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2. Additional results 
2.1. Cumulative carbon emissions and cumulative deaths from 2015 to 2050 

- Figure S2: Cumulative CO2 emissions and PM2.5-related deaths from 2015 to 2050 in 
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2.4. Global premature deaths by age and country income group 

- Figure S4: Global total deaths from ambient PM2.5 exposure and the distribution of 
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- Figure S10: Relative contribution of four individual factors to the 2015-2100 changes 
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3. Sensitivity analysis for health impact assessment 
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1. Additional information on method 

1.1 Supplemental Note 1: SSP-RCP scenario framework 

Based on projections on energy use, land use and emissions of air pollutants and greenhouse 
gases (GHGs), the SSP-RCP scenario framework pioneers a process of developing scenarios for 
socioeconomic narratives and global warming levels.1 The Shared Socioeconomic Pathways 
(SSPs) narrate possible alternative trends in socioeconomic and environmental development.2 As 
described by Gidden et al. (2019),3 the five SSPs, as in narratives2 and model quantifications,4–8 
characterize features of potential futures in which the world follows business as usual (SSP2), 
socioeconomic and technological development are renewables or fossil-fueled (SSP1/SSP5), or 
resources are unequally distributed between or within countries (SSP3/SSP4). Each pathway 
pertains to different levels of socioeconomic challenges to climate change mitigation and 
adaptation. The distinct differences across the SSPs are driven by the basic SSP elements which 
are population, urbanization, and GDP.9 In addition, each Representative Concentration Pathway 
represents the warming targets for the emission pathways of energy system and land use, as 
measured as certain radiative forcing levels (in W/m2) by the end of the century.1 Four RCPs are 
introduced in IPCC AR5 report,10 which are the low-emission scenario RCP2.6,11 stabilization 
scenario RCP4.5,12 climate-policy intervention scenario RCP6.0,13 and no-mitigation scenario 
RCP8.5.14 They are in line with a wide range of plausible changes in future anthropogenic 
greenhouse gas emissions. Based on the CMIP5 ensembles,15 the respective scenarios are 
projected to lead to 1.0 °C (0.3 °C to 1.7 °C), 1.8 °C (1.1 °C to 2.6 °C), 2.2 °C (1.4 °C to 3.1 °C), 
and 3.7 °C (2.6 °C to 4.8 °C) of global mean temperature increase in the late 21st century relative 
to the reference period (1986–2005).10 The combination of SSPs and RCPs are introduced based 
on the Shared Climate Policy Assumptions which comprise of information such as the evolution 
of global climate policies and long-term target for climate mitigation. The definition of this 
integrated scenario architecture intends to capture the central features of climate policies globally 
through the end of the century.16  
 
The SSP-RCP scenario framework has been widely adopted across research communities in 
scientific assessments such as CMIP617 and the IPCC AR6 report.18 CMIP6 seeks to better 
understand the response of the Earth system to climate forcing, systematic biases of the Earth 
system and climate models, and assessment of future climate change in scenarios. It also offers 
an opportunity for studying air pollutant trajectories as well as the changes in air quality and health 
impacts under various plausible future pathways.17 As a major component of CMIP6, the Scenario 
Model Intercomparison Project (ScenarioMIP)19 serves as the basis for other CMIP6-endorsed 
MIPs and provides a greater level of understanding on physical and social impacts of future 
climate. Climate projections are simulated by multiple models and each model conducts 
simulations for a selection of SSP-RCP scenarios. Since ScenarioMIP focuses on emissions-
driven simulations, for each scenario, the emissions input are gridded datasets comprising 
historical and future (2015 to 2100) emissions, which include anthropogenic and open burning 
emissions.20 The gridded future anthropogenic emissions data is derived from the future 
emissions trajectory by Gidden et al. (2019).3 
 



3 
 

The set of scenarios considered in ScenarioMIP is categorized into Tier 1 and Tier 2 scenarios. 
Tier 1 scenarios span the climate forcing target levels similar to the RCPs adopted in CMIP5. Tier 
2 scenarios include additional add-ons beyond those scenarios in CMIP53 and allow us to study 
the roles of different factors.  
 
