

1 **Supplementary Information for**

2 **Mid-latitude ozone depletion and air quality impacts from industrial halogen**
3 **emissions in the Great Salt Lake Basin**

5
6 Caroline C. Womack^{1,2*}, Wyndom S. Chace^{3†}, Siyuan Wang^{1,2}, Munkhbayar Baasandorj⁴, Dorothy L.
7 Fibiger^{1,2‡}, Alessandro Franchin^{1,2#}, Lexie Goldberger^{5§}, Colin Harkins^{1,2}, Duseong S. Jo⁶, Ben H. Lee⁵,
8 John C. Lin⁴, Brian C. McDonald², Erin E. McDuffie^{1¶}, Ann M. Middlebrook², Alexander Moravek^{7||},
9 Jennifer G. Murphy⁷, J. Andrew Neuman^{1,2}, Joel A. Thornton⁵, Patrick R. Veres², Steven S. Brown^{2,8}

10 1) *Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder,*
11 *CO 80309*

12 2) *NOAA Chemical Sciences Laboratory, Boulder, CO 80305*

13 3) *Department of Chemistry, Williams College, Williamstown, MA 01267*

14 4) *Department of Atmospheric Sciences, University of Utah, UT 84112*

15 5) *Department of Atmospheric Science, University of Washington, Seattle, WA 98195*

16 6) *Atmospheric Chemistry Observations and Modeling Laboratory, NCAR, Boulder, CO 80307*

17 7) *Department of Chemistry, University of Toronto, ON, M5S 1A1, Canada*

18 8) *Department of Chemistry, University of Colorado, Boulder, CO 80309*

19 [†]Now at Department of Chemistry, University of Colorado, and NOAA Chemical Sciences Laboratory,
20 Boulder, CO, USA

21 [‡]Now at California Air Resources Board, Sacramento, CA, USA

22 [#]Now at National Center for Atmospheric Research, Boulder, CO, USA

23 [§]Now at Pacific Northwest National Laboratory, Richland, WA, USA

24 [¶]Now at Department of Energy, Environmental, and Chemical Engineering, Washington University in St.
25 Louis, MO, USA

26 ^{||}Now at German Environment Agency, Dessau-Roßlau, Germany

27 *Corresponding author: Caroline C. Womack.

28 Email: caroline.womack@noaa.gov

29 This PDF file includes:

30 Supplemental Text

31 Figures S1 to S13

32 Tables S1 to S4

33 SI References

34 Pages S1 to S28

42 **Section S1. Additional F0AM model details**

43
44 F0AM uses the Tropospheric Ultraviolet and Visible Radiation Model (TUV v5.2)¹ to determine
45 wavelength-resolved solar flux that drives photochemistry. The UWFPS campaign did not include a direct
46 measurement of the actinic flux, but total solar radiation was monitored hourly at the Utah Division of Air
47 Quality (UDAQ) Hawthorn site². To account for daily variability in the solar flux, the day with the highest
48 solar radiation during the campaign, February 12, 2017, was assumed to represent a “clear-sky” day, and all
49 other days were scaled relative to that day. We used that scaling factor to reduce the default photolysis
50 frequencies in the TUV model from their clear sky values. We also constructed sensitivity tests to
51 determine the sensitivity of the model to this assumption.

52
53 Because the O₃ depletion occurs in a lofted plume (Figure S10), we exclude dry deposition reactions, but
54 include uptake of ClNO₃, BrNO₃, BrNO₂, HOCl, and HOBr on aerosol with a single uptake parameter for
55 each compound taken from the literature³⁻⁶, listed in Table S3. The F0AM model does not include any
56 aerosol microphysics, so aerosol pH was not considered in the model. Uptake was treated as with first order
57 kinetics, using the daily average aerosol surface area and single uptake parameters. The uptake parameter
58 for N₂O₅ was determined directly for the Salt Lake area during the UWFPS campaign⁷, and the average
59 value of 0.076 was used here. This value is higher than many other modeling studies, so we conduct a
60 sensitivity test in which we reduce this value by half to 0.04, and find little change to the model. N₂O₅
61 concentrations are low during the daytime plumes, and therefore its uptake has little impact on gas or
62 particle abundance.

63 **Section S2. CAM-chem/MUSICA model validation**

64
65 The spatial (vertical and horizontal) and temporal variabilities of several key meteorological/chemical
66 parameters in the CAM-chem/MUSICA model were evaluated against balloon-borne, airborne, and
67 ground-based observations available for this study.

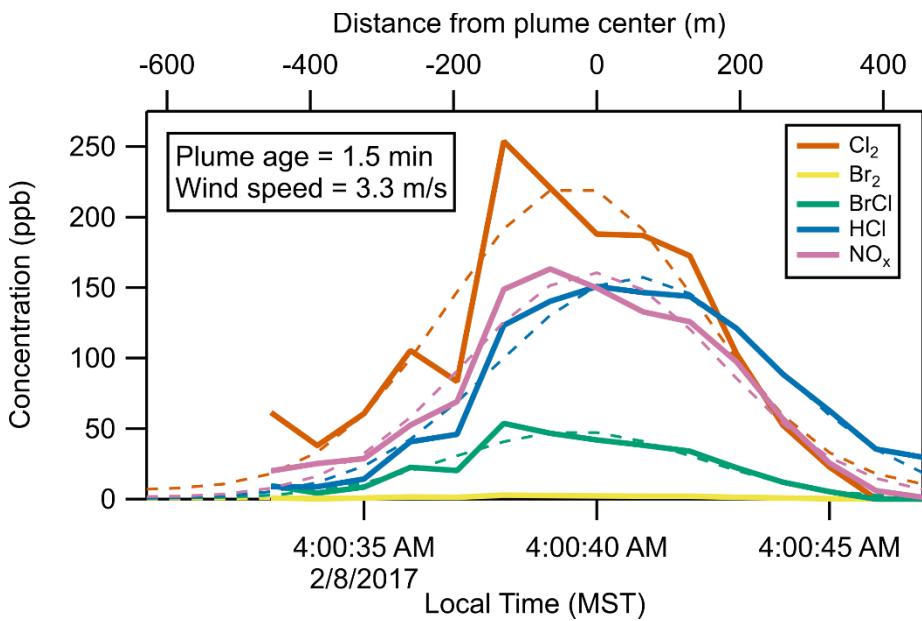
68
69 We use the sounding observations in Salt Lake City (40.77N, 111.95W), the closest sounding site to the
70 studied area, to evaluate key meteorological parameters in the model that affect the dispersion and transport
71 of pollutants in the model. Sounding balloons are released twice daily (00UTC and 12UTC), profiling
72 temperature, humidity, and wind conditions from the surface to at least 20-30 km altitude. The sounding
73 data was obtained from the University of Wyoming sounding archive:

74 <http://weather.uwyo.edu/upperair/sounding.html>). Figure S14 (a) shows the vertical profiles of
75 potential temperature, specific humidity, and winds between 27 January and 4 February, 2017, one PCAP
76 period during UWFPS with the most severe air pollution. As shown, the stability condition in the lower-
77 middle troposphere depicted by the potential temperature and specific humidity in the sounding profiles is
78 reasonably well reproduced by the model, and the main transport pattern largely affected by the wind
79 conditions in the sounding profiles is also reasonably well captured by the model. This implies the modeled
80 meteorology is sufficiently reproducing boundary layer dynamics needed to study the impact of the
81 industrial halogen emissions on the O₃ and particulate matter pollution in this region.

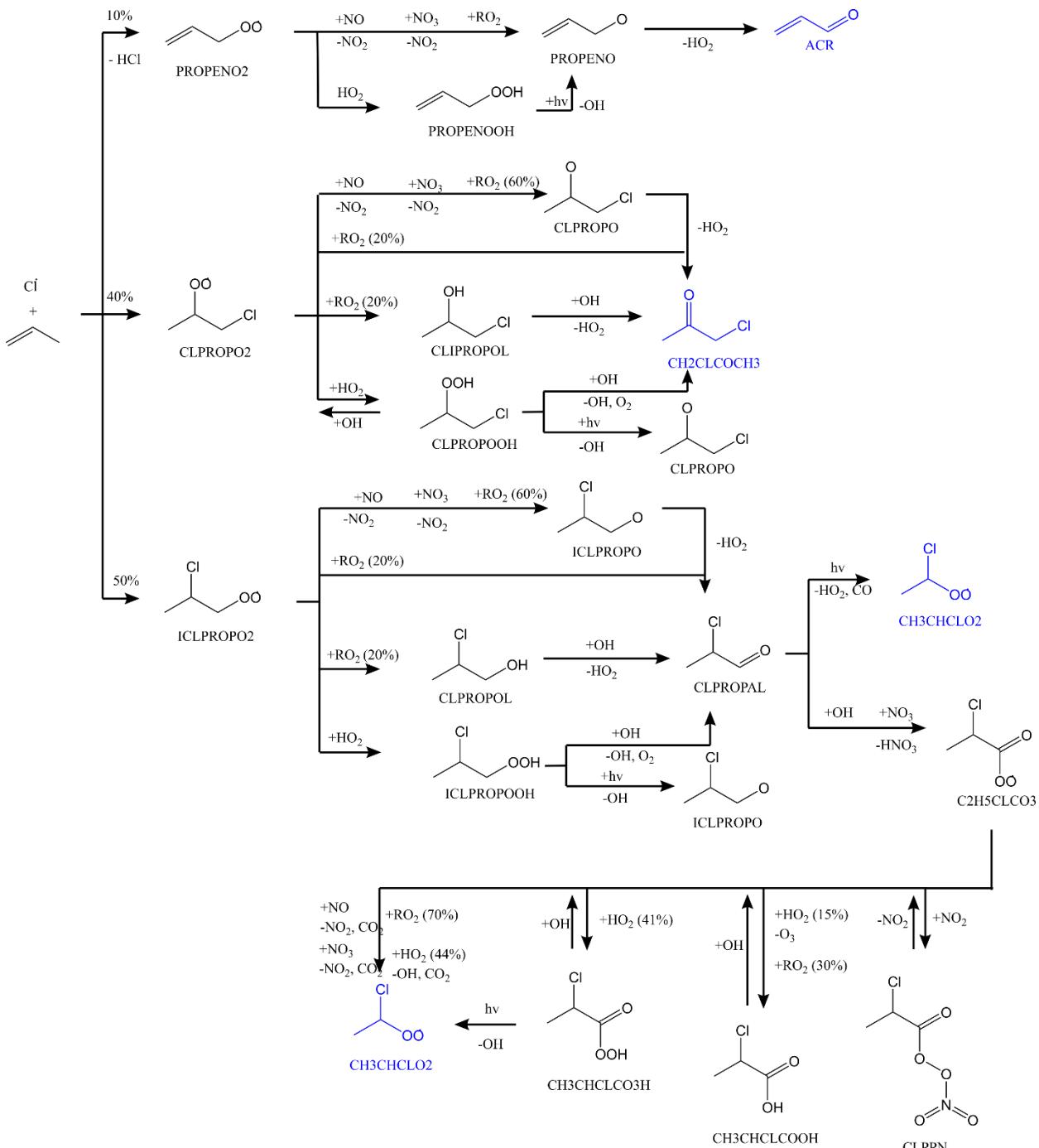
82
83 We then use in situ measurements of trace gases and fine particulate matter to evaluate the model’s
84 capability to capture the ozone and particulate matter pollution in this region. Airborne measurements of
85 O₃, reactive nitrogen, and chemical composition of PM₁ (particles smaller than ~1 micron in vacuum
86 aerodynamic diameter measured by the Aerosol Mass Spectrometer, AMS) aboard the Twin Otter aircraft
87 (see Methods in the main text) were used to evaluate the vertical distribution of key trace gases and
88 speciated fine particulate matter (Figure S14 (b)). The model is capable of explicitly simulating the
89 chemical evolution of aerosols in four size modes: Aitken mode, accumulation mode, coarse mode, as well
90 as primary carbon mode. Liu *et al*Liu, Ma, Wang, Tilmes, Singh, Easter, Ghan and Rasch ⁸ and Zaveri *et*
91 *al*Zaveri, Easter, Singh, Wang, Lu, Tilmes, Emmons, Vitt, Zhang, Liu, Ghan and Rasch ⁹ contain further
92 details. In this work, the modeled PM₁ and PM_{2.5} include Aitken, accumulation, primary carbon modes, as
93 well as a fraction of coarse mode, and the fractional contributions of coarse mode to PM_{2.5} and PM₁ are
94 calculated based on size distributions described in Liu *et al.* (2016)⁸. Figure S14 (b) shows the mean
95 vertical profiles of O₃ and PM₁ components measured during the take-off and landing stages near the Salt
96 Lake City airport, during the aforementioned PCAP period (27 January – 4 February, 2017).

