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Section S1. Species data 

Table S1. List of species included in analysis.  

Species Stages/sizes included in modeling 

Acartia spp. mixed 

Amphipoda < 5 mm 

Calanus glacialis  C2, C3, C4, C5, C6 (Adult) 

Chaetognatha  <5 mm, 5-20 mm, > 20 mm 

Cnidaria < 5 mm, > 5 mm 

Decapoda  Juvenile + Adult 

Eucalanus bungii  C5, C6 (Adult) 

Euphausiid  nauplius, calyptosis 

Limacina helicina  < 5 mm 

Metridia spp. C1, C2, C3, C4, C5, C6 (Adult) 

Mysidae mixed 

Neocalanus cristatus  C5 

Neocalanus spp.  C1-C4 

Oithiona spp.  C5 + Adult 

Ostracoda  < 5 mm 

Pseudocalanus spp.  C1, C2, C3, C4, C5, C6 (Adult) 

Thysanoessa inermis  Juvenile + Adult 

Thysanoessa longipes Juvenile + Adult 

Thysanoessa raschii  Juvenile + Adult 

Thysanoessa spinifera Juvenile + Adult 

 

Section S2. Model Description 

The model gjamTime is a discrete-time dynamic biophysical food web model that links 

an extended LV model (Equation 1) to gjam (generalized joint attribute modeling; Clark et al. 

2017). Briefly, gjam is fitted with a Bayesian hierarchical multivariate tobit-regression model 

that uses data censoring to allow inclusion of multifarious response data (e.g., discrete 

abundance, continuous, categorical, etc.) as well as a high degree of zeros that are commonly 

found in ecological data into one model. The gjam model provides probabilistic uncertainty of 

parameters, model specification, and data. Also, the model can quantify the likelihood of species 



to covary on the scale of individual species, which is useful for rare or poorly sampled species. 

The gjam model also avoids non-linear link functions, which provides more intuitive and 

transparent responses for ecological interpretation. The gjam framework has been successfully 

applied to terrestrial (e.g., O’Reilly-Nugent et al., 2018; Bossolani et al., 2021) and marine 

systems (e.g., Howe-Kerr et al., 2019; Roberts et al., 2022). A wonderful comparison of model 

fitting groundfish species abundance data from the Northwest Atlantic using gjam versus the 

generalized additive model (GAM) framework is found in Roberts et al. (2022). 

The DD matrix 𝜶𝑠 in gjamtime is a prior for the model. By allowing for species 

interactions in 𝜶𝑠 across the discrete time-steps, nonlinear response patterns between species and 

environment can be observed even though all relationships between species and environment are 

modeled as linear in gjamTime, because nonlinear response patterns are induced indirectly from 

the differential response of other species to the same gradient over the discrete time-series. Put 

another way, gjamTime does not hard-code nonlinear responses to environment (e.g., 𝑥𝑖
2, where i 

is a given environmental term); instead, gjamTime allows each species in the community to 

respond linearly to environment (𝑥𝑖) and experience species interactions over the discrete time-

steps (𝜶𝑠), which should induce nonlinear curves to 𝑥𝑖 for species where density dependence 

influences dynamics in the given environment (e.g., common prey, common predator, etc.; 

Hutchinson 1957).  

 

References 

Bossolani, J.W., Crusciol, C.A.C., Leite, M.F.A., Merloti, LF., Moretti, L.G., Pascoaloto, I.M., 

and Kuramae, E.E. 2021. “Modulation of the soil microbiome by long-term Ca-based soil 



amendments boosts soil organic carbon and physiochemical quality in a tropical no-till 

crop rotation system.” Soil Biology and Biochemistry 156: 108188.  

Clark, J.S., Nemergut, D., Seyednasrollah, B., Turner, P., and Zhang. S. 2017. “Generalized joint 

attribute modeling for biodiversity analysis: Median-zero, multivariate, multifarious 

data.” Ecological Monographs 87: 34–56. 

Howe-Kerr, L.I., Bachelot, B., Wright, R.M., Kenkel, C.D., Bay, L.K., Correa, A.M.S. 2019. 

“Symbiont community diversity is more variable in corals that respond poorly to stress.” 

Global Change Biology 26: 2220–2234.  

Hutchinson, G. E. 1957. Concluding remarks – Cold Spring Harbor Symposium, Quantitative 

Biology, 22: 415-427.  

O’Reilly-Nugent, A., Wandrag, E.M., Catford, J.A., Gruber, B., Driscoll, D., and Duncan, R.P. 

2018. “Measuring competitive impact: Joint-species modeling of invaded plant 

communities.” Journal of Ecology 108: 449–459.  

