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Section S1. Species data

Table S1. List of species included in analysis.

Species Stages/sizes included in modeling
Acartia spp. mixed

Amphipoda <5mm

Calanus glacialis C2, C3, C4, C5, C6 (Adult)
Chaetognatha <5 mm, 5-20 mm, > 20 mm
Cnidaria <5mm,>5mm

Decapoda Juvenile + Adult

Eucalanus bungii C5, C6 (Adult)

Euphausiid nauplius, calyptosis

Limacina helicina <5mm

Metridia spp. C1, C2, C3, C4, C5, C6 (Adult)
Mysidae mixed

Neocalanus cristatus C5

Neocalanus spp. C1-C4

Oithiona spp. C5 + Adult

Ostracoda <5mm

Pseudocalanus spp.
Thysanoessa inermis
Thysanoessa longipes
Thysanoessa raschii
Thysanoessa spinifera

C1, C2, C3, C4, C5, C6 (Adult)
Juvenile + Adult
Juvenile + Adult
Juvenile + Adult
Juvenile + Adult

Section S2. Model Description

The model gjamTime is a discrete-time dynamic biophysical food web model that links

an extended LV model (Equation 1) to gjam (generalized joint attribute modeling; Clark et al.
2017). Briefly, gjam is fitted with a Bayesian hierarchical multivariate tobit-regression model
that uses data censoring to allow inclusion of multifarious response data (e.g., discrete
abundance, continuous, categorical, etc.) as well as a high degree of zeros that are commonly
found in ecological data into one model. The gjam model provides probabilistic uncertainty of

parameters, model specification, and data. Also, the model can quantify the likelihood of species



to covary on the scale of individual species, which is useful for rare or poorly sampled species.
The gjam model also avoids non-linear link functions, which provides more intuitive and
transparent responses for ecological interpretation. The gjam framework has been successfully
applied to terrestrial (e.g., O’Reilly-Nugent et al., 2018; Bossolani et al., 2021) and marine
systems (e.g., Howe-Kerr et al., 2019; Roberts et al., 2022). A wonderful comparison of model
fitting groundfish species abundance data from the Northwest Atlantic using gjam versus the
generalized additive model (GAM) framework is found in Roberts et al. (2022).

The DD matrix a, in gjamtime is a prior for the model. By allowing for species
interactions in a across the discrete time-steps, nonlinear response patterns between species and
environment can be observed even though all relationships between species and environment are
modeled as linear in gjamTime, because nonlinear response patterns are induced indirectly from
the differential response of other species to the same gradient over the discrete time-series. Put
another way, gjamTime does not hard-code nonlinear responses to environment (e.g., xZ, where i
IS a given environmental term); instead, gjamTime allows each species in the community to
respond linearly to environment (x;) and experience species interactions over the discrete time-
steps (&), which should induce nonlinear curves to x; for species where density dependence
influences dynamics in the given environment (e.g., common prey, common predator, etc.;

Hutchinson 1957).
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Section S3. Modeling terms

Section S3.1 Potential density-independent (DI) growth terms

In situ bottom (BT) and surface Temperature (ST) data were collected from the National Marine
Fisheries Service (NMFS) eastern Bering Sea shelf standardized bottom trawl survey, which has
been conducting annual summer (May-August) surveys within a systematic grid design since

1982 (Lauth et al., 2019). Water temperatures were recorded at each station by a Sea-Bird SBE-



39 datalogger (Sea-Bird Electronics, Inc., Bellevue, WA) placed on the headrope of the net.
Surface temperature was recorded at -1 m depth, and bottom temperature was averaged over time
while the net was on bottom in fishing configuration, with the headrope 2-3 m off bottom. Data
were averaged per grid square for each year using the Spatial Join tool in ArcGIS Pro. Data are

available at https://www.fisheries.noaa.gov/inport/item/22008#lineage.