98
99 We note that the hourly FIVE-VCP-FOG emission inventory leads to a factor of 2 – 4 underestimation of
100 NO_x and NH_3 compared to the observations in this region; as a result, ammonium nitrate, the major
101 component of measured PM_{1} , is also underestimated by a factor of 3 – 4. A recent study measuring the
102 tailpipe of heavy-duty trucks in Salt Lake City, found a strong dependency of NO_x emission factors with
103 tailpipe temperature, and reduced efficiency of selective catalytic reduction (SCR) systems at colder
104 temperatures¹⁰. This may partially explain an underestimate in mobile source NO_x emissions as the
105 temperature-dependency of heavy-duty truck emissions are not currently taken into account in the FIVE
106 mobile source emissions inventory. Furthermore, another recent study suggested that light-duty vehicular
107 emissions of NH_3 in FIVE might also be significantly underestimated by ~40% when compared with
108 satellite observations¹¹. Since the goal of our modeling effort is to assess the role of primary halogen
109 emissions on secondary chemistry, we scale up key organic and reactive nitrogen species to match aircraft
110 observations, and reproduce regional chemical conditions observed during the field campaign: particulate
111 organics were scaled up by a factor of 3, HONO and NO_x by 4, and NH_3 by 2. This improves agreement
112 with speciated PM_{1} and O_3 observations as shown in Figure S14 (b): modeled/measured ratios in the lowest
113 1 km are 0.42 ± 0.50 , 0.37 ± 0.43 , 1.01 ± 1.05 , 1.04 ± 0.96 , 0.66 ± 1.12 , and 1.35 ± 0.36 for nitrate,
114 ammonium, sulfate, particulate organics, particulate chloride, and O_3 , respectively.
115

116 With the scaled up “top-down” reactive nitrogen emissions, the model predicts that ammonium nitrate is
117 the dominant contributor to the total PM_{1} mass. Interestingly, despite the sufficient supply of NO_x and NH_3
118 in the gas-phase, particulate ammonium nitrate is still underestimated by ~58% (Figure S14 (b)), implying
119 that the oxidative capacity is likely still underestimated in the model even after scaling up primary
120 precursor emissions to match observations. This is confirmed by another sensitivity test in which
121 particulate organics, NO_x , and NH_3 emissions are scaled up as previously mentioned but HONO is kept
122 unchanged; in this case the modeled NO_x and NH_3 are both overestimated yet ammonium nitrate is still
123 underestimated by a factor of 4. Due to the lack of knowledge on the wintertime HONO
124 emissions/chemistry in this region, we applied the same scaling factor of 4 for HONO and NO_x so the
125 HONO/NO_x ratio is consistent with the original emission inventories. We note that further investigation is
126 needed on why NO_x , NH_3 , and ammonium nitrate formation are being underestimated in emissions
127 inventories and atmospheric chemistry models, but is beyond the scope of this study. Here, we constrain
128 our model for key gas and aerosol-phase species in order to reasonably capture the general spatial/temporal
129 variations of O_3 and PM pollution in the Salt Lake City region, and which is clearly a challenging
130 phenomenon to model in the wintertime.
131


132 The model performance is further demonstrated by comparing with ground-based O_3 and $\text{PM}_{2.5}$
133 measurements from the EPA Air Quality System (AQS) network. Figure S15 (a) and (b) show modeled
134 surface maximum daily 8-hour average (MDA8) O_3 and daily average $\text{PM}_{2.5}$ compared to the observations
135 in all EPA AQS sites in the Northern Utah. As shown, the temporal variabilities in MDA8 O_3 and $\text{PM}_{2.5}$ are
136 both well captured by the model, including all three pollution episodes (13-20 January, 27 January – 4
137 February, and 13-18 February) during the studied period. The modeled peak $\text{PM}_{2.5}$ during these episodes
138 agree with the observations within 50% for most of the time in most of the sites. During these pollution
139 episodes, the model predicts that ammonium nitrate is the major driver of the elevated $\text{PM}_{2.5}$, consistent
140 with previous studies in this region¹² and the airborne observations shown in Figure S14 (b).
141

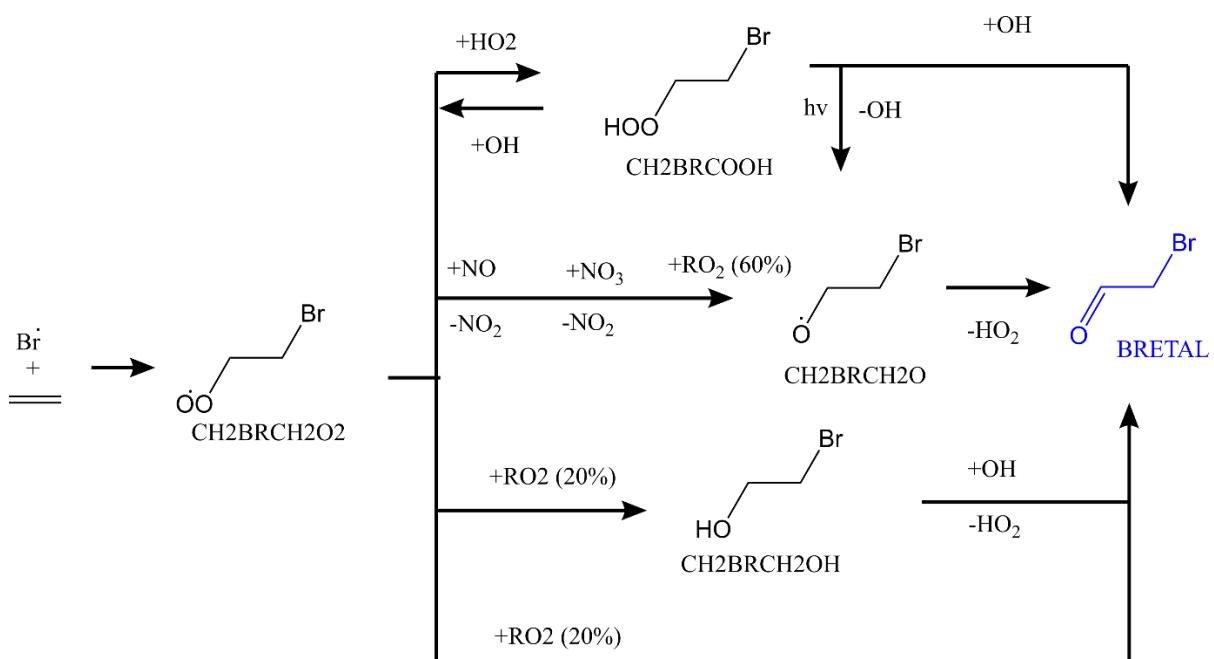
142 **Section S3. Possible measurement interferences at high halogen concentrations.**



143

144 When sampling large concentrations, such as in the nighttime plumes from US Magnesium, reagent ion
145 reductions in the I- CIMS results in increased uncertainties (Table S1). When the reagent is no longer in
146 excess, the observed species may be undercounted, and complex secondary ion chemistry within the
147 instrument is possible, as described in the appendix of Veres *et al*Veres, Roberts, Burling, Warneke, de
148 Gouw and Yokelson¹³. We therefore consider these highest measurements of halogens during the
149 nighttime flights to be a lower bound. However, Figure S7 shows that there was no correlation between
150 measured integrated flux and peak Cl_2 concentration, indicating that other sources of uncertainty are greater
151 here than uncertainty introduced by possible reagent titration at the peak halogen concentration.
152

153 Additionally, known interferences in the I- CIMS include interconversion of some halogen species on the
154 inlet, such as Cl_2 to HOCl and HOBr to Br_2 ¹⁴. Since both HOCl and HOBr are known photochemical
155 products, we use the night flights to estimate an upper limit to their interconversion on the CIMS inlet and
156 interior surfaces under the assumption that these species are not directly emitted. We find that there is a
157 linear correlation between HOBr and Br_2 , with a slope of roughly 3%, and a nonlinear correlation between
158 HOCl and Cl_2 with a slope of 1% at Cl_2 concentrations below 100 ppb, but closer to 0.1% at higher levels
159 (Figure S8). We do not expect these possible interferences to make any significant difference to the Br_2 and
160 Cl_2 signals, but may represent a significant interference to the HOBr and HOCl signals. Our sensitivity tests
161 (section II.c), however, show that these uncertainties do not change the results of the box model.
162



163
 164 Fig. S1. A nighttime transect of the US Magnesium plume, measured on February 8, 2017 at approximately
 165 4 am local time. The upper axis shows the approximate distance from the plume center, based on aircraft
 166 speed. The measured Br₂, Cl₂, BrCl, HCl and NO_x are shown in solid lines, while the dashed lines show the
 167 Gaussian fit to the data. The Gaussian fit was used to integrate across all the plumes, as some transects had
 168 missing data. The averaged wind speed across this transect was 3.3 m/s, and the plume transect was
 169 estimated to be 1.5 minute old at the time of measurement.
 170

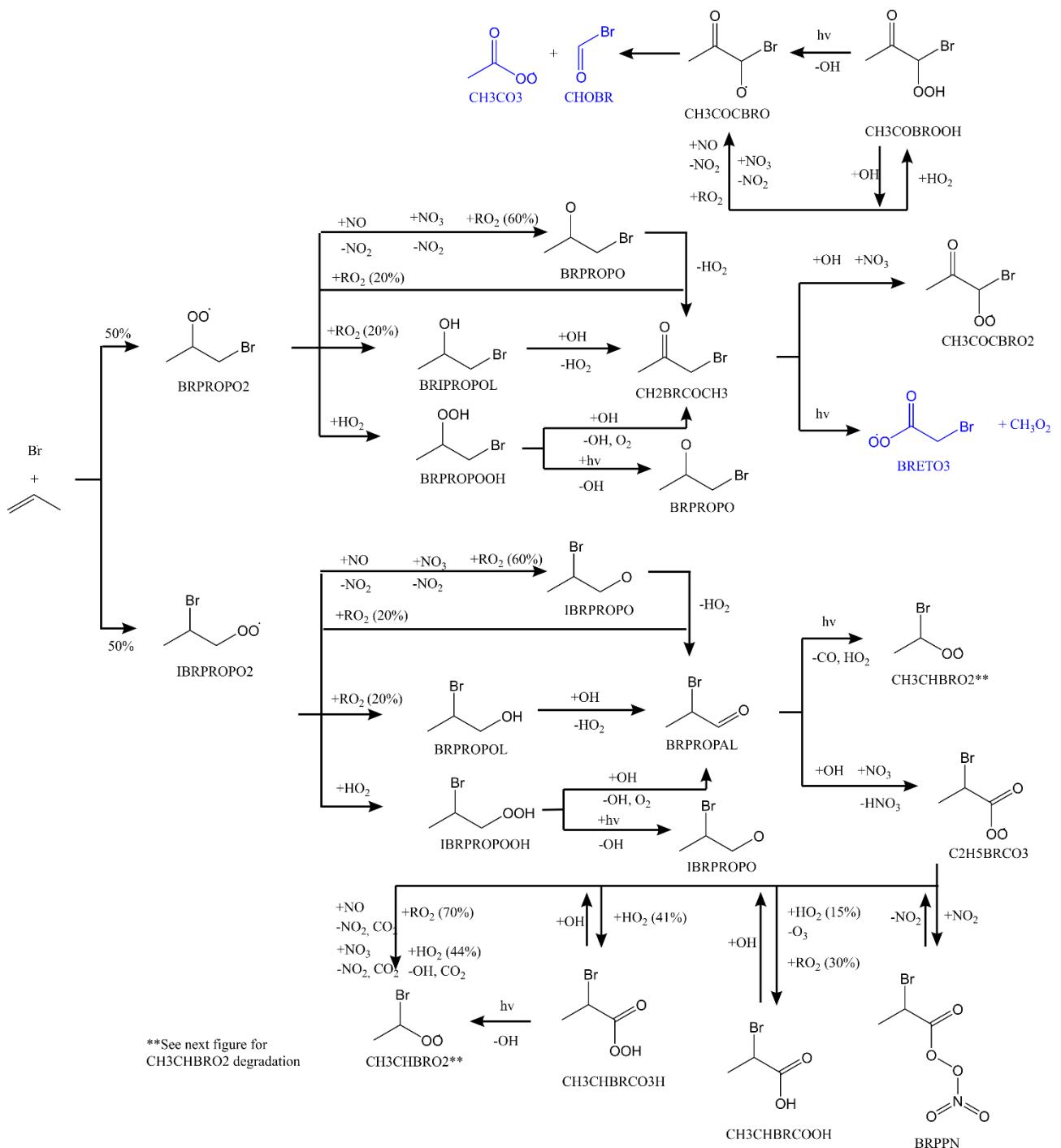

171
172
173
174
175
176

Fig. S2. The degradation scheme for Cl + C₃H₆ used in this analysis is shown. Following Xue et al¹⁵, rate constants are taken from equivalent reactions of OH + C₃H₆. This mechanism is an expansion of the one shown in Fig 1 of Xue et al¹⁵, with several more product channels explicitly described. The F0AM name is listed below each molecule. Blue lettering indicates that the species is in the MCM and that further degradation is already accounted for.