Roberts, S.M., Halpin, P.N. and Clark, J.S. 2022. Jointly modeling marine species to inform the 

effects of environmental change on an ecological community in the Northwest 

Atlantic. Scientific Reports 12(1): 132. 

 

Section S3. Modeling terms 

Section S3.1 Potential density-independent (DI) growth terms 

In situ bottom (BT) and surface Temperature (ST) data were collected from the National Marine 

Fisheries Service (NMFS) eastern Bering Sea shelf standardized bottom trawl survey, which has 

been conducting annual summer (May-August) surveys within a systematic grid design since 

1982 (Lauth et al., 2019). Water temperatures were recorded at each station by a Sea-Bird SBE-



39 datalogger (Sea-Bird Electronics, Inc., Bellevue, WA) placed on the headrope of the net. 

Surface temperature was recorded at -1 m depth, and bottom temperature was averaged over time 

while the net was on bottom in fishing configuration, with the headrope 2-3 m off bottom. Data 

were averaged per grid square for each year using the Spatial Join tool in ArcGIS Pro. Data are 

available at https://www.fisheries.noaa.gov/inport/item/22008#lineage.  

 

Section S3.2. Potential ‘movement’ terms (immigration/emigration) 

The Bering Sea cold pool has traditionally been derived from the NMFS bottom trawl survey 

data by interpolating the aerial extent (km2) of the cold pool (defined as <2 °C) by inverse-

distance-weighting (IDW) bottom temperatures on the Being Shelf using geostatistical software 

(Kotwicki & Lauth, 2013, Stevenson & Lauth, 2019). To maximize spatial and temporal 

resolution in our model, we computed the percent aerial cold pool extent for each grid square for 

each year, defined as pCP. We also used pCP instead of aerial cold pool extent because the aerial 

cold pool was highly correlated with aerial sea ice extent (Pearson product correlation >0.8 at α = 

0.5; data not shown).  

To calculate pCP, we first interpolated the cold pool across the Bering Shelf (0 – 300 m) 

for an area buffered 50km from the bottom trawl sampling grid using the EKB Regression 

Prediction tool in ArcGIS Pro (hereafter EKB RP). EKB RP combines kriging with regression 

analysis to make predictions. We chose EKB RP to allow bathymetry to impact the cold pool 

structure. We ran EKB RP models on untransformed data with the environmental predictor 

bathymetry (General Bathymetric Chart of the Oceans 2019 dataset; https://www.gebco.net/) for 

four semivariograms (nugget, exponential, Whittle, and K-Bessel) for one cold year (2012) and 

one warm year (2015); we then compared models using leave one out cross validation to 

https://www.gebco.net/


determine the best model. All models were run for 100 simulated variograms with 100 points in 

each local model, a local model overlap factor of 1, and a smooth circular search neighborhood 

(smoothing factor 0.2). K-Bessel semivariograms performed best for both years (Appendix S1: 

Table S3). Therefore, the cold pool was interpolated for each year to be used in modeling (2005-

2016) using K-Bessel semivariogram models. We then converted the model output to an integer 

raster using the Raster Calculator tool and isolated areas on the map for each year with bottom 

temperatures ≤ 2 °C using Con tool. Finally, we calculated the percent areal extent per grid 

square by first summing the Con output using Zonal Statistics as Table and then calculating the 

aerial percentage using the Calculate Field tool. We note that the interpolation of the NOAA grid 

did not cover the full range of the northern grid square; nevertheless, we assumed 100% cold 

pool coverage in that grid square for each year, because sea-ice seasonally covered this area and 

formed a cold pool in this region across our study period (Stabeno & Bell, 2019; Huntington et 

al., 2020). 

Two wind metrics – wind direction and wind gusts - were derived from the ERA5 hourly 

data on single levels from 1979 to present dataset (0.25° grid cells for every third hour (e.g., 

0000, 0300, 0600, etc.) between 55–63°N and -176 to -160°W from 2004 to 2017; 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview; 

obtained 1 September 2021). Wind direction data were defined as southeasterly (SE) and 

northwesterly (NW) winds for winter (Oct-Apr; SEw, NWw) and summer (May-Sep; SEs, NWs) 

based off prior modeling in the region (Danielson et al., 2012; Eisner et al., 2014). These data 

were derived from uwind and vwind data 10 m above the ocean surface. The hourly uwind and 

vwind data were imported as netcdfs, masked to the study region, and converted to directional 

degree before mean direction values were calculated per grid square at each timestep. From this, 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview


the percentage of days with seasonal wind from each direction was computed for each grid by 

year and season. Analysis was completed using R packages raster (v 3.3-7; Hijams, 2020), sf (v 

0.9-4; Pebesma, 2018), and dplyr, and visualized with ggplot2 (v 3.3.5; Wickham, 2016).   