Section S3.2. Potential ‘movement’ terms (immigration/emigration)

The Bering Sea cold pool has traditionally been derived from the NMFS bottom trawl survey
data by interpolating the aerial extent (km?) of the cold pool (defined as <2 °C) by inverse-
distance-weighting (IDW) bottom temperatures on the Being Shelf using geostatistical software
(Kotwicki & Lauth, 2013, Stevenson & Lauth, 2019). To maximize spatial and temporal
resolution in our model, we computed the percent aerial cold pool extent for each grid square for
each year, defined as pCP. We also used pCP instead of aerial cold pool extent because the aerial
cold pool was highly correlated with aerial sea ice extent (Pearson product correlation >0.8 at o =
0.5; data not shown).

To calculate pCP, we first interpolated the cold pool across the Bering Shelf (0 — 300 m)
for an area buffered 50km from the bottom trawl sampling grid using the EKB Regression
Prediction tool in ArcGIS Pro (hereafter EKB RP). EKB RP combines kriging with regression
analysis to make predictions. We chose EKB RP to allow bathymetry to impact the cold pool

structure. We ran EKB RP models on untransformed data with the environmental predictor

bathymetry (General Bathymetric Chart of the Oceans 2019 dataset; https://www.gebco.net/) for
four semivariograms (nugget, exponential, Whittle, and K-Bessel) for one cold year (2012) and

one warm year (2015); we then compared models using leave one out cross validation to


https://www.gebco.net/

determine the best model. All models were run for 100 simulated variograms with 100 points in
each local model, a local model overlap factor of 1, and a smooth circular search neighborhood
(smoothing factor 0.2). K-Bessel semivariograms performed best for both years (Appendix S1:
Table S3). Therefore, the cold pool was interpolated for each year to be used in modeling (2005-
2016) using K-Bessel semivariogram models. We then converted the model output to an integer
raster using the Raster Calculator tool and isolated areas on the map for each year with bottom
temperatures < 2 °C using Con tool. Finally, we calculated the percent areal extent per grid
square by first summing the Con output using Zonal Statistics as Table and then calculating the
aerial percentage using the Calculate Field tool. We note that the interpolation of the NOAA grid
did not cover the full range of the northern grid square; nevertheless, we assumed 100% cold
pool coverage in that grid square for each year, because sea-ice seasonally covered this area and
formed a cold pool in this region across our study period (Stabeno & Bell, 2019; Huntington et
al., 2020).

Two wind metrics — wind direction and wind gusts - were derived from the ERAS hourly
data on single levels from 1979 to present dataset (0.25° grid cells for every third hour (e.g.,
0000, 0300, 0600, etc.) between 55-63°N and -176 to -160°W from 2004 to 2017;

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview;

obtained 1 September 2021). Wind direction data were defined as southeasterly (SE) and
northwesterly (NW) winds for winter (Oct-Apr; SEw, NWw) and summer (May-Sep; SEs, NWs)
based off prior modeling in the region (Danielson et al., 2012; Eisner et al., 2014). These data
were derived from uwind and vwind data 10 m above the ocean surface. The hourly uwind and
vwind data were imported as netcdfs, masked to the study region, and converted to directional

degree before mean direction values were calculated per grid square at each timestep. From this,
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the percentage of days with seasonal wind from each direction was computed for each grid by
year and season. Analysis was completed using R packages raster (v 3.3-7; Hijams, 2020), sf (v
0.9-4; Pebesma, 2018), and dplyr, and visualized with ggplot2 (v 3.3.5; Wickham, 2016).

For wind gusts, we calculated seasonal wind gusts — summer [WGs] and winter [WGw] —
as well as shorter-term transitional periods — Apr-May [WGsp] and Sep-Oct [WGf] — from
instantaneous wind gusts (m/s) measured 10 m above the ocean surface. Pearson production
correlations were used to define the shorter-term transitional periods that were not highly
correlated with the seasonal wind gust terms (Appendix S1: Figure S1). We used the workflow
above for wind direction except that we calculated the number of days with wind above a given
threshold for each grid instead of a percentage. We used wind gust thresholds of >10 m/s and
>15 m/s based on prior work in the region (Bond et al., 1994; Stabeno et al., 2010); these
thresholds also provided the largest range in values over the study domain (Appendix S1: Figure
S2).

