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Abstract: When evaluating the effect of CO2 changes on the earth’s climate, it is widely assumed 
that instantaneous radiative forcing from a doubling of a given CO2 concentration (IRF2×CO2) is 

constant and that variances in climate sensitivity arise from differences in radiative feedbacks, or 
dependence of these feedbacks on the climatological base-state. In this paper, we show that the 
IRF2×CO2 is not constant, but also depends on the climatological base-state, increasing by ~25% 

for every doubling of CO2, and has increased by ~10% since the pre-industrial era primarily due 
to the cooling within the upper stratosphere, implying a proportionate increase in climate 

sensitivity. This base-state dependence also explains about half of the intermodel spread in 
IRF2×CO2, a problem that has persisted among climate models for nearly three decades. 

One-Sentence Summary: Carbon dioxide becomes a more potent greenhouse gas as the climate 
changes in response to increased carbon dioxide. 
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Main Text: Radiative forcing (RF) refers to a change in net radiative flux at the top-of-atmosphere 

(TOA) due to an externally-imposed perturbation in the earth's energy balance (1, 2), such as 
anthropogenic activities (e.g., emission of greenhouse gases and aerosols) or natural events (e.g., 

volcanic eruptions). The earth subsequently warms or cools to counteract the flux perturbation and 
restore radiative equilibrium. The RF is commonly separated into two parts (1, 3–6): instantaneous 
radiative forcing (IRF), which measures the change in net radiative flux that results only from the 

change in forcing agents, and rapid adjustments, which consist of radiative perturbations induced 
by atmospheric responses to the IRF independent of any change in surface temperature. This study 

focuses on the IRF, considered to be the best-understood aspect of RF (7). For CO2 perturbations, 
the IRF is responsible for approximately two-thirds of the total RF and is the fundamental driver 
of the rapid adjustments (1, 3–6, 8–12), wherein stratospheric cooling is the dominant adjustment 

to CO2 forcing (11, 12). However, several previous studies have shown that the IRF from a 
doubling of CO2 concentration (IRF2×CO2) varies by ~50% among climate models (10, 13–15). 

Although this spread has persisted for nearly three decades, its underlying cause has never been 
fully resolved. 

Climate sensitivity is formally defined as the change in global-mean surface temperature required 

to restore radiative equilibrium in response to a doubling of CO2 concentration (T2×CO2) and is 

the most widely used metric to quantify the susceptibility of the climate to an externally forced 

change, i.e., T2×CO2 = –RF2×CO2/, where the radiative damping ( in W m-2 K-1) is the efficiency 

at which radiative equilibrium is restored per unit change in surface temperature. The radiative 

damping depends on a number of well and not-so-well understood feedbacks within the climate 
system, and is widely recognized to both vary between climate models and vary in time as the 

climatological base-state evolves. However, the intermodel variance in the RF2×CO2 and its 
dependence on the base-state are less well recognized. In this study, we demonstrate that the 
IRF2×CO2 is not a constant, but also depends on the climatological base-state, as suggested by a 

recent analytical model (16). This state-dependence not only explains about half of the intermodel 
variance in IRF2×CO2, but fundamentally reshapes our understanding of climate sensitivity with 

significant implications for both past and future climate changes. 

Results 

The Coupled Model Intercomparison Projects (CMIP), provide a series of coordinated experiments 

performed in support of the IPCC assessments in which model simulations are achieved using 
identical emission scenarios (17, 18). However, because determining the IRF requires additional 

calculations, it is not routinely computed for most experiments. In the first comprehensive RF 
comparison among climate models, Cess et al. (13) found that the IRF2×CO2 ranged from roughly 

-23.3 to 4.7 W m . Subsequent studies with newer generations of models found a similar range (10, 

14). This spread was thought to mainly arise from intermodel differences in the parameterization 
of infrared absorption by CO2 (15). 