For wind gusts, we calculated seasonal wind gusts – summer [WGs] and winter [WGw] – 

as well as shorter-term transitional periods – Apr-May [WGsp] and Sep-Oct [WGf] – from 

instantaneous wind gusts (m/s) measured 10 m above the ocean surface. Pearson production 

correlations were used to define the shorter-term transitional periods that were not highly 

correlated with the seasonal wind gust terms (Appendix S1: Figure S1). We used the workflow 

above for wind direction except that we calculated the number of days with wind above a given 

threshold for each grid instead of a percentage. We used wind gust thresholds of >10 m/s and 

>15 m/s based on prior work in the region (Bond et al., 1994; Stabeno et al., 2010); these 

thresholds also provided the largest range in values over the study domain (Appendix S1: Figure 

S2).  

Annual oceanographic variables and indices were downloaded from the NOAA Bering 

Climate website (http://www.beringclimate.noaa.gov/data/index.php; accessed 10 October 

2021). Variables include: Aleutian Low (Nov-Mar; AL), Arctic Oscillation (Dec-Feb; AO), East 

Pacific Index for winter (Jan-Mar; EPIw) and spring-summer (Apr-Jul; EPIss), North Pacific 

Index for winter (Nov-Mar; NPIw) with anomaly (NPIAw) and spring-summer (Apr-Jul; NPIss) 

with anomaly NPIAss), and Pacific Decadal Oscillation for winter (Dec-Feb; PDOw), summer 

(June-Aug; PDOs), and annual (Jan-Dec; PDO).  

Days with ice after 15 March (IDm) were derived for each 80km grid cell from the 

"Bootstrap Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS, Version 3" 

dataset from the National Snow and Ice Data Center (nsidc.org). This data has a 25km 

https://urldefense.com/v3/__http:/nsidc.org__;!!OToaGQ!6cSo9vZLP7iP7oXqqSBzhWlmVV72hKp9GTSr5e8p1FMcXJ-Foi-bdfQG4avW8g1rUko$


resolution.  An 80 km2 box was created around each desired data point and ice data from the 

dataset was averaged from inside the box.  Ice associated days were defined as having greater 

than 15% ice coverage inside the box. 

To incorporate space into the model, latitude (Lat) was determined for each grid square 

using the Feature to Point and Add XY Coordinates Tools in ArcGIS Pro.  
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Table S2. Potential environmental variables for model fitting of movement (beta) and DI growth 

(rho) terms in model, ordered alphabetically; bold indicates variables used in model fitting 

following removal of redundant variables via Pearson production correlation with preference 

given to variables that vary in space and time (Appendix S1: Figure S1). Note that DI growth and 

movement terms are computed independently in the model.  

