

1 **Northern quahog (*Mercenaria mercenaria*) larval transport and settlement**
2 **modeled for a temperate estuary**

3
4 M. Conor McManus^{1*}, David S. Ullman², Scott D. Rutherford³, and Christopher Kincaid²

5
6 ¹ Rhode Island Department of Environmental Management, Division of Marine Fisheries, Jamestown, RI,
7 02835, USA

8 ² Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, 02882, USA

9 ³ Roger Williams University, Bristol, RI, 02809, USA

10
11 *Corresponding author:

12 M. Conor McManus
13 3 Fort Wetherill Road
14 Fort Wetherill Marine Laboratory
15 Jamestown, RI, 02835, USA
16 phone: 401-423-1941;
17 fax: 401-423-1925;
18 email: conor.mcmanus@dem.ri.gov

19
20 David S. Ullman: dullman@uri.edu
21 Scott D. Rutherford: srutherford@rwu.edu
22 Christopher Kincaid: kincaid@uri.edu

23
24 **Running head:** Quahog larval transport modeling

25
26 **Key words:** quahog, larval transport, settlement, Narragansett Bay, fisheries management

27

28

29

30

31

32

33

34

35

36

37 **ABSTRACT**

38 Evaluating marine species' population connectivity through larval transport can provide insight
39 into the reliance of geographically separated areas on each other's recruitment and
40 metapopulation resiliency. Using larval transport modeling, we assessed the significance of
41 different regions in supporting the Narragansett Bay Northern quahog (*Mercenaria mercenaria*)
42 population. We aimed to identify how areas with varying adult quahog biomass and implemented
43 management strategies (based on water quality and commercial harvest) contribute to the overall
44 stock's larval supply. Larval trajectories were modeled by integrating the currents from a
45 realistic physical circulation model with quahog larval behavior applied to particles during
46 spawning periods of 2006, 2007, and 2014. Modeled larval transport suggested that settlement
47 occurs throughout Narragansett Bay, with 35% of spawned larvae swept out of the Bay to the
48 coastal ocean and leaving the stock bounds. Quahogs in areas where shellfishing is prohibited
49 due to water quality concerns produce a significant portion of the Bay's spawned larvae,
50 theoretically serving as *de facto* spawning sanctuaries. The Providence River, located at the head
51 of the Bay with high mature quahog biomass and currently closed to fishing due to water quality,
52 is a significant source of quahog larvae for the stock. Simulated larval quahog settlement
53 locations corresponded predominantly to sandy bottoms, with less spatial correspondence to
54 commercial fisheries landings. Our work provides insight into the population connectivity of
55 quahogs in Narragansett Bay and highlights the importance of considering oceanography and
56 species' life history characteristics when constructing effective fisheries management plans.

57

58

59

60 **INTRODUCTION**

61 Larval transport and dispersal are critical components of marine species' life cycles for
62 ensuring population connectivity between successive life stages, maintaining recruitment, and
63 sustaining populations (Pineda et al. 2007, Cowen et al. 2009, Llopiz et al. 2014). The life cycle
64 for many marine benthic invertebrates consists of a demersal spawning stock releasing small
65 pelagic eggs that hatch, and larvae transported by currents. For these benthic, sessile species,
66 transport during planktonic stages serves as the sole dispersal mechanism and is critical in
67 structuring local and metapopulation dynamics, maintaining genetic diversity, and contributing
68 to the resiliency of populations to human exploitation (Cowen et al. 2007). For successful spatial
69 management of these species, stock biomass, reproductive capacity, and dispersal of early life
70 stages all must be considered (Fogarty and Botsford 2007). Thus, an understanding of these
71 species larval transport and settlement patterns in areas that exhibit varying degrees of harvest
72 pressure and natural population variability is necessary to develop effective, holistic,
73 management plans.

74 The northern quahog (*Mercenaria mercenaria*) serves as an excellent example of a
75 benthic sessile species of ecological and economic importance. Ubiquitous in coastal northwest
76 Atlantic waters (Henry and Nixon 2008), the protandrous quahog typically displays aggregated
77 distribution patterns over varying spatial scales: from less than a meter to hundreds of meters
78 (Fegley 2001). The quahog serves important roles in the ecology, economy, and cultural heritage
79 of New England, particularly in Rhode Island. Quahogs regulate benthic-pelagic coupling
80 through suspension feeding organic matter and phytoplankton from the water column (Doering et
81 al. 1986, Newell 2005), with their ecosystem services value having been suggested to exceed
82 their fisheries value (Coen et al. 2007). In Rhode Island for example, the quahog supports

83 Narragansett Bay's largest fishery, which typically has an annual ex-vessel landings value over
84 \$5 million and supports over 500 active shellfishers (ACCSP 2018). As with many coastal
85 shellfish species, quahogs have held cultural significance for centuries, with recreational harvest
86 a cornerstone of Rhode Islanders' heritage (Schuman 2015).

87 Harvest regulations for suspension-feeding shellfish in coastal ecosystems often involves
88 management plans that consider water quality to ensure human health and the species'
89 population dynamics to avoid overfishing the stock. Certain areas of Narragansett Bay are closed
90 to quahog harvest due to human health and water quality concerns associated with the
91 consumption of quahogs taken from these areas (Fig. 1; Table 1; NBEP 2017). Commercial
92 shellfishing is further managed spatially to enhance and sustain the shellfish stocks and harvest,
93 respectively, with different management tools utilized, including size and possession limits, daily
94 or seasonal closures, permanently closed areas with adequate water quality termed Spawner
95 Sanctuaries, and the requirement that shellfishers report where their landings were harvested via
96 designated 'tagging areas' (Fig. 1).

97 The benefits of water quality closures, particularly in preserving spawning stock and
98 larval supply, have been debated. Closed or prohibited areas (Table 1) in Narragansett Bay have
99 supported high quahog abundances where individuals can extend their life spans (Rice et al.
100 1989, Rice 2006), and as such have been considered by some as *de facto* quahog spawner
101 sanctuaries that support greater larval production than areas open to fishing (Marroquin-Mora
102 and Rice 2008). Other investigators, across various ecosystems, have argued that high quahog
103 aggregations can lead to density-dependent effects that reduce larval supply due to competition
104 for food and space and negative feedbacks on growth, survivorship, fecundity and adult
105 predation on larvae (Krauter et al. 2005, Marroquin-Mora and Rice 2008). Gonadal condition in

106 permanently closed areas due to water quality have also been reported to be poorer than those in
107 conditionally-closed areas (Table 1, Marroquin-Mora and Rice 2008), yet how this translates to
108 larval production has yet to be determined.

109 The objective of our work is to describe quahog larval transport and settlement in
110 Narragansett Bay by coupling ocean circulation models with quahog larval behavior. Through
111 modeling quahog larval transport and settlement, we describe prospective metapopulation
112 connectivity between areas in Narragansett Bay, and identify particular regions' reliance on
113 others to support settling larval quahogs within their area. The connectivity between various
114 regions are evaluated in the context of the areas' management strategy designations, and how
115 such designations help in supporting larval quahog production and the Bay's quahog stock.
116 Lastly, through this analysis, we discuss whether closed or prohibited areas based on water
117 quality or stock preservation could be significant in supporting the Narragansett Bay quahog
118 stock based on larval transport dynamics, providing greater context for the *de facto* spawner
119 sanctuary hypothesis.

120 **METHODS**

121 *Study Area*

122 Quahog larval transport was modeled within Narragansett Bay, Rhode Island (USA), an
123 estuary with a mean depth of 8.3 m, and a north-south orientation from the Providence River to
124 Rhode Island Sound (Fig. 1, Kremer and Nixon 1978, Oviatt et al. 2017). Narragansett Bay
125 encompasses multiple sub-estuaries and rivers (including Mt. Hope Bay, Greenwich Bay,
126 Providence River Estuary, and the Sakonnet River), and is highlighted by two distinct channels
127 referred to as the East and West Passages (Fig. 1). Narragansett Bay is a partially mixed estuary

128 (Weisberg and Sturges 1976), with its circulation influenced by several factors including wind
129 forcing, river runoff, and tidal fluxes (Kincaid et al. 2008, Balt 2014).