Double-call radiative transfer calculations are the most direct method for diagnosing the IRF in 
model simulations. To produce these specialized online diagnostics, a second call is made to the 
radiation scheme at each timestep. Radiative fluxes are re-calculated with a hypothetical forcing 

agent perturbation, such as CO2 at some increased concentration. These perturbations are solely 
used to diagnose the IRF and do not interact with the model simulation. Although only a few online 

double-call calculations were performed by climate models from CMIP5/6, the available output is 
particularly useful for investigating the state-dependence of CO2 IRF. To avoid the complicating 
effects of clouds in masking the IRF (7, 19, 20), we further simplify our analysis by limiting it to 

infrared CO2 forcing at the TOA under clear-sky conditions. 
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Figure 1A shows the online double-call calculations available from CMIP5/6 models for the 

historical AMIP experiment, which contains the most online double-call calculations of any of the 
CMIP experiments (12 out of 80 participating models provided calculations for this experiment; 

Tables S1 and S2). The amip experiment consists of atmosphere-only model simulations that all 
use identical, time-varying sea surface temperatures observed over the period 1979–2008 as 
boundary conditions. The online double-calls provided are for 4×CO2; note that IRF4×CO2 ≈ 

2×IRF2×CO2 for a given climate state (see Materials and Methods). The results exhibit a large 
intermodel spread (ranging from ~4 to 8 W m-2), consistent with that observed in previous model 

generations (15). 

To investigate the extent to which differences in the thermal structure of the climatological base-
state can explain the intermodel spread of IRF, we perform offline double-call IRF4×CO2 

calculations using original atmospheric profiles from the AMIP models and a single radiative 
transfer model (SOCRATES; see Materials and Methods). In contrast to the online counterparts, 

the same radiative transfer parameterization is used in all of the offline calculations, so their inter-
model spread is only due to differences in the climatological base-states. The strong correlation 
(r=0.82) between the IRFs from the online and offline double-call calculations (Fig. 1B) suggests 

that more than half of the intermodel variance in IRF4×CO2 results from differences in 
climatological base-states, not differences in representing the spectral absorption of CO2. This is 

consistent with a recent study by Pincus et al. (19), who computed IRF from different radiative 
transfer schemes but using the same climatological base-state and found a much smaller spread in 
IRF4×CO2 than in the online double-calls (Fig. 1A). Together, these studies provide compelling 

evidence to suggest that intermodel differences in the climatological base-state are an essential 
contributor to the spread in CO2 IRF. 

The influence of the base-state on CO2 IRF is more clearly illustrated in the coupled model 
simulations from CMIP6 in which a 1% per year increase is imposed in the atmospheric CO2 

concentration (1pctCO2; Fig. 2). Although only two models (solid lines in Fig. 2A) submitted 

online double-call calculations, the results reveal a dramatic growth in IRF4×CO2 as the 
climatological base-state evolves. For both models, IRF4×CO2 increases from ~5 W m-2 when 

IRF4×CO2 is computed in a pre-industrial climate to ~8 W m-2 when it is computed in an elevated-
CO2 climate. This challenges the widely held assumption that the IRF2×CO2 is constant (21–23). To 
the contrary, it demonstrates that the CO2 IRF is a dynamic quantity that changes substantially as 

the climate changes. 

To verify this result, we perform a series of line-by-line and SOCRATES offline double-call 

calculations using the full suite of CMIP5/6 coupled simulations under the 1pctCO2 scenario (Fig. 
2A, markers). These results both confirm the dramatic increase in IRF4×CO2 using a much larger 
ensemble of models and, since the same radiative transfer scheme is used for all offline 

calculations, indicate that changes in the climatological base-state are responsible for this increase. 
Note that the climatological base-state here includes the thermal structure as well as the base-state 

CO2 concentration (24–26), both of which vary with each timestep. However, most of the IRF4×CO2 

increases are due to the evolution of thermal structure, especially for the first doubling of base-
state CO2 concentration (Fig. S1). 

