loss. However, as most of the wetland polygons experienced no or very little
wetland loss, the NWI polygons with significant wetland loss were visually overwhelmed
by other NWI polygons at a small scale (Figure 5a). It is worth noting that the size of NWI
polygons varies substantially, ranging from smaller than 0.01 ha to more than 10,000 ha.
Selecting NWI polygons with significant wetland loss requires the use of both area and
percentage of wetland loss attributes, as well as the polygon size. For the purpose of
demonstration, we selected NWI polygons with significant wetland loss based on the rules
that smaller wetland polygons should have a bigger percentage loss, while bigger wetland
polygons can have a smaller percentage loss but require a bigger area loss. For instance,
NWI polygons smaller than a half hectare should have at least 25% wetland loss, while NWI
polygons larger than 500 ha should have at least 5 ha of wetland loss—in other words, at
least 1% wetland loss. Based on these rules, we selected approximately 700 NWI polygons
with significant wetland loss out of approximately 130,000 NWI polygons (Figure 5b). The
zoomed-in view displays several NWI polygons with at least 30% wetland loss (Figure 5c).
These regions were forested wetlands when the NWI polygons were created in the 1980s
(Figure 5d). However, when the C-CAP dataset was created in 2017, all of these wetland
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polygons had undergone some degree of development, with some polygons experiencing
up to 60% loss to the impervious surface (Figure 5c,e). More sophisticated rules can be
defined to select polygons with significant wetland loss to meet the specific purposes of the
users (for example, selecting all NWI polygons with more than 50% wetland loss).

Figure 5. Statistics of wetland loss at NWI feature scale: (a) percentage of NWI polygon to impervious
surface, (b) selected NWI polygons with significant wetland loss, (c) zoom-in of the selected NWI
polygons (created in 1988), (d) selected NWI polygons overlaid on image from 1985 of the zoom-in,
and (e) selected NWI polygons overlaid on image from 2017 of the zoom-in.

There are three attributes used to evaluate water regime changes in drier vegetated
wetlands: the area and percentage of drier vegetated wetland converted to open water, as
well as the average time series DSWE inundation frequency. Since only a small percentage
of these drier vegetated wetlands had significant water regime change (Figure 6a), poly-
gons with significant water regime changes should be selected from the approximately
100,000 drier vegetated polygons. For the purpose of demonstration, a similar approach to
the wetland loss polygon selection was used. For instance, a drier vegetated NWI polygon
smaller than a half hectare should have at least 25% converted to open water, while a drier
vegetated NWI polygon bigger than 500 ha should have at least 5 ha of open water. Based
on these rules, approximately 3000 drier vegetated NWI polygons were identified with
significant conversion to open surface water (Figure 6b), and around 200 of them had 100%
conversion to open surface water. A zoomed-in view showed an emergent wetland with
a temporarily and irregularly flooded water regime in 1988 (Figure 6d). Several decades
later, it had 97.8% open water coverage according to the 2017 C-CAP dataset and an annual
average DSWE inundation frequency of 98.5% from 2016 to 2018. The high-resolution
image of 2016 also showed very high coverage of open water (Figure 6e).
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Figure 6. Statistics of open water gain in drier vegetated NWI polygons: (a) percentage of drier
vegetated NWI polygon (created in 1988) to open water, (b) selected NWI polygons with significant
open water gain, (c) zoomed-in view of the selected NWI polygon, (d) the selected NWI polygon
overlaid on image from 1999, and (e) the selected NWI polygon overlaid on image from 2016. The
annual and seasonal DSWE inundation frequencies of the selected NWI polygon were also shown.