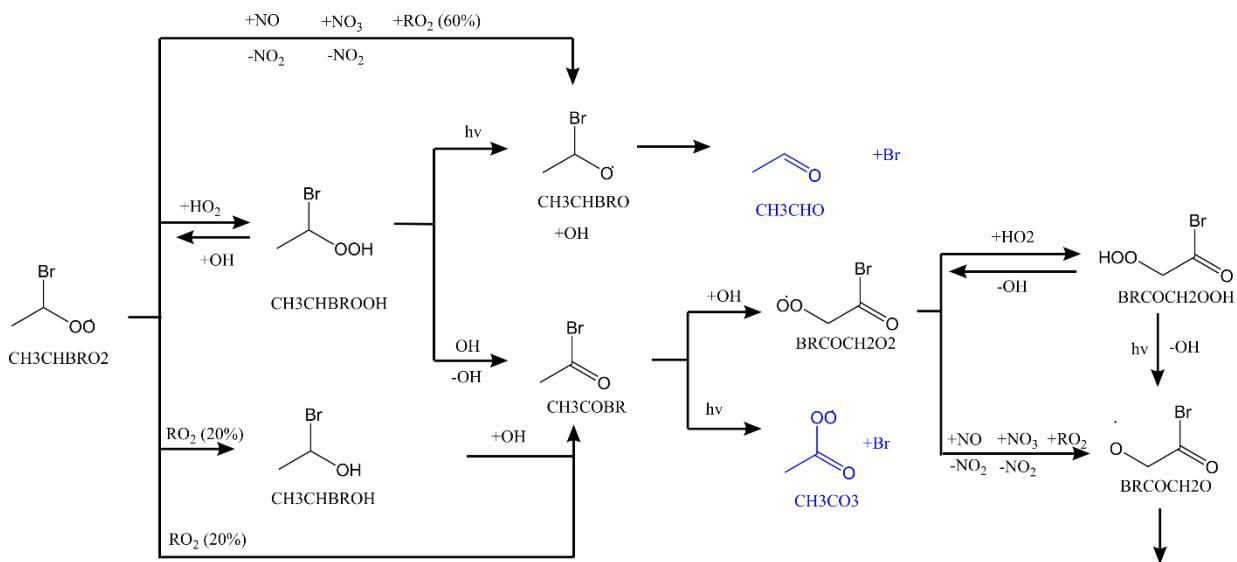

177
178
179
180

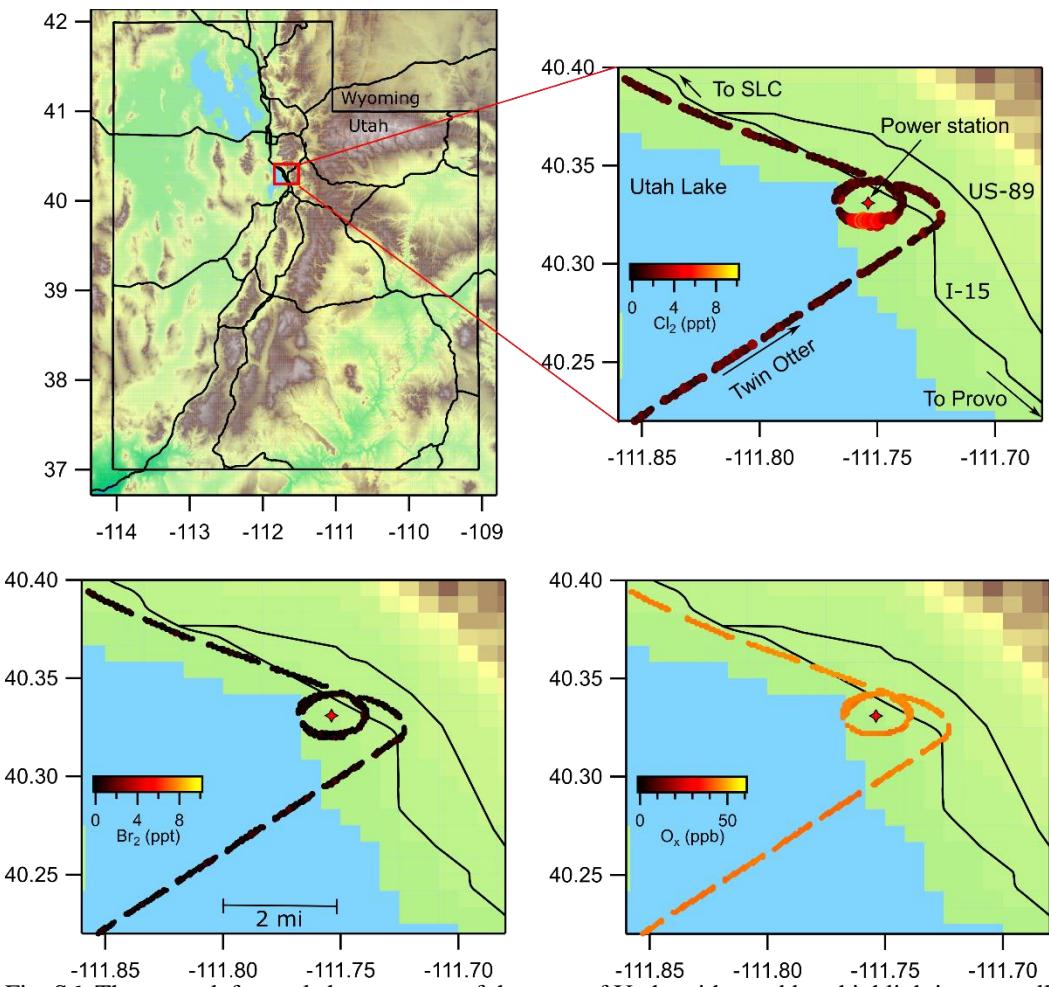
Fig. S3. The degradation scheme of Br + ethylene (C₂H₄). Mechanisms and reaction rates are taken directly from the analogous Cl + ethylene reaction that already exists in the MCM. Blue lettering indicates that the species and its further reactions are already in the MCM.

181
182
183
184
185

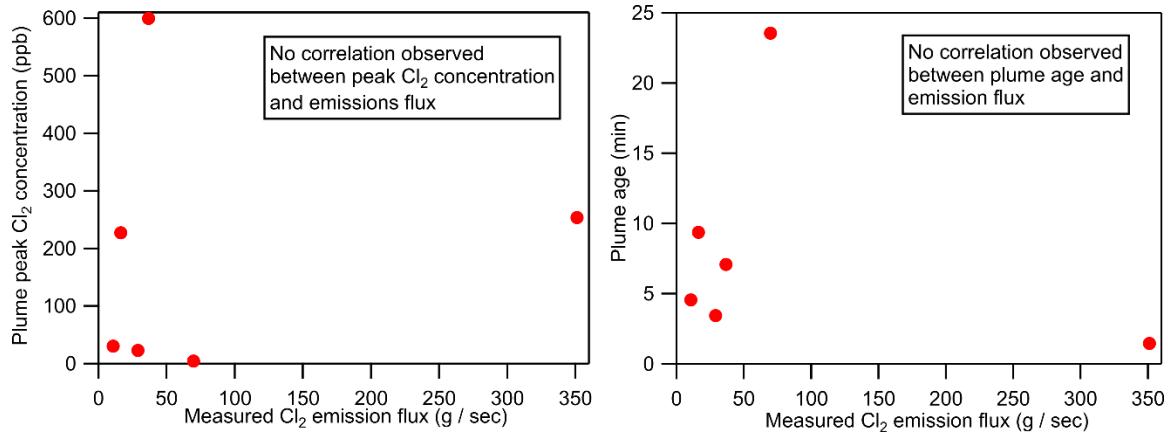
Fig. S4. The degradation scheme of Br + C_3H_6 . Mechanisms and rates following the initial addition step (which is in Atkinson et al. 2008¹⁶), are analogous to Cl + C_3H_6 , in Figure S2, but additional reactions were included to account for brominated analogues of the chlorinated species shown in blue in Figure S2. The complete degradation of $\text{CH}_3\text{CHBRO}_2$ is shown in Figure S5.

186

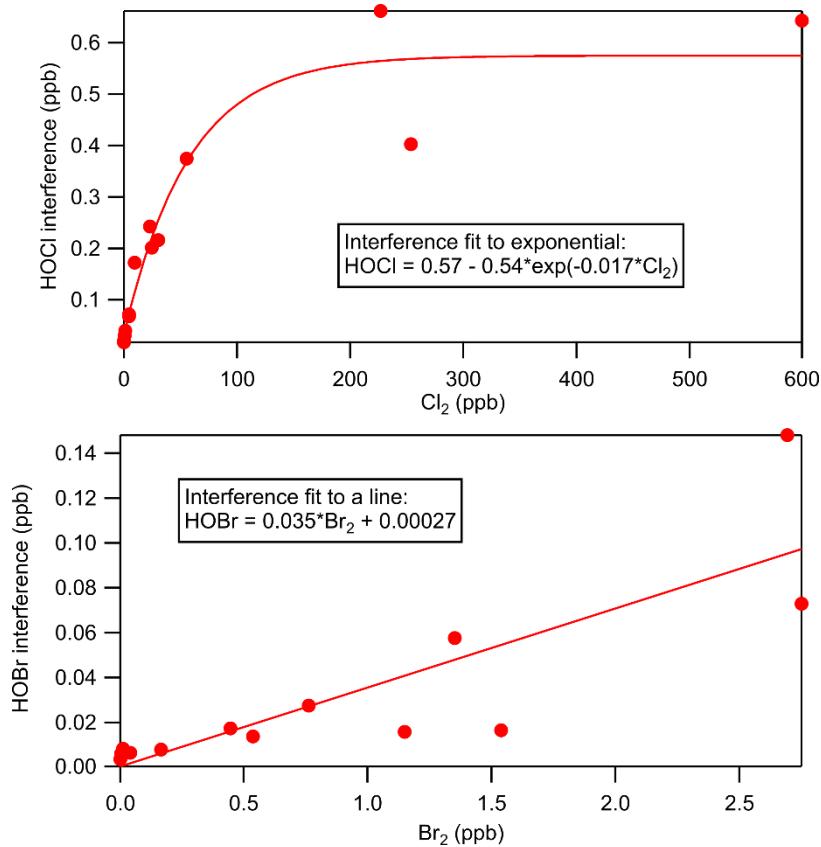
187 Fig. S5. The complete degradation of the species $\text{CH}_3\text{CHBrO}_2$, generated in the reaction of $\text{Br} + \text{C}_3\text{H}_6$ in
188 Figure S14. Blue lettering indicate species that are already in the MCM.