Label Variable Model 

Resolution 

of data 

Resolution 

in model  Data source 

AL Aleutian Low (Nov-Mar)  Beta CI CI BCW# 

AO Arctic Oscillation (Dec-Feb) Beta CI CI BCW# 

BT Bottom Temperature (°C) Rho Tow 80 km GS AFSC* 

CP Cold Pool Extent (km2) Beta BS BS BCW# 

EPIss East Pacific Index – spring/summer (Apr-Jul) Beta CI CI BCW# 

EPIw East Pacific Index – winter (Jan-Mar) Beta CI CI BCW# 

IDm Days with Ice > 15 March (# days) Beta 25 km cell 80 km GS NSIDC% 

IE Ice extent (km2) Beta BS BS BCW# 

Lat Latitude Beta GC 80 km GS ArcGIS Pro 

NPIAss N. Pacific Index anomaly – spr/summer (Apr-Jul) Beta CI CI BCW# 

NPIAw N. Pacific Index anomaly - winter (Nov-Mar) Beta CI CI BCW# 

NPIss N. Pacific Index – summer (Apr-Jul) Beta CI CI BCW# 

NPIw N. Pacific Index - winter (Nov-Mar) Beta CI CI BCW# 

NWs Northwesterly winds - summer (May-Sep) (%) Beta 0.25°cell 80 km GS ERA5^ 

NWw Northwesterly winds - winter (Oct-Apr) (%) Beta 0.25°cell 80 km GS ERA5^ 

pCP Percentage of cold pool per grid square (%) Beta BS 80 km GS Derived BT 

PDOa Pacific Decadal Oscillation - annual (Jan-Dec) Beta CI CI BCW# 

PDOs Pacific Decadal Oscillation - summer (Jun-Aug) Beta CI CI BCW# 

PDOw Pacific Decadal Oscillation - winter (Dec-Feb) Beta CI CI BCW# 

SEs Southeasterly winds - summer (May-Sep) (%) Beta 0.25°cell 80 km GS ERA5^ 

SEw Southeasterly winds - winter (Oct-Apr) (%) Beta 0.25°cell 80 km GS ERA5^ 

ST Surface Temperature (°C) Rho  CTD cast 80 km GS AFSC* 

WGf Wind gusts - fall (Sep-Oct) (# days) Beta 0.25°cell 80 km GS ERA5^ 

WGs Wind gusts - summer (May-Sep) (# days) Beta 0.25°cell 80 km GS ERA5^ 

WGsp Wind gusts - spring (Apr-May) (# days) Beta 0.25°cell 80 km GS ERA5^ 

WGw Wind gusts - winter (Oct-Apr) (# days) Beta 0.25°cell 80 km GS ERA5^ 

CI = Climatological index; GC = Geographic coordinate; BS = Bering shelf; 80 km GS = 80-

kilometer grid square; *AFSC = NOAA Alaska Fisheries Science Center; %NSIDC = National 

Snow and Ice Data Center (https://nsidc.org/); ^ERA5 hourly data fifth generation ECMWF 

Uwind, Vwind, and wind gusts (European Center for Medium-Range Weather Forecasts, 

https://cds.climate.copernicus.eu/cdsapp#!/home); #Bering Climate Website, 

https://www.beringclimate.noaa.gov/. Wind gusts were computed with threshold of 10 and 15 

m/s. 

 

 

 



 

Table S3. Leave-one-out cross validation results for EKB Regression Prediction cold pool 

interpolation models from 2012 and 2015. SE = Standard Error; RMSE = Root Mean Square 

Error. Bold denotes the best model for each year. 

    

Model 

Mean 

Prediction 

Error 

Standardized 

Mean 

Prediction 

Error 

Avg SE RMSE 
Avg SE - 

RMSE 

Avg 

RMSE 

2
0

1
2
 

S
tr

at
if

ie
d

 Exponential -0.052 -0.0332 0.5895 0.5376 0.0519 0.8226 

K-Bessel -0.055 -0.0441 0.5730 0.5344 0.0386 0.8538 

Nugget -0.066 0.0294 1.3714 1.1956 0.1758 0.8434 

Whittle -0.054 -0.0399 0.5602 0.5304 0.0298 0.8646 

N
o
n

-s
tr

at
if

ie
d

 

Exponential -0.007 -0.0014 0.5102 0.4799 0.0303 0.9182 

K-Bessel -0.008 -0.0008 0.4650 0.4733 -0.0083 0.9818 

Nugget -0.293 -0.1720 1.3680 1.0882 0.2798 0.7813 

Whittle -0.007 -0.0013 0.5103 0.4799 0.0304 0.9182 

2
0

1
5
 

S
tr

at
if

ie
d

 Exponential -0.001 -0.0090 0.5371 0.4626 0.0745 0.8995 

K-Bessel -0.010 -0.0110 0.4966 0.4573 0.0393 0.9484 

Nugget -0.211 -0.1590 1.5824 1.0512 0.5312 0.7138 

Whittle -0.009 -0.0075 0.5046 0.45807 0.0465 0.9346 

N
o
n

-s
tr

at
if

ie
d

 

Exponential -0.003 -0.0040 0.4888 0.4543 0.0345 0.9604 

K-Bessel -0.005 -0.0079 0.4555 0.4546 0.0009 1.0008 

Nugget -0.057 -0.0490 1.5463 1.1729 0.3734 0.7717 

Whittle -0.004 -0.0075 0.4604 0.4528 0.0076 0.9994 



 

 
Figure S1. Pearson product correlation matrix of wind gusts >10 m/s in two-month increments. 

Out of the spring and fall months with variable wind gusts across the study domain (Appendix 

S1: Figure S2), only Apr-May and Sep-Oct were correlated <0.7 with ‘summer’ winds (May-

Sep); the correlation threshold of 0.7 was used when deciding which variables to include in 

model fitting (Dormann et al. 2013). Consequently, the ‘spring’ transition was defined as Apr-

May and the fall transition was defined as Sep-Oct.



 

 

 

Figure S2. Number of days above wind gust threshold by month for each 80 km grid cell 

(arranged south to north) from 2004-2016. Left panel denotes wind gust thresholds of 5 m/s 

(gray boxes) and 10 m/s (colored circles); right panel denotes wind gust thresholds of 15 m/s 

(colored circles) and 20 m/s (gray boxes). Data derived from every third hour of ERA5 hourly 

instantaneous wind gusts at 10 m above the ocean surface 

(https://cds.climate.copernicus.eu/cdsapp#!/home). 

https://cds.climate.copernicus.eu/cdsapp#!/home


 

 

Figure S3. Pearson product correlation matrix of potential environmental variables for model 

fitting. Wind gusts were computed with threshold of 10 and 15 m/s; figure shows threshold of 15 

m/s. The subset of variables selected for modeling are listed in Table 1. Note that DI growth and 

movement terms are computed independently in the model; therefore, redundancy in potential 

environmental DI growth variables is independent of potential movement variables; 

consequently, high correlations between DI growth and movement terms were ignored when 

determining variable redundancy.  

