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ABSTRACT   

GOES-16, which was launched on 19 November 2017, is the first of the next generation of geostationary weather 
satellites of NOAA.  The Advanced Baseline Imager (ABI) is the primary instrument and mission critical payload 
onboard imaging the Earth with 16 different spectral bands covering 6 visible/near-infrared (VNIR) bands and 10 
infrared (IR) bands.  Although the GOES-16 ABI data are currently experimental and undergoing testing, in this 
study we focus on reporting some preliminary assessment results of the ABI radiometric calibration performance 
during the post-launch test (PLT) and post-launch product tests (PLPT) period. Our results show that the ABI IR 
full-disk (FD) images mean brightness temperature (Tb) bias with respect to S-NPP/CrIS and Metop-B/IASI of less 
than 0.3K.  Diurnal variation is very small with a jump of less than 0.15K occurring twice a day around satellite 
local noon and midnight. The ABI VNIR radiometric calibration has a mean reflectance difference to SNPP/VIIRS 
of less than 5% for all the 6 VNIR bands except for B02 (0.64µm), which was about 8% brighter than corresponding 
VIIRS data during the PLT period.  It may be noted that calibration of the VNIR bands experienced instabilities 
associated with ground system (GS) software patch testing and data receiving site failover testing, which can be 
reflected with the time-series monitoring from different earth and space-based invariant targets. Validations and 
investigations are still ongoing to improve the ABI imagery and data quality.  

Keywords: GOES-16, Advanced Baseline Imager (ABI), geostationary, radiometric calibration accuracy and 
validation, ray-matching,  PLT, and PLPT 
 

1. INTRODUCTION  
The first NOAA next-generation geostationary (GEO) weather satellite, GOES-R was successfully launched on 19 
November 2016 and became GOES-16 on 30 November 2016 when it reached the geostationary orbit.  The satellite 
is currently parking at 89.5oW at about 35,000km above the Equator undergoing a series of instrument performance 
and product tests.  The main payload instrument on-board is Advanced Baseline Imager (ABI), which has 16 
multispectral bands covering the spectrum between 0.47µm and 13.3 µm to provide continuous data stream to 
provide better products for weather forecasting, natural disaster warning, numerical weather prediction, and climate 
and environmental monitoring1.  This instrument is the first of the NOAA GOES satellites to be fitted with a solar 
diffuser and a temperature-controlled blackbody to provide accurate on-orbit radiometric calibrations for the 6 
visible and near-infrared (VNIR) bands and 10 infrared (IR) bands, respectively.  

The ABI instrument successfully passed the Beta Maturity Peer-Stakeholder Product Validation Review (PS-PVR) 
on 28 February 2017 and entered the Post-Launch Product Tests (PLPT) phase the next day.  During the PLPT 
period, a suite of planned methods and tools was applied to the ABI Instrument Calibration Level-1b (L1b) data and 
the associated data by the GOES-R Calibration and Working Group (CWG) at NOAA/STAR for the purpose of 
radiance validation and assessment2. In this study, we focus on reporting the ABI radiometric calibration 
performance using the space-based measurements, including the satellite sensor-to-sensor inter-calibrations with the 
measurements from the LOW-Earth-Orbit (LEO) satellites, lunar observation assessments, and ABI desert target 
reflectance monitoring. 
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2. ABI NOMINAL SCAN MODES AND L1B DATA 
During the PLT and PLPT periods, ABI collects data mainly in Mode 3 or Mode 4 with a series of special scan 
modes executed intertwined.  Mode 3 imaging provides one Full-Disk (FD) image, three Continental US (CONUS) 
and 30 mesoscale (MESO) images every 15 minutes (Figure 1, from PUG3).  Mode 4 provides a FD image every 5 
minutes (Figure 2, from PUG3).  While FD and CONUS images are scanned at fixed angles, MESO images can be 
collected literately any places within the Field of Regard (FOR).   The MESO scan in mode 3 is therefore used to 
chase and scan the Moon while it appears in the space within the ABI FOR.  Each MESO consists of two NS 
adjacent swathes.  As the height of each swath is wider than the diameter of the Moon, we use one of the swaths to 
collect the lunar images when it transits across the space within the ABI FOR. 

After the radiometric calibration, the radiance of each sample is navigated and resampled to fixed grid in each ABI 
Earth image.  The fixed grids are a set of static pixel locations relative to an ideal geostationary satellite viewpoint 
and are used to aid users by providing continuity in locations of geographic, features throughout the satellite 
missions’ life.  There is no space data in the ABI fixed gridded L1B data. The NOAA GOES-R ground system (GS) 
processes the Earth images collected with mode 3 or mode 4 timeline into L1B format. 