According to the analytical model of Jeevanjee et al. (16), the dependence of CO2 IRF on the 
climatological base-state can be understood in terms of dependence on the emission temperature 

of both stratosphere and troposphere as follows: 
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𝑞𝑓 ℱ = 2𝑙 ln ( ) [𝜋𝐵(𝜈0, �̅�𝑒𝑚) − 𝜋𝐵(𝜈0 , 𝑇𝑠𝑡𝑟𝑎𝑡 )]
𝑞𝑖 

where 𝑙 is the ‘spectroscopic decay’ parameter of 10.2 cm-1, 𝑞𝑖 is the initial CO2 concentration, 𝑞𝑓 

is the final CO2 concentration, and 𝜋𝐵(𝜈0, �̅� ) is the hemispherically integrated Planck 𝑒𝑚 / 𝑇𝑠𝑡𝑟𝑎𝑡 
function at peak absorption wavenumber of CO2 with either the tropospheric emission temperature 
or stratospheric emission temperature (see Materials and Methods). The latter refers to the 

temperature of the upper stratosphere, where unit optical depth is achieved by the peak of the CO2 

absorption band, while the former depends on surface temperature and free-troposphere relative 

humidity. This model has been used to help explain the spatially inhomogeneous distribution of 
IRF that results from a spatially uniform increase of CO2 (27). 

As CO2 increases in the 1pctCO2 simulations, the surface temperature warms, and the stratosphere 

cools roughly linearly over time (Figs. 2B and 2C). To assess the relative contributions of these 
changes in climate to the increase in IRF4×CO2, we include results from the CMIP6 abrupt-4×CO2 

experiment (Fig. 2, dashed lines; only one model provided online double-call calculations for this 
experiment). In contrast to the 1pctCO2 experiment, CO2 is instantly quadrupled in the abrupt-
4×CO2 experiment causing the surface to warm rapidly over the first few decades before leveling 

off. The stratosphere adjusts even more rapidly, equilibrating to a new temperature within the first 
year. 

The contrasting temporal evolution of the climate between these two scenarios is reflected in the 
IRF4×CO2. For instance, the IRF4×CO2 with abrupt-4×CO2 base-state exhibits only a mild increase 
with global-mean surface warming (Fig. 2), indicating a relatively weak dependence of the CO2 

IRF on surface temperature. In contrast, IRF4×CO2 in the 1pctCO2 experiment exhibits a much 
larger increase over time, despite having a similar change in global-mean surface temperature. 

Physically, the CO2 IRF represents a swap of tropospheric emission for stratospheric emission 
(16), and since the temperature change within the stratosphere is much larger than that at the 
surface and within the troposphere, the IRF increase closely follows the stratosphere cooling, 

suggesting a dominant role of stratospheric temperature on the CO2 IRF. We emphasize that the 
results in Fig. 2A represent IRF only and do not include the stratospheric adjustment. Rather the 

changes in IRF over time reflect the impact of the stratospheric adjustment from prior CO2 changes 
on the base-state which, in turn, amplifies the IRF that would result from a subsequent 
"hypothetical" quadrupling of CO2. As cloud masking has virtually no influence on stratospheric 

emission, the dominant role of stratospheric temperature also remains under all-sky conditions. 

The state-dependence of CO2 IRF on the surface temperature and stratospheric temperature is also 

evident in the amip simulations (Fig. 1A). Since these simulations adopt the same sea surface 
temperature as their boundary conditions, our results imply that differences in stratospheric 
temperature are primarily responsible for the intermodel spread in IRF4×CO2. To confirm the role 

of the stratospheric temperature on the IRF spread, we also perform the SOCRATES offline 
double-call IRF calculations using the same amip base-states and check its correlation with the 

corresponding air temperature at 10 hPa, which is the highest level of CMIP5 standard pressure-
level outputs [and is closest to the level with unit optical depth achieved by the peak of the CO2 

absorption band (16, 20, 28)]. A high, significant correlation is found between the IRF and 

stratospheric temperature across both CMIP6 and CMIP5 models (Figs. 1C and S2), highlighting 
that biases in stratospheric temperature play a dominant role in causing the intermodel spread in 

CO2 IRF. 
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The overwhelming role of stratospheric temperature over surface temperature is also reflected in 

the brief declines for many models in the magnitude of the IRF4×CO2 in the year 1992, following 
the eruption of Mount Pinatubo (Fig. 1A). On average across the models there was only a 0.2 K 

surface temperature decrease but a ~1 K temperature increase at 10 hPa in 1992 compared to 1991. 

