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 Abstract—The Pocklington equation in its standard form  
can be considered a  Fredholm integral equation of the first  
kind  with a singular kernel.   Managing the singularity 
during  numerical simulations presents certain practical  
difficulties.  In this  paper, an alternative form of the 
Pocklington equation for a thin,  bent,  ideally conducting  
wire is  derived in  the  form of a  Fredholm  integral equation  
of the second kind with a  regular kernel, which is  better  
suited for  numerical treatment. The kernel of the integral  
equation  does not  depend on the wire radius,  which enters  
only through  diagonal elements of the interaction  matrix.  
Both cases of loop and open-ended wires are considered  
with  loop wire antennas allowing for a  particularly simple  
formulation. Numerical simulations confirm the validity of  
the derived equations.   Numerical  results calculated for a  
specific circular  loop antenna  match available
experimental data.  

Index Terms—Thin wire antennas,  ideal conductors, the  
Pocklington equation.   

I.  INTRODUCTION  
 

Classical integral or integral-differential equations of  the  
Pocklington and Hallen t ype [1,2], describing radiation and  
scattering of EM  fields by thin, ideally conducting wires, are  
of significant practical interest and  have been extensively  
studied. These equations follow from  the boundary condition 
that requires absence of  the tangential component of the total  
electric field at the wire surface.  The total electric field  
consists of both a known incident and scattered field, the latter  
due to a  generally unknown current induced in the wire. The  
scattered electric field at a given point on  the wire surface  
consists both of a “far” field associated with observation points  
separated from a given point on the wire by distances
significantly exceeding the wire’s radius a, and by a “near” 
field associated with nearby observation points that can be  
arbitrarily close to a given point on  the wire.  Near field  
calculations require managing a logarithmic singularity in the  
kernel of  the Pocklington equation. This singularity is an  
important feature that makes the Pocklington  equation
solvable and well-posed [3,4]. This singularity can be avoided 
by replacing the boundary condition at the wire’s surface by  
the requirement that the electric field vanish at the central core  
of  the wire, since the total electric field inside an ideally  
conducting wire must also tend  to  zero.  Such a replacement,  
however, renders the resulting equation, strictly speaking, non-
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solvable [5,6].   Moreover, such a replacement does  not  
eliminate the  necessity of an accurate treatment of  the near  
field, which  has a significantly different structure that  the far  
field.  
 
Numerical solutions of the thin wire equations are  usually  
obtained with t he  help of the  method of  moments (see, e.g. [2],  
or many other textbooks dealing with antenna theory).  In this  
case the problem  generally reduces to calculation of integrals  
of products of  the kernel, and basis and trial functions selected  
for numerical solution.  The “exact”  kernel of the Pocklington 
equation can be generally expressed in terms of elliptic 
functions, and  the calculation of  the corresponding integrals  
may be  nontrivial and time consuming (see, e.g., [7-9]).  The  
ultimate source of these complexities is the presence of the  
near field.  Calculations of contributions  from the far field are 
straightforward.  There is, however, no distinct boundary 
separating the near  and  far fields.   
 
Most 1of the published work on wire antennas considers the  
case of straight wires.  Bent wires were first considered in [10-
12]. Concrete applications  for the case of an elliptical wire  
have also been presented (e.g., in [13]).  In t his development  
an approximate kernel was used, and the near field calculation  
was treated numerically. The issues associated with  
singularities of the  kernels in the integral equations pertain to  
both straight and bent wires.  
 
For the reasons outlined above, the representation of  the  
Pocklington equation in a form where the effects of the near  
field are extracted and treated analytically, and the remaining  
kernel of  the integral term is rendered non-singular (including 
the limit  ), is of interest.  One possibility to achieve this  
is to subtract from the kernel the corresponding logarithmic  
term [14]. However, this  makes the  governing equation m ore  
cumbersome because the logarithmic term, correctly  
describing the interaction of currents at small distances, is  
inaccurate at larger distances, and  the corresponding  
contributions  must be compensated.  
 
In this paper an alternative approach  for handling  the  
singularity in the  kernel of the Pocklington equation is  
suggested.  Namely, we  demonstrate that the contribution  from 
the near field can be represented as a sum of  two terms: an  
integral with a wire-radius-independent, non-singular kernel,  
and a second  term in the form of a scalar factor that contains  
the Hankel function with the argument proportional to the wire  
radius.  Thus, the Pocklington equation, which in its traditional  
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form represents a Fredholm integral equation of  the first kind  
with a singular kernel, becomes essentially a Fredholm integral  
equation of  the second  kind with  a non-singular kernel. An
additional useful feature of  the new representation is  that  the  
non-singular kernel does  not depend on the wire radius.  Both 
cases of a loop and open-ended wire antenna are considered.  
The case for the loop antennas allows for a  particularly simple  
formulation.  

 II.  DERIVATION  
 

The derivation t hat  follows is somewhat lengthy.  Before
proceeding we outline the  major logical steps.   First, we
specify a general equation representing an electric field in
terms of a current density f or the case of a thin-wire and
substitute the corresponding expression into the boundary
condition. The boundary condition assumes an ideal conductor  
and is  formulated as a limit when an observation point tends  to  
the surface of  the wire (eqs. (1)  – (5)).  Second, to facilitate
calculation of the limit we divide the wire into two parts: the  
points separated from the observation point by a distance  Δs  
that significantly exceeds radius of the wire   (i.e., the “far” 
points responsible for the “far” field), and the  points  that can 
be arbitrarily close to the observation point (i.e., the “near”
points responsible for the “near” field (see  eqs. (6)-(7)).  Third,  
we represent the current along  the wire as a superposition of  
harmonics (eqs. (8)-(15)) and consider the contribution from
each harmonic separately.  The calculation of the far field
contribution is straightforward, however, the contribution
from the near field requires a bit of extra work. Thus, at the 
fourth step, we approximate a piece of  the wire in the vicinity  
of the observation point by a section of a straight cylinder and  
calculate the near  field by extending the section of  the cylinder  
to infinity and subtracting the contribution from the added
“wings” (eqs. (16)-(17)).  The contribution from  the infinite  
cylinder is calculated using a well-known integral that leads to  
an explicit formula where the limit can be calculated by a direct  
substitution (eqs. (17)-(18)).   Finally, combining all terms
yields our resulting eq. (23). The  geometry and some  notations 
are illustrated in Fig.1.  