 



 

 

Figure S4. Grid cells with zooplankton data (+) by year and cell. Bathymetric contour lines 

presented in 50 m increments from 50 to 2,000 m depth (blue gradient from dark to light). 

 

 

 



 

Section S4. Model Prior and Effort 

The current version of gjamTime requires informative priors. DI growth (𝝆) priors are in units of 

change in DI growth per time-step (here annual). We defined priors -1 to 1 to allow 100% 

change in DI growth between time-steps given the in-situ patchiness and varying life history 

strategy of zooplankton species included in our study. Movement (𝜷) priors are in units of the 

response divided by the predictor. We therefore defined movement priors -0.5 to 0.5 for pCP and 

-1 to 1 for all other variables. Effort was defined as 1 for all time-steps with data and 0.1 for 

priors and missing data to be imputed (smaller effort priors translate to lower weighting of data; 

Clark et al. 2020). 
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Section S5. Model diagnostics 

Model fit was assessed using the diagnostic plots provided in the R gjam package (Clark et al., 

2017), namely observed vs. prediction plots and inverse prediction. The best model was defined 

as the model that could best predict the abundance of C. glacialis (Appendix S1: Figure S5). This 

best model best predicted life history stages of C. glacialis followed by T. raschii and T. inermis 

(Appendix S1: Figure S6). Predictions of other species in the assemblage were variable, but in 

general, species sampled consistently and with higher abundance were better predicted. Inverse 

predictions (i.e., using the zooplankton responses from the fitted model to model the 

environmental predictors) provide a powerful metric to assess model fit, because they inform 

whether the observed responses are dependent on the predictors at the community scale (Clark et 

al., 2017). The best model of potential right whale prey inverse predicted bottom temperature 

and spring and fall winds but failed to inverse predict surface temperature (Appendix S1: Figure 

S7).  
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Figure S5. Predicted and observed observations from the ‘best’ fitted model, defined as the best 

fit of C. glacialis copepodite stages (colored boxes) and lowest DIC model (gray boxes) for C. 

glacialis, Neocalanus spp., and Thysanoessa spp. Boxes and whiskers bound 68% and 95% of 

observations, respectively. Background shading denotes the distribution of data. 

 



 

 

Figure S6. Predicted and observed observations of all zooplankton species from the best fitted 

model. Boxes represent medians with 25th through 75th percentiles and whiskers bound 

±1.5*IQR (Inner Quartile Range) of the posterior distribution, respectively. Colors correspond to 

potential right whale prey species (red = C. glacialis; orange = Neocalanus species, and teal = 

Thysanoessa species). Background shading denotes the distribution of data. 

 



 

 

Figure S7. Inverse prediction of environmental variables for (upper) the fitted movement model 

(spring and fall wind gusts) and (lower) the density-independent growth model (bottom and 

surface temperature). Boxes and whiskers bound 68% and 95% of the posterior distribution, 

respectively. Basal histogram shows the distribution of the data. 

 



 

Section S6. Model results 

Table S4. Modeled parameter estimates, standard error, and 95% Bayesian credible intervals of 

beta term (movement) bottom temperature to species abundance (ind. m-3). Sig. = significance of 

response defined as 95% credible interval away from zero.  

Species Estimate SE 2.5% CI 97.5% CI Sig.  