3.3. C-CAP-Based Water Body Polygons

We derived approximately 150,000 water polygons from the 1 m C-CAP dataset
(Figure 7a), ranging in size from approximately 10 m2 to 70 km2. Among them,
4905 polygons were at least 30 m away from the original NWI polygons, 1634 polygons
were within 30 m of the original NWI polygons, and the rest overlapped with the NWI
polygons (Figure 7b). Considering that geospatial mismatch measurements for the old
NWI polygons range from a few meters to 30 m (Figure 4), it is reasonable to deduce that
the 4905 water polygons located at a minimum distance of 30 m from the original NWI
polygons would likely experience minimal impact from potential geospatial mismatch.
Consequently, these water polygons are highly likely to represent new water bodies that
emerged subsequent to the creation of the old NWI. For the 1634 water polygons within
a 30 m distance of the original NWI wetland polygons, they could represent new water
bodies. However, they fall within the range of potential geospatial mismatches. It is possi-
ble that these water polygons have already been documented in the original NWI dataset
but with a spatial shift. The water polygons overlapping with the original NWI wetland
polygons are likely mapped or partly mapped in the original NWI dataset (Figure 7b).
However, certain parts of these polygons could represent new water areas due to various
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reasons, such as the expansion of smaller NWI water bodies, the construction of reservoirs
from NWI water channels, and the conversion from NWI drier vegetated wetland to open
water (Figure 7b).

Figure 7. Water polygons from C-CAP dataset: (a) water polygons from C-CAP dataset and their
distances from original NWI polygons, (b) zoomed-in (DSWE information is shown for the black
polygon in upper right), (c) original NWI polygon (created in 1976) overlaid on image from 1999 of
the zoomed-in view, and (d) original NWI polygon overlaid on image in 2017 of the zoomed-in view.

The attributes of time series DSWE inundation frequency were also added to these
water polygons. For example, the black water polygon in Figure 7b represents a water pond
with a size of 0.9 ha (Figure 7d). This water pond has an annual average DSWE inundation
frequency of 89.2%, indicating that the water here is permanent.

3.4. Spatially Aggregated Difference

The losses of wetlands to impervious surfaces are concentrated around the urban regions
of New Orleans (Figure 8a). These watersheds have a wetland loss bigger than 50 ha (Figure 8a)
or 50 square meters of wetland loss per hectare watershed area (Figure 8d). The gain of open
water from upland is concentrated in the upper and middle regions of the study area. These
watersheds have a new water area bigger than 50 ha (Figure 8b) or 50 square meters of new
water per hectare watershed area (Figure 8e). The mining of sand and gravel may have
contributed to the gain of open water in these regions [31]. The change from drier vegetated
wetlands to open water is concentrated in the coastal regions. These watersheds have a water
regime change bigger than 50 ha (Figure 8c) or 50 square meters of new water per hectare
watershed area (Figure 8f). Sea level rise may have contributed to the permanent inundation
of drier vegetated wetlands. These statistics could also be aggregated in other units such as
census tracts to meet the needs of different users.
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Figure 8. Statistics of wetland change at HUC12 watershed scale: (a) Wetland to impervious surface
(ha), (b) upland to open water (ha), (c) drier vegetated wetland to open water (ha), (d) wetland
to impervious surface per watershed area (m2/ha), (e) upland to open water per watershed area
(m2/ha), and (f) drier vegetated wetland to open water per watershed area (m2/ha).

4. Discussion

Various land cover products covering portions of the U.S. and its territories are up-
dated every few years. For example, the Multi-Resolution Land Characteristics (MRLC)
Consortium of the U.S. Geological Survey (USGS) produces the National Land Cover
Database (NLCD) at a 30 m resolution every 2 to 3 years [38]. The NOAA Coastal Change
Analysis Program produced a land cover dataset at a 10 m resolution, covering the coastal
regions of the U.S. [39]. Importantly, the NOAA Coastal Change Analysis Program will
produce a 1 m resolution land cover product for coastal regions, with an update period of
4 to 6 years [26]. The information on land use and land cover change captured by these
new land cover maps is useful in detecting wetland changes, which can be used to support
the maintenance of the NWI geospatial dataset.

Various methods have been developed to evaluate wetland conditions and analyze
wetland changes [15,17,22]. In comparison to traditional field survey methods for identi-
fying wetland changes [15,16], our approaches are cost-efficient and can be implemented
quickly. Although moderate-resolution satellite imagery and spectral analysis methods
prove effective in regional-scale wetland change monitoring [17–19], they are unable to sup-
port NWI maintenance due to relatively low spatial resolution. In contrast, our approaches
utilize 1 m C-CAP data to extract water polygons, enabling seamless support for NWI
maintenance with minimal adjustments. Recent wetland studies using high-resolution
data and advanced algorithms have shown great potential in their experimental study
regions [20,22,23]. However, due to differing objectives, wetland classification systems, and
operational procedures, the resultant wetland maps may exhibit substantial discrepancies
with NWI [11], rendering them inadequate for direct NWI maintenance support. Our
approaches extract information on wetland loss and open water gain from the 1 m C-CAP
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dataset. The results directly contribute to NWI maintenance by identifying locations with
notable wetland changes across scales, spanning from 1 m pixels to NWI polygons and
HUC12 watersheds.