Figure S1 shows the five SSP-RCP scenarios used in this study, in line with the emissions 
scenarios in the IPCC AR6 report.18 The end-of-century warming levels of these scenarios range 
from a lower bound of 1.9 W/m2 (below 2°C) to an upper bound of 8.5 W/m2 (nearly 5°C) of end-
of-century warming level.3 These scenarios are also subject to different levels of air pollution 
emissions consistent with different SSP storylines.21 Specifically, SSP1-1.9, SSP1-2.6, and 
SSP5-8.5 describe the plausible futures with high economic development (via sustainable energy 
or fossil fuel use) and strong pollution control, while SSP3-7.0 has the highest air pollutant 
emissions.22 

 
Figure S1. The SSP-RCP scenarios in this study, outlined in dark blue. The matrix here illustrates 
the coupled SSP-RCP scenario framework, with SSP (i.e., socioeconomic development) as the 
x-axis and RCP (i.e., climate forcing target) as the y-axis. Each cell in the matrix indicates an 
SSP-RCP scenario that is shown to be practicable from Integrated Assessment Model (IAM) runs. 
We reproduced this figure based on Riahi et al. (2017).9 
 

1.2 Supplemental Note 2: GFDL-ESM4.1 model evaluation 
The performance of the GFDL-ESM4.1 model to simulate ambient PM2.5 concentrations has been 
evaluated in prior publications.23–25  
 
(a) PM2.5 concentrations  
 
Turnock et al. (2020)25 evaluated the model performance for all CMIP6 models, including results 
from ESM4.1 that are being used in this study. The study compared the simulated and observed 
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PM2.5 concentrations for all the locations in the database of the Global Aerosol Synthesis and 
Science Project (GASSP; http://gassp.org.uk/data/). For background, non-urban PM2.5, it 
obtained observations from three major networks: (1) the Interagency Monitoring of Protected 
Visual Environment (IMPROVE) network in North America, (2) the European Monitoring and 
Evaluation Progamme (EMEP), and (2) Asia-Pacific Aerosole Database (A-PAD).  Besides 
monitoring data, a further comparison was made with the Modern-Era Retrospective Analysis for 
Research and Applications, version 2 (MERRA-2) aerosol reanalysis product. The summary of 
the multi-model evaluation results were reported in Section 3.2 of the paper, with specific results 
for GFDL-ESM4.1 model included in their Supplemental Materials.  
 
(b) Aerosol components  
 
Horowitz et al. (2020)24 evaluated the performance of AM4.1, the atmospheric component of 
GFDL-ESM4.1 that is used to simulate PM2.5 in this study. The key model evaluation results are 
reported in Section 4.3 of this paper.   
 
In short, simulated nitrate and sulfate aerosols were compared with observations from the 
IMPROVE network.26–28 The IMPROVE network is designed to monitor spatial and temporal 
trends of visibility-reducing particulate matter pollution for more than 170 sites across the US; it 
collects 24-hour samples every three days.26–28 The simulated nitrate concentrations were found 
to correlate well with the observations (R = 0.74) with a bias towards the high end (normalized 
mean bias [NMB] = +80%). Sulfate simulations successfully captured the wide range of sulfate 
aerosol concentrations in the observational data across regions. The concentrations of nitrate and 
sulfate in precipitation were evaluated against the observations from the NADP (National 
Atmospheric Deposition Program) network, which monitors precipitation chemistry weekly at 390 
sites across North America.29 The simulated results were well correlated with the observations, 
with a high bias for nitrate (NMB = +35%) and a low bias for sulfate (NMB = -19%). 
 
Simulated aerosol optical depths (AOD) from AM4.1 were also compared with the measurements 
from the AERONET (Aerosol Robotic Network), the largest, worldwide sun photometer network 
that collects daily measurement data for more than 600 sites around the world.30,31 Comparing 
the simulated and observed data, the correlation was high (0.9) and the root mean square was 
low (0.08). In particular, compared to earlier versions of the model, AM4.1 simulations exhibited 
a large reduction in positive bias in the tropics and equatorial regions, which demonstrated the 
more efficient aerosol removal by convective precipitation that is captured in the new version. 
 
 
1.3 Baseline mortality rates 
 
Table S1. Baseline mortality rates of six diseases in 2015 (unit: deaths per million people). We 
compared the estimates from GBD 201932 and the estimates based on our mapping methods 
based on IF projections.33 More details can be found in the Method section in the main text. The 
lower bound (LB) and upper bound (UB) represent the 95% confidence interval based on the 
relative risk functions. 
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GBD 2019  Our estimates 
based on IF  Central Value Lower bound Upper bound 

Ischemic heart disease 
(IHD) 2033 1895 2184 1945 
Stroke 1392 1266 1508 1319 
Chronic obstructive 
pulmonary disease 
(COPD) 718 630 819 640 
Lower respiratory tract 
infection (LRI) 377 319 443 265 
Lung cancer 424 393 459 407 
Type-2 diabetes 226 195 262 218 