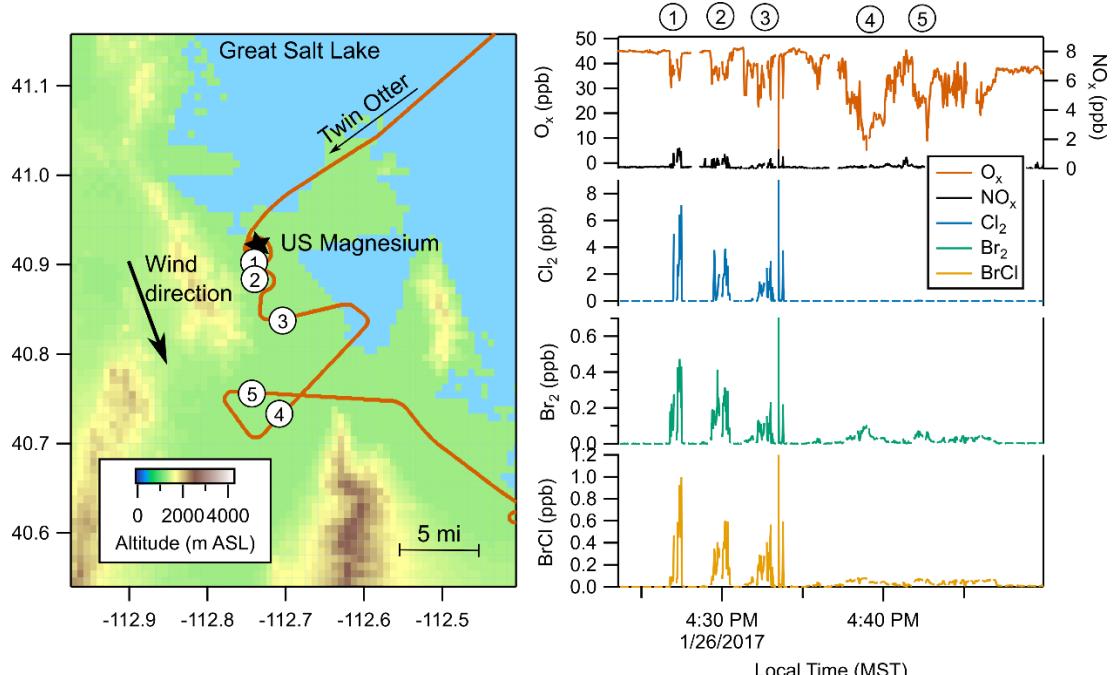

189

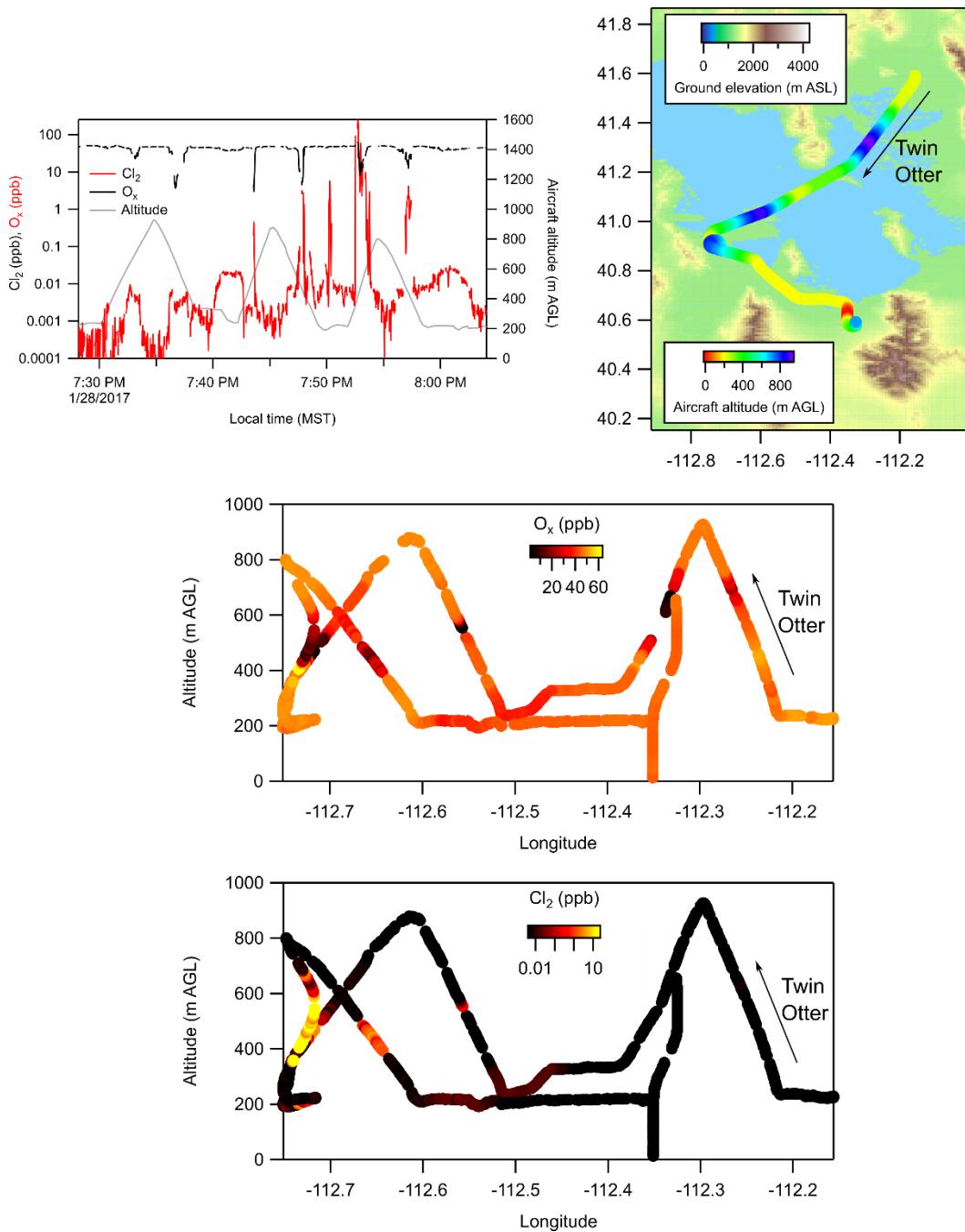
190


191

192


193


194
 195 Fig. S6. The upper left panel shows a map of the state of Utah, with a red box highlighting a small portion
 196 of the Great Salt Lake area where the Twin Otter flew around a power station on the eastern shore of Utah
 197 Lake in the early morning hours of January 28, 2017. The upper right panel shows the zoomed in map
 198 colored by Cl_2 concentration, with the lower two panels showing the identical map colored by Br_2 and O_3 .
 199 These traces demonstrate that while approximately 5 ppt of Cl_2 was observed in the emission plume of that
 200 power station, no Br_2 was observed, and no O_3 depletion was detected. Three other flights past this power
 201 station showed similar values but are not shown here.


202
 203 Fig. S7. No apparent correlation is observed between the observation-derived emission flux and the peak
 204 Cl₂ concentration or the plume age. This indicates that if I- CIMS reagent titration occurred in the largest
 205 peak (at 600 ppb Cl₂), it didn't lead to an anomalously low emission flux estimate. Furthermore, the lack of
 206 correlation between plume age and emissions flux is consistent with the assumption that dilution is the only
 207 loss process.
 208

209
210 Fig. S8. Correlation plots between HOCl and Cl₂ (upper), and HOBr and Br₂ (lower). There are known
211 interconversions of these two pair of species on instrument inlets, and so the nighttime flights were used to
212 approximate these interconversions, assuming that HOBr and HOCl are photochemical products and are
213 not directly emitted. Under this assumption, these plots indicate that the HOCl signal is roughly 1% of the
214 Cl₂ at lower levels, and HOBr is roughly 3% of the Br₂. The direction of the potential interference is not
215 clear, so Figure S12 shows the effect of both an increase and decrease in the HOBr by 3% and in HOCl by
216 1%.

217
 218 Fig. S9. A map and time series of the Twin Otter observations of high halogen concentrations and
 219 simultaneous O₃ depletions. Five plume transects are noted on both the map and the time series and show
 220 that close to the plant, halogens are high and O₃ depletion is well correlated with them. Transects 1 and 2
 221 occurred at the same location but separated in altitude by 100 m, and did not pass directly through the
 222 center of the narrow plume, and therefore did not exhibit full O₃ depletion. Further downwind, the
 223 dihalogen species are largely gone, but the O₃ depletion remains until it recovers via entrainment from
 224 background air. Br₂ and BrCl are still present in transects 4 and 5 due to regeneration processes that Cl₂
 225 does not undergo.

226
227
228
229
230
231
232
233
234
235
236

Fig. S10. Observations from the January 28 flights are shown, in which the aircraft profiled between 200 and 1000 m above ground level. The first panel shows a portion of the Twin Otter flight track, colored by the altitude of the aircraft, as it traveled west across the lake, circled the US Magnesium plant on the western side of the lake, and then returned east. The bottom two panels show curtain plots (altitude vs longitude) colored by Cl_2 and O_x concentrations during this portion of the flight. The presence of a lofted plume with high Cl_2 and depleted O_x concentrations isolated from the surface demonstrates the industrial, rather than natural source of the halogens. Natural halogen sources from the Great Salt Lake would be expected to show near-surface enhancement and a decreasing gradient with increasing altitude above the lake.

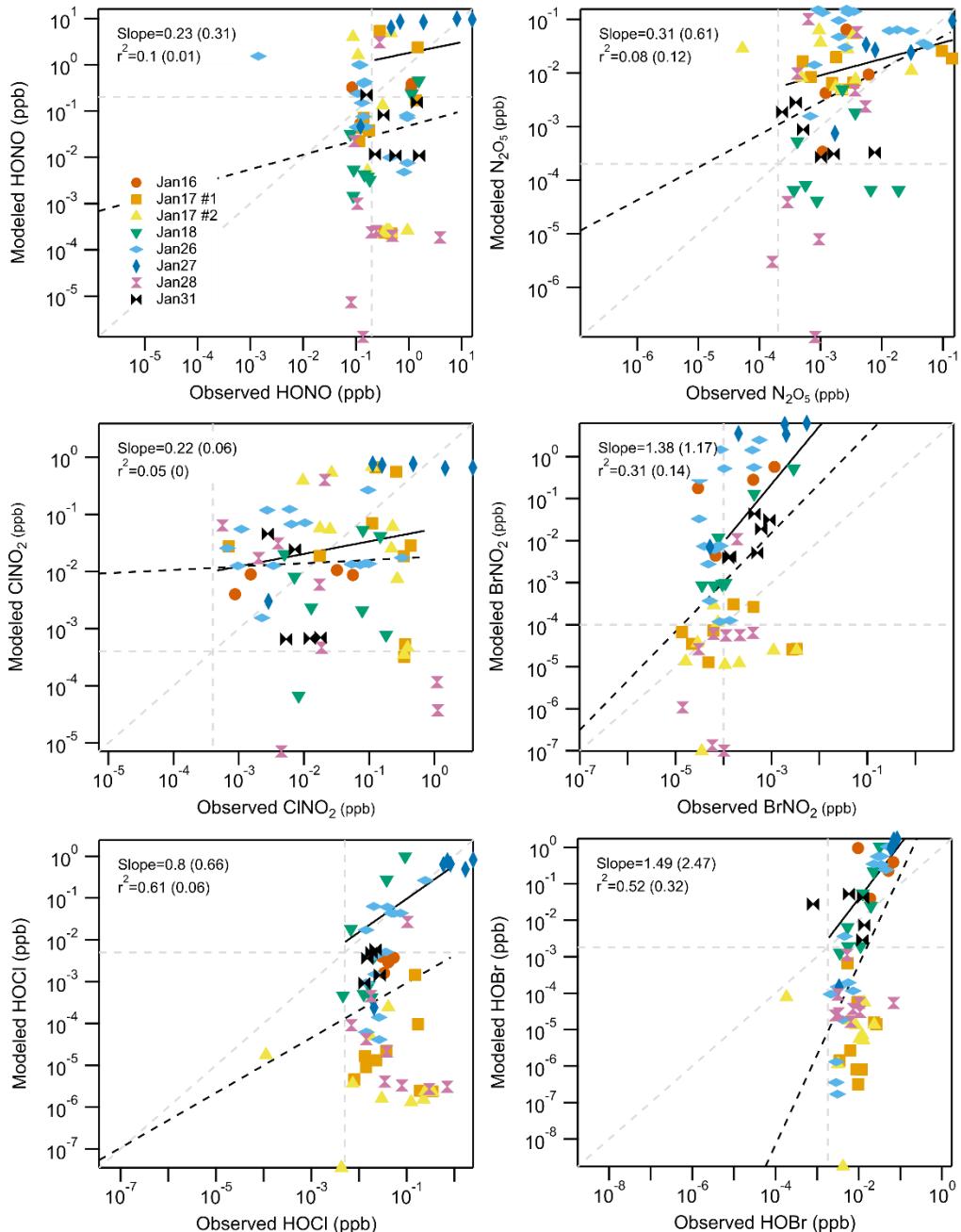
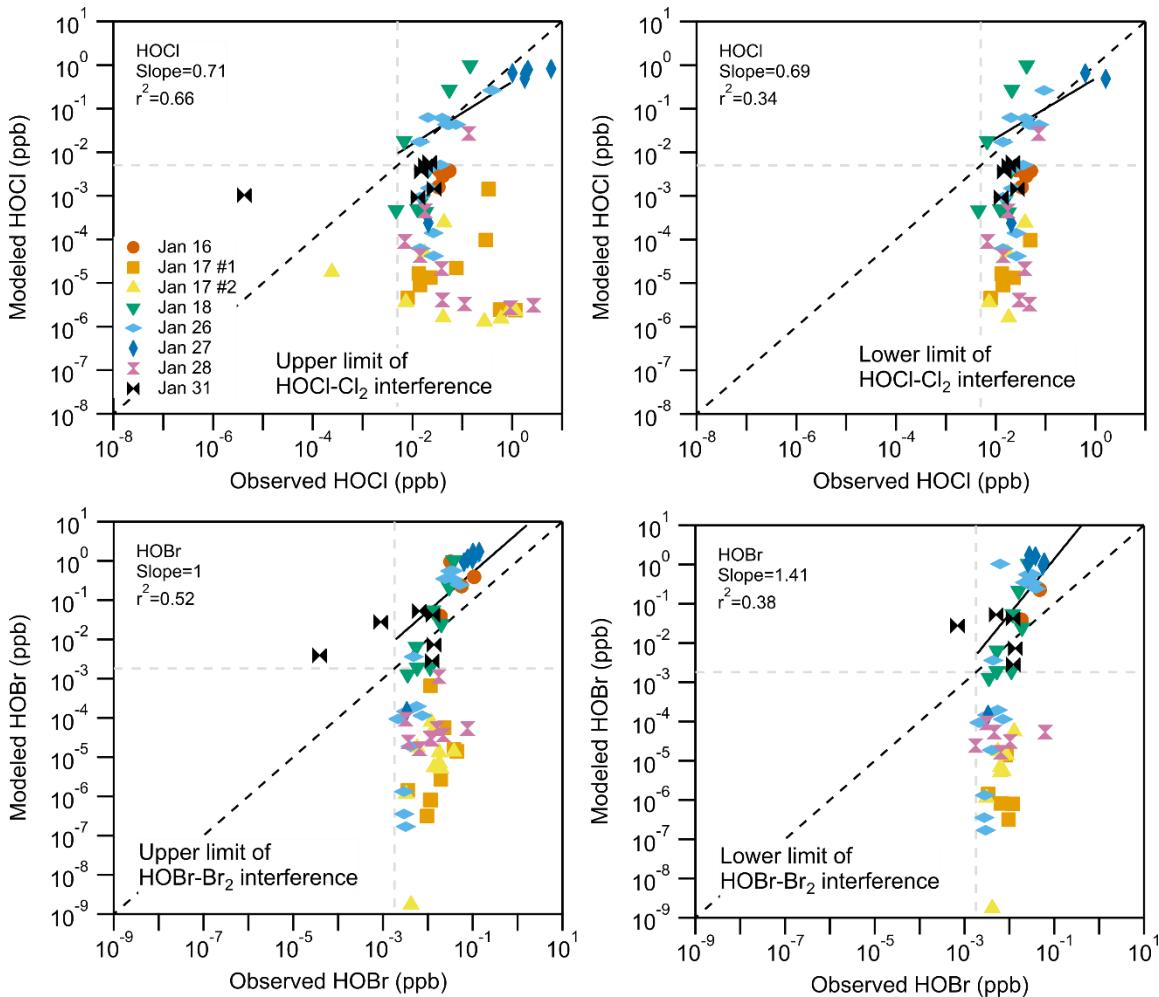
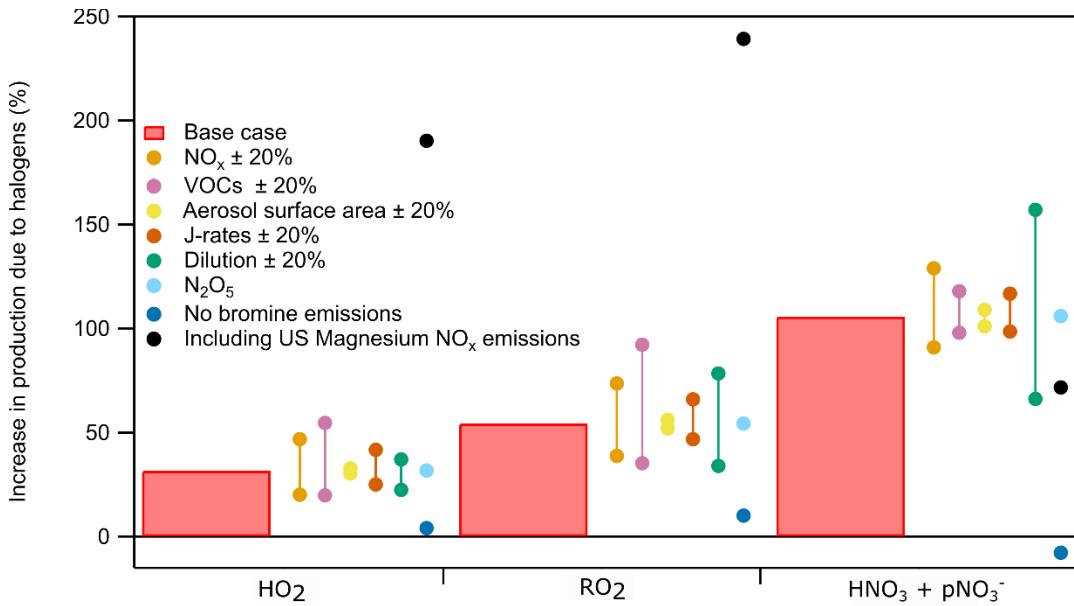




Fig. S11. Other observed species are compared to the model output. The light grey dashed lines show the limit of detection (LOD) for each species, as well as the 1:1 line. The data is fit in two ways, with solid line indicating a fit to all the data, and dashed line indicating a fit to only data points above the LOD. The data above the LOD for HONO, N_2O_5 , ClNO_2 , and HOCl fall approximately along the 1:1 line in black dashed line, but exhibit wider variability than the species shown in Figure 2. All these species are affected by the selection of the aerosol uptake parameter, the simplicity of the model, and HOBr and HOCl have a known inlet interference in the I- CIMS, as discussed in the text. However, as the sensitivity tests in Figure S13 demonstrate, the aerosol uptake does not significantly affect the conclusions of the model.