 
Figure 1. ABI Mode 3 timeline, from PUG4. 

 
Figure 2. ABI Mode 4 timeline, from PUG4 

3. ABI CALIBRATION 
Like the Advanced Himawari Imager (AHI) onboard the Japan Meteorological Agency (JMA) Himawari-8 

which was launched on October 15, 2015, ABI has two independent scan mirrors, the East-West and North-South 
scan mirrors, for quick repositioning with flexible and configurable custom scans.  The two-point calibration 
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scheme with quadratic detector responsivity is used to calibrate the measured count of scan object to radiance with 
the contributions of reflectance/emissivity from the two scan mirrors accounted4.  The incident angle dependent 
reflectivity and emissivity of the two scan-mirrors are also measured on-ground before launch. The quadratic term 
of each detector is also derived from pre-launch measurements, while the linear calibration term is determined on-
orbit from the measurements of the two point calibration targets.   

3.1 Thermal IR Calibration 

The internal calibration target (ICT) of blackbody (BB) and deep space looks (SL) are the two calibration 
targets used to determine the linear calibration coefficients for each IR detector.  The onboard BB is a temperature 
controlled three bounce cavity. The BB is observed at every 5 or 15 minutes depending on the scan mode selected.  
The space look is collected every 30 seconds for Mode 3 or every swath for Mode 4.  As shown in Figure 1 and 2, 
for the data scanned during the FD scan time, the calibration scan look is conducted at every FD swath by extending 
the swath scan to the space at the dark side of the Earth.  For the data collected during the 3rd CONUS period in 
Mode 3 timeline, the corresponding calibration space look is conducted at the space at the dark side of the Equator5.  
The angular dependence of the mirror reflectance and the emissivity of the mirrors are measured pre-launch and 
provided as LUTs for on-orbit radiometric data analysis to produce radiance. 

 The equation of the IR calibration algorithm for the linear coefficient (m) can be descripted as follows: 
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Where BBL is the band-averaged spectral radiance at BB view, BBEWL @  and BBNSL @ are spectral radiance 

contributed from the EW and NS scan mirrors, respectively at BB view.  BBC  is the measured count at BB view 

and BBSLC , is the count of the BB calibration space look conducted right before BB view. 

The linear coefficient (m) is updated every BB view.  The scene radiance of the earth target evL can be 
determined as follows: 
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Where evEWL @  and SLEWL @ are spectral radiance contributed from the EW mirror at Earth view and space 

look view, respectively.  evNSL @  and SLNSL @ are spectral radiance contributed from the NS mirror at Earth view 

and space look view, respectively. evEW @ρ and evNS @ρ are the reflectance of the EW and NS scan mirrors at the 

angles as they view the earth scene target.  evC  is the earth scene count and SLC is the space look count before 
earth target scan. 

3.2 VNIR Calibration 

A SpectralonTM solar diffuser (SD) and the deep space looks (LS) are used for the calibration of VNIR bands.  The 
solar calibration is scheduled as needed.  It was conducted at higher frequency in the early in-orbit stage and 
gradually reduced as time going-by as the instrument degrades stably.  Again the quadratic coefficient for each 
detector is determined on ground and the linear term (m) is calculated and updated based on in-orbit measurements 
of the two calibration targets. The calibration equation and earth scene radiance calculation follow from Equation 
(1)-(4) except that the mirror emissivity contributions are negligible.   
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Where intf is the integration factor for viewing SD.  It is set to 9x for all the ABI VNIR bands during the PLPT 

period. SDC and SDSLC , are the counts at SD view and the solar calibration space look with the same integration 

time as SD view, respectively.  eff
SDL is the spectral radiance received by the detector at SD view. 
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Where SDNS @ρ and SDEW @ρ are the mirror reflectivity at SD view. SDL is the SD spectral radiance at the sun and 
detector viewing geometries. 
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Where #_det rowector
eff

K β is the factor to account for the SD BRDF impact at solar and detector viewing geometry 

which is measured pre-launch, sunθ is the sun incidence angle, sunR is the average radial distance from Earth to the 

Sun (i.e.  1 AU) and sunr is the actual distance between the Earth and the Sm at SD view time, aL %100 is the spectral 
solar irradiance at 1AU over a Lambertian surface with 100% albedo.  Therefore the factor 
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RL απθ is the solar irradiance normal to the solar diffuser surface at the solar incidence angle 

of sunθ and the sun-earth distance of sunr . 