Acartia spp. 0.04 0.02 0.00 0.08 * 

Amphipoda < 5 mm 0.00 0.06 -0.12 0.11  

C. glacialis - C2 -0.11 0.10 -0.31 0.08  

C. glacialis - C3 -0.07 0.04 -0.16 0.01 * 

C. glacialis - C4 -0.09 0.03 -0.16 -0.03 * 

C. glacialis - C5 -0.01 0.02 -0.05 0.03  

C. glacialis - Adult -0.04 0.04 -0.12 0.03  

Chaetognatha < 5 mm 0.05 0.02 0.02 0.09 * 

Chaetognatha – 5 – 20 mm -0.10 0.03 -0.17 -0.04 * 

Chaetognatha > 20 mm -0.11 0.05 -0.21 -0.02 * 

Cnidaria < 5 mm -0.07 0.03 -0.13 -0.01 * 

Cnidaria > 5 mm 0.08 0.06 -0.04 0.20  

Decapoda J & Ad -0.01 0.12 -0.26 0.23  

E. bungii - C5 0.00 0.17 -0.33 0.33  

E. bungii - Adult 0.33 0.38 -0.49 0.95  

Euphausiid Nauplius -0.02 0.06 -0.15 0.10  

Euphausiid Calyptosis -0.02 0.07 -0.15 0.11  

Limacina helicina < 5 mm -0.04 0.02 -0.08 0.00  

Metridia spp. - C1 -0.40 0.11 -0.61 -0.17 * 

Metridia spp.  - C2 -0.25 0.05 -0.34 -0.16 * 

Metridia spp.  - C3 -0.18 0.04 -0.26 -0.10 * 

Metridia pacifica - C4 -0.15 0.06 -0.27 -0.03 * 

Metridia pacifica - C5 0.07 0.06 -0.05 0.19  

Metridia pacifica - Adult -0.38 0.10 -0.57 -0.18 * 

Mysidae 0.10 0.10 -0.10 0.29  

N. cristatus - C5 0.22 0.37 -0.53 0.90  

Neocalanus spp. C1-C4 0.38 0.36 -0.36 0.96  

Neocalanus spp. - C5 0.06 0.20 -0.32 0.44  

Neocalanus spp. - Adult 0.00 0.51 -0.91 0.91  

Oithiona spp. C5 & Ad 0.06 0.01 0.04 0.08 * 

Ostracoda < 5 mm -0.23 0.26 -0.74 0.29  

Pseudocalanus spp. - C1 0.11 0.02 0.07 0.15 * 

Pseudocalanus spp. - C2 0.07 0.02 0.04 0.10 * 

Pseudocalanus spp. - C3 0.03 0.01 0.01 0.06 * 

Pseudocalanus spp. - C4 0.03 0.02 0.00 0.06  



 

Pseudocalanus spp. - C5 0.03 0.02 0.00 0.07  

Pseudocalanus spp. - Adult 0.00 0.01 -0.03 0.03  

Thysanoessa inermis - J & Ad 0.07 0.04 -0.02 0.15  

Thysanoessa longipes - J & Ad 0.02 0.17 -0.30 0.36  

Thysanoessa raschii - J & Ad 0.09 0.04 0.01 0.17 * 

Thysanoessa spinifera - J & Ad 0.17 0.16 -0.15 0.50   

 



 

Table S5. Modeled parameter estimates, standard error, and 95% Bayesian credible intervals of 

beta term (movement) surface temperature to species abundance (ind. m-3). Sig. = significance of 

response defined as 95% credible interval away from zero.  

Species Estimate SE 2.5% CI 97.5% CI Sig.  