 

  
 
  
  
 

 

 

  

  
  
 
 

  

  

  
  
  
  
  

  
  
  
 

Fig.  1:  Illustration  of  the  geometry  and  the  field  calculation  procedure.  A
section  of  the  wire  approximated  by  a  small section  of  a  straight  cylinder  is
shown  in  the  center.   The  imaginary  “wings”  due  to  the  extension  of  the
straight section to  infinity are shown to the left and  right.   For easier rendering,
the  rest  of  the  curved  wire  beyond  the  central  piece,  which  represent the
imaginary  “wings”, is  shifted upwards.  Here  (𝑠𝑠, 𝜃𝜃)  and  (𝑠𝑠′ , 𝜃𝜃 ′)  define,
respectively,  the  observation  point  and  the  contributing  “near- field”  (central
section) and “far- field” (wings) points at the wire surface,  where  𝑠𝑠, 𝑠𝑠′  describe
arc  lengths along  the wire axis, and  𝜃𝜃 , 𝜃𝜃 ′azimuthal points on  the wire  surface. 

Maxwell’s equations  for a  monochromatic wave of  frequency 
ω propagating in  free space are given by:  
 

      
∇× H =  j − iωε0 E, ∇× E = iεµ0 H , ∇ ⋅ E = ρ / ε0 ,   (1a)  

 
where a time dependence 𝑒𝑒𝑒𝑒𝑒𝑒( − 𝑖𝑖𝑖𝑖𝑖𝑖)  is assumed, and 𝚥𝚥  and  
𝜚𝜚  represent  the current and charge densities, respectively.   
Applying the  𝛻𝛻 ×  operator to the second equation in (1a) above  
one obtains:  
 

( 
  2 i 

∇ +   K 2 ) E = − ( K j  2 + ∇( ∇ ⋅  j )) ,           (1b)  
ε ω0 

 
where 𝐾𝐾 = 𝑖𝑖/𝑐𝑐  is a wavenumber and the equation for the  
conservation of charge ̃𝑖𝑖𝑖𝑖𝜚𝜚 = 𝛻𝛻𝚥𝚥  was also used.  From  (1b) the  
n-th component (n = 1,2,3) of  the electric field at a point  𝑅𝑅�⃗   due  
to the currents  𝚥𝚥  (which we refer to as a scattered field) in index  
notation is given by  
 

   
 K g  2 (R − R ' j R ' −  

(  ) i  ) n ( ) 
E ( )  sc R       (2)  

n =  ∂2 g R − R ' dV  ,
4πε  ∫ 

0 ω  ( ) R 
− 

 j Rα ( '
')


 ∂ ∂x x  n 'α  

 
where  
 

(  eiKr 
g R  ) = , r = 

 R 
r 

 
coincides with the Green’s  function for the wave equation in  
3D within a factor of  −1/(4𝜋𝜋). 
 
The boundary condition for an ideal conductor is given by:  
 

 (  (  )  
τ E (sc) R  + E ( )  in (R ))  = 0,                   (3)  

R ∈Σ 

 
where 𝜏𝜏  is an arbitrary vector  tangent to the surface 𝛴𝛴  of the  
ideal conductor and 𝐸𝐸�⃗ (𝑖𝑖𝑖𝑖)is an incident electric field.  Let us  
consider the case of a thin wire:  
 

Ka >>1,  
 
where a  is the  radius of  the wire. Let  s be an arc length 
calculated along  the central line of the wire. We will  assume  
that  the skin-layer depth is very small so that  the volume  
integration in (2) reduces to a surface integration.  According  
to the thin wire approximation we will assume that the current 
at a given cross-section of the wire  is uniformly distributed  
over the wire circumference and is directed along  the axis of  
the wire.   Then  
 

 
 

) j dr 
j R  ( = s s ,                                (4)  

2π a ds 
 
where  𝑗𝑗𝑠𝑠  is a total current at the wire's cross-section at a point   
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s  and  𝑟𝑟𝑠𝑠 = 𝑟𝑟(𝑠𝑠)  are coordinates of  the center line at point  s.  
Substituting (4) into (2), and the result into the boundary 
condition (3), and setting in (3)  𝜏𝜏 = 𝑑𝑑𝑟𝑟𝑠𝑠/𝑑𝑑𝑠𝑠  we represent  the   
boundary condition in the  following f orm:  
 

  ∂2   − 
2 

g R  
 

) dr dr ' ((
R '  

 li n ) 
n dr n dr ' m  K g R  − R ' − α

 ∫ 
 R→ρ θ(s , )  ds ds ' ∂ ∂xn x ' α ds ds '  (5)  

    R '=ρ(s ',θ ') 
 dθ '   dr

× j s  ds ' = i4πωε E ( )  in 
 ' 0 (rs ) s ,

2π ds 
 

where θ, θ′  are azimuthal angles at  the cross-section planes of  
the wire at points  s, s′, correspondingly, and the points  𝜌𝜌(𝑠𝑠, 𝜃𝜃)  
and  𝜌⃗𝜌(𝑠𝑠′, 𝜃𝜃′)  describe the wire surface.  We put in the LHS of  
(5) a limit sign since if one immediately sets  𝑅𝑅�⃗  = 𝜌⃗𝜌(𝑠𝑠, 𝜃𝜃)  the  
integral will generally contain non-integrable singularities  
(due to �⃗ �⃗ −2,−3 

�𝑅𝑅 − 𝑅𝑅′� order terms).  
 