2. Additional results 

2.1 Cumulative carbon emissions and cumulative deaths from 2015 to 2050 

 
Figure S2. Cumulative CO2 emissions (left panel) and PM2.5-related premature deaths (right 
panel) from 2015 to 2050 in the five SSP-RCP scenarios. Different colors represent different world 
regions (ROW: rest of the world). The error bars in panel b) represent the deaths estimated based 
on the 95% confidence interval of the relative risk functions from the Global Burden of Disease 
Study.34,35 
 

2.2 Global average temperature projected by GFDL-ESM4.1 

 
Table S2. Changes in global average temperature relative to preindustrial times (1850-1900) 
based on our GFDL-ESM4.1 projections. 
 

 Near term 
(2021-2040) 

Mid-term 
(2041-2060) 

Long term 
(2081-2100) 

SSP1-1.9 1.37°C 1.39°C 1.16°C 



6 
 

SSP1-2.6 1.28°C 1.48°C 1.49°C 

SSP2-4.5 1.34°C 1.68°C 2.34°C 

SSP3-7.0 1.32°C 1.89°C 3.40°C 

SSP5-8.5 1.39°C 2.06°C 3.90°C 

 

2.3 Gridded temperature projections by GFDL-ESM4.1 

 
Figure S3. Global temperature projections by GFDL-ESM4.1.23,36 Panel a) shows the global 
annual mean temperature in 2015. Panels b)-d) show the differences in 2100 as compared to 
2015 for SSP1-2.6, SSP3-7.0, and SSP5-8.5. 



7 
 

2.4 Global premature deaths by age and country income group 

 
Figure S4. Global total deaths from ambient PM2.5 exposure and the distribution of health burden 
across regions and age groups. Panel a): Global total annual deaths from 2015 to 2100. The lines 
and the shades show the calculated PM2.5-related deaths based on the central estimate and the 
95% confidence intervals of the relative risk functions from GBD 2019.34 Panel b) and d): Deaths 
by country income groups in 2015, 2050, and 2100 based on the central estimates of the relative 
risk functions; here we use the World Bank country classification.37 Panel c) and e): Global total 
deaths from ambient PM2.5 exposure by age group in 2015, 2050, and 2100 based on the central 
estimates of the relative risk functions; here the x-axis label shows the start age of each of the 
five-year age groups.  
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2.5 Global distribution of simulated PM2.5 concentrations and premature deaths for SSP1-
1.9 and SSP2-4.5 at the end of the century 

 
Figure S5. Global distribution of annual mean PM2.5 concentrations (left column) and annual total 
premature deaths (right column) in 2015 and the end of century for SSP1-1.9 and SSP2-4.5. 
Panels a) and b) show the patterns in 2015. Panels c)-f) show the differences in the end of the 
century as compared to 2015. The PM2.5 concentrations are at 1° latitude by 1.25° longitude 
resolution. The end-of-century values are calculated using the multi-year averages from a 
selected time horizon (2090-2100). 
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2.6 Global distribution of simulated PM2.5 concentrations and premature deaths for 2050 

 
Figure S6. Global distribution of annual mean PM2.5 concentrations (left column) and annual total 
premature deaths (right column) in 2015 and 2050 for SSP1-2.6, SSP3-7.0 and SSP5-8.5. Panels 
a) and b) show the patterns in 2015. Panels c)-h) show the differences in 2050 as compared to 
2015.  
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2.7 Global distribution of PM2.5-related death rate  
While the premature deaths measure the total health burden, the PM2.5-related death rates (i.e., 
deaths divided by population) measure the level of risk facing the populations. Here we show the 
global distribution of PM2.5-related death rates in Figure S7 (mid-century) and S8 (end-of-century), 
as an alternative metric to measure the health impacts.  
 
In all scenarios, we find the Global South countries suffer from higher risk at present and in future 
time periods. In addition, the lower-income regions, such as India and regions in Africa and 
Southeast Asia, are expected to experience greater increases in PM2.5-related death rates in the 
future. Such result is largely driven by higher pollution levels in these regions combined with 
higher baseline mortality rates. It highlights the importance of sociodemographic factors in 
determining the population vulnerability and mortality risks from PM2.5 exposure.  
 