Annual oceanographic variables and indices were downloaded from the NOAA Bering
Climate website (http://www.beringclimate.noaa.gov/data/index.php; accessed 10 October
2021). Variables include: Aleutian Low (Nov-Mar; AL), Arctic Oscillation (Dec-Feb; AO), East
Pacific Index for winter (Jan-Mar; EPlw) and spring-summer (Apr-Jul; EPIss), North Pacific
Index for winter (Nov-Mar; NPIw) with anomaly (NP1Aw) and spring-summer (Apr-Jul; NPIss)
with anomaly NPIAss), and Pacific Decadal Oscillation for winter (Dec-Feb; PDOw), summer
(June-Aug; PDOs), and annual (Jan-Dec; PDO).

Days with ice after 15 March (IDm) were derived for each 80km grid cell from the
"Bootstrap Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS, Version 3"

dataset from the National Snow and Ice Data Center (nsidc.org). This data has a 25km
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resolution. An 80 km? box was created around each desired data point and ice data from the
dataset was averaged from inside the box. Ice associated days were defined as having greater
than 15% ice coverage inside the box.

To incorporate space into the model, latitude (Lat) was determined for each grid square

using the Feature to Point and Add XY Coordinates Tools in ArcGIS Pro.
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Table S2. Potential environmental variables for model fitting of movement (beta) and DI growth
(rho) terms in model, ordered alphabetically; bold indicates variables used in model fitting
following removal of redundant variables via Pearson production correlation with preference
given to variables that vary in space and time (Appendix S1: Figure S1). Note that DI growth and
movement terms are computed independently in the model.

Resolution  Resolution

Label  Variable Model of data in model  Data source
AL Aleutian Low (Nov-Mar) Beta Cl Cl BCW*

AO Acrctic Oscillation (Dec-Feb) Beta Cl Cl BCW#

BT Bottom Temperature (°C) Rho Tow 80kmGS AFSC*

CP Cold Pool Extent (km?) Beta BS BS BCW#
EPIss East Pacific Index — spring/summer (Apr-Jul) Beta Cl Cl BCW#
EPIw East Pacific Index — winter (Jan-Mar) Beta Cl Cl BCW*#

IDm Days with Ice > 15 March (# days) Beta 25kmecell 80kmGS  NSIDC*»
IE Ice extent (km?) Beta BS BS BCW*

Lat Latitude Beta GC 80km GS  ArcGISPro
NPIAss N. Pacific Index anomaly — spr/summer (Apr-Jul) Beta Cl Cl BCW#
NPIAw N. Pacific Index anomaly - winter (Nov-Mar) Beta Cl Cl BCW#
NPIss N. Pacific Index — summer (Apr-Jul) Beta Cl Cl BCW*#
NPIw N. Pacific Index - winter (Nov-Mar) Beta Cl Cl BCW#

NWs Northwesterly winds - summer (May-Sep) (%) Beta 0.25°cell 80kmGS ERA5"
NWw  Northwesterly winds - winter (Oct-Apr) (%) Beta 0.25°cell 80kmGS ERA5"
pCP Percentage of cold pool per grid square (%) Beta BS 80km GS  Derived BT
PDOa  Pacific Decadal Oscillation - annual (Jan-Dec) Beta Cl Cl BCW#
PDOs Pacific Decadal Oscillation - summer (Jun-Aug)  Beta Cl Cl BCW#
PDOw  Pacific Decadal Oscillation - winter (Dec-Feb) Beta Cl Cl BCW#

SEs Southeasterly winds - summer (May-Sep) (%) Beta 0.25°cell 80kmGS ERA5"
SEw Southeasterly winds - winter (Oct-Apr) (%) Beta 0.25°cell 80kmGS ERA5"

ST Surface Temperature (°C) Rho CTDcast 80kmGS AFSC*
WGT Wind gusts - fall (Sep-Oct) (# days) Beta 0.25°cell 80kmGS ERA5"
WGs Wind gusts - summer (May-Sep) (# days) Beta 0.25°cell 80kmGS ERA5"
WGsp  Wind gusts - spring (Apr-May) (# days) Beta 0.25°cell 80kmGS ERA5"
WGw  Wind gusts - winter (Oct-Apr) (# days) Beta 0.25°cell 80kmGS ERA5%"

ClI = Climatological index; GC = Geographic coordinate; BS = Bering shelf; 80 km GS = 80-
kilometer grid square; *AFSC = NOAA Alaska Fisheries Science Center; ®NSIDC = National
Snow and Ice Data Center (https://nsidc.org/); "ERAS hourly data fifth generation ECMWF
Uwind, Vwind, and wind gusts (European Center for Medium-Range Weather Forecasts,
https://cds.climate.copernicus.eu/cdsapp#!/home); *Bering Climate Website,
https://www.beringclimate.noaa.gov/. Wind gusts were computed with threshold of 10 and 15
m/s.