The analytical model of CO2 IRF by Jeevanjee et al. (16) replicates the offline double-call IRF4×CO2 

of CMIP6 and CMIP5 with high correlations for abrupt-4×CO2 simulations (Figs. 3A and S3), 

providing a computationally efficient alternative for investigating the sensitivity of the CO2 IRF 
to stratospheric temperatures. Since the 10 hPa temperatures cool at a similar rate for all models 

under 1pctCO2 scenarios from CMIP6 and CMIP5 (Figs. 3B and S4), the temperatures at this level 
have nearly identical intermodel spread at the beginning and the end of the simulations. This 
suggests that intermodel spread in the CO2 IRF arises explicitly from differences in the initial 

stratospheric temperatures under pre-industrial conditions. We confirm this with the analytical 
model, finding it produces the same IRF intermodel spread, highly correlated with the offline 

double-call calculations, even when the initial, pre-industrial upper stratospheric temperatures are 
used as input for every timestep instead of the actual, time-varying temperature from the 
corresponding abrupt-4×CO2 simulations (Figs. 3C and S5). 

Briefly, our results demonstrate that CO2 IRF increases as the climate changes in response to 
increased CO2. Online and offline double-call calculations from the CMIP6 historical simulations 

(Figs. 4A and S6A as well as Table S3) indicate that IRF4×CO2 is about 10% larger today than it 
was in the mid-19th century due to the change in base-state, primarily from stratospheric cooling. 
This amplification arises predominantly from the increase in well-mixed greenhouse gases over 

this period (Fig. 4A). Thus, the IRF4×CO2 increases over time because the CO2-induced cooling of 
the stratosphere makes any subsequent change in CO2 more potent. 

Since it is the sum of the IRF and rapid adjustments, known as the total or “effective” RF, that 
ultimately drives climate change (1, 3, 4, 29), it is important to understand the extent to which the 
rapid adjustments may also depend on the base-state. To investigate the state-dependence of the 

adjustments, we use atmosphere-only model simulations forced by boundary conditions of both 
the preindustrial era (piclim-control) and recent decades (amip), along with their corresponding 

4×CO2 counterparts (piclim-4×CO2 and amip-4×CO2; see Materials and Methods as well as Table 
S4). The amip simulation not only has a higher prescribed CO2 concentration than that of the 
piclim-control simulation, but also has cooler stratosphere temperature, allowing us to quantify the 

magnitude of the adjustments under two different base-states. 

The stratospheric adjustment is the most important of the rapid adjustments to CO2 forcing, 

typically an order of magnitude larger than tropospheric adjustments (11, 12). The sum of IRF and 
stratospheric adjustment, or the “stratospheric adjusted” RF, are roughly equal at the tropopause 
and the TOA (30) and provides an accurate and computationally efficient analog for the total RF. 

Figure S6 compares the IRF, stratospheric adjustments, and stratospheric adjusted RF from the 
CO2 quadrupling for the two different base-states (see Materials and Methods). The amip 

simulations exhibit a larger IRF (Fig. S6A; 0.38 W m-2) compared to that obtained under 
preindustrial conditions due to the cooler stratosphere. There is a nearly identical difference in the 
stratospheric adjusted RF between the two sets of experiments (Fig. S6C; 0.34 W m-2), because 

almost no difference is seen in the stratospheric adjustments (Fig. S6B; –0.03 W m-2). Note that 
the abovementioned ensemble-mean forcing differences are also corroborated by differences 

shown for individual models. Even though the direct contribution of the base-state to the inter-
model spread in stratospheric adjusted RF and total RF is smaller than it is for the IRF, as additional 