The earth scene radiance for the VNIR bands is calculated as: 

evEWevNS

SLevSLev
ev

CCqCCmL
@@

2)()(
ρρ

−+−
=  (8) 

Where evC is measured count at earth scene, SLC  is normal deep space count, and evNS @ρ and evEW @ρ are the 
mirror reflectivity at earth scene angles. 

4. ABI IR RADIOMETRIC CALIBRATION ACCURACY VALIDATIONS 
Two well-calibrated hyperspectral radiometric instruments onboard at LEO satellites, SNPP Cross-track 

Infrared Sounder (CrIS) and Metop-B Infrared Atmospheric Sounding Interferometer (IASI), are used as the 
reference instruments to validate the GOES-16 ABI IR radiometric calibration accuracy.  The GEO-LEO IR inter-
calibration was conducted following the standard procedure developed by the Global Space-based Inter-Calibration 
System (GSICS) community6, 7.  The spatially, temporarily and spectrally matched scenes observed with similar 
viewing zenith angles are routinely identified and archived for the ABI full-disk scan images since the first light of 
ABI.  As the cloud can be moving during the time interval between the satellite observations, a set of uniformity 
criteria are applied to each ABI IR band to ensure that both GEO and LEO observe the same targets.  This 
uniformity criteria can also help to reduce the uncertainty caused by the navigation difference between the two 
satellites.  

Figure 3 shows the GOES-16 ABI IR spectral response functions (SRF) and the simulated IASI and CrIS 
brightness temperature (Tb) over clear-sky Tropical Ocean.  IASI covers all the ABI IR spectral ranges, thus we can 
simulate the 10 bands of ABI radiance for the collocated scenes with collocated IASI observations.  However, due 
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4.2 Diurnal Variation of Tb Bias 

The night-time collocations obtained from March 1 through 31, 2017 are binned at 0.5 hour time interval to examine 
the possible diurnal variation, following the similar method as described in Yu et al.9. A minimum of 400 uniform 
scenes is applied to ensure the robust mean Tb bias at each time bin.  Both the Tb bias to CrIS and ASI showed that 
ABI is slightly warmer during the day-time than the night-time.  A jump of about 0.10-0.2K mean Tb bias can be 
observed at both CrIS and IASI collocation data around the satellite midnight time (~6:00UTC) at most IR bands 
(Figure 3 as an example).  The corresponding Tb bias was dropped around the satellite noon time (~18:00UTC).  
This slight changes in the Tb bias around the midnight and noon occur coincidentally with the slight change in the 
gain values of the IR calibration coefficients10.   Recent investigation of the space data  in the ABI lunar scan images 
suggested that these small but sudden changes of Tb bias is most likely caused by the non-uniformity of ABI East-
West (EW) scan mirror emissivity correction7.   

 
Figure 5. An example of diurnal variation in the Tb bias to CrIS and IASI for B09 and B10, showing the sudden 
changes in Tb bias around the satellite midnight time and noon time. 

4.3 Long-term Tb bias monitoring 

The long-term radiometric calibration stability is monitored with the daily mean Tb bias to the two reference 
instruments.  As shown in Figure 6, the consistent daily mean Tb bias to CrIS/IASI since Jan. 15, 2017 indicates that 
ABI IR bands are well-calibrated and very stable.  

 
Figure 6. Time-series of daily mean Tb bias to IASI and CrIS for the night-time collocations.  Investigation is needed to 
understand the cause to the outlies. 
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Where RABI is the ABI reflectance and RVIIRS,ABI is the corresponding ABI reflectance corrected with VIIRS SRF.  
SBAFslope and SBAFoffset are the SCIAMACHY-based linear regression coefficients, respectively. 

Since the first light of ABI VNIR bands on Jan. 14, 2017, the ABI L1B data experienced several calibration 
anomalies for the solar reflective bands during the PLPT period. The collocation data obtained from the relative 
solar calibration, from Jan. 15 through February 11, 2017 are used to examine the initial calibration accuracy for the 
VNIR bands.  To reduce the BRDF impact, the ABI and VIIRS viewing azimuth angle difference should be less 
than 15 degrees. The coefficients of variance (CoV) for VIIRS pixels within ABI footprint and the surrounding area 
should be less than 5%. 