Table S3. Leave-one-out cross validation results for EKB Regression Prediction cold pool
interpolation models from 2012 and 2015. SE = Standard Error; RMSE = Root Mean Square

Error. Bold denotes the best model for each year.

Mean

Standardized

C Mean Avg SE - Avg
Model PI’(IEEdICtIOH Prediction AvgSE RMSE RMSE RMSE
rror
Error
=  Exponential -0.052 -0.0332 0.5895 0.5376  0.0519 0.8226
ifz) K-Bessel -0.055 -0.0441 0.5730 0.5344  0.0386 0.8538
S Nugget -0.066 0.0294 13714 11956  0.1758 0.8434
? \whittle -0.054 -0.0399 0.5602  0.5304  0.0298 0.8646
N
§ T Exponential -0.007 -0.0014 0.5102 0.4799  0.0303 0.9182
T K-Bessel -0.008 -0.0008 0.4650 0.4733  -0.0083 0.9818
g Nugget -0.293 -0.1720 1.3680 1.0882  0.2798 0.7813
< Whittle -0.007 -0.0013 0.5103  0.4799  0.0304 0.9182
-  Exponential -0.001 -0.0090 05371 0.4626  0.0745 0.8995
:wqé K-Bessel -0.010 -0.0110 0.4966  0.4573  0.0393 0.9484
S Nugget -0.211 -0.1590 15824 1.0512 0.5312 0.7138
o ? Whittle -0.009 -0.0075 0.5046  0.45807 0.0465 0.9346
§ S Exponential -0.003 -0.0040 0.4888  0.4543  0.0345 0.9604
'"{—B- K-Bessel -0.005 -0.0079 0.4555  0.4546  0.0009 1.0008
2 Nugget -0.057 -0.0490 15463 11729 03734 (7717
(@]
Z  Whittle -0.004 -0.0075 0.4604  0.4528  0.0076 0.9994




HighWind.OctNov 05

HighWind.SepOct B 0.2
HighWind.AugSep g 0.3 0.2
HighWind.JulAug 05 01 01 02
HighWind.JunJul 08l 0.1 -01 0.1/ 04 Co
HighWind.MayJun 04 03 05 03 0.1 0.2 0.5
HighWind.AprMay S 02 02|03 03 02 0.1 2
-0.5
HighWind.MarApr Bl 0.3 02 02 02 03 03 0.1 ._1A0
HighWind.FebMar B 0.4 0103 03 01 02 02 0.1
HighWind.JanFeb B4 o | o o [0303 o o (03
HighWind.OctApr o FodaaN 0.3 | 0.2 EORN 0.1 o (03] 0.2 [0S

HighWind.MaySep 0.1 0.2 0.2 0.3 0.5 BOI8% 0.5 FO:7Z 908N 0.5 0.2 0.3

A & &@\ s 05& ®© R ro}

NN $\° RN $®
0 G A S

N BN O

Figure S1. Pearson product correlation matrix of wind gusts >10 m/s in two-month increments.
Out of the spring and fall months with variable wind gusts across the study domain (Appendix
S1: Figure S2), only Apr-May and Sep-Oct were correlated <0.7 with ‘summer’ winds (May-
Sep); the correlation threshold of 0.7 was used when deciding which variables to include in
model fitting (Dormann et al. 2013). Consequently, the ‘spring’ transition was defined as Apr-
May and the fall transition was defined as Sep-Oct.
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Figure S2. Number of days above wind gust threshold by month for each 80 km grid cell
(arranged south to north) from 2004-2016. Left panel denotes wind gust thresholds of 5 m/s
(gray boxes) and 10 m/s (colored circles); right panel denotes wind gust thresholds of 15 m/s
(colored circles) and 20 m/s (gray boxes). Data derived from every third hour of ERA5 hourly
instantaneous wind gusts at 10 m above the ocean surface
(https://cds.climate.copernicus.eu/cdsapp#!/home).
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Figure S3. Pearson product correlation matrix of potential environmental variables for model
fitting. Wind gusts were computed with threshold of 10 and 15 m/s; figure shows threshold of 15
m/s. The subset of variables selected for modeling are listed in Table 1. Note that DI growth and
movement terms are computed independently in the model; therefore, redundancy in potential
environmental DI growth variables is independent of potential movement variables;
consequently, high correlations between DI growth and movement terms were ignored when
determining variable redundancy.
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Figure S4. Grid cells with zooplankton data (+) by year and cell. Bathymetric contour lines