To facilitate calculation of the limit we will split the integration  
over  s′ in (5) into an integration over far points  s′  that are  
separated from  the point  s  by some finite interval  Δs  with |s′-
s|>Δs and near points with  |s′-s|<Δs.   We will assume that th e  
selected half-length of  the interval Δs  significantly exceeds the  
radius of  the wire a  but is significantly smaller than
characteristic radius of curvature 𝑐𝑐−1 

𝑤𝑤𝑖𝑖𝑤𝑤𝑤𝑤  of the central line of  the  
wire, that is,  𝑎𝑎 ≪ 𝛥𝛥𝑠𝑠 ≪ 𝑐𝑐−1 

𝑤𝑤𝑖𝑖𝑤𝑤𝑤𝑤. With respect  to the  far points in 
the RHS of (5) to an accuracy of  O(Ka)  one can set  𝑅𝑅�⃗  = 𝑟𝑟𝑠𝑠  and  
𝑅𝑅�⃗ ′ = 𝑟𝑟𝑠𝑠′.  With respect to the near points we will approximate  
the corresponding piece of wire by a straight cylinder. Let  us  
assume that the observation point  𝑅𝑅�⃗   tends to the point  𝜌𝜌(𝑠𝑠, 𝜃𝜃)  
on the wire surface along the ray that is orthogonal to the  
central line of  the wire at a point  s  and  has azimuthal angle  θ.  
In this case for the near points one has:  
 

   1/ 2 
D = R − R ' = b 2 + a2  − 2ab cos (θ −θ ') + −(s s 2 

 ' ,
 )  
  

 
where D  is the distance between the observation point and a  
point  𝜌𝜌(𝑠𝑠′, 𝜃𝜃′)  on the straight cylinder surface and  𝑏𝑏 = �𝑅𝑅�⃗  − 𝑟𝑟𝑠𝑠�  
is the distance between the observation point and  the wire’s  
central line.  Performing a straightforward calculation  for the  
far points one can write (5) as:  
 

2π dθ ' s+∆s  dr  dr '  ∂ 2g D( ) 
lim 
b a  → ∫

 
∫ 2 )  

  K g (D  ,  −  j s ds ' +
2π  '  

0 s−∆s   ds ds '  ∂ ∂s s '       (6)   
 dr 

+  ∫ U (


s, 's ) j i s 
s ds ' = 4πε 0 ωE ( )in ( ' rs  ) ,

s s− ' >∆ s ds

 
where  
 

eiKr dr dr  
U ( s, 's ) 

3 ( 2 2   
 = K r + iKr −1 )  s , s ' 

 −
r  ds ds '     (7)  

          
−(K 2 2r + 3iKr − 3) r s − rs ' dr r −, s    r dr  

 
s s ' s ' 

 ,  .
 r ds   r ds '   r r  = s −rs ' 

 

Note that U  in (7) is a symmetric function  .   
Let us represent  as a superposition of the Fourier harmonics:  
 

∞ 

j = ∫ eips j dp , (8)  
s p 

−∞ 

 
where spectral parameter  p  has a dimension of wavenumber.  
Now we represent (6) as follows:  
 

∞ dr
∫ L p (s )


ĵ dp = i4πε ωE ( )  in ( r ) s ,                     (9)  

p 0 s 

−∞ ds 

 
where  
 

2π s+∆s     
( ) ∫ ∫ 2 ( ) dr dr '  ∂2

  g D  ( )  
L s = lim  K g D  ,  − e ips ' dθ ' 

p b a  →  ds ' 
0 s−∆s   ds ds '  ∂ ∂s s ' π 2  (10)           

+ ∫ U (s, s ')e ips ' ds '. 
s s− ' >∆ s 

 
Integrating by parts we obtain:  
 

s+∆s ∂ 2g D( ) 
∫ e ips ' ds ' =

s−∆s ∂ ∂s s '      (11)   

 ∂g D  ( )  s+∆s
s s' s

= i
+∆

 pg (D) − e
=

 ips '  
+ p2 ∫ g  ips '  

 ∂s '  s s'= −∆  
D

s
( )e ds '. 

s−∆s 

 
When calculating substitutions in (11) we take into account  the  
condition  𝛥𝛥𝑠𝑠 ≫ 𝑎𝑎 and approximate  

 
e iK s−s ' 

g D( ) ≈ . (12)  
s s− '

 
Then straightforward calculations give:  
 

 ∂g D  ( ) D)  
 ipg ( −  e 

s s'= +∆sips '  
=

 ∂s '  s s'= −∆s

     (13)   
= 2e ips + ∆iK s iK∆s −1 p  2 cos ( p s∆ ) +  ⋅sin ( p s∆ ) = 

 ( s)  ∆ ∆s  

 2 2iK  ∞ e iKt 

= e ips ∫  −  iK t +ipt ips 2 
3 + 2 e dt + 2e K p ∫ cos ptdt,

 t 
t >∆s t  ∆s t

 
where  
 

 K K 2 − p2
p = , Im K p ≥ 0.                     (14)  

 
One can easily check  the integral  representation of the  middle  
expression in (13) by differentiation with respect  to . Now  
(10) becomes:  

 



 

2π s+∆s dθ ' ∞ eiKt 

L 2 
p (s ) = lim K p → ∫ ∫ g

b a   (D)e ips ' ds ' + 2eips K 2 

2π p ∫ cos ptdt 
0 s−∆s ∆s t (15)  
 2 2iK  

+ e ips ∫  − + e iK t +ipt dt + U (s, s ')e ips ' ds '. 
 ∫ 

t >∆s  t 3 t 2 
 s s− ' >∆ s

 
To calculate in the RHS of (15) in the limit  b →a  we first  
extend  the integration over  s′  to infinite limits and  then subtract  
from  the result  the contribution from points  |s-s′|>Δs. Again,  
for the "far" points approximation (12) can be  used,  and one  
finds:  
 

s+∆s ∞ ∞ iK
 e t 

∫ g (D)e ips ' ds ' = ∫ g (D)e ips ' ds ' − 2e ips ∫ cos ptdt.      (16)  
s−∆s −∞ ∆s t 

 
Using formula 3.876 (1,2) from [15] one obtains:  
 

∞ ∞ exp (iK d 2 
 2 + −(s s ') )  (17)   ∫ g (D)e ips ' ds ' = ∫ e ips ' ds ' = iπeips H (1)

0 (K pd ) ,
−∞ −∞ d 2 + −(s s ' )2 

 

 
where  
 

d 2 = b 2 + a 2 − 2ab cos (θ −θ ') . 
 