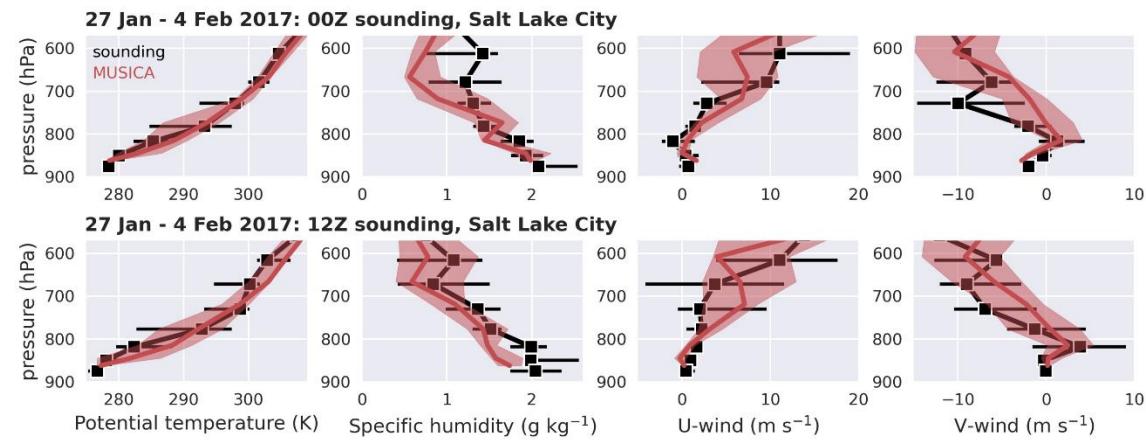
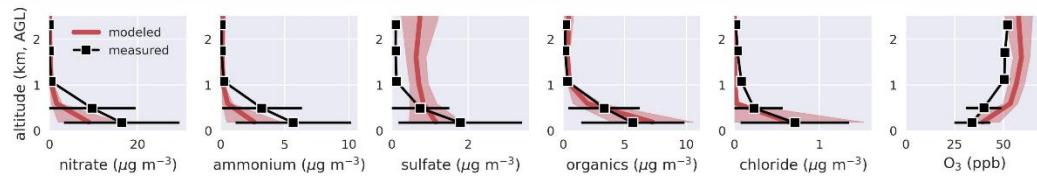
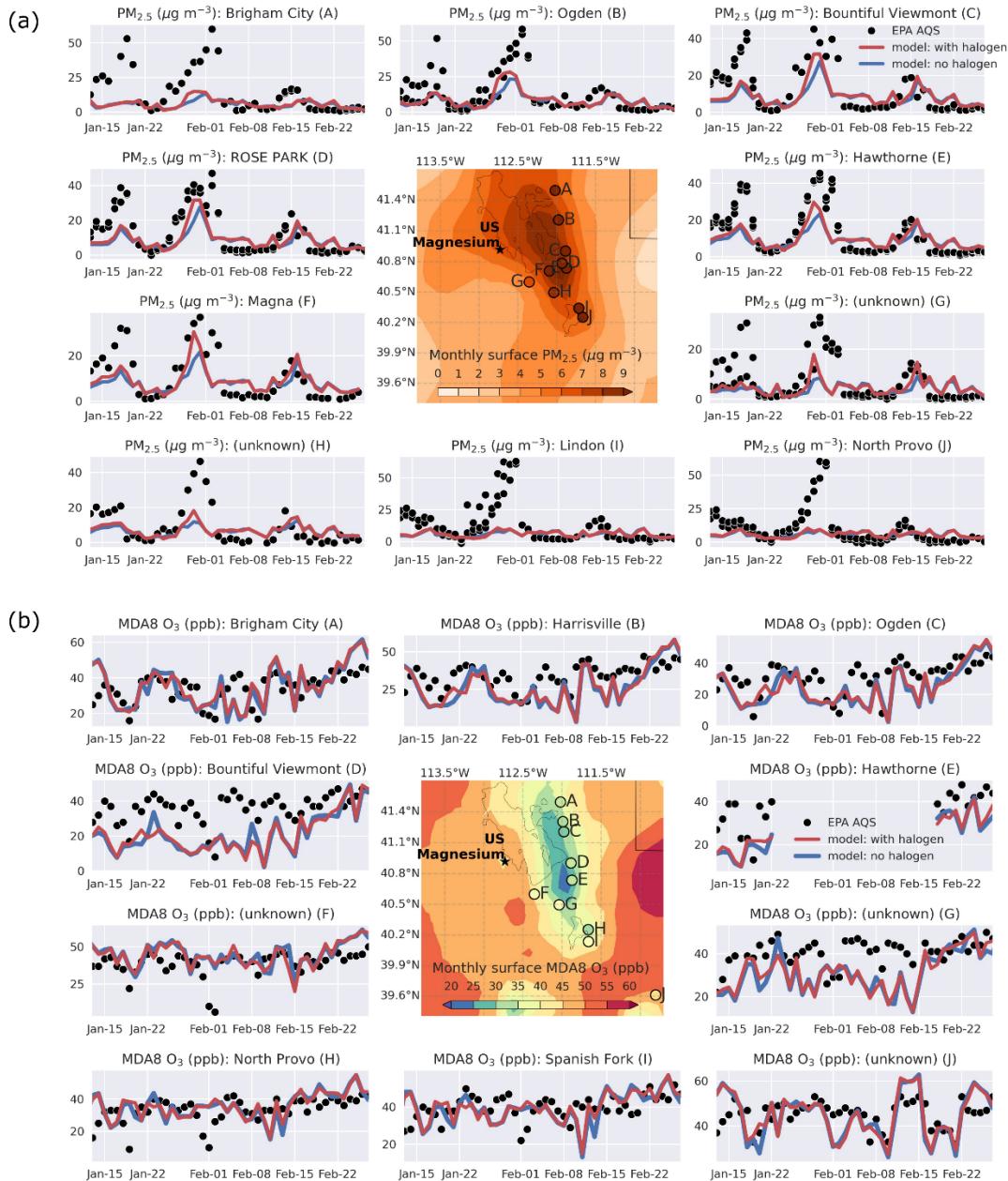

247
248
249
250
251
252
253

Fig. S12. Adjusted model-observation correlation plots, assuming that some of the HOBr and HOCl signal is from an inlet conversion of Br_2 or Cl_2 . The observed HOBr and HOCl have been scaled up and down by 3% and 1% respectively. The resulting slopes do change somewhat, but do not bring the model into perfect alignment with the observations, indicating that there are other factors at play that also affect the model agreement for these species.



254
 255 Fig. S13. The results of sensitivity simulations conducted to test various model assumptions. The red bars
 256 indicate the increase in production in HO_2 , RO_2 , and $\text{HNO}_3 + \text{pNO}_3^-$ that can be attributed to halogens,
 257 derived from base case model simulation described in the main manuscript. The sets of colored markers to
 258 the right of each bar indicate the predicted increase in production when various model parameters are
 259 scaled up and down by 20%. NO_x (orange) and VOCs (purple), aerosol surface area (yellow), photolysis
 260 rates (red), and the dilution constant (green) all have an effect on the extent to which halogen enhance these
 261 species, but none fall below 0, indicating that all agree that halogens have a net enhancing effect. The light
 262 blue and black traces represent model runs with a lower N_2O_5 uptake coefficient (no change relative to the
 263 base case), and if all of US Magnesium's NO_x emissions were released from the same stack as the halogens
 264 (greatly magnifies the effect of the halogens). Finally, the dark blue trace indicates a model run in which
 265 only chlorine emissions were included, with no Br_2 or BrCl emissions. In this model run, HO_2 and RO_2
 266 formation is not significantly enhanced by the chlorine emissions, and $\text{HNO}_3 + \text{pNO}_3^-$ is actually slightly
 267 reduced by the chlorine emissions. This indicates that bromine plays a significant role in producing all three
 268 of these species in the base case.
 269

(a)



(b)

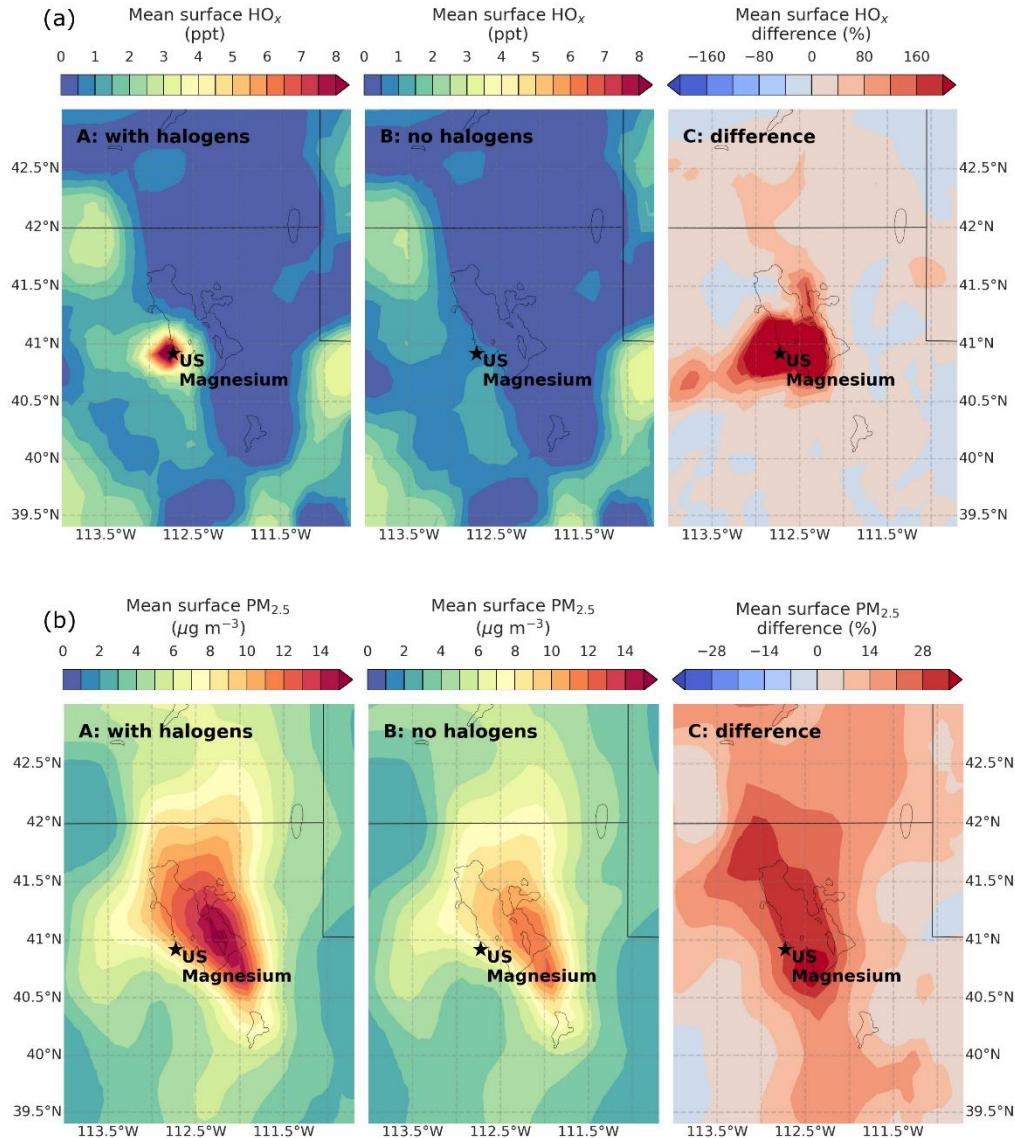

270
271
272
273
274
275

Fig. S14. (a) Comparison of average meterological soundings estimated by the CAM-chem model to those measured by twice-daily balloon soundings in Salt Lake City. (b) Comparison of average vertical profiles estimated the CAM-chem model to those measured by aircraft near Salt Lake City International Airport during UWFPS.