presented in 50 m increments from 50 to 2,000 m depth (blue gradient from dark to light).



Section S4. Model Prior and Effort

The current version of gjamTime requires informative priors. DI growth (p) priors are in units of
change in DI growth per time-step (here annual). We defined priors -1 to 1 to allow 100%
change in DI growth between time-steps given the in-situ patchiness and varying life history
strategy of zooplankton species included in our study. Movement () priors are in units of the
response divided by the predictor. We therefore defined movement priors -0.5 to 0.5 for pCP and
-1 to 1 for all other variables. Effort was defined as 1 for all time-steps with data and 0.1 for
priors and missing data to be imputed (smaller effort priors translate to lower weighting of data;

Clark et al. 2020).
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Section S5. Model diagnostics

Model fit was assessed using the diagnostic plots provided in the R gjam package (Clark et al.,
2017), namely observed vs. prediction plots and inverse prediction. The best model was defined
as the model that could best predict the abundance of C. glacialis (Appendix S1: Figure S5). This
best model best predicted life history stages of C. glacialis followed by T. raschii and T. inermis
(Appendix S1: Figure S6). Predictions of other species in the assemblage were variable, but in
general, species sampled consistently and with higher abundance were better predicted. Inverse
predictions (i.e., using the zooplankton responses from the fitted model to model the
environmental predictors) provide a powerful metric to assess model fit, because they inform
whether the observed responses are dependent on the predictors at the community scale (Clark et
al., 2017). The best model of potential right whale prey inverse predicted bottom temperature
and spring and fall winds but failed to inverse predict surface temperature (Appendix S1: Figure

S7).
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Figure S5. Predicted and observed observations from the ‘best’ fitted model, defined as the best
fit of C. glacialis copepodite stages (colored boxes) and lowest DIC model (gray boxes) for C.
glacialis, Neocalanus spp., and Thysanoessa spp. Boxes and whiskers bound 68% and 95% of
observations, respectively. Background shading denotes the distribution of data.
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Figure S6. Predicted and observed observations of all zooplankton species from the best fitted
model. Boxes represent medians with 25% through 75" percentiles and whiskers bound
+1.5*IQR (Inner Quartile Range) of the posterior distribution, respectively. Colors correspond to
potential right whale prey species (red = C. glacialis; orange = Neocalanus species, and teal =
Thysanoessa species). Background shading denotes the distribution of data.
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Figure S7. Inverse prediction of environmental variables for (upper) the fitted movement model
(spring and fall wind gusts) and (lower) the density-independent growth model (bottom and
surface temperature). Boxes and whiskers bound 68% and 95% of the posterior distribution,
respectively. Basal histogram shows the distribution of the data.



Section S6. Model results

Table S4. Modeled parameter estimates, standard error, and 95% Bayesian credible intervals of
beta term (movement) bottom temperature to species abundance (ind. m). Sig. = significance of
response defined as 95% credible interval away from zero.