When one crosses the surface of  the cylinder the tangent  
electric field remains continuous, and it does  not  matter  
whether we calculate the limit  b→a  from inside or outside of  
the  cylinder.   Let us  assume that  the observation point  
approaches the cylinder surface from inside of the cylinder  
(which we thus consider a "hollow tube").  Integration of  the  
RHS of (17) over  θ′  is closely associated with the problem of  
diffraction of EM waves from an infinite,  perfectly conducting  
cylinder, and it can be evaluated  using f ormula 8.531(2)  from  
[15]:  
 

2 π 

0 ( 2 d  ' H (1) θ
∫ K p b + a2 − 2ab cos (θ −θ ')
0

) =
2π          (18)  

= H (1) 
0 (K bp ) J 0 (K p a).

 
Now the limit b →a  can be calculated by simply setting in the  
RHS of (18)  b =a.  Substituting (16) and (18) into (15) one  
obtains:  
 

L p (s ) = iπ K 2 ips (1) 
p e H 0 (K ap ) J 0 (K ap ) +

   (19)  
  

+ e ips 2 2iK 
∫  − +  eiK t +ipt 

3 2 dt + ∫ U (s, s ')e ips ' ds ',
 

t >∆s t t   s s− ' >∆ s

 
or, after replacing in  the first integral in the RHS of (19)  

:  
 

L 2 ips H (1) 
p (s ) = iπ K pe 0 ( K ap ) J0 (K ap ) +

        (20)  
+ K 3 ∫ V (s, 's )e ips ' ds '

s s− ' >∆ s 
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where  
 

 2 2iK  
K 3 V ( s s, ') =  −  + e iK s '−s       (21)   s s, '). 

 3 
 s s'− 2 +U (

 ( ) 
 s s'− 

 
We  note one important point  here. After  multiplication by  𝚥𝚥𝑝𝑝  
and integration over  p  according t o (8), both t he second and  
third terms in the  RHS of (19) become integrals over  𝑑𝑑𝑠𝑠′  with  
the integrands proportional to 𝑗𝑗𝑠𝑠′. For this reason, for an open-
ended antenna,  the integration over  𝑠𝑠′ should proceed over the  
length of  the antenna only since  𝑗𝑗𝑠𝑠′  becomes  zero beyond it.   
This  fact is  used in (24) below.  For a loop antenna, however, 
this is not  true, since in this case  𝑗𝑗𝑠𝑠′  becomes a periodic 
function of  𝑠𝑠′, and the contribution f rom  𝑠𝑠′  lying beyond  
(−𝐿𝐿/2, 𝐿𝐿/2)  has to be subtracted from  the second term in (19)  
(see equation  (29) in the next Section).  
 
Normalization by  𝐾𝐾3  introduced in (21)  makes  𝑉𝑉(𝑠𝑠, 𝑠𝑠′)  
dimensionless.  It is also a symmetric function:  
 

V s( , s ') = V s( ', s) . (22)  
 
It is demonstrated in Appendix A  that  the function V(s,s′)  is 
continuous at  s=s′  since singularities in  the parentheses and  U-
term  in (21) cancel out.  This fact represents  the major finding  
of this work.  It confirms indirectly that approximation of the  
piece of  wire at  |𝑠𝑠 − 𝑠𝑠′| < 𝛥𝛥𝑠𝑠  by a straight cylinder is  
sufficient and a more accurate approximation is not  needed.   
Due  to the regularity of  𝑉𝑉(𝑠𝑠, 𝑠𝑠′)  at s=s′  we can now extend the  
integration over  s′  in the second  term of  (20)  to include  the  
interval  |𝑠𝑠 − 𝑠𝑠′| < 𝛥𝛥𝑠𝑠,  which introduces a small error of order  
Ka  but removes  from consideration the arbitrary parameter  Δs  
subject to the assumption  𝑎𝑎 ≪ 𝛥𝛥𝑠𝑠 ≪ 𝑐𝑐−1 

𝑤𝑤𝑖𝑖𝑤𝑤𝑤𝑤 .  Substituting the  
result into (9) we find:   
 

∫ (iπ K 2 ps 
p e i H (1) 3 

0 (K p a) J 0 (K p a) + K ∫ V (s, 's )e    ips 'ds ') j pdp =   (23)                           
  dr

= i4πε in s 
0 ωE ( )  (r s ) .

ds 
 
Substituting into (23) the expression f or  by inverting (8):  
 

1 ∞

j −ips  
p = ∫ e j

2π   s ds 
−∞ 

 
and integrating over p we obtain the following equation:  
 

 d 2  L/2  L/2

 K 2 +  ∫ T 2 (s − s ') j ds ' + K 3 

ds s ' ∫ V (s, s ') j s ds ' = 24)  
 

 '     (
−L/2  −L/2  

 
 i4πε ( )   dr

= ωE in (r ) s
0 s ,

ds 
 
where L  is the antenna length and  
 

i ∞

T (s ) = ∫ H (1)  K 2 2  
0 ( − p a) J0 K 2 2  − p a e  dp . (25) 

2 −∞
( ) ips  

̂

 



 

In fact,  𝑇𝑇(𝑠𝑠)  in (24) coincides with the so-called “exact” kernel  
of the Pocklington equation [1,2].  To verify this one can repeat  
the steps  that led to representation (25) in reverse order, that is,  
replace the product of  𝐻𝐻(1) 

0  and  𝐽𝐽0  in (25) by t he  LHS of (18),  
and then u se representation (17). The integration over  p  then  
produces a  δ-function and one obtains:  
 

1 ∞ e iK s2 +4a2 2    sin (θ /2) 