130 The Bay is generally dominated by tides in the sense that the depth-averaged tidal
131 currents are larger than the non-tidal currents (Ullman et al. 2019). However, for particle
132 transport on timescales of days, the non-tidal currents are the dominant factor. The mean, non-
133 tidal, depth-averaged circulation is generally counter-clockwise within the Bay, with depth-
134 averaged inflow (northerly) in the East Passage and outflow in the West Passage (Kincaid et al.
135 2008, Pfeiffer-Herbert et al. 2015). This pattern of mean circulation is strongly influenced by
136 wind, with certain wind directions strengthening it and others weakening or reversing it.
137 Superimposed on the depth-averaged circulation is a vertically sheared estuarine flow that,
138 because the Bay is relatively wide in comparison to the internal deformation radius, varies
139 laterally such that the vertical extent of the surface outflow (bottom inflow) layer is thicker
140 (thinner) in the West Passage than in the East Passage. The average residence time for the Bay as
141 a whole is 26 days (Pilson 1985). The combination of this circulation pattern and freshwater
142 input from the major rivers near industrial areas in the north portion of the estuary creates down-
143 Bay gradients in physical and biological oceanographic properties (Pilson 1985, Oviatt et al.
144 2002).

145 *Ocean Circulation Modeling*

146 The physical oceanography and circulation in Narragansett Bay was modeled using the
147 Regional Ocean Modeling System (ROMS) (Haidvogel et al. 2008). The ROMS has been
148 applied to Narragansett Bay previously to understand the water mass exchange between sub-
149 regions and the prevalence of hypoxia (Bergondo 2004, Bergondo and Kincaid 2007, Rogers
150 2008, Kremer et al. 2010). The Narragansett Bay ROMS implementation uses a high-resolution

151 grid (horizontal spatial resolution ~ 50-100 m in the upper Bay with 15 vertical levels) nested
152 within a coarser grid that includes the Bay and extends out onto the continental shelf south of the
153 Bay's mouth (Supplement 1). At its open southern boundary, the coarse grid model is forced
154 with tidal constituents from the East Coast Tidal Constituent Database (Mukai et al. 2002) and
155 non-tidal currents, temperature, and salinity from the hindcast version of the Northeast Coastal
156 Ocean Forecast System (NECOFS), a regional model covering the northeast U. S. coastal ocean
157 (Chen et al. 2006). Surface momentum and heat fluxes are derived from a combination of local
158 meteorological measurements and output of a mesoscale atmospheric model run as part of
159 NECOFS (Ullman et al. 2019). The model includes measured freshwater discharge forcing from
160 the eight rivers gauged by the United State Geological Survey, as well as estimated discharge
161 from several ungauged rivers, and measured discharges from multiple sewage treatment facilities
162 (Ullman et al. 2019). The output of the coarse resolution model is used to force the high-
163 resolution model at its southern open boundary (the mouth of the Bay) using the same river and
164 meteorological forcing. Vertical mixing in both models is parameterized using the k - ε turbulence
165 closure scheme (Umlauf and Burchard 2003, Warner et al. 2005).

166 Model skill, assessed by comparing model results with *in situ* current and hydrographic
167 time series measurements from 2006 and 2007, is high in the mid- to upper-Bay region (Balt
168 2014, Ullman et al. 2019). For tidal currents, which dominate observed currents in the Bay,
169 model skills (Willmott 1982) are in the range of 0.81-0.94 (a skill of 1 represents a perfect
170 model). Model skills for non-tidal currents (low-pass filtered to remove tidal fluctuations) are
171 somewhat lower, with a range of 0.51-0.85.

172 *Larval Transport Behavior*

173 In addition to physical oceanography, larval transport and settlement location are also
174 dependent on early life history traits, such as the timing of spawning, the pelagic larval duration
175 (Shanks et al. 2003), and swimming/sinking rates (Dekshenieks et al. 1996; DiBacco et al. 2001;
176 North et al. 2008). Quahog larval behavior was parameterized in the modeling of larval
177 trajectories using the Lagrangian TRANSPORT (LTRANS) model (North et al. 2008). This
178 particle-tracking model coupled with ROMS output has previously been used to simulate larval
179 bivalve transport in estuarine and coastal systems (Rasmussen et al. 2006; North et al. 2008; Li et
180 al. 2013). LTRANS applies larval behavior characteristics that couple with the advective
181 processes that are provided by the ROMS simulations. The behavior can include vertical
182 swimming speed, swimming direction, and pelagic larval duration, with the latter two set as
183 probabilistic functions.

184 Behavior for particles was set to reflect the development of quahog larvae (Carriker 1961,
185 Eversole 1987, Hadley and Whetstone 2007). Larval transport was modeled for the early
186 planktonic (including straight-hinged veliger and umboned stages) and the late-stage pediveliger,
187 of which can be reached between 6 and 20 days old (Carriker 1954, Carriker 1961). Early-stage
188 planktonic larvae tend to be found in the upper water column, and later-stage larvae in deeper
189 portions of the water column as they prepare to settle (Carriker 1961). As such, vertical
190 swimming behavior was constructed to align with these reports (Carriker 1961). From days 0-1,
191 larvae were modeled as passive. Larvae between 1-2 days old had a 0.90 probability of
192 swimming upward at each time step in the LTRANS model (30 seconds). From ages 2-6 days,
193 larvae had a 0.51 probability of swimming up at each time step, and from 6-10 days old, larvae
194 had a 0.50 probability of swimming up. After day 10 and until pediveliger age at day 12 ± 0.25
195 (1SD), the probability of swimming up linearly decreased by 0.017 until the pediveliger age is

196 reached. At pediveliger age, the larvae transitioned to having an 0.80 probability of swimming
197 down. Whereas Arnold et al. (2005) modeled *Mercenaria* spp. larval transport using an 8-day
198 pelagic larval duration, the longer stage duration was implemented to encompass both planktonic
199 and pediveliger stages.

200 Few data on larval quahog swimming speeds exist, with none known for the pediveliger
201 stage. Carriker (1961) and Turner and George (1955) report upward swimming speeds of
202 approximately 0.0012 m s^{-1} for straight-hinged veligers. Directional swimming speeds have been
203 reported for veliger and pediveliger stages for *Spisula* spp.; over varying salinities, Mann et al.
204 (1991) found that there was an average decrease in swimming speed upon transition to the
205 pediveliger stage. Based on this information, the initial larval swimming speed was set at 0.0018 m s^{-1} ,
206 representing the upward reported speed (Carriker 1961, Mileikovsky 1973) plus one-half
207 the Stokes settling speed (to account for upward swimming larvae theoretically opposing the
208 Stokes settling velocity). Swimming speed was then assigned to decrease by 15% at the onset of
209 the pediveliger stage. The swimming speed linearly decreased over the life of the larvae from a
210 maximum of 0.0018 m s^{-1} to a minimum of 0.0015 m s^{-1} . An increase in sinking rates with age
211 that has been reported for shellfish larvae (Troost et al. 2008) was not directly incorporated, but
212 the downward swimming speed and high probability of downward movement combined
213 simulated the rapid vertical decent during the pediveliger stage.

214 Larval transport behavior did not include growth or mortality components because of the
215 paucity of such information for the Northern quahog. Behaviors set in previous larval shellfish
216 transport modeling work have implemented ontogenetic changes in swimming speed and
217 direction (Munroe et al. 2018), whereas others have excluded it (North et al. 2008, Arnold et al.
218 2005), often based on the availability of deterministic growth functions for the species of

219 interest. Without larval growth rates available for the Northern quahog, growth was not
220 incorporated into the behavior parameterization and changes in swimming speed and direction
221 were conditioned based on the age (i.e. days since spawned). Mortality rates have been shown to
222 vary with ontogeny, as mortality tends to be higher for smaller individuals (McGurk 1986).
223 However, such rates can vary substantially across marine taxa (Peck and Hufnagl 2012), and
224 therefore other species' or metanalytic size-mortality functions were not incorporated in the
225 quahog parameterization. Mortality was only accounted for via larval drift out of the stock
226 bounds. Larvae transported out of Narragansett Bay to the coastal ocean (Rhode Island Sound) at
227 any point of their larval duration were considered to have left the model domain and were
228 incapable of reentering the Bay. This loss of larvae was assumed to represent either mortality or
229 larval emigration.