5 

https://base-state.To


   

 

 

       

     

          

    
       

            

              
           

    
           

       

         
         

 

       

        

        
         

       
         

             

          

           

 

    

        
     

        
        

         

         
         

   
    

        

            
        

   
              

          

            
        

       
           

  

5

10

15

20

25

30

35

40

45

Submitted Manuscript: Confidential 

sources of spread contribute, we note there are high, significant correlations between the IRF and 

both the stratospheric adjusted RF and total RF (Figs. S7A & S7B). 

The state-dependence of both the IRF and stratospheric adjustment is further explored using the 

more realistic, online, interactive, coupled simulations, forced by abruptly halving, doubling, and 
quadrupling CO2 concentration of the preindustrial era (abrupt-0.5×CO2, abrupt-2×CO2, and 
abrupt-4×CO2; see Materials and Methods as well as Table S5), respectively. As expected, for 

every model analyzed wefind that the IRF grows in magnitude across the three sets of experiments, 
for each successive CO2 doubling (Fig. S8). The stratospheric adjusted RF exhibits a nearly 

identical increase across the experiments, with the stratospheric adjustment only weakly offsetting 
the increases. Similar increases per CO2 doubling have also been found for the total RF, estimated 
from atmosphere-only simulations with fixed sea surface temperatures (31). This indicates that, 

with almost no counteracting effects from rapid adjustments, the radiative effects from the 
stratospheric temperature base-state dependence of the IRF extend to the total RF (Figs. S6–S8) 

and thus on to climate sensitivity. 

Changes in climate sensitivity can therefore arise from both changes in climate feedbacks as well 
as changes in IRF. More generally, these results indicate that, despite the logarithmic dependence 

of CO2 absorption (28), the climate becomes increasingly sensitive to a doubling of CO2, as the 
base-state CO2 concentration increases and the stratosphere cools correspondingly. The IRF2×CO2 

increases by ~25% for each doubling of base-state CO2 concentration (the IRF2×CO2 increases by 
24% and 29% for the first and second doubling of base-state CO2 concentration, respectively; Fig. 
2A). Since the IRF accounts for roughly two-thirds of the total RF from CO2 (1, 10–12), this 

implies that T2×CO2 increases by ~15–20% for each doubling of CO2 just due to changes in the 

IRF. This state-dependence of the IRF2×CO2, and thus T2×CO2, has not been accounted for in the 

latest IPCC reports. 

Potential climate implications 

Since the upper stratospheric temperature plays a dominant role in determining the magnitude of 
the CO2 IRF, any changes in atmospheric composition that perturb stratospheric temperature could 

subsequently impact the climate. Consider the recent example of polar ozone depletion (32–34), 
which strongly influences the temperature structure within the stratosphere (35). The ozone 
depletion since the 1970s has led to strong cooling within the stratosphere. By cooling the 

stratosphere, ozone depletion makes the forcing from the increase in CO2 over this period more 
potent. Note that although the stratospheric ozone loss mainly occurs in the lower stratosphere (36, 

37), the associated cooling also contributes to a decline in infrared emission from the lower to the 
upper stratosphere, thus strengthening the CO2 IRF at the TOA. 

Here, we examine this nonlinear interaction between ozone depletion-induced cooling and CO2 

IRF by comparing a 10-member ensemble of model simulations that use all historical forcings 
with the corresponding sum of model simulations in which each historical forcing is imposed 

independently (see Materials and Methods). According to our theory, model simulations in which 
ozone loss and CO2 increase coincide should have a larger CO2 forcing (and greater surface 
warming) than the sum of individual model simulations in which each forcing is imposed 

separately in isolation from the other. The CO2 forcing in the latter is smaller because it is not 
enhanced by ozone depletion-induced cooling. We compute the indirect surface warming effect of 

ozone depletion by taking the ensemble-mean difference in surface temperature anomalies 
between these two sets of experiments averaged over the period 1985–2014 (see Materials and 
Methods). 
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As predicted, the sign and spatial distribution of the nonlinear contribution of ozone loss to CO2 