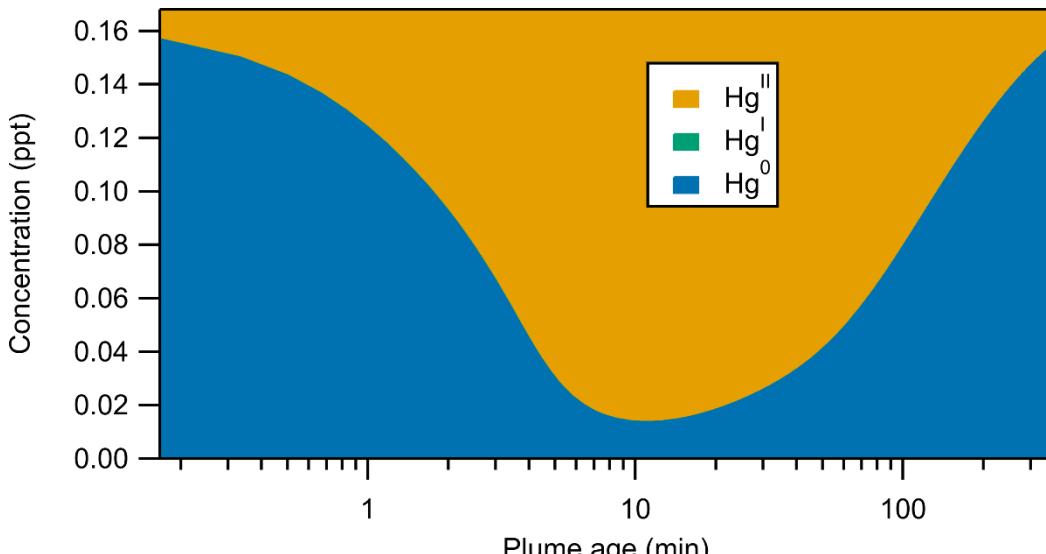
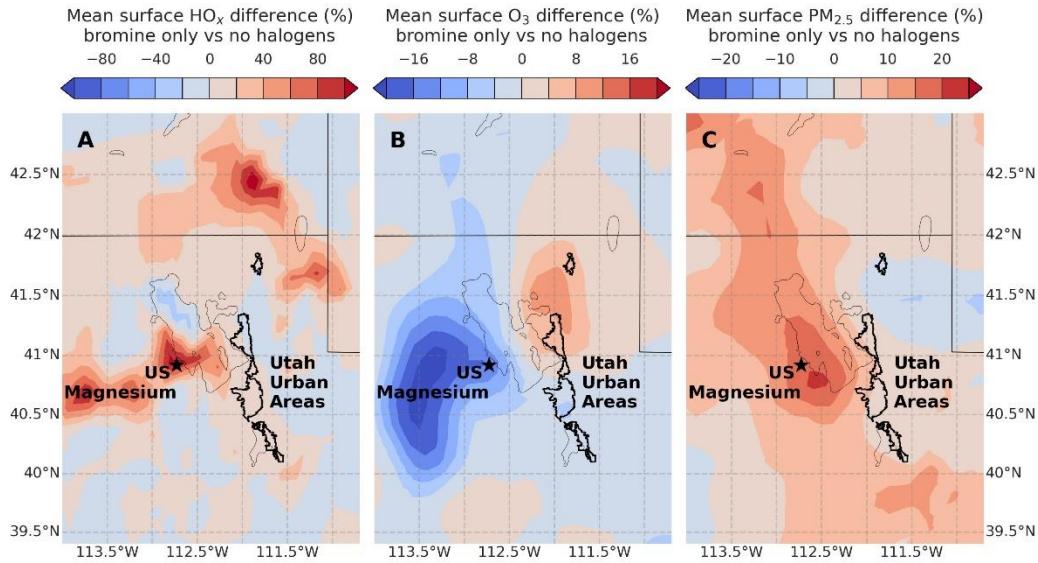

276
277
278
279
280
281
282

Fig. S15. The comparison of the CAM-chem model to daily PM_{2.5} (panel a) and O₃ (panel b) at 10 EPA Air Quality System (AQS) sites, labeled A through I on the center maps. The model tends to under-predict the formation of aerosol during pollution episodes, including the period between 27 January and 4 February which represents the data in Figure 4b in the main text, but represents both the shape of the vertical profiles and the temporal trends in pollution well.

283
284
285
286
287


Fig. S16. Estimated HO_x and PM_{2.5} during January 27 – February 4, 2017, with and without halogen emissions from US Magnesium. The rightmost panels show the percentage difference between the two model runs.

288
 289 Fig. S17. A model run in which a small quantity of elemental mercury (Hg^0) was included as an initial
 290 condition and as a background species, and was converted to oxidized mercury (Hg^{II}) by reactions with Br
 291 radicals via Hg^{I} . A typical background value of 168 ppq was chosen based on average observations in the
 292 area. Dilution of the plume into the background air with this same quantity of Hg^0 is responsible for the
 293 slow disappearance of the Hg^{II} and the return of the Hg^0 .
 294
 295

296
297 Fig. S18. The estimated ammonium nitrate during January 27 – February 4, 2017, with and without halogen
298 emissions from US Magnesium. The rightmost panel shows the difference between the two model runs.
299 This panel demonstrates that the majority of the change in $\text{PM}_{2.5}$ shown in figures 4 and S16 is due to an
300 enhancement in ammonium nitrate formation.
301
302

303
304
305
306
307
308
309

Fig. S19. The estimated change in mean surface HO_x, O₃, and PM_{2.5} from the CAM-chem model when only bromine (no chlorine) emissions from US Magnesium are included. The effect on O₃ is not significantly different from that in figure 4 in the main text, but the effect on HO_x and PM_{2.5} is less strong, indicating that bromine chemistry dominates the O₃ depletion, but chlorine chemistry is also playing a key role in HO_x, and therefore PM_{2.5} production.

310 Table S1. Instruments on board the NOAA Twin Otter that provided the data used in this analysis, with the
 311 published lower detection limit and accuracy for each species. Note that additional inaccuracy may be
 312 introduced when sampling large concentrations of halogens, as indicated in Section S3 and Figures S7 and
 313 S8. Instruments were calibrated before, during, and after the UWFPs campaign using known standards.
 314

Instrument	Species	Lower detection limit	Accuracy
ICIMS (Iodide chemical ionization mass spectrometry) ¹⁷	Cl ₂	0.4 ppt	30%
	Br ₂	0.3 ppt	30%
	BrCl	0.2 ppt	50%
	HCl	160 ppt	30%
	ClNO ₂	0.4 ppt	30%
	BrNO ₂	0.1 ppt	50%
	HOCl	5.0 ppt	30%
	HOBr	1.8 ppt	50%
	HNO ₃	60 ppt	30%
	HONO	200 ppt	50%
NOxCaRD (Nitrogen oxide by cavity ringdown spectroscopy) ¹⁸	N ₂ O ₅	0.2 ppt	30%
	NO ₂	18 ppt	5%
	NO	14 ppt	5%
AMS (Aerosol mass spectrometer) ¹⁹	O ₃	28 ppt	5%
	pNO ₃ ⁻	0.06 ug / m ³	30%
UHSAS (Ultrahigh sensitivity aerosol spectrometer) ²⁰	pCl ⁻	0.15 ug / m ³	30% but higher at higher pCl ⁻ loadings
	Aerosol surface area	-	34%

315
 316
 317 Table S2. The full mechanism used for halogen chemistry. The last column shows the reference, and is
 318 typically either IUPAC^{16, 21} or JPL⁶, or is cited separately.

Reaction	Reaction Rate	Reference
Chlorine inorganic reactions		
Cl + O ₃ → ClO + O ₂	2.8e-11 x exp(-250/T)	IUPAC
Cl + HO ₂ → OH + ClO	4.4e-11 x (1.7 x exp(-620/T))	IUPAC
Cl + HO ₂ → O ₂ + HCl	4.4e-11 x (1 - (1.7 x exp(-620/T)))	IUPAC
Cl + H ₂ O ₂ → HO ₂ + HCl	1.1e-11 x exp(-980/T)	IUPAC
CLOO + Cl → ClO + ClO	1.2e-11	JPL
CLOO + Cl → Cl ₂ + O ₂	2.3e-10	JPL
OCIO + Cl → ClO + ClO	3.2e-11 x exp(170/T)	IUPAC
Cl + Cl ₂ O ₂ → Cl ₂ + ClOO	7.6e-11 x exp(65/T)	IUPAC
Cl + HOCl → Cl ₂ + OH	3.4e-12 x exp(-130/T)	JPL
Cl + NO ₂ → ClNO ₂	$k_0 = 1.8e-31 \times (T/300)^{-2.0}$ $k_\infty = 1.0e-10 \times (T/300)^{-1.0}$	JPL
Cl + NO ₃ → ClO + NO ₂	2.4e-11	IUPAC
Cl + ClNO → Cl ₂ + NO	5.8e-11 x exp(100/T)	JPL
Cl + ClNO ₃ → Cl ₂ + NO ₃	6.2e-12 x exp(145/T)	IUPAC
Cl + O ₂ → ClOO	$k_0 = 2.2e-33 \times (T/300)^{-3.1}$ $k_\infty = 1.8e-10$	JPL
ClOO → Cl + O ₂	$k_{eq} = 6.6e-25 \times exp(2502/T)$ $k = k_{Cl+O_2 \rightarrow ClOO} / k_{eq}$	JPL
OH + Cl ₂ → HOCl + Cl	3.6e-12 x exp(-1200/T)	IUPAC
ClO + HO ₂ → O ₂ + HOCl	2.2e-12 x exp(340/T)	IUPAC
OH + ClO → HCl + O ₂	4.4e-13 x exp(300/T)	IUPAC

OH + ClO → HO ₂ + Cl	6.8e-12 x exp(300/T)	IUPAC
ClO + O → O ₂ + Cl	6.8e-12 x exp(300/T)	IUPAC
ClO + ClO → Cl ₂ + O ₂	1.0e-12 x exp(-1590/T)	IUPAC
ClO + ClO → OCLO + Cl	3.5e-13 x exp(-1370/T)	IUPAC
ClO + ClO → Cl + ClOO	3.0e-11 x exp(-2450/T)	IUPAC
ClO + ClO → Cl ₂ O ₂	$k_0 = 1.6e-32 \times (T/300)^{-4.5}$ $k_\infty = 3.0e-12 \times (T/300)^{-2}$	JPL
Cl ₂ O ₂ → ClO + ClO	$k_{eq} = 1.72e-27 \times \exp(8649/T)$ $k = k_{ClO+ClO \rightarrow Cl_2O_2} / k_{eq}$	JPL
ClO + NO → Cl + NO ₂	6.2e-12 x exp(295/T)	IUPAC
ClO + NO ₂ → ClNO ₃	$k_0 = 1.8e-31 \times (T/300)^{-3.4}$ $k_\infty = 1.5e-11 \times (T/300)^{-1.9}$	JPL
OH + OCLO → HOCl + O ₂	1.4e-12 x exp(600/T)	IUPAC
OCLO + NO → ClO + NO ₂	1.1e-13 x exp(350/T)	IUPAC
OH + HCl → H ₂ O + Cl	1.7e-12 x exp(-230/T)	IUPAC
O + HCl → OH + Cl	1.0e-11 x exp(-3300/T)	JPL
OH + Cl ₂ O ₂ → HOCl + ClOO	6.0e-13 x exp(670/T)	JPL
OH + HOCl → H ₂ O + ClO	5.0e-13	IUPAC
O + HOCl → OH + ClO	1.7e-13	JPL
OH + ClNO ₂ → HOCl + NO ₂	2.4e-12 x exp(-1250/T)	IUPAC
OH + ClNO ₃ → HOCl + NO ₃	1.2e-12 x exp(-330/T)	IUPAC
O + ClNO ₃ → ClO + NO ₃	3.6e-12 x exp(-840/T)	JPL
<i>Chlorine – organic reactions</i>		
Cl + alkanes (C1 – C6)	Already in MCM	
Cl + C ₂ H ₄ → CH ₂ CLCH ₂ O ₂	$k_0 = 1.85e-29 \times (T/300)^{-3.3}$ $k_\infty = 6.0e-10$ $fc = 0.4$	IUPAC
Cl + C ₃ H ₆ → HCl + PROOPENO ₂	2.7e-10 $\Phi = 0.1$	See Fig S2
Cl + C ₃ H ₆ → CLPROPO ₂	$k_0 = 4.0e-28$ $k_\infty = 2.8e-10$ $\Phi = 0.4$	See Fig S2
Cl + C ₃ H ₆ → ICLPROPO ₂	$k_0 = 4.0e-28$ $k_\infty = 2.80e-10$ $\Phi = 0.5$	See Fig S2
Cl + C ₂ H ₂ → CHOCl + CO + HO ₂ ***	$k_0 = 6.1e-30 \times (T/300)^{-3.0}$ $k_\infty = 2.0e-10$	IUPAC
Cl + HCHO → HCl + HO ₂ + CO	8.1e-11 x exp(-34/T)	IUPAC
Cl + CH ₃ CHO → CH ₃ CO ₃ + HCl	8.0e-11	IUPAC
Cl + C ₂ H ₅ CHO → C ₂ H ₅ CO ₃ + HCl	1.3e-10	IUPAC
Cl + C ₃ H ₇ CHO → C ₃ H ₇ CO ₃ + HCl	3.1e-11 x exp(410/T)	¹⁵
Cl + C ₃ H ₇ CHO → BUTALO ₂ + HCl	5.5e-12 x exp(410/T)	¹⁵
Cl + CH ₃ COCH ₃ → HCl + CH ₃ COCH ₂ O ₂	3.2e-11 x exp(-815/T)	IUPAC
Cl + MEK → MEKAO ₂ + HCl	1.4e-11 x exp(80/T)	IUPAC
Cl + MEK → MEKBO ₂ + HCl	1.4e-11 x exp(80/T)	IUPAC
Cl + MEK → MEKCO ₂ + HCl	2.4e-12 x exp(80/T)	IUPAC
Cl + MACR → MACO ₃ + HCl	4.86e-11 x exp(380/T) x 0.45	¹⁵
Cl + DIEK → DIEKAO ₂ + HCl	2.4e-11	¹⁵
Cl + DIEK → DIEKBO ₂ + HCl	2.4e-11	¹⁵
Cl + HEX3ONE → HEX3ONAO ₂ + HCl	1.05e-10	¹⁵
Cl + HEX3ONE → HEX3ONBO ₂ + HCl	2.3e-11	¹⁵
Cl + HEX3ONE → HEX3ONCO ₂ + HCl	1.8e-11	¹⁵
Cl + HEX3ONE → HEX3ONDO ₂ + HCl	1.8e-11	¹⁵
Cl + CH ₃ OH → HCl + HCHO + HO ₂	5.5e-11	IUPAC