230 *Larval Settlement Behavior*

231 Previous larval transport models for marine taxa have used various cues to indicate
232 successful benthic settlement, including substrate type (North et al. 2008, Liu et al. 2015), depth
233 (Decelles et al. 2015), and spawning zones or stock biomass (Liu et al. 2015, Munroe et al.
234 2018). In laboratory settings, quahog have been found to prefer sand over mud as a settlement
235 substrate (Keck et al. 1974); however, quahogs have also been known as having a gregarious
236 settlement behavior (Keck et al. 1972), with settlement occurring in mud, sand, a mud-sand mix,
237 gravel, sand with rocks and shells, silt-clay substrate, and eelgrass beds (Pratt 1953, Pratt et al.
238 1992, Rice 1992.) Larval settlement preferences have been attributed to several factors, including
239 representing areas with lower predators (Bricelj 1992), absence of organic matter and its
240 associated bacteria, and presence of quahog pheromones (Keck et al. 1974.)

241 Benthic features (e.g. sediment type, depth, spawning stock biomass) were not used to
242 inform settlement. If larvae were within one meter of the bottom upon descent, larvae swam
243 randomly over the remaining larval duration, simulating their ability to search for a preferred
244 settlement location. Sediment was not included as a cue given their ability to settle in different
245 substrates and not knowing the probability of successful settlement across the substrates. Further,
246 given the evidence of predation influencing sediment preferences and not knowing the predator
247 fields, settlement parameterization using solely sediment may not have been appropriate.

248 *Scenarios and Initialization*

249 Lagrangian particles with assigned quahog larval behavior were released in 428 grid
250 boxes across the Narragansett Bay model domain. The area of most grid boxes was 1 km²;
251 although several grid boxes were larger or smaller than 1km² to accommodate land and model
252 boundaries (Fig. 2.) Larvae were released between June 15 and July 15 to align with the major
253 spawning period of quahogs in Narragansett Bay (Eversole 1987, Butet 1997). ROMS and
254 LTRANS were run for the years 2006, 2007, and 2014 to provide a dataset useful in assessing
255 interannual variability in larval transport in Narragansett Bay. Within each grid box, 1000
256 particles, or larvae, were released during the spawning season randomly in time and space,
257 within 1 m of the bottom. LTRANS grid boxes' released particles were weighted to account for
258 both non-uniform sized grid cells (G_s), and for non-uniform adult quahog abundance (a proxy for
259 larval production) in Narragansett Bay (E_s) (Supplement 2). The E_s scalar was used to provide a
260 realistic spatial supply of larvae (Munroe et al. 2018). Weighting based on the adult quahog
261 abundance, used as a proxy for spawning production, was based on abundance estimates
262 measured from the Rhode Island Department of Environmental Management (RIDEM) Division
263 of Marine Fisheries' hydraulic dredge survey. Quahog abundances from 1993-2016 were

264 spatially interpolated over the LTRANS grid to construct the E_s weights. The entire time series
265 was used for interpolations to account for the survey design (i.e. most survey strata are sampled
266 every other year) and to ensure the spatial interpolations captured the stock's spatial variability
267 (Supplement 2). The final weight for each grid box was the product of the respective G_s and E_s
268 scalars.

269 *Analyses and Post-Processing*

270 Larval transport results were aggregated over regions that corresponded to the Bay's
271 spatial dynamics of water quality, fisheries management strategy, harvest removals, geography,
272 or local significance (Fig. 2). Comparisons to spatial management were done relative to 2016
273 classifications to match the weighting scheme period and to best characterize the years where
274 ROMS data used to inform ocean circulation were available. This work acknowledges that such
275 modeled larval transport studies using Lagrangian particles do not completely represent complex
276 marine larval organisms and individually-varying behaviors (North et al. 2008). However,
277 hereafter, the particles with larval behavior in the LTRANS model are referred to as 'larvae'.

278 Source-sink relationships for quahog larvae in Narragansett Bay were evaluated to assess
279 the magnitude of different regions' connectivity. Larvae weights were summed by their specific
280 start and end regions, representing the larval production provided from one region to another.
281 Larval production exported to Rhode Island Sound was calculated as the percent of larval
282 production that left the Bay from all regions. Regions' connectivity results were then presented
283 as relative percentages from two different perspectives: where do the larvae of a given region go,
284 and where do the larvae settling in a given region come from? The former was calculated as
285 percentages of larval production for a given source region based on the areas where its larvae
286 settled, and the latter as a percentage of larval production for a given settling region based on the

287 areas that contributed to its settled larvae. Source-sink relationships were presented using
288 connectivity matrices. To account for the areas differing in size, regions' larval production
289 remaining within the Bay were also presented by dividing the regions' production by the area
290 they cover, producing estimates of larval production per square kilometer. The spatial dynamics
291 of larval settlement were also compared to those of commercial fishing effort and benthic
292 substrate types. Fishermen's reported landings by tagging area (Fig. 1) were obtained and
293 compared to the modeled larval settlement of the corresponding tagging areas. Sediment
294 comparisons were conducted to infer the dominant substrate types that larval may recruit to.

295 Spatial sediment classification data for Narragansett Bay were obtained from McMaster (1960).

296 *Sensitivity Analyses*

297 Two sensitivity analyses were conducted to evaluate the uncertainties associated with the
298 larval quahog model parameterizations. The first examined the impact of weighting larvae based
299 on the adult quahog abundance (i.e. E_s scalars). The larval quahog transport results by regions'
300 total larval production and connectivity with other regions were compared with and without the
301 E_s scalars applied (Supplement 2). The second assessed the impact that larval behavior
302 parameterization had on the transport and fate of larvae. Transport results with and without larval
303 behavior (the latter representing passive particles) were compared (Supplement 3).

304 **RESULTS**

305 *Larval Settlement in Narragansett Bay*

306 Quahog larval transport in Narragansett Bay varied interannually with changes in
307 circulation. Larval transport down-Bay was greater in 2006 (an unusually wet year with
308 increased river flow) than 2014 (a dryer year). However, overall patterns emerged. In the years
309 examined, the West Passage received the greatest number of larvae; the extent and magnitude of

310 larval transport down the West Passage varied over the three years. Specific regions of
311 significant larval settlement included the northern West Passage, Conditional Areas A and B,
312 parts of Greenwich Bay, and the Providence River (Fig. 3). The source of larval production that
313 remained in the Bay came primarily from the same regions: Providence River, Conditional Areas
314 A and B, northern East and West Passages, and portions of Greenwich Bay (Fig. 4). LTRANS
315 grids in the upper regions across Narragansett Bay proper (Mt. Hope Bay, Providence River,
316 Conditional Areas A and B, Greenwich Bay, northern East Passage) had the highest proportion
317 of their respective particles remaining in the Bay, suggesting the circulation patterns favor larval
318 settlement from spawning in these grids (Fig. 4).

319 Over the three years' spawning period, an average of $35\% \pm 2.3\%$ (mean \pm standard
320 error) of the larvae were transported out of the Bay. The Sakonnet River, southern East and West
321 Passages, and portions of Mt. Hope Bay had the lowest proportion of their larvae settling within
322 the Bay (i.e. greater amounts leaving the Bay than being retained), highlighting these regions'
323 high flushing to Rhode Island Sound. When accounting for regions' sizes in larval production
324 estimates, Greenwich Cove, the Providence River, and Apponaug Cove were the most
325 productive in supplying larvae that remained within the Bay (Table 2). Other notably productive
326 areas included Warwick Cove, the Warren River, and Conditional Area A. When evaluating
327 spawning and settling locations by specific regions in the Bay (Fig. 2), the Providence River
328 provided significant larval production to southern regions, including Conditional Areas A and B
329 and northern portions of the East and West Passages (Fig. 5). Other regions contributing
330 significant larval production included the northern East and West Passages, and Conditional
331 Areas A and B (Fig. 5). On average over the three years, the prohibited areas of the Providence

332 River, Greenwich Bay coves, Potowomut River, and Warren River supplied roughly $39\% \pm 1.2\%$
333 of the Bay's larval production retained within the Bay.