 
Figure S7. Global distribution of PM2.5-related premature death rate in 2015 and 2050 for SSP1-
2.6, SSP3-7.0 and SSP5-8.5. Panel a) shows the patterns in 2015. Panels b)-d) show the 
differences in 2050 as compared to 2015. 
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Figure S8. Global distribution of PM2.5-related premature death rate in 2015 and the end of the 
century for SSP1-2.6, SSP3-7.0 and SSP5-8.5. Panel a) and b) show the patterns in 2015. Panels 
c)-h) show the differences in 2100 as compared to 2015. 
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2.8 Decomposition analysis for all five scenarios for 2050 and 2100 

 
Figure S9. Relative contribution of four individual factors to the 2015-2050 changes in PM2.5-
related deaths: changes in PM2.5 concentrations (grey), baseline mortality rate (blue), population 
ageing (orange), and population growth (yellow). Combining the effects of these four factors, the 
white dots represent the net changes in 2050 relative to 2015. 
 

 
Figure S10. Relative contribution of four individual factors to the 2015-2100 changes in PM2.5-
related deaths: changes in PM2.5 concentrations (grey), baseline mortality rate (blue), population 
ageing (orange) and population growth (yellow). Combining the effects of these four factors, the 
white dots represent the net changes in 2100 relative to 2015. 

3. Sensitivity analysis for health impact assessment 

3.1 Relative risk functions  
While our main results use the relative risk functions from the Global Burden of Disease (GBD) 
201934,35, as a sensitivity analysis, here we compare the alternative RR estimates from GBD 
201738,39, as well as the Global Exposure Mortality Model (GEMM) study.40 
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Compared to GBD 2017, GBD 2019 includes new data from 44 cohort studies. The newly added 
data and changes in fitting the dose-response curves contribute to higher RR estimates for 
cardiovascular diseases, especially stroke. 
 
Compared to GBD (specifically, the integrated exposure-response (IER) model from GBD 
2015),41 GEMM solely relies on the studies of outdoor PM2.5. Hence, the RR estimates from 
GEMM are almost always greater than those from the previous IER model, with much higher risks 
observed at higher PM2.5 concentrations. Note that compared to GBD estimates, GEMM does not 
report RRs for type 2 diabetes, which affects the comparison for the aggregate deaths. 
 

 
Figure S11. Relative risk (RR) curves from different sources for six diseases – (a) ischemic heart 
disease (IHD), (b) Stroke, (c) chronic obstructive pulmonary disease (COPD), (d) lower respiratory 
tract infection (LRI), (e) lung cancer and (f) type-2 diabetes. For IHD and Stroke we present the 
RR for the age group of 65-69 years old; for COPD, LRI, LC, and DB the RR relationships are for 
all ages. For panels c) – e), as indicated in the legends, the GEMM concentration response 
functions are only for people above the age of 25, while GBD functions are for all ages. For panel 
f), only GBD RR curves are shown since GEMM does not report RR for diabetes type 2. In all 
panels, the error bars represent 95% confidence interval for the RR functions. The solid lines 
represent the central estimates of the RR values reported from each source.  
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Figure S12. Cumulative global PM2.5-related deaths from 2015 to 2100 using different relative risk 
functions: (a) GBD 201738,39 (as sensitivity analysis), (b) GBD 201934,35 (our main method; same 
as Figure 2 in the main text) and (c) GEMM42 (as sensitivity analysis) relative risk functions. 
Different colors represent different world regions (ROW: rest of the world). The bars in panel a), 
b) and c) represent the results using the central estimates of the relative risk functions from the 
Global Burden of Disease Study34,43 and the Global Exposure Mortality Model,42 whereas the error 
bars represent the deaths estimated based on the 95% confidence interval of the relative risk 
functions. Note that the GEMM estimates do not include the deaths from diabetes type 2. 
 

3.2 Years of life lost 

 
Figure S13. Cumulative global PM2.5-related years of life lost from 2015 to 2050 calculated using 
GBD 201934,35 relative risk functions. The bars represent the results using the central estimates, 
whereas the error bars represent the deaths estimated based on the 95% confidence interval of 
the relative risk functions from the Global Burden of Disease Study.34 Years of life lost (YLL) is 
calculated from: ∆YLL = ∆Mort × YLL!, where YLL! is the baseline years of life lost (i.e., life 
expectancy at a certain age). YLL! is adopted from the GBD 2017 abridged life tables44 by country 
and age group at five-year intervals. Since life expectancy can also change with socioeconomic 
development and the availability of health care resources, future work should consider projecting 
evolving life expectancy over time, instead of assuming it stays constant at the present-level level. 
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Figure S14. Cumulative global PM2.5-related years of life lost from 2015 to 2100 calculated using 
GBD 201934,35 relative risk functions. The bars represent the results using the central estimates, 
whereas the error bars represent the deaths estimated based on the 95% confidence interval of 
the relative risk functions from the Global Burden of Disease Study.34   
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