Species Estimate SE  25%Cl 97.5% Cl Sig.
Acartia spp. 0.04 0.02 0.00 0.08 *
Amphipoda <5 mm 0.00 0.06 -0.12 0.11

C. glacialis - C2 -0.11 0.10 -0.31 0.08

C. glacialis - C3 -0.07 0.04 -0.16 0.01

C. glacialis - C4 -0.09 0.03 -0.16 -0.03

C. glacialis - C5 -0.01 0.02 -0.05 0.03

C. glacialis - Adult -0.04 0.04 -0.12 0.03
Chaetognatha <5 mm 0.05 0.02 0.02 0.09 *
Chaetognatha — 5 — 20 mm -0.10 0.03 -0.17 -0.04 *
Chaetognatha > 20 mm -0.11 0.05 -0.21 -0.02 *
Cnidaria <5 mm -0.07 0.03 -0.13 -0.01 *
Cnidaria > 5 mm 0.08 0.06 -0.04 0.20
Decapoda J & Ad -0.01 0.12 -0.26 0.23

E. bungii - C5 0.00 0.17 -0.33 0.33

E. bungii - Adult 0.33 0.38 -0.49 0.95
Euphausiid Nauplius -0.02 0.06 -0.15 0.10
Euphausiid Calyptosis -0.02 0.07 -0.15 0.11
Limacina helicina <5 mm -0.04 0.02 -0.08 0.00
Metridia spp. - C1 -0.40 0.11 -0.61 -0.17 *
Metridia spp. - C2 -0.25 0.05 -0.34 -0.16 *
Metridia spp. - C3 -0.18 0.04 -0.26 -0.10 *
Metridia pacifica - C4 -0.15 0.06 -0.27 -0.03 *
Metridia pacifica - C5 0.07 0.06 -0.05 0.19
Metridia pacifica - Adult -0.38 0.10 -0.57 -0.18 *
Mysidae 0.10 0.10 -0.10 0.29

N. cristatus - C5 0.22 0.37 -0.53 0.90
Neocalanus spp. C1-C4 0.38 0.36 -0.36 0.96
Neocalanus spp. - C5 0.06 0.20 -0.32 0.44
Neocalanus spp. - Adult 0.00 0.51 -0.91 0.91
Oithiona spp. C5 & Ad 0.06 0.01 0.04 0.08 *
Ostracoda <5 mm -0.23 0.26 -0.74 0.29
Pseudocalanus spp. - C1 0.11 0.02 0.07 0.15
Pseudocalanus spp. - C2 0.07 0.02 0.04 0.10
Pseudocalanus spp. - C3 0.03 0.01 0.01 0.06

Pseudocalanus spp. - C4 0.03 0.02 0.00 0.06



Pseudocalanus spp. - C5
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Thysanoessa spinifera - J & Ad
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0.00
0.07
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0.09
0.17
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0.01
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0.04
0.16

0.00
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-0.15

0.07
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0.15
0.36
0.17
0.50




Table S5. Modeled parameter estimates, standard error, and 95% Bayesian credible intervals of
beta term (movement) surface temperature to species abundance (ind. m). Sig. = significance of
response defined as 95% credible interval away from zero.

Species Estimate SE  25%Cl 97.5% Cl Sig.
Acartia spp. 0.03 0.01 0.00 0.05
Amphipoda <5 mm -0.01 0.02 -0.05 0.02

C. glacialis - C2 -0.01 0.02 -0.04 0.02

C. glacialis - C3 0.04 0.02 0.01 0.07

C. glacialis - C4 0.02 0.01 0.00 0.04

C. glacialis - C5 -0.05 0.01 -0.07 -0.03

C. glacialis - Adult -0.07 0.01 -0.08 -0.05
Chaetognatha <5 mm -0.02 0.01 -0.05 0.00
Chaetognatha — 5 — 20 mm -0.08 0.01 -0.09 -0.06
Chaetognatha > 20 mm -0.09 0.01 -0.11 -0.06 *
Cnidaria <5 mm 0.06 0.01 0.04 0.08
Cnidaria>5 mm 0.03 0.02 -0.02 0.08
Decapoda J & Ad -0.03 0.03 -0.09 0.03