334 Evaluating a region's larval contribution to the other areas provides insight into which
335 regions are supported by a given area's larval productivity (Fig. 6). For the Providence River,
336 $13.2\% \pm 2.3\%$ of the larvae produced there settled within the area, with exports including 20.6%
337 $\pm 0.5\%$ to the northern West Passage, $16.3\% \pm 0.1\%$ to Conditional Areas A and B, and $8.6\% \pm$
338 0.2% to northern East Passage. Up to $24.1\% \pm 0.8\%$ and $26.7\% \pm 1.1\%$ of larval production from
339 a given cove of Greenwich Bay (Greenwich Cove, Apponaug Cove, and Warwick Cove) were
340 transported to Greenwich Bay proper or out to the northern West Passage, respectively (Fig. 6).
341 The Spawner Sanctuary is relatively productive in providing retained larvae to Narragansett Bay
342 compared to other regions (Table 2); however, approximately $31.7\% \pm 4.4\%$ of its larval
343 production left the Bay, with $28.5 \pm 1.4\%$ settling in the West Passage (Fig. 7).

344 Conversely, quantifying the origin of where settled larvae come from provides insight
345 into the significance of external areas in supporting a given area's settlement larvae and
346 recruitment (Fig. 7). Areas other than the Providence River received between $6.8\% \pm 1.5\%$ and
347 $79.4\% \pm 2.3\%$ of their larvae from the Providence River, with the Providence River receiving
348 $65.5\% \pm 0.4\%$ of its larvae through self-recruitment (Fig. 7). The Conditional Areas A and B
349 received $47.5\% \pm 0.7\%$ to $42.6\% \pm 0.6\%$ of their settled larvae from the up-bay Providence
350 River. Conditional Areas A and B, northern East and West Passages, and the Warren River
351 provided additional larval supply to the Providence River. The northern West Passage supported
352 $1.2\% \pm 0.2\%$ to $26.8\% \pm 2.8\%$ of other regions total larvae supply, with $18.3\% \pm 1.6\%$ of the
353 settled larvae in the northern West Passage having spawned there. Greenwich Bay received
354 $39.0\% \pm 0.9\%$ of its settled larvae from Greenwich Bay and its adjoining coves, with $22.8\% \pm$

355 1.5% and $10.7\% \pm 0.8\%$ from the Providence River and northern West Passage, respectively.

356 The Spawner Sanctuary received larvae primarily from Conditional Area A, the Providence
357 River, and the northern West Passage (Fig. 7).

358 *Settlement Results Compared to Sediment and Harvest Pressure*

359 Tagging areas 3W (West Passage) and 4A (East Passage) received the most larvae
360 spawned and settled than any other tagging area (Table 3). Area 3W represents the tagging area
361 with the greatest larval settlement and second largest commercial harvest in Narragansett Bay.
362 Conditional Area A typically has the greatest landings of tagging areas with settled larvae, but
363 only $5.5\% \pm 1.7\%$ of larvae settling in tagging areas settled in this region. Most of the larval
364 settlement locations corresponded to sand and silty-sand, with these sediment types representing
365 $41.5\% \pm 0.8\%$ and $21.0\% \pm 1.7\%$ of the quahog settlement locations, respectively (Table 3).

366 Areas with sediments characterized as gravel or rock had substantially fewer larvae settling
367 (Table 3).

368 *Sensitivity Analyses*

369 The connectivity between regions was similar between scenarios with and without the
370 quahog abundance scaling, yet the magnitude or significance of the source-sink relationships was
371 different (Supplement 2). Without weighting particles to reflect the quahog spawning stock, the
372 northern West Passage and Mt. Hope Bay self-recruitment were the largest source-sink larval
373 relations in the Bay, compared to the Providence River providing larvae for the northern West
374 Passage when quahog abundance weights were applied (Supplement 2). The difference in results
375 between scenarios with quahog larval behavior parameterized and assuming larvae are passive
376 indicated that the assigned behavior had minimal effects on larval connectivity in Narragansett
377 Bay's regions. Overall passive particle export was greater and more variable interannually than

378 when applying quahog larval behavior to the transport model, but the connectivity pathways and
379 their magnitudes were similar between the scenarios (Supplement 3).

380 **DISCUSSION**

381 *Larval Transport and Settlement for a Sessile Marine Species*

382 By coupling a realistically forced hydrodynamic model with larval behavior, we have
383 provided insight into larval transport and settlement for an ecologically and economically
384 significant species. Quahog larvae spawned in high adult density areas at the head of the Bay or
385 deeper in sub-estuaries and coves were more likely to settle in the Bay than those from southern
386 regions in closer proximity to the Bay's mouth. The dominant larval transport movement was
387 down-Bay through the West Passage, corresponding to the mean, non-tidal, depth-averaged
388 circulation within the Bay (Kincaid et al. 2008, Pfeiffer-Herbert et al. 2015) and as seen in
389 physical and biological oceanographic properties of the West Passage (Pilson 1985, Oviatt et al.
390 2002). Coastal circulation has been found to influence larval transport across many estuarine
391 systems through mechanisms including river flow, tidal fluxes, and basin topography (Norcross
392 and Shaw 1984), with our results supporting this notion. These results underscore the importance
393 of mean estuarine circulation in dictating transport and settlement of marine larvae.

394 The larval transport and settlement estimates highlight the importance of the pelagic
395 larval stage for coastal sessile species in sustaining connectivity between geographically-
396 separated regions within a population (Fig. 5-7). The importance of larval immigration to regions
397 was particularly apparent for subregions of Narragansett Bay. For Greenwich Bay, a sub-estuary
398 supporting an important winter fishery, a substantial portion of its settled larvae were from
399 outside sources (Providence River, Conditional A and B, northern West Passage) and its coves
400 (Apponaug Cove, Greenwich Cove) (Fig. 7). As evidenced here, quantifying larval transport

401 connectivity between areas is vital in assessing local population maintenance, replenishments,
402 and resiliency for species subjected to exploitation (Fogarty and Botsford 2007).

403 By analyzing the regions' sources and sinks for larval production, we hope to have
404 provided insight into regions' quahog recruitment. The influence of larval transport to suitable
405 habitats on marine fish and invertebrate populations' year-class success has long been deemed a
406 significant contributor to prerecruit-survival and recruitment (Hjort 1914, Sinclair et al. 1985).
407 Modeled larval settlement appears to be predominantly in sandy bottoms (Table 3),
408 corresponding to reported suitable quahog settlement substrate (Kassner et al. 1991). The results
409 have implications for recruitment dynamics in Narragansett Bay; however, other factors
410 influencing fish recruitment were not incorporated, including predation, larval food supply,
411 parental condition, and ecophysiology. Predation and food-limitation can be greater determinants
412 for post-settlement shellfish abundances and recruitment than larval supply (Olafsson et al. 1994,
413 Kraeuter et al. 2005), with predation hypothesized to be as important for settlement location as
414 substrate (Bricelj 1992). Post-settlement quahog predator (such as mud crabs and blue crabs;
415 Polyakov et al. 2007) data is sparse for Narragansett Bay, yet the down-Bay West Passage
416 gradient in phytoplankton productivity (Oviatt et al. 2002, Oviatt et al. 2017) may regulate
417 pelagic larval quahog survivorship. Predator and prey dynamics may contribute to the mismatch
418 between high modeled larval settlement in the mid and lower West Passage and the reported
419 decreasing down-Bay adult quahog standing stock (Pratt et al. 1992). These recruitment theories
420 as well as commercial fishery challenges and impediments may be factors contributing to the
421 spatial discrepancy between larval settlement and landings. For example, transit time, depth, tide,
422 wind, and frequency of closures due to rainfall can influence fishing activity geographically,

423 irrespective of local quahog densities. Aside from availability, fishery logistics and regulations
424 also guide reported fishing effort.