Figure 8 shows the scatterplots of the scene dependent reflectance ratio between ABI and VIIRS.  Large scattering 
of reflectance ratio can be observed at low radiance scenes.  This is because the reflectance ratio values are much 
more sensitive to the striping/banding and other noises at low radiance.  A set of threshold values are some 
randomly selected to calculate the mean reflectance ratio for each bands (Table 1).  Only the scenes with reflectance 
greater than the thresholds are used to calculate the reflectance ratio between ABI and VIIRS and reported in Table 
1.  No apparent scene dependent reflectance ratio can be observed at the scenes at mid- and high- reflectance scenes.  
As reported in Table 1, the initial solar calibration accuracy is within 5% difference from VIIRS for B01 (0.47µm), 
B03 (0.87µm), B04 (1.38µm), B05 (1.61µm) and B06 (2.25µm).  The mean reflectance ABI B02 (0.64µm) is 8.1% 
brighter than VIIRS I02 (0.64µm).  It was reported that ABI B02 initial solar calibration coefficients were also about 
7-8% larger than the pre-launch value14.   Root cause to the large difference is unknown yet and will be investigated 
in the soon future. 

 
Figure 8.  Scatterplots of the reflectance ratio between ABI and VIIRS for the collections collected between Jan. 15 
through Feb. 11, 2017. 
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 B01 
(0.47µm) 

B02 
(0.64µm) 

B03 
(0.87µm) 

B04 
(1.38µm) 

B05 
(1.61µm) 

B06 
(2.25µm) 

Reflectance 
ratio 

Mean 1.044 1.081 1.018 0.960 1.018 0.983 

Standard 
Deviation 

0.036 0.051 0.045 0.062 0.064 0.046 

Collocation# 387 359 387 218 292 291 

Reflectance Threshold 0.25 0.25 0.25 0.20 0.10 0.10 

 

5.2 VNIR calibration stability  

The ABI and VIIRS collocation data along the Equator in between 17:00-20:00 UTC period are routinely generated 
and archived since the ABI first light for the VNIR bands.  As we use the reflectance ratio to characterize the 
calibration difference between the two instruments, only mid- and high- reflectance scenes are used to validate the 
to avoid of large uncertainty at low radiance scenes.  Unfortunately, the GOES-16 sub-satellite point region is 
dominated with ocean with low cloud coverage.  To achieve sufficient collocations for the daily monitoring, we 
relax the criteria to select the uniform targets and viewing geometric match-ups, that is, the coefficients of variance 
for VIIRS pixels within ABI footprint and the surrounding area is less than 10% and the viewing azimuth difference 
between ABI and VIIRS should be less than 30 degree with a minimum of 100 pixels. 

Figure 9 shows the daily mean ABI and VIIRS reflectance ratio.  The trending of both methods shows that ABI 
solar calibration is not quite stable during the study period.  Several anomalies were reflected in the figure, including 
the calibration anomalies between Feb 12 -17, March 15 – April 28, June 10-12.  The root cause to the anomaly in 
between March 15 – April 28 has been found and it was caused by mis-implementing the look-up-table derived with 
incorrect integration time for the solar calibration15.  Root causes to the other ones are unknown yet. The ABI solar 
calibration accuracy is also monitored with daily reflectance at Sonoran and Uyuni deserts and the lunar data during 
the PLPT period16,17. 

6. SUMMARY 
GOES-16 ABI is the most advanced geostationary weather instrument NOAA has ever developed.  It has not been 
declared operational and its data are still preliminary and undergoing testing.  In this study, we reported some 
preliminary validation results of the early ABI radiometric calibration performance during the PLT/PLPT periods, 
including the radiometric calibration accuracy at different temporal scales and the spatial uniformity of the scan 
mirrors for the VNIR and IR bands.  The ABI IR bands are well calibrated and stable with the mean Tb bias to 
CrIS/IASI measurements at less than 0.3K with small diurnal variation occurred around the satellite midnight and 
noon time.  Users reported the periodic infrared calibration anomaly (PICA) between the FD/CONUS/MESO 
images.  Recent assessments of the lunar chasing images indicated that the root causes to the PICA and diurnal 
variations are most likely associated with the possible non-uniform corrections of the incident-angle dependent 
emissivity of the NS and EW scan mirrors. Further investigation is undergoing to confirm and then correct the 
anomalies. 

The radiometric calibration accuracy of the VNIR bands were good at the beginning of the PLT/PLPT periods.    
The mean reflectance difference to SNPP/VIIRS was within 5% for ABI VNIR bands except for B02 which was 
about 8% brighter than VIIRS.  The ABI B02 initial solar calibration coefficients were also about 7-8% larger than 
the pre-launch value.  Further investigation is needed to understand the root causes to the larger on-board calibration 
coefficients.  ABI VNIR radiometric calibration was not very stable during the PLPT period due to software patch 
testing and data receiving site failover testing.  Different vicarious methods using different invariant targets are 
being applied to monitor the radiometric calibration stability and trending.  The CWG team is continuing the effort 
to better understand the ABI calibration performance and improve the data quality.  

 

Table 1. Reflectance thresholds and the reflectance ratios for the mid- and high- reflectance scenes. 
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