E. bungii - C5 0.01 0.04 -0.08 0.09

E. bungii - Adult -0.02 0.11 -0.24 0.19
Euphausiid Nauplius 0.00 0.04 -0.09 0.07
Euphausiid Calyptosis 0.00 0.03 -0.06 0.05
Limacina helicina <5 mm 0.10 0.01 0.09 0.11 *
Metridia spp. - C1 0.06 0.02 0.01 0.10 *
Metridia spp. - C2 0.07 0.02 0.03 0.10
Metridia spp. - C3 0.06 0.02 0.02 0.10
Metridia pacifica - C4 0.00 0.02 -0.05 0.05
Metridia pacifica - C5 0.05 0.02 0.00 0.09
Metridia pacifica - Adult 0.23 0.05 0.13 0.32
Mysidae 0.00 0.03 -0.06 0.06 *
N. cristatus - C5 0.00 0.05 -0.11 0.11
Neocalanus spp. C1-C4 0.03 0.09 -0.15 0.18
Neocalanus spp. - C5 0.00 0.03 -0.07 0.06
Neocalanus spp. - Adult -0.21 0.09 -0.38 -0.02
Oithiona spp. C5 & Ad 0.01 0.01 -0.01 0.02
Ostracoda <5 mm -0.06 0.05 -0.16 0.03
Pseudocalanus spp. - C1 0.01 0.01 -0.01 0.02
Pseudocalanus spp. - C2 0.00 0.01 -0.02 0.02
Pseudocalanus spp. - C3 0.01 0.01 0.00 0.02
Pseudocalanus spp. - C4 0.02 0.01 0.00 0.04

Pseudocalanus spp. - C5 0.02 0.01 0.00 0.04
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Table S6. Modeled parameter estimates, standard error, and 95% Bayesian credible intervals of
rho term (DI growth) spring wind gusts (WGsp) to species abundance (ind. m). Sig. =

significance of response defined as 95% credible interval away from zero.

Species Estimate SE 2.5% ClI 97.5% Cl  Sig.
Acartia spp. -0.01 0.16 -0.34 0.28
Amphipoda <5 mm -0.17 0.07 -0.31 -0.03 *
C. glacialis - C2 -0.10 0.11 -0.31 0.11

C. glacialis - C3 -0.16 0.07 -0.30 -0.02 *
C. glacialis - C4 -0.40 0.08 -0.57 -0.24 *
C. glacialis - C5 -0.40 0.15 -0.70 -0.13 *
C. glacialis - Adult -0.22 0.09 -0.39 -0.06 *
Chaetognatha <5 mm 0.14 0.15 -0.16 0.42
Chaetognatha — 5 — 20 mm 0.01 0.15 -0.30 0.29
Chaetognatha > 20 mm -0.01 0.09 -0.19 0.16

Cnidaria <5 mm 0.23 0.07 0.09 0.36 *
Cnidaria>5 mm 0.10 0.05 0.00 0.19 *
Decapoda J & Ad -0.06 0.05 -0.16 0.03

E. bungii - C5 -0.01 0.05 -0.10 0.09

E. bungii - Adult 0.03 0.05 -0.07 0.12
Euphausiid Nauplius -0.02 0.05 -0.12 0.07
Euphausiid Calyptosis 0.00 0.05 -0.09 0.10
Limacina helicina <5 mm -0.44 0.16 -0.77 -0.13 *
Metridia spp. - C1 0.11 0.10 -0.07 0.34

Metridia spp. - C2 -0.03 0.07 -0.17 0.12

Metridia spp. - C3 0.08 0.06 -0.05 0.20

Metridia pacifica - C4 -0.12 0.05 -0.22 -0.02

Metridia pacifica - C5 -0.12 0.06 -0.23 -0.01

Metridia pacifica - Adult 0.03 0.05 -0.07 0.12

Mysidae 0.02 0.05 -0.08 0.11

N. cristatus - C5 -0.10 0.06 -0.22 0.02
Neocalanus spp. C1-C4 -0.04 0.05 -0.14 0.07
Neocalanus spp. - C5 -0.01 0.05 -0.11 0.09
Neocalanus spp. - Adult 0.00 0.05 -0.11 0.10

Oithiona spp. C5 & Ad 0.21 0.31 -0.46 0.76
Ostracoda <5 mm 0.12 0.06 0.00 0.25
Pseudocalanus spp. - C1 0.32 0.16 -0.02 0.60
Pseudocalanus spp. - C2 0.38 0.21 -0.07 0.76
Pseudocalanus spp. - C3 0.59 0.21 0.14 0.96 *
Pseudocalanus spp. - C4 0.28 0.16 -0.06 0.56
Pseudocalanus spp. - C5 0.07 0.16 -0.26 0.35



Pseudocalanus spp. - Adult
Thysanoessa inermis - J & Ad
Thysanoessa longipes - J & Ad
Thysanoessa raschii - J & Ad
Thysanoessa spinifera - J & Ad
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Table S7. Modeled parameter estimates, standard error, and 95% Bayesian credible intervals of
rho term (DI growth) fall wind gusts (WGf) to species abundance (ind. m=3). Sig. = significance

of response defined as 95% credible interval away from zero.