$\text{Cl} + \text{C}_2\text{H}_5\text{OH} \rightarrow \text{HCl} + \text{CH}_3\text{CHO} + \text{HO}_2$	$5.5\text{e-}11 \times \exp(155/T)$	15
$\text{Cl} + \text{C}_2\text{H}_5\text{OH} \rightarrow \text{HCl} + \text{HOCH}_2\text{CH}_2\text{O}_2$	$4.8\text{e-}12 \times \exp(155/T)$	15
$\text{Cl} + \text{HCOOH} \rightarrow \text{HCl} + \text{CO}_2 + \text{H}_2\text{O}$	$1.9\text{e-}13$	IUPAC
$\text{Cl} + \text{CH}_3\text{CO}_2\text{H} \rightarrow \text{HCl} + \text{CH}_3\text{O}_2 + \text{CO}_2$	$2.64\text{e-}14$	IUPAC
$\text{Cl} + \text{CH}_3\text{O}_2 \rightarrow \text{ClO} + \text{HCHO} + \text{HO}_2$	$1.6\text{e-}10 \times 0.5$	JPL
$\text{Cl} + \text{CH}_3\text{O}_2 \rightarrow \text{HCl} + \text{CH}_2\text{OO}$	$1.6\text{e-}10 \times 0.5$	JPL
$\text{Cl} + \text{C}_2\text{H}_5\text{O}_2 \rightarrow \text{ClO} + \text{HO}_2 + \text{CH}_3\text{CHO}$	$7.4\text{e-}11$	JPL
$\text{Cl} + \text{C}_2\text{H}_5\text{O}_2 \rightarrow \text{HCl} + \text{CH}_3\text{CHOO}$	$7.7\text{e-}11$	JPL
$\text{Cl} + \text{CH}_3\text{OOH} \rightarrow \text{HCl} + \text{CH}_3\text{O}_2$	$3.54\text{e-}11$	15
$\text{Cl} + \text{CH}_3\text{OOH} \rightarrow \text{HCHO} + \text{OH} + \text{HCl}$	$2.36\text{e-}11$	15
$\text{CH}_3\text{O}_2 + \text{ClO} \rightarrow \text{ClOO} + \text{HO}_2 + \text{HCHO}$	$3.3\text{e-}12 \times \exp(-115/T)$	JPL
$\text{Cl} + \text{OXYL} \rightarrow \text{OXYLO2} + \text{HCl}$	$1.5\text{e-}10$	22
$\text{Cl} + \text{TOLUENE} \rightarrow \text{C}_6\text{H}_5\text{CH}_2\text{O}_2 + \text{HCl}$	$5.9\text{e-}11$	22
$\text{Cl} + \text{TM124B} \rightarrow \text{TM124BO2} + \text{HCl}$	$3.6\text{e-}10$	22
<i>Bromine – inorganic</i>		
$\text{Br} + \text{O}_3 \rightarrow \text{BrO} + \text{O}_2$	$1.7\text{e-}11 \times \exp(-800/T)$	IUPAC
$\text{Br} + \text{HO}_2 \rightarrow \text{HBr} + \text{O}_2$	$7.7\text{e-}12 \times \exp(-450/T)$	IUPAC
$\text{Br} + \text{NO}_2 \rightarrow \text{BrNO}_2$	$k_0 = 4.2\text{e-}31 \times (T/300)^{-2.4}$ $k_\infty = 2.7\text{e-}11$	IUPAC
$\text{Br} + \text{NO}_3 \rightarrow \text{BrO} + \text{NO}_2$	$1.6\text{e-}11$	IUPAC
$\text{BrNO}_3 + \text{Br} \rightarrow \text{Br}_2 + \text{NO}_3$	$4.9\text{e-}11$	23
$\text{Br}_2 + \text{OH} \rightarrow \text{HOBr} + \text{Br}$	$2.0\text{e-}11 \times \exp(240/T)$	IUPAC
$\text{BrO} + \text{OH} \rightarrow \text{HO}_2 + \text{Br}$	$1.8\text{e-}11 \times \exp(250/T)$	IUPAC
$\text{BrO} + \text{O} \rightarrow \text{Br} + \text{O}_2$	$1.9\text{e-}11 \times \exp(230/T)$	IUPAC
$\text{BrO} + \text{HO}_2 \rightarrow \text{HOBr} + \text{O}_2$	$4.5\text{e-}12 \times \exp(500/T)$	IUPAC
$\text{BrO} + \text{BrO} \rightarrow \text{Br} + \text{Br} + \text{O}_2$	$2.4\text{e-}12 \times \exp(40/T)$	JPL
$\text{BrO} + \text{BrO} \rightarrow \text{Br}_2 + \text{O}_2$	$1.5\text{e-}12 \times \exp(230/T) \times 1.6 \times \exp(-190/T)$	JPL
$\text{BrO} + \text{NO} \rightarrow \text{NO}_2 + \text{Br}$	$8.7\text{e-}12 \times \exp(260/T)$	IUPAC
$\text{BrO} + \text{NO}_2 \rightarrow \text{BrNO}_3$	$k_0 = 4.7\text{e-}31 \times (T/300)^{-3.1}$ $k_\infty = 1.8\text{e-}11$ $fc = 0.4$	IUPAC
$\text{HBr} + \text{OH} \rightarrow \text{H}_2\text{O} + \text{Br}$	$6.7\text{e-}12 \times \exp(155/T)$	IUPAC
$\text{HBr} + \text{O} \rightarrow \text{OH} + \text{Br}$	$5.8\text{e-}12 \times \exp(-1500/T)$	JPL
$\text{HOBr} + \text{O} \rightarrow \text{OH} + \text{BrO}$	$1.2\text{e-}10 \times \exp(-430/T)$	IUPAC
$\text{BrNO}_3 + \text{O} \rightarrow \text{OH} + \text{BrO}$	$1.9\text{e-}11 \times \exp(215/T)$	IUPAC
<i>Bromine – organics</i>		
$\text{Br} + \text{HCHO} \rightarrow \text{HO}_2 + \text{CO} + \text{HBr}$	$7.7\text{e-}12 \times \exp(-580/T)$	IUPAC
$\text{Br} + \text{CH}_3\text{CHO} \rightarrow \text{CH}_3\text{CO}_3 + \text{HBr}$	$1.8\text{e-}11 \times \exp(-460/T)$	IUPAC
$\text{Br} + \text{CH}_3\text{COCH}_3 \rightarrow \text{CH}_3\text{COCH}_2\text{O}_2 + \text{HBr}$	$1.66\text{e-}10 \times \exp(-7000/T)$	24
$\text{Br} + \text{C}_2\text{H}_6 \rightarrow \text{C}_2\text{H}_5\text{O}_2 + \text{HBr}$	$2.36\text{e-}10 \times \exp(-6411/T)$	25
$\text{Br} + \text{C}_3\text{H}_8 \rightarrow \text{i-C}_3\text{H}_7\text{O}_2 + \text{HBr}$	$8.77\text{e-}11 \times \exp(-4330/T)$	25
$\text{Br} + \text{C}_3\text{H}_6 \rightarrow \text{IBRPROPO2}$	$3.6\text{e-}12$ $\Phi = 0.5$	See Fig S4
$\text{Br} + \text{C}_3\text{H}_6 \rightarrow \text{IBRPROPO2}$	$3.6\text{e-}12$ $\Phi = 0.5$	See Fig S4
$\text{Br} + \text{C}_2\text{H}_4 \rightarrow \text{CH}_2\text{BRCH}_2\text{O}_2$	2.80e- $13.*\exp(224./T).*(M.*0.21.*7.5\text{e-}12)./((M.*0.21.*7.5\text{e-}12) + 8.5\text{e}12.*\exp(-3200./T));$	IUPAC
$\text{Br} + \text{C}_2\text{H}_2 \rightarrow \text{CHOBr} + \text{CO} + \text{HO}_2$	$6.35\text{e-}15 \times \exp(440/T)$	IUPAC
<i>Bromine – chlorine cross reactions</i>		
$\text{BrO} + \text{ClO} \rightarrow \text{BrCl} + \text{O}_2$	$4.1\text{e-}13 \times \exp(290/T)$	JPL
$\text{BrO} + \text{ClO} \rightarrow \text{Br} + \text{ClOO}$	$2.3\text{e-}12 \times \exp(260/T)$	JPL

$\text{BrO} + \text{ClO} \rightarrow \text{Br} + \text{OCIO}$	$9.5\text{e-}13 \times \exp(550/T)$	JPL
$\text{Br} + \text{OCIO} \rightarrow \text{BrO} + \text{ClO}$	$2.6\text{e-}11 \times \exp(-1300/T)$	JPL
$\text{Br} + \text{Cl}_2\text{O}_2 \rightarrow \text{BrCl} + \text{ClOO}$	$5.9\text{e-}12 \times \exp(-170/T)$	JPL

319

320

Table S3. Heterogeneous chemistry uptake coefficients used in the model

Reaction	Uptake coefficient	Reference
$\text{ClNO}_3 + \text{Aer} \rightarrow \text{HOCl} + \text{HNO}_3$	0.024	5
$\text{ClNO}_3 + \text{HBr} + \text{Aer} \rightarrow \text{BrCl} + \text{HNO}_3$	0.1	3
$\text{ClNO}_3 + \text{HCl} + \text{Aer} \rightarrow \text{Cl}_2 + \text{HNO}_3$	0.1	3
$\text{BrNO}_3 + \text{Aer} \rightarrow \text{HOBr} + \text{HNO}_3$	0.02	5
$\text{BrNO}_3 + \text{HCl} + \text{Aer} \rightarrow \text{BrCl} + \text{HNO}_3$	0.9	JPL
$\text{BrNO}_2 + \text{HCl} + \text{Aer} \rightarrow \text{BrCl} + \text{HONO}$	0.1	26
$\text{HOCl} + \text{HBr} + \text{Aer} \rightarrow \text{BrCl} + \text{H}_2\text{O}$	0.04	JPL
$\text{HOBr} + \text{HCl} + \text{Aer} \rightarrow \text{BrCl}$	0.1	3
$\text{HOBr} + \text{HBr} + \text{Aer} \rightarrow \text{Br}_2$	0.1	JPL
$\text{N}_2\text{O}_5 + \text{Aer} \rightarrow 1.78*\text{HNO}_3 + 0.22*\text{ClNO}_2$	0.076	7

321

322

Table S4. Photolysis rates used in the model. The JnXX value indicates the rate constant in F0AM.

Reaction	Photolysis rate
$\text{ClNO}_2 + \text{hv} \rightarrow \text{Cl} + \text{NO}_2$	Jn23
$\text{Br}_2 + \text{hv} \rightarrow \text{Br} + \text{Br}$	Jn24
$\text{BrO} + \text{hv} \rightarrow \text{Br} + \text{O}$	Jn25
$\text{HOBr} + \text{hv} \rightarrow \text{Br} + \text{OH}$	Jn26
$\text{BrNO}_2 + \text{hv} \rightarrow \text{Br} + \text{NO}_2$	Jn27
$\text{BrNO}_3 + \text{hv} \rightarrow \text{Br} + \text{NO}_3$	Jn28
$\text{BrNO}_3 + \text{hv} \rightarrow \text{BrO} + \text{NO}_2$	Jn29
$\text{BrCl} + \text{hv} \rightarrow \text{Br} + \text{Cl}$	Jn31
$\text{Cl}_2 + \text{hv} \rightarrow \text{Cl} + \text{Cl}$	Jn32
$\text{ClO} + \text{hv} \rightarrow \text{Cl} + \text{O}$	Jn33
$\text{ClNO}_3 + \text{hv} \rightarrow \text{Cl} + \text{NO}_3$	Jn34
$\text{ClNO}_3 + \text{hv} \rightarrow \text{ClO} + \text{NO}_2$	Jn35
$\text{HOCl} + \text{hv} \rightarrow \text{Cl} + \text{OH}$	Jn36
$\text{OCIO} + \text{hv} \rightarrow \text{ClO} + \text{O}$	Jn37
$\text{Cl}_2\text{O}_2 + \text{hv} \rightarrow \text{Cl} + \text{ClOO}$	Jn38
$\text{ClOO} + \text{hv} \rightarrow \text{Cl} + \text{O}_2$	Jn39

323

324

Table S5. A summary of the six model parameters optimized for each model, as well as jcorr, the corrective factor applied to all the photolysis reactions. The first five parameters indicate the starting conditions of each species. The final row shows the parameters used for the average model, in which Cl_2 , dilution and jcorr are averaged, and Br_2 , BrCl , and HCl are scaled relative to Cl_2 based on the emissions flux measurements in Table 1.