IRF is consistent with a base-state dependence of IRF (Fig. 4B). Most of the indirect surface 
warming effect occurs around the poles, where the local stratosphere has the strongest cooling, 

although some heat transport may also be playing a role (38, 39). The smaller warming over the 
southern high latitudes likely reflects the greater rate of ocean heat uptake by the Southern Ocean 
(40, 41). This supports the premise that any forcing agent changes that perturb the stratospheric 

temperature could also impact the climate by modulating the CO2 IRF at the TOA, even without 
changing the CO2 amount. 

Our findings may also help to better understand past climate events, such as the end -Devonian 
mass extinction and the Paleoproterozoic “snowball earth” conditions, occurred following similar 
but considerably stronger perturbations, i.e., a dramatic drop in stratosphere ozone (42) and the 

inevitable development of an ozone layer (43, 44), respectively. The base-state dependence of the 
CO2 IRF may have implications for how other related metrics are defined, such as global warming 

potential and efficacy of non-CO2 forcing (9, 29), since they are quantified relative to the radiative 
effects of a CO2 perturbation. These metrics are often used in policy discussions, so it will be 
particularly important to determine if they must be re-defined with consideration of the dynamic 

(i.e., non-constant) behavior of CO2 IRF. 

Additionally, our results may have implications for geoengineering and climate change mitigation 

(45). Taking 1992 - the year following the 1991 eruption of Mount Pinatubo - as an example, the 
injected volcanic aerosols within the stratosphere not only cooled the surface by reflecting more 
solar radiation back to the space but also warmed the stratosphere by increasing the atmospheric 

absorption of sunlight in the stratosphere (46, 47). The resulting stratospheric warming weakened 
the CO2 IRF (Figs. 1A and 4A) and reduced the warming efficacy of CO2. As most geoengineering 

approaches involving stratospheric aerosol injection employ reflective aerosols [e.g., sulfate (48)], 
alternative approaches that use more absorbing aerosols (e.g., black carbon) may warrant 
consideration, as it could effectively reduce the CO2 greenhouse effect by warming the upper 

stratosphere (Fig. S9) (49, 50). 

Lastly, we note that the model simulations of stratospheric temperature can be easily constrained 

with observations. Across multiple sets of observations and reanalyses (see Materials and Methods 
as well as Table S6), the global- and annual-mean 10 hPa air temperature has an uncertainty range 
of 226.6 to 228.4 K in the year 2020. This ~1.8 K difference in base-state would translate to only 

a ~0.16 (0.18) W m-2 IRF4×CO2 uncertainty for CMIP6 (CMIP5) models (Figs. 1C and S2). This 
highlights the importance of accurately representing the stratosphere when projecting future CO2-

induced climate change and the potential to better constrain model projections using observations, 
further emphasizing the importance of continuing observations in Earth’s middle and upper 
atmosphere (51). 
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Fig. 1.  The  intermodel  spread  in  IRF4×CO2  and  its  causes.  (A) Time  series  of  all available  online  
double-call  IRF4×CO2  with base-state  from  amip  experiments  for  CMIP5/6 models. The  black 

vertical  reference  line  highlights  the  IRF4×CO2  values  used in (B), while  the gray one  accentuates  
the  brief  declines  in the  magnitude  of  the  IRF4×CO2  in  the  year  1992, following the  eruption of  
Mount Pinatubo. (B)  A comparison of the  IRF4×CO2  in  the  year  2000 from  the online  and offline  

double-call  calculations. The  gray filled  circles  represent  models  from  CMIP6,  while  the  open 
circles  with a cross  inside  show  models  from  CMIP5. The  red  filled  circle  with a cross  inside  

highlights  the  outlier  model (i.e., CanAM4). Since  the vertical  IRF profile  of CanAM4 shows an 
increase  with height within the  stratosphere  [Fig. 3 of  Chung and Soden (10)], it differs  from  the  
common expectation based on the negative  lapse  rate  within the  stratosphere. It  is  reasonable  to 

exclude  the  results  of  the CanAM4 from  the  spread  contribution analysis. The  values  in front of  
(in)  parentheses shown in (B) are  values calculated  without  (with) the  outlier model CanAM4. (C) 