425 *Future Modeling Directions*

426 The advent of biophysical models that incorporate accurate, fine-scale ocean circulation
427 models have improved our understanding of larval transport and recruitment for marine species
428 (Werner et al. 2007). However, many larval transport studies have not been validated with
429 quantitative measurements of larval densities (Metaxas and Saunders 2009). Butet (1997)
430 sampled quahog larvae during the 1995 spawning season, noting the down-Bay decrease in larval
431 abundance from the major spawning source of the Providence River. Identification, time, and
432 cost challenges with traditional larval sampling and microscopic identification remain; however,
433 renewing these efforts would provide insight into the accuracy of the modeled transport and
434 settlement. Furthermore, this research would benefit from a greater understanding of quahog
435 larval behavior. The results appeared to be more influenced by the quahog abundance weighting
436 than the parameterized larval behavior (Supplements 2 and 3), yet several behavioral
437 characteristics were not accounted for. Previous research has documented quahog larval
438 abundances associated with specific tidal currents (Carriker 1961), neap tides (Butet 1997), and
439 affinity for euphotic zones (Carriker 1952). Such diel or tidal vertical movements can influence
440 larval retention in nearshore zones (Paris et al. 2004) and should be further evaluated in field or
441 laboratory settings.

442 Environmentally-explicit responses to growth, mortality, larval stage duration and
443 behavior would provide more realistic spawning dynamics. In the case of temperature, warmer
444 waters have been linked to shorter larval durations and dispersal distances (O'Connor et al.
445 2007), and changes in spawning dates and periods (Llopiz et al. 2014). The results from these

446 dynamics may not be intuitive, as faster growth and increased larval mortality associated with
447 increased temperatures may offset each other (Llopiz et al. 2014). The influence of temperature
448 on larval growth and ontogenetic behaviors has been included in similar efforts, such as for
449 Atlantic sea scallops (Munroe et al., 2018); however, such information is unavailable for
450 quahogs. Incorporating ontogenetic drivers in larval life history rates have been advancements in
451 larval dispersal modeling (Peck and Hufnagl 2012) and there is evidence for the need with
452 quahogs (e.g. smaller and less developed quahog larvae have greater mortality and lower growth
453 rates than larger and more developed larvae; Przeslawski and Webb 2009). Thus, functional
454 relationships describing these dynamics over age or size would further improve these efforts.

455 As conducted in similar studies (Munroe et al., 2018), weighting the Lagrangian particles
456 based on quahog standing stock abundance captured the spatial heterogeneity in spawning and
457 provided more realistic estimates of regions' significance in Bay-wide larval production.
458 However, how fecundity and larval production change across regions with varying water quality
459 and abundance remains unclear. Quahog gonadal condition has been found to be higher in
460 conditionally-closed areas than in permanently closed areas (Marroquin-Mora and Rice 2008),
461 possibly due to density-dependent factors (i.e. overcrowding) or environmental conditions (e.g.
462 hypoxia, poor water quality). If gonadal conditions vary spatially and temporally with
463 environmental conditions and affect larval production, empirical relationships between fecundity
464 and the contributing factors could improve this work.

465 *Implications for Fisheries Management*

466 Despite being relatively productive in relation to its size (Table 2), the Spawner
467 Sanctuary was not a major contributor to the Bay's overall larval quahog production compared to
468 other regions. The weak larval contribution of this protected area is not uncommon across marine

469 systems, as the size, design and location of many early-established marine reserves have largely
470 been the result of political or social processes with fewer biological considerations (Halpern
471 2003). The Spawner Sanctuary's efficacy in achieving its intended goal of sustaining the stock
472 through an unperturbed larval supply should be further evaluated by fisheries managers and
473 stakeholders. The sanctuary serves as an example for the need to use science (in this case, both
474 physical oceanography and fisheries ecology) to construct effective fisheries management plans.

475 Prohibited areas appear valuable in supporting larvae for areas both closed and open to
476 the commercial quahog fishery based on high standing-stock biomass and the physical
477 oceanography of the Bay. If reduced gonadal quality from these prohibited areas translate to less
478 fecund quahogs and larval production, gonadal quality reduction would likely need to be quite
479 large to negate the value of these regions via their orders of magnitude larger adult standing
480 stocks compared to open areas, and their favorable proximity allowing for larvae to be retained
481 within the Bay. The large larval settlement throughout the Bay from prohibited areas supports
482 the *de facto* spawning sanctuary hypothesis, and that these regions may serve as *de facto*
483 sanctuaries in substantially contributing to Narragansett Bay's overall quahog population (Rice
484 et al. 1989, Marroquin-Mora and Rice 2008).

485 With permanently and intermittently closed regions to commercial fishing due to waste-
486 water treatment effluent potentially important for population connectivity, future improvements
487 to water quality have implications for both the quahog standing stock and larval supply. Multiple
488 waste-water treatment facilities have upgraded to tertiary treatment in Rhode Island, reducing
489 nitrogen inputs to the Bay and improving water quality in the Bay's northern regions, such as the
490 Providence River (Oviatt et al. 2017). Additional management measures have also been taken to
491 reduce fecal coliform discharges in the Bay. Results from these management efforts have already

492 been observed; in 2017, Conditional Area B was reclassified an open area (i.e. not conditionally-
493 closed), and the criteria for closing Conditional Area A was reduced. As openings in these and
494 other areas increase with improved water quality, commercially harvesting the spawning stock in
495 these regions may reduce larval production for down-Bay areas that rely on northern-derived
496 larvae. Such considerations are particularly important for the Providence River, which appears to
497 be a significant larval source for many regions. This work serves as an example for coastal
498 communities looking to improve waste water discharge into estuaries, and for the fishery
499 considerations that should be made concurrently. In the absence of water quality closures,
500 stringent quahog fisheries management plans in these regions would need to be considered to
501 preserve the Narragansett Bay quahog population and fishery.

502 REFERENCES

503 Arnold, W.S., G.L. Hitchcock, M.E. Frischer, R. Wanninkhof, and Y.P. Sheng. 2005. Dispersal
504 of an introduced larval cohort in a coastal lagoon. *Limnol. Oceanogr.* 50: 587–597

505 Atlantic Coastal Cooperative Statistics Program (ACCSP). 2018. Commercial catch and effort
506 data generated by Nicole Ares using ACCSP Data Warehouse [online application],
507 Arlington, VA. Available at <http://www.accsp.org>. (last accessed on 6 April 2018).

508 Balt, C. 2014. Subestuarine circulation and dispersion in Narragansett Bay, Ph.D. thesis,
509 University of Rhode Island, Narragansett, Rhode Island.

510 Bergondo, D. 2004. Water column variability in Narragansett Bay, Ph.D. thesis, University of
511 Rhode Island, Narragansett, Rhode Island.

512 Bergondo D, and C Kincaid. 2007. Development and Calibration of a Model for Tracking
513 Dispersion of Waters from Narragansett Bay Commission Facilities within the
514 Providence River and Narragansett Bay, Narragansett Bay Commission Final Report, 46
515 pp.

516 Bricelj, V. 1992. Aspects of the biology of the Northern Quahog, *Mercenaria mercenaria*, with
517 emphasis on growth and survival during early life history. In Proceedings of the second
518 Rhode Island shellfish industry conference.

519 Butet, N.A. 1997. Distribution of quahog larvae along a North-South transect in Narragansett
520 Bay. MS. Theses. University of Rhode Island. Narragansett, RI. 96 pp.

521 Carricker, M.R. 1952. Some recent investigations on native bivalve larvae in New Jersey
522 estuaries. *Proc. Natl. Shellfish. Assoc.* 1950:69-74.