Date	Cl_2 (ppb)	Br_2 (ppb)	BrCl (ppb)	HCl (ppb)	NO (ppb)	Dilution (s ⁻¹)	jcorr
16Jan	1	4	0.05	20	2	0.00025	0.574
17Jan #1	85	1	10	20	40	0.00008	0.730
17Jan #2	85	1	10	20	40	0.00008	0.730
18Jan	100	5	20	5	2	0.0001	0.720
26Jan	105	15	25	20	10	0.00018	0.561
27Jan	200	20	10	5	30	0.00035	0.825
28Jan	100	2	10	10	40	0.00015	0.772
31Jan	20	8	1	10	10	0.00005	0.569
Average	100	3	22	117	--	0.00015	0.68

330

331
332 (1) Madronich, S.; McKenzie, R. L.; Björn, L. O.; Caldwell, M. M. Changes in
333 biologically active ultraviolet radiation reaching the Earth's surface. *J. Photoch.*
334 *Photobio. B.* **1998**, 46 (1), 5-19. DOI: [http://doi.org/10.1016/S1011-1344\(98\)00182-1](http://doi.org/10.1016/S1011-1344(98)00182-1).
335 (2) Baasandorj, M.; Brown, S. S.; Hoch, S.; Crosman, E.; Long, R.; Silva, P.; L., M.; I.,
336 H.; Martin, R.; R., B.; et al. *2017 Utah Winter Fine Particulate Study Final Report*; 2018.
337 <https://www.esrl.noaa.gov/csd/groups/csd7/measurements/2017uwfps/finalreport.pdf>
338 (accessed 2022-11-28).
339 (3) Badia, A.; Reeves, C. E.; Baker, A. R.; Saiz-Lopez, A.; Volkamer, R.; Koenig, T. K.;
340 Apel, E. C.; Hornbrook, R. S.; Carpenter, L. J.; Andrews, S. J.; et al. Importance of
341 reactive halogens in the tropical marine atmosphere: a regional modelling study using
342 WRF-Chem. *Atmos. Chem. Phys.* **2019**, 19 (5), 3161-3189. DOI:
343 <https://doi.org/10.5194/acp-19-3161-2019>.
344 (4) Romer, P. S.; Wooldridge, P. J.; Crounse, J. D.; Kim, M. J.; Wennberg, P. O.; Dibb, J.
345 E.; Scheuer, E.; Blake, D. R.; Meinardi, S.; Brosius, A. L.; et al. Constraints on Aerosol
346 Nitrate Photolysis as a Potential Source of HONO and NO_x. *Environ. Sci. Technol.* **2018**,
347 52 (23), 13738-13746. DOI: <https://doi.org/10.1021/acs.est.8b03861>.
348 (5) Sherwen, T.; Schmidt, J. A.; Evans, M. J.; Carpenter, L. J.; Großmann, K.; Eastham,
349 S. D.; Jacob, D. J.; Dix, B.; Koenig, T. K.; Sinreich, R.; et al. Global impacts of
350 tropospheric halogens (Cl, Br, I) on oxidants and composition in GEOS-Chem. *Atmos.*
351 *Chem. Phys.* **2016**, 16 (18), 12239-12271. DOI: <https://doi.org/10.5194/acp-16-12239-2016>.
352 (6) Chemical kinetics and photochemical data for use in atmospheric studies. Evaluation
353 No. 17 <http://jpldataeval.jpl.nasa.gov/> (accessed 2022-11-28).
354 (7) McDuffie, E. E.; Womack, C. C.; Fibiger, D. L.; Dube, W. P.; Franchin, A.;
355 Middlebrook, A. M.; Goldberger, L.; Lee, B. H.; Thornton, J. A.; Moravek, A.; et al. On
356 the contribution of nocturnal heterogeneous reactive nitrogen chemistry to particulate
357 matter formation during wintertime pollution events in Northern Utah. *Atmos. Chem.*
358 *Phys.* **2019**, 19 (14), 9287-9308. DOI: <https://doi.org/10.5194/acp-19-9287-2019>.
359 (8) Liu, X.; Ma, P. L.; Wang, H.; Tilmes, S.; Singh, B.; Easter, R. C.; Ghan, S. J.; Rasch,
360 P. J. Description and evaluation of a new four-mode version of the Modal Aerosol
361 Module (MAM4) within version 5.3 of the Community Atmosphere Model. *Geosci.*
362 *Model Dev.* **2016**, 9 (2), 505-522. DOI: <https://doi.org/10.5194/gmd-9-505-2016>.
363 (9) Zaveri, R. A.; Easter, R. C.; Singh, B.; Wang, H.; Lu, Z.; Tilmes, S.; Emmons, L. K.;
364 Vitt, F.; Zhang, R.; Liu, X.; et al. Development and Evaluation of Chemistry-Aerosol-
365 Climate Model CAM5-Chem-MAM7-MOSAIC: Global Atmospheric Distribution and
366 Radiative Effects of Nitrate Aerosol. *J. Adv. Model Earth Sy.* **2021**, 13 (4),
367 e2020MS002346. DOI: <https://doi.org/10.1029/2020MS002346>.
368 (10) Bishop, G. A.; Haugen, M. J.; McDonald, B. C.; Boies, A. M. Utah Wintertime
369 Measurements of Heavy-Duty Vehicle Nitrogen Oxide Emission Factors. *Environ. Sci.*
370 *Technol.* **2022**, 56 (3), 1885-1893. DOI: <https://doi.org/10.1021/acs.est.1c06428>.
371 (11) Cao, H.; Henze, D. K.; Cady-Pereira, K.; McDonald, B. C.; Harkins, C.; Sun, K.;
372 Bowman, K. W.; Fu, T.-M.; Nawaz, M. O. COVID-19 Lockdowns Afford the First
373 Satellite-Based Confirmation That Vehicles Are an Under-recognized Source of Urban
374 NH₃ Pollution in Los Angeles. *Environ. Sci. Technol. Lett.* **2022**, 9 (1), 3-9. DOI:
375 <https://doi.org/10.1021/acs.estlett.1c00730>.
376

377 (12) Womack, C. C.; McDuffie, E. E.; Edwards, P. M.; Bares, R.; de Gouw, J. A.;
378 Docherty, K. S.; Dubé, W. P.; Fibiger, D. L.; Franchin, A.; Gilman, J. B.; et al. An Odd
379 Oxygen Framework for Wintertime Ammonium Nitrate Aerosol Pollution in Urban
380 Areas: NO_x and VOC Control as Mitigation Strategies. *Geophys. Res. Lett.* **2019**, *46* (9),
381 4971-4979. DOI: <https://doi.org/10.1029/2019gl082028>.

382 (13) Veres, P.; Roberts, J. M.; Burling, I. R.; Warneke, C.; de Gouw, J.; Yokelson, R. J.
383 Measurements of gas-phase inorganic and organic acids from biomass fires by negative-
384 ion proton-transfer chemical-ionization mass spectrometry. *J. Geophys. Res.* **2010**, *115*
385 (D23), D23302. DOI: <https://doi.org/10.1029/2010JD014033>.

386 (14) Neuman, J. A.; Nowak, J. B.; Huey, L. G.; Burkholder, J. B.; Dibb, J. E.; Holloway,
387 J. S.; Liao, J.; Peischl, J.; Roberts, J. M.; Ryerson, T. B.; et al. Bromine measurements in
388 ozone depleted air over the Arctic Ocean. *Atmos. Chem. Phys.* **2010**, *10* (14), 6503-6514.
389 DOI: <https://doi.org/10.5194/acp-10-6503-2010>. Lawler, M. J.; Sander, R.; Carpenter, L.
390 J.; Lee, J. D.; von Glasow, R.; Sommariva, R.; Saltzman, E. S. HOCl and Cl₂
391 observations in marine air. *Atmos. Chem. Phys.* **2011**, *11* (15), 7617-7628. DOI:
392 <https://doi.org/10.5194/acp-11-7617-2011>.

393 (15) Xue, L. K.; Saunders, S. M.; Wang, T.; Gao, R.; Wang, X. F.; Zhang, Q. Z.; Wang,
394 W. X. Development of a chlorine chemistry module for the Master Chemical Mechanism.
395 *Geosci. Model Dev.* **2015**, *8* (10), 3151-3162. DOI: <https://doi.org/10.5194/gmd-8-3151-2015>.

396 (16) Atkinson, R.; Baulch, D. L.; Cox, R. A.; Crowley, J. N.; Hampson, R. F.; Hynes, R.
397 G.; Jenkin, M. E.; Rossi, M. J.; Troe, J.; Wallington, T. J. Evaluated kinetic and
398 photochemical data for atmospheric chemistry: Volume IV – gas phase reactions of
399 organic halogen species. *Atmos. Chem. Phys.* **2008**, *8* (15), 4141-4496. DOI:
400 <https://doi.org/10.5194/acp-8-4141-2008>.

401 (17) Lee, B. H.; Lopez-Hilfiker, F. D.; Mohr, C.; Kurtén, T.; Worsnop, D. R.; Thornton,
402 J. A. An iodide-adduct high-resolution time-of-flight chemical-ionization mass
403 spectrometer: Application to atmospheric inorganic and organic compounds. *Environ.
404 Sci. Technol.* **2014**, *48* (11), 6309-6317. DOI: <http://doi.org/10.1021/es500362a>.

405 (18) Wild, R. J.; Edwards, P. M.; Dubé, W. P.; Baumann, K.; Edgerton, E. S.; Quinn, P.
406 K.; Roberts, J. M.; Rollins, A. W.; Veres, P. R.; Warneke, C.; et al. A measurement of
407 total reactive nitrogen, NO_y, together with NO₂, NO, and O₃ via cavity ring-down
408 spectroscopy. *Environ. Sci. Technol.* **2014**, *48* (16), 9609-9615. DOI:
409 <http://doi.org/10.1021/es501896w>.

410 (19) Bahreini, R.; Dunlea, E. J.; Matthew, B. M.; Simons, C.; Docherty, K. S.; DeCarlo,
411 P. F.; Jimenez, J. L.; Brock, C. A.; Middlebrook, A. M. Design and operation of a
412 pressure-controlled inlet for airborne sampling with an aerodynamic aerosol lens. *Aerosol
413 Sci. Tech.* **2008**, *42* (6), 465-471. DOI: <https://doi.org/10.1080/02786820802178514>.

414 (20) Liao, J.; Brock, C. A.; Murphy, D. M.; Sueper, D. T.; Welti, A.; Middlebrook, A. M.
415 Single-particle measurements of bouncing particles and in situ collection efficiency from
416 an airborne aerosol mass spectrometer (AMS) with light-scattering detection. *Atmos.
417 Meas. Tech.* **2017**, *10* (10), 3801-3820. DOI: <http://doi.org/10.5194/amt-10-3801-2017>.

418 (21) Atkinson, R.; Baulch, D. L.; Cox, R. A.; Crowley, J. N.; Hampson, R. F.; Hynes, R.
419 G.; Jenkin, M. E.; Rossi, M. J.; Troe, J. Evaluated kinetic and photochemical data for
420 atmospheric chemistry: Volume III - gas phase reactions of inorganic halogens. *Atmos.
421 Chem. Phys.* **2007**, *7* (4), 981-1191. DOI: <https://doi.org/10.5194/acp-7-981-2007>.

422

423 (22) Shi, J.; Bernhard, M. J. Kinetic studies of Cl-atom reactions with selected aromatic
424 compounds using the photochemical reactor-FTIR spectroscopy technique. *Int. J. Chem.*
425 *Kinet.* **1997**, 29 (5), 349-358. DOI: [https://doi.org/10.1002/\(SICI\)1097-4601\(1997\)29:5<349::AID-KIN>3.0.CO;2-U](https://doi.org/10.1002/(SICI)1097-4601(1997)29:5<349::AID-KIN>3.0.CO;2-U).

426 (23) Orlando, J. J.; Tyndall, G. S. Rate Coefficients for the Thermal Decomposition of
427 BrONO₂ and the Heat of Formation of BrONO₂. *J. Phys. Chem.* **1996**, 100 (50), 19398-
428 19405. DOI: <https://doi.org/10.1021/jp9620274>.

429 (24) King, K. D.; Golden, D. M.; Benson, S. W. Kinetics of the gas-phase thermal
430 bromination of acetone. Heat of formation and stabilization energy of the acetyl radical.
431 *J. Am. Chem. Soc.* **1970**, 92 (19), 5541-5546. DOI:
432 <https://doi.org/10.1021/ja00722a001>.

433 (25) Seakins, P. W.; Pilling, M. J.; Niiranen, J. T.; Gutman, D.; Krasnoperov, L. N.
434 Kinetics and thermochemistry of R + hydrogen bromide \leftrightarrow RH + bromine atom
435 reactions: determinations of the heat of formation of ethyl, isopropyl, sec-butyl and tert-
436 butyl radicals. *J. Phys. Chem.* **1992**, 96 (24), 9847-9855. DOI:
437 <https://doi.org/10.1021/j100203a050>.

438 (26) Li, Q.; Fu, X.; Peng, X.; Wang, W.; Badia, A.; Fernandez, R. P.; Cuevas, C. A.; Mu,
439 Y.; Chen, J.; Jimenez, J. L.; et al. Halogens Enhance Haze Pollution in China. *Environ.*
440 *Sci. Technol.* **2021**, 55 (20), 13625-13637. DOI: <https://doi.org/10.1021/acs.est.1c01949>.

441

442