( ) = ∫ θ                  (26)  T s  d .
2π s 2 + 4a 2 sin 2−∞ (θ / 2) 

 
The asymptotic form of the Bessel functions in (25), which 
takes into account that  generally  𝐾𝐾𝑝𝑝𝑎𝑎 ≪ 1, can  also be used if  
preferable.   In particular, expanding in (26)  𝐽𝐽0�𝐾𝐾𝑝𝑝𝑎𝑎�  into a  
power series one obtains:  
 

2n  d 
n 

 2 

∞
a  K 2 +

 ds 2 
∑  i ∞ 

T (s n   ) = (−1) 2 ∫ H (1) 
0 ( K 2 − p2 a)e ips dp  

2 2 n 
n=0 (n!) 2 −∞ 

 
or, after calculating t he integral using formula 6.677(8) in [15]:  
 


n 

 d 2 

a2n 


2
 K +

ds(
∞ 2  iK 2  a2 +s

T s) = ∑ (    e 
−1)n   . (27)  

2n 
n=0 2 (n!) 2 

a 2 + s 2 

 
The first term n=0  in (27) corresponds to the so-called  
“approximate” kernel, and  the rest of the sum represents  
corrections that are generally of order  (𝑎𝑎𝐾𝐾)2𝑖𝑖 (a  similar  
representation was considered in [16]).  
 
Equations (23) and (24) are the  major results of this work.  It  
is easy to show that  for a straight wire the kernel  V  becomes  
zero, and (24) coincides with the Pocklington equation.  For  
the case of a curved wire, (24)  includes an additional integral  
term. An important difference with respect  to previously 
considered formulations for curved wires [10-12] is that  the  
integral  V-term in (24), which represents the effects of the  
deviation of the wire from a straight segment, does not depend  
on the wire’s radius and has a  non-singular kernel.  

III.  THE CASE OF A L OOP  WIRE  
 

Let  us assume  that  the wire forms a closed loop of length  L  
(not  necessarily circular, or  a single turn, or of trivial topology 
[17]). In  this case it is convenient to start with (23) in which  
we can now set  
 

∞  2π jp = ∑ jmδ  p − m . (28)   
m=−∞  L  

 
For the case of a loop wire, however, we have to make in (23)   
the  modification m entioned in t he paragraph following (21), 
namely, since  now  the integration over  s′  in the second integral  
term in (19) is limited  to  (−𝐿𝐿/2, 𝐿𝐿/2), in the RHS of (19) there  
now appears an additional term  𝑒𝑒𝑒𝑒𝑒𝑒(𝑖𝑖2𝜋𝜋𝜋𝜋𝑠𝑠/𝐿𝐿) 𝐾𝐾2𝑣𝑣�𝑚𝑚 , where  

5 

1 ∞  2 2iK v m =  2 ∫  − 3 + i +i2π m/ Lt 
2 e K t dt =

K  
t L> /2   t t  

m −     (29)  iKL 2 iKL/2  K 2

 = 4(−1) 2 e − m Ei (i (KL / 2  +π 
( 2 m)) −
KL) K 

K 2
− m

2 Ei (i ( KL / 2  −π m)). 
K 

 
In (29), and in what  follows,  
 

2  2π 
2 

                 K                  (30)  
m = K −  m  , Im K ≥ 0

 L 
m

 
 
and  
 

∞ eixt 

Ei (ix) = ∫ dt                                (31)  
1 t

 
is the exponential integral function of imaginary argument.  
Substituting (28) into (23), taking into account (29), 
multiplying by 𝑒𝑒𝑒𝑒𝑒𝑒(−𝑖𝑖2𝜋𝜋𝜋𝜋𝑠𝑠/𝐿𝐿) /(𝐾𝐾2𝐿𝐿), and integrating over  
s, one obtains the  following g overning  equation:  
 

 K 2  ∞ 

 iπ n H (1) 
K 0 ( K an ) J 0 (K an ) + vn  j n + ∑ Vnm  j m =

  m=−∞       (32)   
L/2   4πε ω 

= i 0 ∫ e−i2π ns / Ls E ( )  in (  drs
s ) ds,

K 2 r
L −L/2  ds

 
where  
 

   K L/2  L/2  2π

∫ (s, 's ) (
V = ∫ V  e

−i ns−ms ')
nm     L ds ds '              (33)  

L −L/2  −L/2  

 
and  the regular dimensionless function 𝑉𝑉(𝑠𝑠, 𝑠𝑠′)  in (33) is  given 
by (21).  In  fact, one can set in (32)  𝐽𝐽0(𝐾𝐾𝑖𝑖𝑎𝑎) = 1. 
 
For numerical simulations let us consider the case of a circular  
wire  loop of radius  ρ. In this case  
 

V (s s, ') = V ( )c (ρ θ, −θ ' ) , (34)  

 
where 𝜃𝜃 = 𝑠𝑠/𝜌𝜌  is an azimuthal angle. Then one obtains  𝑉𝑉𝑖𝑖𝑚𝑚 = 
𝑉𝑉(𝑐𝑐)
𝑖𝑖 𝛿𝛿𝑖𝑖𝑚𝑚  , where  

 
π 

V ( )c   ( )c
n = 2K ρ ∫V (ρ θ, ) cos n dθ θ

0 

 
and (32) provides an explicit result:  
 

−1
ω  K 2


n ips (1) 

j = i iπ e H ( K a) J ( K a) + v c 
n  ( )

2 0 +V ×


2 0 n n n n K L           (35)  
 K 

L/2    dr 2π

× ∫ ( )  E
−in s

 in (r s L
s ) e ds. 