523 Carricker, M.R. 1954. Preliminary studies on the field culture, behavior, and trapping of the larvae
524 of the hard clam, *Venus* (= *Mercenaria*) *mercenaria* L. *Proc. Natl. Shellfish. Assoc.*
525 1952:70-73.

526 Carriker, M.R. 1961. Interrelation of functional morphology, behavior, and autecology in early
527 stages of the bivalve *Mercenaria mercenaria*. J. Elisha Mitchell Sci. Soc. 77: 168–241

528 Chen, C., Beardsley, R.C., and Cowles, G.W., 2006. An unstructured-grid, finite-volume coastal
529 ocean model (FVCOM) system. Oceanography 19, 78–89.

530 Coen, L.D., R.D. Brumbaugh, D. Bushek, R. Grizzle, W.M. Luckenbach, M.H. Posey, S.P.
531 Powers, and S.G. Tolley. 2007. Ecosystem services related to oyster restoration. Mar.
532 Ecol. Prog. Ser. 341: 303-307

533 Cowen, R.K., G. Gawarkiewicz, J. Pineda, S.R. Thorrold, F.E. Werner. 2007. Population
534 connectivity in marine systems: An Overview. Oceanography, 20(3): 14-21.

535 Cowen, R. K., and S. Sponaugle, 2009. Larval dispersal and marine population connectivity,
536 Annual Reviews of Marine Science 1: 443-466

537 Decelles, G., Cowles, G., Liu, C., and Cadrin, S. 2015. Modeled transport of winter flounder
538 larvae spawned in coastal waters of Gulf of Maine. Fish. Oceanogr., 24(5): 430-444.

539 Dekshenieks MM, Hofmann EE, Klinck JM, Powell EN (1996) Modeling the vertical
540 distribution of oyster larvae in response to environmental conditions. Mar. Ecol. Prog.
541 Ser. 136: 97-110.

542 DiBacco, C., D. Sutton, and L. McConnico. 2001. Vertical migration behavior and horizontal
543 distribution of brachyuran larvae in a low-inflow estuary: implications for bay-ocean
544 exchange. Mar. Ecol. Prog. Ser. 217: 191-206.

545 Doering, P.H., C.A. Oviatt, and J.R. Kelly. 1986. The effects of the filter-feeding clam
546 *Mercenaria mercenaria* on carbon cycling in experimental marine mesocosms. J. Mar.
547 Res. 44: 839-861

548 Eversole, A.G. 1987. Species profiles: life histories and environmental requirements of coastal
549 fishes and invertebrates (South Atlantic) -- hard clam. U.S. Fish Wildl. Serv. Biol. Rep.
550 82(11.75). U.S. Army Corps of Engineers, TR EL-82-4. 33 pp.

551 Fegley, S.R. 2001. Demography and dynamics of hard clam populations. In: J. N. Kraeuter & M.
552 Castagna, editors. Biology of the hard clam. New York: Elsevier Science.

553 Fogarty, M.J., and L.W. Botsford. 2007. Population connectivity and spatial management of
554 marine fisheries. Oceanography 20:112–123.

555 Hadley, N.H., and J.M. Whetstone. 2007. Hard clam hatchery and nursery production. Southern
556 Regional Aquaculture Center, Publication 4301. Mississippi State, MS. 8 pp.

557 Haidvogel, D.B., H. Arango, W.P. Budgell, B.D. Cornuelle, E. Curchitser, E. Di Lorenzo, K
558 Fennel, W.R. Geyer, and others. 2008. Ocean forecasting in terrain-following
559 coordinates: Formulation and skill assessment of the Regional Ocean Modeling System.
560 J. Comput. Phy. 227: 3595–3624

561 Halpern, B.S. 2003. The impact of marine reserves: have reserves worked and does reserve size
562 matter? Ecol. App. 13:S117–S137.

563 Henry, K.M., and S.W. Nixon. 2008. A half century assessment of hard clam, *Mercenaria*
564 *mercenaria*, growth in Narragansett Bay, Rhode Island. Estuaries Coasts 31(4):755-766

565 Hjort, J. 1914. Fluctuations in the great fisheries of northern Europe viewed in the light of
566 biological research. Rapp. P.-V. Reun. - Comm. Int. Explor. Sci. Mer Mediterr. 20: 1–
567 228.

568 Kassner, J.R., R. Cerrato, and T. Carrano. 1991. Toward and understanding and improving the
569 abundance of quahogs (*Mercenaria mercenaria*) in the Eastern Great South Bay, New
570 York. In: Proceedings of the first Rhode Island Shellfishers Conference, Rice, M.A., M.

571 Grady, and M.L. Schwartz (eds.), Rhode Island Sea Grant RIU-W-90-003, Narragansett,
572 RI. pp 69-78.

573 Keck, R., Maurer, D., and Watling, L. 1972. Survey of Delaware's hard clam resources –
574 Delaware Bay. 1971-72 Annu. Rep. U.S. Natl. Mar. Fish. Serv. 103pp.

575 Keck, R., Maurer, D., and Malouf, R. 1974. Factors influencing the settlement behavior of larval
576 hard clams, *Mercenaria mercenaria*, Proc. Natl. Shellfish. Assoc., 64: 59-67.

577 Kincaid, C., D. Bergondo, and K. Rosenburger. 2008. Water exchange between Narragansett
578 Bay and Rhode Island Sound, in *Science for Ecosystem-based Management*, edited by A.
579 Desbonnet and B. A. Costa-Pierce, chap. 10, Springer, 2008.

580 Kraeuter, J.N., S. Buckner, and E.C. Powell. 2005. A note on a spawner-recruit relationship for
581 a heavily exploited bivalve: the case of northern quahogs (hard clams), *Mercenaria*
582 *mercenaria* in Great South Bay New York. J. Shellfish Res. 24(4): 1043-1052.

583 Kremer, J.N., and S. Nixon. 1978. A Coastal Marine Ecosystem, Simulation, and Analysis.
584 Springer-Verlag, New York, 217p.

585 Kremer, J.N., J.M.P. Vaudrey, D.S. Ullman, D.L. Bergondo, N. LaSota, C. Kincaid, D.L.
586 Codiga, and M.J. Brush. 2010. Simulating property exchange in estuarine ecosystem
587 models at ecologically appropriate scales. Ecol. Modell. 221: 1080-1088.

588 Li, Y., R. He, and J.P. Manning. 2013. Coastal connectivity in the Gulf of Maine in spring and
589 summer of 2004–2009. Deep Sea Research Part II: Topical Studies in Oceanography 103:
590 199-209.

591 Liu, C., G.W. Cowles, J.H. Churchill, K.D.E. Stokesbury. 2015. Connectivity of the bay scallop
592 (*Argopecten irradians*) in Buzzards Bay, Massachusetts, U.S.A. Fish. Oceanogr., 24(4):
593 364-382.

594 Llopiz, J.K., R.K. Cowen, M.J. Hauff, R. Ji, P.L. Munday, B.A. Muhling, M.A. Peck, D.E.
595 Richardson, and others. 2014. Early life history and fisheries oceanography: New
596 questions in a changing world. Oceanography 27(4):26–41.

597 Mann, R., B.M. Campos, and M.W. Luckenbach. 1991. Swimming rate and responses of larvae
598 of three mactrid bivalves to salinity discontinuities. Mar. Ecol. Prog. Ser., 68:257-269.

599 Marroquin-Mora, D.C., and M.A. Rice. 2008. Gonadal cycle of northern quahogs, *Mercenaria*
600 *mercenaria* (Linneas 1758), from fished and non-fished subpopulations in Narragansett
601 Bay. J. Shellfish Res. 27(4): 643-652.

602 McGurk, M.D. 1986. Natural mortality of marine pelagic fish eggs and larvae: role of spatial
603 patchiness. Mar. Ecol. Prog. Ser., 34:227-242.

604 McMaster, R.L. 1960. Sediments of Narragansett Bay and Rhode Island Sound, Rhode Island.
605 Journal of Sedimentary Petrology 30(2): 249-274.