Acartia spp. 0.03 0.01 0.00 0.05  

Amphipoda < 5 mm -0.01 0.02 -0.05 0.02  

C. glacialis - C2 -0.01 0.02 -0.04 0.02  

C. glacialis - C3 0.04 0.02 0.01 0.07  

C. glacialis - C4 0.02 0.01 0.00 0.04  

C. glacialis - C5 -0.05 0.01 -0.07 -0.03 * 

C. glacialis - Adult -0.07 0.01 -0.08 -0.05 * 

Chaetognatha < 5 mm -0.02 0.01 -0.05 0.00 * 

Chaetognatha – 5 – 20 mm -0.08 0.01 -0.09 -0.06  

Chaetognatha > 20 mm -0.09 0.01 -0.11 -0.06 * 

Cnidaria < 5 mm 0.06 0.01 0.04 0.08  

Cnidaria > 5 mm 0.03 0.02 -0.02 0.08  

Decapoda J & Ad -0.03 0.03 -0.09 0.03  

E. bungii - C5 0.01 0.04 -0.08 0.09  

E. bungii - Adult -0.02 0.11 -0.24 0.19  

Euphausiid Nauplius 0.00 0.04 -0.09 0.07  

Euphausiid Calyptosis 0.00 0.03 -0.06 0.05  

Limacina helicina < 5 mm 0.10 0.01 0.09 0.11 * 

Metridia spp. - C1 0.06 0.02 0.01 0.10 * 

Metridia spp.  - C2 0.07 0.02 0.03 0.10 * 

Metridia spp.  - C3 0.06 0.02 0.02 0.10 * 

Metridia pacifica - C4 0.00 0.02 -0.05 0.05  

Metridia pacifica - C5 0.05 0.02 0.00 0.09 * 

Metridia pacifica - Adult 0.23 0.05 0.13 0.32 * 

Mysidae 0.00 0.03 -0.06 0.06 * 

N. cristatus - C5 0.00 0.05 -0.11 0.11  

Neocalanus spp. C1-C4 0.03 0.09 -0.15 0.18  

Neocalanus spp. - C5 0.00 0.03 -0.07 0.06  

Neocalanus spp. - Adult -0.21 0.09 -0.38 -0.02  

Oithiona spp. C5 & Ad 0.01 0.01 -0.01 0.02  

Ostracoda < 5 mm -0.06 0.05 -0.16 0.03  

Pseudocalanus spp. - C1 0.01 0.01 -0.01 0.02  

Pseudocalanus spp. - C2 0.00 0.01 -0.02 0.02  

Pseudocalanus spp. - C3 0.01 0.01 0.00 0.02  

Pseudocalanus spp. - C4 0.02 0.01 0.00 0.04  

Pseudocalanus spp. - C5 0.02 0.01 0.00 0.04  



 

Pseudocalanus spp. - Adult 0.00 0.00 -0.01 0.01  

Thysanoessa inermis - J & Ad 0.02 0.02 -0.02 0.06  

Thysanoessa longipes - J & Ad 0.04 0.04 -0.04 0.12  

Thysanoessa raschii - J & Ad 0.03 0.02 -0.01 0.06  

Thysanoessa spinifera - J & Ad 0.00 0.05 -0.10 0.10   

 



 

Table S6. Modeled parameter estimates, standard error, and 95% Bayesian credible intervals of 

rho term (DI growth) spring wind gusts (WGsp) to species abundance (ind. m-3). Sig. = 

significance of response defined as 95% credible interval away from zero.  

Species Estimate SE 2.5% CI 97.5% CI Sig.  

Acartia spp. -0.01 0.16 -0.34 0.28  

Amphipoda < 5 mm -0.17 0.07 -0.31 -0.03 * 

C. glacialis - C2 -0.10 0.11 -0.31 0.11  

C. glacialis - C3 -0.16 0.07 -0.30 -0.02 * 

C. glacialis - C4 -0.40 0.08 -0.57 -0.24 * 

C. glacialis - C5 -0.40 0.15 -0.70 -0.13 * 

C. glacialis - Adult -0.22 0.09 -0.39 -0.06 * 

Chaetognatha < 5 mm 0.14 0.15 -0.16 0.42  

Chaetognatha – 5 – 20 mm 0.01 0.15 -0.30 0.29  

Chaetognatha > 20 mm -0.01 0.09 -0.19 0.16  

Cnidaria < 5 mm 0.23 0.07 0.09 0.36 * 

Cnidaria > 5 mm 0.10 0.05 0.00 0.19 * 

Decapoda J & Ad -0.06 0.05 -0.16 0.03  

E. bungii - C5 -0.01 0.05 -0.10 0.09  

E. bungii - Adult 0.03 0.05 -0.07 0.12  

Euphausiid Nauplius -0.02 0.05 -0.12 0.07  

Euphausiid Calyptosis 0.00 0.05 -0.09 0.10  

Limacina helicina < 5 mm -0.44 0.16 -0.77 -0.13 * 

Metridia spp. - C1 0.11 0.10 -0.07 0.34  

Metridia spp.  - C2 -0.03 0.07 -0.17 0.12  

Metridia spp.  - C3 0.08 0.06 -0.05 0.20  

Metridia pacifica - C4 -0.12 0.05 -0.22 -0.02 * 

Metridia pacifica - C5 -0.12 0.06 -0.23 -0.01 * 

Metridia pacifica - Adult 0.03 0.05 -0.07 0.12  

Mysidae 0.02 0.05 -0.08 0.11  

N. cristatus - C5 -0.10 0.06 -0.22 0.02  

Neocalanus spp. C1-C4 -0.04 0.05 -0.14 0.07  

Neocalanus spp. - C5 -0.01 0.05 -0.11 0.09  

Neocalanus spp. - Adult 0.00 0.05 -0.11 0.10  

Oithiona spp. C5 & Ad 0.21 0.31 -0.46 0.76  

Ostracoda < 5 mm 0.12 0.06 0.00 0.25  

Pseudocalanus spp. - C1 0.32 0.16 -0.02 0.60  

Pseudocalanus spp. - C2 0.38 0.21 -0.07 0.76  

Pseudocalanus spp. - C3 0.59 0.21 0.14 0.96 * 

Pseudocalanus spp. - C4 0.28 0.16 -0.06 0.56  

Pseudocalanus spp. - C5 0.07 0.16 -0.26 0.35  



 

Pseudocalanus spp. - Adult 0.24 0.16 -0.09 0.52  

Thysanoessa inermis - J & Ad 0.11 0.05 0.01 0.21 * 

Thysanoessa longipes - J & Ad 0.04 0.05 -0.06 0.14  

Thysanoessa raschii - J & Ad -0.08 0.08 -0.25 0.08  

Thysanoessa spinifera - J & Ad 0.05 0.05 -0.04 0.15   

 



 

Table S7. Modeled parameter estimates, standard error, and 95% Bayesian credible intervals of 

rho term (DI growth) fall wind gusts (WGf) to species abundance (ind. m-3). Sig. = significance 

of response defined as 95% credible interval away from zero.  