−L/2  ds



 

Let us consider the case of a plane wave propagating along the 
z-axis orthogonal to a circular loop lying in the  (𝑒𝑒 , 𝑦𝑦)  plane 
centered at  the origin, with an incident electric field vector  
directed along  x-axis of amplitude  E0.  Then, in the RHS of  
(32), one  has  
 

 

E ( )  in (  dr r s ) s = E θ
ds 0 cos ,

 
and the integral in the RHS of (32) is nonzero  for  𝜋𝜋 = ±1  only,   
that is, the induced current is a sinusoidal function of  the  
arclength. The results of a numerical calculation of  the x-
component of the  total electric field (i.e., the sum of  the  
incident and scattered fields) as a function of  y-coordinate is  
shown in Fig.2.  The radius of the circular loop was set to  ρ=1 
m, the wavelength t o λ=2 m, and radius of the wire to a=1 mm.   
The electric field was calculated by direct  numerical
integration (using Simpson’s rule) of  the  3D integral in (2),  
with 𝑗𝑗±1  given by (35).  The  total electric field (Fig. 2, upper  
plot) tends to zero at  the surface of the wire as it should.  An 
enlarged section of  the plot in the vicinity of the wire  is  shown  
in the lower figure.  One can see that at distances too close to  
the wire direct numerical integration begins to lose accuracy.   
It is worth mentioning that the second term  𝑉𝑉(𝑐𝑐)

1  in the  
denominator of (35), which takes into account the curvature of  
the loop, constitutes about 10.6 % of  the first term.  

1

| 
0 

/E a = 0.001 m

x 0.5  = 1 m

|E

 = 2 m 

0 
0 1 2 3 4 5 6 

y (m) 

1

| 
0 

/E
x 0.5 

|E

0 
0.998 0.9985 0.999 0.9995 1 1.0005 1.001 1.0015 1.002

 y (m) 

Fig. 2:  The  total n ormalized  electric  field  amplitude |Ex/E0| as a  function of the  
y-coordinate  for a  circular  loop antenna  centered  on  the  x-y  plane and a 
normally  incident plane  wave  with an  x-directed  electric field  of magnitude E0.   
The total  field tends to  zero at the surface of the wire.  The  lower plot  is an  
enlarged  version  of  the  upper  plot  in  the  vicinity  of  the  wire.  The  artificial  rise  
in  the  intensity  is  due  to  the  loss  of  the  accuracy  of  the  direct  numerical  
integration  in (2) when the observation point  gets too close to the wire surface.  
This  reflects  the  fact that direct setting of the  observation point onto  the  surface  
of  the  wire  leads  to  divergent integrals.  
 
We have also considered the case of delta-gap excitation of the  
loop assuming   
 

  E ( )  in ( r s ) = V 0 δ ( ρθ )ey 
 

 
In Fig. 3 we show the amplitudes of the  harmonics  𝚥𝚥𝑖𝑖  of the  
induced current in the upper plot, and the resulting current  I = 
∑ 𝚥𝚥𝑖𝑖   in the lower plot.  The voltage was set to V0  = 1 V.  
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Fig.3: The upper  figure shows the amplitudes of the  harmonics of the  induced  
current I  as  a  function  of  the  harmonic  index  for  a  δ-gap loop antenna and the  
geometry described in Fig. 2.  The  lower  figure shows the real and imaginary 
parts of the  resulting current (solid and dashed lines, respectively) as a  function 
of azimuthal  angle  θ.  
 
The dependence of the input admittance of the loop, which is  
defined as a ratio of  the induced current at  the point of  
excitation  (𝜌𝜌, 0)  to the voltage  V0, is shown in Fig. 4  as a 
function of  the ratio of the  loop diameter  2ρ  to the wavelength. 
The circles represent the theoretical results presented  in Storer  
(eq.(10) in [18]), and  the solid/dashed lines the  theory  
presented here for the real/imaginary parts of  the input  
admittance.   The   agreement   is  good  with the exception of a   
slight deviation of the imaginary part of  the admittance for  
relatively small loops.  A possible  reason for this may be the  
additional approximations introduced in [18] to evaluate  
analytically certain integrals that  here were calculated by  
direct numerical integration.  

Fig. 4. The  theoretical  input admittance of the  circular  loop  wire antenna  for  
the geometry described in Fig. 2 calculated  from  eq. (35)  with a  δ-gap  
excitation as a  function of the  normalized  loop diameter 2ρπ2/λ.  Both the  real-  
and imaginary  parts  of  the  impedance  (solid and dashed lines, respectively)  
are  shown.   The  circles  indicate  theoretical  results  reproduced  according  to  
eq. (10)  in  [18].  
 
A comparison between our theoretical result for  the input  
admittance and  the measured input admittance from  Kennedy  
[19] is shown in Fig. 5.  The latter was generated by digitizing  
Fig. 11 in [19]. The agreement is exceptionally g ood for  the  
real part and deviates only slightly for  the imaginary part.  
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7 

Together, Figures 4 and 5 demonstrate the relatively good 
agreement between the new theory developed here and earlier 
theoretical developments and measurement campaigns. As 
was mentioned before, the function V in (21) and (34) is in 
fact non-singular. A non-singular analytic form of the 
function 𝑉𝑉(𝑠𝑠, 𝑠𝑠′) for a circular loop is presented for reference 
purposes in Appendix A. 

Fig. 5.  The theoretical  input admittance of the  circular  loop  wire antenna  for  
the geometry described in Fig. 2 calculated from eq. (35)  with a  δ-gap  
excitation as a f unction of the n ormalized  loop diameter 2ρπ2/λ  compared  
with  the  measured results of Kennedy [19].   Both  the real- and  imaginary  
parts of  the  admittance (solid and dashed lines, respectively) are shown.  

IV.  THE CASE OF AN OPEN-ENDED WIRE   
 

For  the case of open-ended wire, the governing equation (24)  
coincides  with the standard Pocklington equation with an 
additional integral term  having a non-singular kernel.  Thus,  
all methods developed for numerical solution of the  
Pocklington equation can be  applied to (24)  with a  
straightforward modification.  
 