The loss of wetland to impervious surfaces is usually considered to be permanent
wetland loss, leading to huge negative impacts on local ecosystem services [40]. The
area of wetland lost to impervious surfaces can be easily estimated using recent high-
resolution land cover maps. However, the impacts of these wetland losses extend beyond
the boundaries of impervious surfaces. Often, these wetland losses are accompanied by
additional losses to non-impervious urban land, such as lawns, open spaces, parks, and golf
courses. The conversion of wetlands to upland areas in these regions also has a negative
impact on wetland species and wetland ecosystems, as well as the ecosystem services
wetlands provide [30].

The change of upland to open water could occur in both urban and non-urban regions.
In non-urban regions, new water bodies could be formed due to climate variability or the
construction of reservoirs [41]. In urban regions, storm water ponds are often created to
drain wetlands for development and to mitigate floods in residential regions [42]. The
new water polygons extracted automatically from high-resolution land cover maps have
geometric accuracy comparable to NWI polygons derived through manual delineation,
meeting the NWI mapping standards. In many cases, they could be incorporated into the
NWI geospatial dataset with little or no manual editing, which will greatly improve the
efficiency of updating the NWI data for open water gain over upland.

High resolution land cover maps are continually being produced for more regions. For
example, C-CAP 1 m data are being generated for all U.S. coastal regions [26], which will
allow the derivation of difference products for those areas. Our algorithms and automated
methods can be used for any regions with high-resolution land cover maps.

The changes in water regimes of NWI wetlands, such as alterations in inundation
frequencies, are more subtle. As a result, it can be challenging to determine water regime
changes based on images acquired at a specific date of the year due to the lack of time
series inundation information. Fortunately, the availability of time series inundation
information from Landsat enables a repeatable and objective approach to detect changes
in water regimes, such as transitions from drier vegetated wetlands to open water. The
current DSWE algorithms were developed using Landsat images [34,35]. Consequently,
the resulting time series DSWE inundation data are in 30 m resolution, which can provide
inundation information for medium and large NWI polygons. However, they can be too
coarse for small NWI polygons, particularly those smaller than 900 m2. The U.S. Geological
Survey is presently adapting the DSWE algorithms to process 10 m Sentinel-2 images. Once
the algorithms have been updated, we can then generate 10 m DSWE inundation data,
which will provide inundation information for smaller NWI polygons.

The new water polygons from C-CAP data, especially those with at least a 30 m
distance from the original NWI polygons, could be used as initial data to produce NWI
standard-compliant products. However, generating NWI products requires field sampling
data and expert knowledge in wetland classification. The algorithms and products devel-
oped in this study cannot generate NWI standard products directly but can make existing
workflows more efficient.

5. Conclusions

In this study, we developed algorithms and automated methods to use high-resolution
C-CAP land cover mapping to support the maintenance of the NWI geospatial dataset in
a rapidly evolving urban area containing New Orleans, Louisiana. Our results showed
that the 1 m pixel-level difference products can pinpoint the specific locations of wetland
changes, while statistics at the watershed scale can help target the regions with greatest
wetland change and prioritize them for wetland maintenance. The new attributes of wet-
land loss and open water gain are useful in selecting wetland polygons with the most
significant changes from thousands of wetland polygons. The new water polygons derived
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from the C-CAP dataset have good quality geometry and can serve as initial inputs for
producing standard-compliant NWI products. The methods, algorithms, and products
developed in this study demonstrate the feasibility of using high-resolution land cover
maps to support the maintenance of the NWI geospatial dataset, speeding up the updating
processes while reducing costs. The findings can benefit researchers, policymakers, and
conservationists who rely on NWI data for wetland research, conservation, and manage-
ment. Future directions include testing the proposed approaches in other regions and
developing high-resolution time series inundation frequency products.
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