606 Mileikovsky, S.A. 1973. Speed of active movement of pelagic larvae of marine bottom
607 invertebrates and their ability to regulate their vertical position. Mar. Biol. 23: 11-17.

608 Mukai, A.Y., J.J. Westerink, R.A. Luettich Jr., and D. Mark. 2002. Eastcoast 2001: A tidal
609 constituent database for the western North Atlantic, Gulf of Mexico and Caribbean Sea.
610 U. S. Army Engineer Research and Development Center, Coastal and Hydraulics
611 Laboratory, Technical Report, ERDC/CHL TR-02-24, September 2002, 201 pp.

612 Munroe, D.M., Haidvogel, D., Caracappa, J.C., Klinck, J.M., Powell, E.N., Hofmann, E.E.,
613 Shank, B.V., and Hart, D.R. 2018. Modeling larval dispersal and connectivity for Atlantic
614 sea scallop (*Placopecten magellanicus*) in the Middle Atlantic Bight. Fish. Res., 208:7-
615 15.

616 Narragansett Bay Estuary Program (NBEP). 2017. State of Narragansett Bay and Its Watershed
617 (Chapter 24, Shellfishing Areas, pages 461-473). Technical Report. Providence, RI.

618 Newell, R.I.E. 2004. Ecosystem influences of natural and cultivated populations of suspension-
619 feeding bivalve mollusks: A review. *J. Shellfish Res.* 23(1): 51-61.

620 Norcross, B.L., and R.F. Shaw. 1984. Oceanic and estuarine transport of fish eggs and larvae: a
621 review. *Trans. Am. Fish. Soc.* 113: 153-165.

622 North, E.W., Z. Schlag, R.R. Hood, M. Li, L. Zhong, T. Gross, and V.S. Kennedy. 2008.
623 Vertical swimming behavior influences the dispersal of simulated oyster larvae in a
624 coupled particle-tracking and hydrodynamic model of Chesapeake Bay. *Mar. Ecol. Prog. Ser.* 359: 99-115.

625 O'Connor, M.I., J.F. Bruno, S.D Gaines, B.S. Halpern, S.E. Lester, B.P. Kinlan, and J.M. Weiss.
626 2007. Temperature control of larval dispersal and the implications for marine ecology,
627 evolution, and conservation. *Proc. Nat. Acad. Sci.* 104(4): 1266-1271.

628 Olafsson, E.B., C.H. Peterson, and W.G. Ambrose Jr. 1994. Does recruitment limitation structure
629 populations and communities of macro-invertebrates in marine soft sediments: The
630 relative significance of pre-and post-settlement processes. *Oceanogr. Mar. Biol. Ann. Rev.* 32:65-109.

631 Oviatt, C.A., A. Keller, and L. Reed. 2002. Annual primary production in Narragansett Bay with
632 no bay-wide winter-spring phytoplankton bloom. *Estuarine, Coastal Shelf Sci.* 54: 1013-
633 1026

634 Oviatt, C., L. Smith, J. Krumholz, K. Coupland, H. Stoffel, A. Keller, M.C. McManus, and L.
635 Reed. 2017. Managed nutrient reduction impacts on nutrient concentrations, water clarity,
636 primary production, and hypoxia in a north temperate estuary. *Estuarine, Coastal Shelf Sci.* 199:25-34

637 Paris, C.B., and R.K. Cowen. 2004. Direct evidence of a biophysical retention mechanism for
638 coral reef fish larvae. *Limnol. Oceanog.* 49:1964-1979.

639 Peck, M.A. and Hufnagl, M. 2012. Can IBMs tell us why most larvae die in the sea? Model
640 sensitivities and scenarios reveal research needs. *J. Mar. Sys.*, 93: 77-93.

641 Pratt, D.M. 1953. Abundance and growth of *Venus mercanaria* and *Callocardia morrhuanus* in
642 relation to the character of bottom sediments. *J. Mar. Res.*, 12: 60-74.

643 Pratt, S., A. Ganz, and M. Rice. 1992. A species profile of the quahog in Rhode Island. Rhode
644 Island Sea Grant, University of Rhode Island.

645 Przeslawski, R., and Webb, A.R. 2009. Natural variation in larval size and developmental rate of
646 Northern quahog *Mercenaria mercenaria* and associated effects on larval and juvenile
647 fitness. *J. Shellfish Res.* 28(3):505-510.

648 Pfeiffer-Herbert, A.S. 2012. Larval transport in an estuarine-shelf system: Interaction of
649 circulation patterns and larval behavior, Ph.D. Thesis, Graduate School of Rhode Island,
650 University of Rhode Island, 227pp.

651 Pfeiffer-Herbert, A.S., C.R. Kincaid, D.L. Bergondo, and Pockalny R.A. 2015. Dynamics of
652 wind-driven estuarine-shelf exchange in the Narragansett Bay estuary. *Cont. Shelf Res.*
653 105: 42-59.

654 Pilson, M.E.Q. 1985. On the residence time of water in Narragansett Bay. *Estuaries* 8:2-14.

655 Pineda, J., J.A. Hare, and S. Sponaugle. 2007. Larval dispersal and transport in the coastal ocean
656 and consequences for population connectivity. *Oceanography* 20(3): 22-39.

657

658

659

660 Polyakov, O., J.N. Kraeuter, E.E. Hofmann, S.C. Buckner, V.M. Bruchelj, E.N. Powell, and J.M.
661 Klinck. 2007. Benthic predators and northern quahog (=hard clam) (*Mercenaria*
662 *mercenaria* LINNAEUS, 1758) populations. *J. Shellfish Res.* 26(4): 995–1010

663 Rasmussen, L.L., B.D. Cornuelle, E. Di Lorenzo, J.L. Largier, L.A. Levin, and B.J. Becker.
664 2006. Modeling circulation and transport pathways of larval bivalve populations on a
665 regional scale. *EOS Trans. Am. Geophys. Union.* 87:suppl.

666 Rice, M. 1992. The Northern quahog. Rhode Island Sea Grant, University of Rhode Island.

667 Rice, M.A. 2006. Quahog (*Mercenaria mercenaria*) spawner sanctuaries: does size or location
668 matter? *J. Shellfish Res.* 25(2):671-672.

669 Rice, M.A., C. Hickox, I. Zehra. 1989. Effects of intensive fishing effort on the population
670 structure of quahogs, *Mercenaria mercenaria* (L.) in Narragansett Bay. *J. Shellfish Res.*
671 8:445-454.

672 Rice, M.A., and J.A. Pechenik. 1992. A review of factors influencing the growth of the northern
673 quahog, *Mercenaria mercenaria* (Linnaeus 1758). *J. Shellfish Res.* 11(2), 279-287.

674 Rogers, J. 2008. Circulation and transport in upper Narragansett Bay, University of Rhode
675 Island, Master Thesis, Kingston, RI, 107 pages.

676 Schuman, S. 2015. Rhode Island's shellfish heritage: an ecological history. University of Rhode
677 Island. Narraganset, RI. 168 pp.

678 Shanks, A.L., B.A Grantham, and M.H. Carr. 2003. Propagule dispersal distance and the size and
679 spacing of marine reserves. *Ecol. App.* 13(1), Supplement: The Science of Marine
680 Reserves, S159-S169.

681 Sinclair, M., M.J. Tremblay, and P. Bernal. 1985. El Niño events and variability in a Pacific
682 mackerel (*Scomber japonicus*) survival index: support for Hjort's second hypothesis.
683 *Can. J. Fish. Aquat. Sci.* 42: 602–608.

684 Troost, K., Veldhuizen, R., Stamhuis, E.J., and Wolff, W.J. 2008. Can bivalve veligers escape
685 feeding currents of adult bivalves? *J. Exp. Mar. Biol.* 358: 185-196.

686 Ullman, D.S., C. Kincaid, C. Balt, and D.L. Codiga. 2019. Hydrodynamic Modeling of
687 Narragansett Bay in Support of the EcoGEM Ecological Model, GSO Technical Report
688 No. 2019-01 University of Rhode Island, 58pp.