The first and  the second integral terms in (24) are significantly  
different.   Namely, the kernel  V  of  the second term represents  
a non-singular function and can be calculated by any suitable  
integration scheme (e.g., by the Simpson’s rule) with a grid of   
points with a density that is  not related to wire radius  a. The  
first integral in (24), on  the other hand,  has a logarithmic  
singularity at  , and in  the vicinity of  this point varies on  
the scale of the wire radius  a. This logarithmic singularity  
ensures  that  the Pocklington equation for a straight wire with 
the exact  kernel is solvable [3], and special care must be taken 
to account  for this singularity in the  numerical simulations.  In  
this Section we suggest an alternative approximate form of the  
Pocklington equation t hat does  not  have such a problem. In this  
form a wire radius  a  enters the  governing equation only in 
diagonal  elements  of the interaction matrix.  
 
In what f ollows it will be more convenient t o replace the limits  
of integration in (24) by (0, 𝐿𝐿), and represent the current in the  
form  
 

∞ πj  
 

s = ∑ jm sin (ξms), ξm = m  . (36) 
m=1 L 

This representation ensures fulfillment of the boundary 
conditions 𝑗𝑗(0) = 𝑗𝑗(𝐿𝐿) = 0. Let us substitute (36) into (24), 
represent 𝑑𝑑2/𝑑𝑑𝑠𝑠2𝑇𝑇(𝑠𝑠 − 𝑠𝑠′) = −𝑑𝑑2/𝑑𝑑𝑠𝑠𝑑𝑑𝑠𝑠′𝑇𝑇(𝑠𝑠 − 𝑠𝑠′), multiply 
the result by 2 𝑠𝑠𝑖𝑖𝜋𝜋 (𝜉𝜉𝑖𝑖𝐿𝐿) /(𝐾𝐾2𝐿𝐿), and integrate by parts 
transferring the action of the differential operators from the 
kernel T to the sin-functions. As a result, one  obtains: 

∞  ( )  ξ ξ (C )  8πε ω L 
(in)  dr   (37) S n m  0 sT − T +V j = i sin ξ s E r ds∑ nm 2 nm nm  m 2 ∫ ( n ) ( )s 

m=1  K  LK 0 ds 

where 

( )S 2 L L
            (38) Tnm = ∫ ds sin (ξn s) ∫T (s − s ')sin (ξm s ') ds ',

L 0 0 

( )  2 L L
           (39) Tnm

C = ∫ ds cos (ξn s) ∫T (s − s ')cos (ξm s ') ds ',
L 0 0 

and 

K L L 

Vnm = 2 ∫ ds sin (ξn s) ∫V (s, s ')sin (ξm s ') ds '. 
L 0 0 

Expressing (24) in terms of the functions 𝑠𝑠𝑖𝑖𝜋𝜋(𝜉𝜉𝑖𝑖𝐿𝐿) somewhat 
restricts the class of the RHS of (24), however, it simplifies the 
results.  To maintain similarity with the case of loop wires we 
will represent (37) in the following form: 

2 ∞Kn (1) iπ 2 H ( K a) jn + ∑(T +Vnm ) j = 0 n nm mK m=1             (40) 
L 8πε ω  dr0 ( )in s= i 2 ∫ sin (ξns) E ( )s ,r ds 

LK 0 ds 

where 

( S ) ξ ξn m  (C ) Kn 
2 

(1) K a              (41) Tnm = Tnm − 2 Tnm − iπ 2 H0 ( n )δnm. 
K K 

The last term in (41) will be compensated by corresponding 
(𝑆𝑆) (𝐶𝐶)contributions in 𝑇𝑇𝑖𝑖𝑚𝑚 , 𝑇𝑇𝑖𝑖𝑚𝑚 so that 𝑇𝑇𝑖𝑖𝑚𝑚in the LHS of (41) is in 

fact independent on wire radius a. The procedure for the 
calculation of entries Tnm is presented in Appendix B. For 
straight wires one has in (40) 𝑉𝑉𝑖𝑖𝑚𝑚 = 0. 

The results of a case study of (40) are shown on Fig. 6. A 
standing plane wave impinges on a piece of straight wire of 
length L = 2.25 m at an angle 30o so that 

 
in  drs  K  L E ( )  ( )s = 0 cos  s r E  − . 

ds  2  2  

The wavelength is λ = 1 m and the wire radius is a = 1 mm. 
The incident field is distributed along the wire length 
symmetrically so that only modes with odd indices m in (36) 
are excited. Twenty odd modes were included into the 
numerical solution of (40). The amplitudes of the excited 
modes as a function of mode index are shown on the upper plot 
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of  Fig. 6 (only odd modes are shown and the strength of the  
electric field  was set to  E0  = 1 V/m). The dependence of  the  
total electric field as a function of  y-coordinate (which is  
orthogonal to  the plane of incidence) is shown on the lower  
plot (which is similar to Fig. 2). The  total electric field at the  
wire tends to zero confirming the validity of  the obtained  
solution.  

 |E
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Fig.  6. The  mode amplitude |jn| as a  function of mode index 𝜉𝜉  (top)  and the  tota l 
normalized  electric  field  amplitude  |Ex/E0| as a  function of the  y-coordinate  
(bottom)  for a  straight wire  antenna centered on the  x-y  plane and a plane wave  
of amplitude  E0 normally  incident at  an azimuthal angle of 30o.  
 

V.  THE CASE OF A SECTIONED WIRE  
 

The case of a single-piece wire was so far considered in this  
work.  However, generalization of  the  governing equation for   
the case of an antenna consisting of  multiple pieces is
straightforward.  Eq. (24) in this case takes the  following f orm:  
 

 q /2
 d 

L /2  L2  Q 

   − s 2 ∫
q 

K 2 +  T (s ') j (q)
s ' ds ' + K 3 ∑ ∫ Vqq ' (s, 's )   j (q ')ds ' =

 ds s ' 
=

 (42)   −L /2  q ' 1  
q −L q /2

 
(

(q)

= i4πε ωE (in) r (q) ) drs
0 s ds 

 
where q=1,2,…,Q  is an index representing different pieces of  
the wire, and   

 
 2 2i 

Vqq ' (s s, ') =  −  + e iK s ' −sδ + 
 K s3 '− 3 
   s K 2 (s s'− ) (4 2  qq '        3)  