Species Estimate SE 2.5% ClI 97.5% Cl  Sig.
Acartia spp. -0.07 0.17 -0.43 0.24
Amphipoda <5 mm 0.06 0.07 -0.09 0.20

C. glacialis - C2 -0.10 0.08 -0.25 0.05

C. glacialis - C3 -0.17 0.07 -0.31 -0.03 *
C. glacialis - C4 -0.24 0.08 -0.41 -0.08 *
C. glacialis - C5 -0.10 0.14 -0.37 0.19

C. glacialis - Adult -0.09 0.08 -0.26 0.07
Chaetognatha <5 mm -0.40 0.15 -0.68 -0.11 *
Chaetognatha — 5 — 20 mm -0.34 0.14 -0.61 -0.05 *
Chaetognatha > 20 mm -0.22 0.09 -0.39 -0.05 *
Cnidaria <5 mm -0.11 0.07 -0.25 0.03
Cnidaria>5 mm 0.00 0.06 -0.11 0.12
Decapoda J & Ad 0.06 0.05 -0.04 0.17

E. bungii - C5 -0.05 0.05 -0.15 0.05

E. bungii - Adult -0.04 0.05 -0.14 0.06
Euphausiid Nauplius 0.00 0.05 -0.10 0.10
Euphausiid Calyptosis 0.00 0.05 -0.10 0.10
Limacina helicina <5 mm 0.22 0.17 -0.12 0.55

Metridia spp. - C1 -0.08 0.07 -0.22 0.05

Metridia spp. - C2 -0.06 0.07 -0.19 0.07

Metridia spp. - C3 -0.09 0.07 -0.22 0.04

Metridia pacifica - C4 -0.02 0.05 -0.12 0.09

Metridia pacifica - C5 -0.03 0.06 -0.14 0.08

Metridia pacifica - Adult -0.06 0.05 -0.16 0.05

Mysidae -0.01 0.05 -0.12 0.10

N. cristatus - C5 -0.04 0.05 -0.15 0.06
Neocalanus spp. C1-C4 0.00 0.05 -0.10 0.10
Neocalanus spp. - C5 -0.09 0.05 -0.20 0.02
Neocalanus spp. - Adult -0.01 0.05 -0.11 0.09

Oithiona spp. C5 & Ad -0.17 0.31 -0.80 0.43
Ostracoda <5 mm -0.05 0.06 -0.17 0.06
Pseudocalanus spp. - C1 0.11 0.16 -0.24 0.41
Pseudocalanus spp. - C2 -0.05 0.21 -0.51 0.34
Pseudocalanus spp. - C3 -0.11 0.22 -0.57 0.29
Pseudocalanus spp. - C4 -0.06 0.17 -0.42 0.24
Pseudocalanus spp. - C5 -0.13 0.17 -0.48 0.18
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Residual Correlation
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Figure S8. Residual correlation plot. Species are ordered by guild (microzooplankton predator,
small omnivore, small-med omnivore, large omnivore, predators, and epibenthic); colors denote
genus (red = C. glacialis, orange = Neocalanus species, teal = Thysanoessa species, and gray =
other species). High correlation observed between small guilds, chaeotognath predators,
Thecosomata, T. inermis, and T. raschii.



Section S7. Equilibrium abundance trends
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Figure S9. Predicted equilibrium abundance of Calanus glacialis (red), Thysanoessa species
(teal), and Neocalanus species (orange) along a bottom water gradient for the model output with
movement terms, spring and fall wind gusts, and DI growth (rho) terms, bottom and surface
temperature. Thick bars bound 68% and thin bars bound 95% predictive intervals. Note that
abundance is on the model output scale (fourth root transformed).