689 Umlauf, L., and H. Burchard. 2003. A generic length-scale equation for geophysical turbulence
690 models. *J. Mar. Res.* 61, 235-265.

691 Warner, J.C., C.R. Sherwood, H.G. Arango, and R.P. Signell. 2005. Performance of four
692 turbulence closure models implemented using a generic length scale method. *Oc. Mod.* 8:
693 81-113.

694 Weisberg, R.H. and Sturge, W. 1976. Velocity observations in the West Passage of
695 Narragansett Bay: A partially mixed estuary, *J. Phys. Oceanogr.*, 6, 345-354.

696 Werner, F.E., R.K. Cowen, and C.B. Paris. 2007. Coupled biological and physical models:
697 present capabilities and necessary developments for future studies of population
698 connectivity. *Oceanography* 20:54-69.

699 Willmott, C.J. 1982. Some comments on the evaluation of model performance. *Bull. Am.*
700 *Meteorol. Soc.* 63:1309-1313.

701

702

703

704 **ACKNOWLEDGEMENTS**

705 We thank Jeff Mercer and Dale Leavitt for their contributions to this research during its
706 early development, and their comments and reviews of this work. Comments from David
707 Borkman, Dennis Erkan, two anonymous reviewers and the associate editor improved the
708 manuscript. This work was supported by Rhode Island Sea Grant (Project Number 2014-R/F-
709 1416-31.1-RES). The views expressed herein are those of the authors and do not necessarily
710 reflect the views of their agencies.

711 **FIGURE LEGENDS**

712
713 Fig. 1. Water quality and shellfish management areas within Narragansett Bay, RI (left).
714 Management types vary with color and reflect designations as of 2016. Region abbreviations
715 used: Providence River (PR), Warren River (WR), Mount Hope Bay (MHB), Greenwich Bay
716 (GB), Greenwich Cove (GC), Apponaug Cove (AC), Conditional Area A (CA), Conditional
717 Area B (CB). GB is both a shellfish management area and conditionally closed area based on
718 water quality criteria. Commercial shellfish harvest reporting areas (or “tagging areas”) for
719 Narragansett Bay (right).

720
721 Fig. 2. Regions of Narragansett Bay over which the LTRANS results were aggregated. Region
722 abbreviations used: Providence River (PR), Warren River (WR), Mount Hope Bay (MHB),
723 Greenwich Bay (GB), Greenwich Cove (GC), Apponaug Cove (AC), Warwick Cove (WC),
724 Conditional Area A (CA), Conditional Area B (CB), Potowomut River (PoR), northern West
725 Passage (NWP), southern West Passage (SWP), northern East Passage (NEP), southern East
726 Passage (SEP), Sakonnet River (SR), and the Spawner Sanctuary (SS).

727
728 Fig. 3. Settlement locations for larvae modeled during the spawning period of 2006 (top left),
729 2007 (top right), 2014 (bottom left), and the three years averaged (bottom right). Larvae that
730 were transported out through the mouth of Narragansett Bay are not displayed. Scales are percent
731 of total larval production retained in the Bay settling in each grid box.

732
733 Fig. 4. Average larval production of LTRANS grid cells (represented as the weighted number of
734 Lagrangian particles) remaining within Narragansett Bay. Larval production is expressed as (a)
735 the absolute number and (b) fraction of a grid cell’s total larval production remaining in the Bay.
736 Averages are over the three years examined: 2006, 2007, and 2014.

737
738 Fig. 5. Average connectivity matrix of larval production (in number of simulated larvae)
739 described by their start and end locations in Narragansett Bay. Averages are over the three years
740 examined: 2006, 2007, and 2014. See Figure 2 legend for regions’ abbreviations.

741

742 Fig. 6. Average connectivity matrix of spawning area's ('Start Region') larvae transported to
743 various areas ('End Region') in Narragansett Bay. Averages are over the three years examined:
744 2006, 2007, and 2014. This presentation highlights where larvae spawned in a given area ('Start
745 Region') are transported to ('End Region'). Within a Start Region (along the x-axis, or columns),
746 the percent values indicate the breakdown of where this region's larvae settled over all regions
747 (along the y-axis). The dashed line represents the contribution of larvae that a region gives itself
748 ('self-recruitment'). Columns may not sum to 100% given that some proportion of region's
749 larvae leave the Bay. See Figure 2 legend for regions' abbreviations.

750
751 Fig. 7. Annual average connectivity matrix representing the percent of larvae settling in
752 receiving areas ('End Region') by spawning origin ('Start Region'). This presentation highlights
753 where a given settling area's ('End Region') larvae come from ('Start Region'). Within an End
754 Region (along the y-axis, or rows), percent values indicate the relative importance of where
755 larvae settling in the region came from (along the x-axis), with rows summing to 100%. The
756 dashed line represents the contribution of larvae that a region received from itself ('self-
757 recruitment'). See Figure 2 legend for regions' abbreviations.

764 TABLES

765
766
767 Table 1. General description of shellfishing area types in Narragansett Bay, RI.
768

Area Type	Area Description
Conditional Areas	Harvesting allowed except under conditions such as rainfall or wastewater discharge that increase indicator pathogens in the shellfish growing area.
Prohibited Areas	Harvesting prohibited due to water quality
Open Areas	Harvesting allowed year-round with set catch limits
Shellfish Management Areas	Harvesting allowed, with seasonal and daily closures, and reduced catch limit
Spawner Sanctuary	Harvesting prohibited to aid in replenishing the stock

773

774

775

776

777

778

779

780

781 Table 2. Average annual larval production from each starting region that remains within
782 Narraganset Bay scaled to the acreage of the region (km²).
783

Start Region	Larval Production km ⁻²
Greenwich Cove (GC)	5515.2
Providence River (PR)	3259.0
Apponaug Cove (AC)	2832.8
Warwick Cove (WC)	1607.5
Warren River (WR)	1518.4
Conditional Area A (CA)	1281.0
Spawner Sanctuary (SS)	1279.3
Greenwich Bay (GB)	1105.6
Conditional Area B (CB)	1090.3
northern East Passage (NEP)	782.9
Mt. Hope Bay (MHB)	590.7
northern West Passage (NWP)	551.1
Potowomut River (PoR)	451.5
southern East Passage (SEP)	288.7
southern West Passage (SWP)	71.3
Sakonnet River (SR)	65.1

784

785

786

787

788

789

790

791

792

793
794
795
796
797
798
799
800
801
802
803

Table 3. Larval settlement locations compared to commercial fishing areas (Tagging Areas) and their respective harvest (Commercial Landings Percent), and the sediment (Sediment Type). Larval settlement is based on annual average data from 2006, 2007 and 2014 model runs. Larvae settling outside commercial fishing areas or areas with sediment unclassified were not used in percentage calculations. Commercial landings percentages are based on average annual number of quahogs landed from 2012-2016.

Tagging Area	Larval Settlement Percent	Commercial Landings Percent	Sediment Type	Larval Settlement Percent
3W	45.7%	22.3%	Sand	41.5%
4A	26.6%	11.8%	Silty-Sand	21.0%
1A	5.5%	36.6%	Clay-Silt	20.1%
1B	5.4%	20.1%	Sand-Silt-Clay	12.6%
5A	4.2%	<0.1%	Sandy-Silt	3.4%
5B	4.0%	0.3%	Gravelly-Sand	0.6%
2C	1.9%	0.5%	Gravel-Sand-Silt	0.3%
1C	1.7%	0.1%	Rock	0.2%
2B	1.0%	3.8%	Silt	0.1%
5C	1.0%	<0.1%	Sandy-Gravel	0.1%
2A	0.9%	3.9%	Gravel	0.1%
3H	0.8%	0.2%	Gravel-Silt-Clay	0.0%
3A	0.6%	<0.1%		
5K	0.4%	0.2%		
3C	0.3%	<0.1%		
3F	0.1%	0.2%		
4B	<0.1%	<0.1%		

804