A  scatterplot of  global- and  annual-mean air temperature at 10 hPa of  each model  in  the  year 2000 
of  the  amip  experiment  versus  its corresponding offline double-call  IRF4×CO2.  
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Fig. 2.  The  CO2  IRF  increases  as  the  surface  warms  and  the  stratosphere  cools.  Time  series  

of global- and  annual-mean (A)  online  double-call  IRF4×CO2, (B) surface temperature,  and  (C) air  
temperature  at  10 hPa from models CNRM-CM6-1 and IPSL-CM6A-LR. Three  highlighted time  

slices  in (A) are  years  1–10, 66–75,  and  131–140. Overlaid  gray triangles represent the  global- and  
time-mean SOCRATES offline double-call  IRF4×CO2  with corresponding atmospheric  profiles  of  
1pctCO2 simulations  from CMIP5/6 models. The black plus symbols  show the global-mean ARTS  

offline double-call  IRF4×CO2  with time-mean atmospheric  profiles  from the CMIP6 model, which 
has  the  median SOCRATES  double-call  IRF4×CO2  value. Similar  results  from another  line-by-line  

model (PyRADs) are shown in Fig. S1.  Note that  the  results  in (A) represent  IRF  only and  do not  
include  any  rapid  adjustment. Rather the  changes  in IRF  over time reflect the  impact of  the effects  
from prior  CO2  changes on the base-state which, in turn, amplifies  the IRF  that  would  result from  

a subsequent "hypothetical"  quadrupling of CO2.  
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Fig. 3.  Differences in  initial  stratospheric  temperatures  across  models  explain  roughly half  

of  the  intermodel  spread  in  IRF4×CO2, as  shown  using abrupt-4×CO2 experiments. (A) A  
comparison of  global- and  time-mean IRF4×CO2  in years  121-140 from the offline double-call  and  

analytical  model  calculations  with base-state  from  abrupt-4×CO2 experiments. The  correlation  
between global- and time-mean IRF4×CO2  in every 10 of  150-year  experiments  from  the  offline  
double-call  and  the  analytical  model  calculations  ranges  from  0.88 to 0.89.  (B)  Time  series  of  

global- and annual-mean 10 hPa  air  temperature  under 1pctCO2 scenario from  CMIP6 models. 
Each gray line  in (B) represents  the 10 hPa temperature evolution of a model, while the thick black 

line  shows  the  multi-model  ensemble  mean. The  curly  bracket  in (B)  highlights  the  correlation  
between 10 hPa  air  temperature  at  years  1 and  140. (C)  A  comparison of  the  global- and  time-
mean original  analytical  IRF4×CO2  in years  2-11 and  that  obtained  with perturbed  stratospheric  

emission temperature from  piControl runs  (piCTL-Tstrat). The correlation between the  global- and  
time-mean IRF4×CO2  from  the  original  and  piCTL-Tstrat  perturbed  calculations  ranges  from  0.90 

to 0.92.  
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Fig. 4. Any forcing that perturbs the stratospheric temperature can further impact the 

climate by modulating the radiative forcing by CO2. (A) Time series of three available online 
double-call IRF4×CO2 from CMIP6 historical simulations and the multi-model ensemble mean of 

corresponding offline double-call IRF4×CO2 for CMIP6 models with both historical and hist-GHG 
simulations. (B) The ensemble-mean map of the indirect surface warming effect of ozone depletion 

during the period 1985-2014. 
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