Species Estimate SE 2.5% CI 97.5% CI Sig.  

Acartia spp. -0.07 0.17 -0.43 0.24  

Amphipoda < 5 mm 0.06 0.07 -0.09 0.20  

C. glacialis - C2 -0.10 0.08 -0.25 0.05  

C. glacialis - C3 -0.17 0.07 -0.31 -0.03 * 

C. glacialis - C4 -0.24 0.08 -0.41 -0.08 * 

C. glacialis - C5 -0.10 0.14 -0.37 0.19  

C. glacialis - Adult -0.09 0.08 -0.26 0.07  

Chaetognatha < 5 mm -0.40 0.15 -0.68 -0.11 * 

Chaetognatha – 5 – 20 mm -0.34 0.14 -0.61 -0.05 * 

Chaetognatha > 20 mm -0.22 0.09 -0.39 -0.05 * 

Cnidaria < 5 mm -0.11 0.07 -0.25 0.03  

Cnidaria > 5 mm 0.00 0.06 -0.11 0.12  

Decapoda J & Ad 0.06 0.05 -0.04 0.17  

E. bungii - C5 -0.05 0.05 -0.15 0.05  

E. bungii - Adult -0.04 0.05 -0.14 0.06  

Euphausiid Nauplius 0.00 0.05 -0.10 0.10  

Euphausiid Calyptosis 0.00 0.05 -0.10 0.10  

Limacina helicina < 5 mm 0.22 0.17 -0.12 0.55  

Metridia spp. - C1 -0.08 0.07 -0.22 0.05  

Metridia spp.  - C2 -0.06 0.07 -0.19 0.07  

Metridia spp.  - C3 -0.09 0.07 -0.22 0.04  

Metridia pacifica - C4 -0.02 0.05 -0.12 0.09  

Metridia pacifica - C5 -0.03 0.06 -0.14 0.08  

Metridia pacifica - Adult -0.06 0.05 -0.16 0.05  

Mysidae -0.01 0.05 -0.12 0.10  

N. cristatus - C5 -0.04 0.05 -0.15 0.06  

Neocalanus spp. C1-C4 0.00 0.05 -0.10 0.10  

Neocalanus spp. - C5 -0.09 0.05 -0.20 0.02  

Neocalanus spp. - Adult -0.01 0.05 -0.11 0.09  

Oithiona spp. C5 & Ad -0.17 0.31 -0.80 0.43  

Ostracoda < 5 mm -0.05 0.06 -0.17 0.06  

Pseudocalanus spp. - C1 0.11 0.16 -0.24 0.41  

Pseudocalanus spp. - C2 -0.05 0.21 -0.51 0.34  

Pseudocalanus spp. - C3 -0.11 0.22 -0.57 0.29  

Pseudocalanus spp. - C4 -0.06 0.17 -0.42 0.24  

Pseudocalanus spp. - C5 -0.13 0.17 -0.48 0.18  



 

Pseudocalanus spp. - Adult 0.01 0.17 -0.34 0.32  

Thysanoessa inermis - J & Ad -0.02 0.05 -0.13 0.09  

Thysanoessa longipes - J & Ad -0.05 0.05 -0.16 0.05  

Thysanoessa raschii - J & Ad -0.13 0.09 -0.30 0.05  

Thysanoessa spinifera - J & Ad -0.01 0.05 -0.12 0.09   



 

 

Figure S8. Residual correlation plot. Species are ordered by guild (microzooplankton predator, 

small omnivore, small-med omnivore, large omnivore, predators, and epibenthic); colors denote 

genus (red = C. glacialis, orange = Neocalanus species, teal = Thysanoessa species, and gray = 

other species). High correlation observed between small guilds, chaeotognath predators, 

Thecosomata, T. inermis, and T. raschii.  
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Section S7. Equilibrium abundance trends 

 

Figure S9. Predicted equilibrium abundance of Calanus glacialis (red), Thysanoessa species 

(teal), and Neocalanus species (orange) along a bottom water gradient for the model output with 

movement terms, spring and fall wind gusts, and DI growth (rho) terms, bottom and surface 

temperature. Thick bars bound 68% and thin bars bound 95% predictive intervals. Note that 

abundance is on the model output scale (fourth root transformed).  