1

+ 3 Uqq ' (s s,  ' ,)
K 

 
where  
 

  dr  ( q) 

(
( q ') 

 K 2 2  r + iKr −1)
s dr s ' 

 ,  − 
  ds ds '   iKr 

e   (44)  
Uqq ' (s, 's ) = − (K 2 2r + 3iKr 3 − 3

r  )× ,
        r (q) − r (q ') 

s dr (q) ( q) (q ') 
s ' s  r s − r s ' dr (q ') 

s ' × ,  ,      r ds r ds '      

 

 
where the bracketed  term is evaluated at  r = r ( )q ( q ') s −rs ' .   
Clearly  𝑈𝑈𝑞𝑞𝑞𝑞′ (𝑠𝑠, 𝑠𝑠′) = 𝑈𝑈𝑞𝑞′𝑞𝑞 (𝑠𝑠′, 𝑠𝑠)  and  𝑉𝑉𝑞𝑞𝑞𝑞′ (𝑠𝑠, 𝑠𝑠′)  are non-
singular functions.  
 

VI.  DISCUSSION AND CONCLUSIONS  
 
In this work the Pocklington equation for a thin, bent, ideally 
conducting wire was derived in a special form where the  
integral term, which represents curvature effects,  has a non-
singular kernel independent on wire radius (see (24)).  To the  
best of authors’  knowledge such a  form of the Pocklington 
equation was not considered in the literature previously.   
 
For loop wires the derived equation can be conveniently  
formulated in terms of  the Fourier-harmonics of the current  
(see (32)).  Numerical simulations for a circular wire confirm  
fulfillment of  the boundary condition.   A similar equation was  
derived for the open-ended wires (see  (37)  and  also for  
sectioned wires (see  (42)).  
 
It was  mentioned before that the wire is not required to be  
single-turn and can generally have an arbitrary shape.   
However, for the case of  multiple turns/recurrences it is  
assumed  that different  turns are not  too close to each other.  
When deriving t he basic equations (23)  and  (24) it was  
assumed  that the distance between  the points separated by  the  
arclength exceeding  𝛥𝛥𝑠𝑠 ≫ 𝑎𝑎  are “far” points, that is, the  
distance between a given point and all other points on  the wire  
beyond   significantly exceeds  a. Hence, the separation  
between corresponding points of the wire for different turns  
should significantly exceed radius of  the wire.  

APPENDIX A  
 
Let  us set in (7)  𝑠𝑠′ = 𝑠𝑠 + 𝑖𝑖  where 𝑖𝑖 > 0  and  𝑖𝑖 → +0.  One  has:  
 

  t 2 3  r − r = t∂ +r  ∂ 2
 t 3 4

s+t s s s r + ∂ +
2 6 s r O t  ( ) . (A1)  

 
By differentiating the identity  (𝜕𝜕𝑠𝑠𝑟𝑟, 𝜕𝜕𝑠𝑠𝑟𝑟) = 1  one has  
(𝜕𝜕𝑠𝑠𝑟𝑟, 𝜕𝜕2𝑠𝑠 𝑟𝑟) = 0, and differentiating  the latter identity one more  
time one  finds  (𝜕𝜕𝑠𝑠𝑟𝑟, 𝜕𝜕3𝑠𝑠 𝑟𝑟) = −(𝜕𝜕2𝑠𝑠 𝑟𝑟)2.   Using these identities,  
one obtains:  

r 2 =


− r  2 
 r s+t s = t 2 −αt 4 + O t( 5 ) ,

 α r = t 1− t 2   + O t( 4 ) , (A2) 
 2  

 
where  

1  2
α = (∂ 2 r ) . 

12 s 

 
Using (A2) one can also represent (A1) in the following form:  
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 r 2    r +
 

s − r 2  α  1 3  3 4
t s = r∂ +s r  ∂ r  ∂ +sr ∂

2 s +  
 2 6 s r  r + O r( ).

 
 
Now by straightforward calculations one obtains the following 
expansions:  
 

dr s '  2
2  t 3   = ∂ +r t ∂ r  +  ∂ +r O  ( t 3 ) ,  

ds ' s s 2 s

 dr  


s ' dr s  =   , − r 2 + O r( 3 ) ,   1 6α

 ds ' ds  
 r s+t − r   

 r   


s dr s  − r ,   ' 

 = 
s t+ s dr s  3

  ,  =  1− αr 2 + O r  ( 3 ).  
 r ds '   r ds  2 

 
Using these expansions, one obtains:  
 

eiKr 

U (s + t, s) = 
3 ( K 2 2  r + iKr −1 1)( − 6ar 2 ) − ( K 2 2r + 3iKr − ×3 )r  

 3  2 2iK α × −1 ar 2 
2 3  3


i

 + O (r ) = e Kr 
 − −  + O (1)

 2    r3 r 2 
 r 

 
and then using (A2):  
 

  
  2 2iK 3αU (s + t s, ) = e iKt  

 α 
3 −   

 t 2 − + O (1 ) =
  

 t 3 2 t 
1− t   

  2   

iKt  2 2iK  = e  − 3 2  + O (1 .  )
 t t  

 
Quite similarly one considers the case of  negative t: 𝑖𝑖 → −0. 
In the latter case parameter  t  in the resulting formula  has to be  
replaced by  |𝑖𝑖|. It is interesting that parameter α associated with  
curvature of the central line disappears from the final formula  
for  𝑈𝑈(𝑠𝑠 + 𝑖𝑖, 𝑠𝑠). One can see that the first two (singular) terms  
in (21) cancel out by corresponding terms in  U.  
 
Let  us consider the case of a circle with radius  ρ  and let  θ>0  is  
an angle between  s  and  s′  points on the circle. In  this case  
 

θs s'− =  ρθ , r = 2ρ sin  
2 

 
and  
 

 2 2i  eiK ρ sin(θ /2)
V (θ ) = iK 

 −  ρθ 
  3 3 3 +

 K ρ θ K 2ρ 2θ 2  e +
 K 3ρ 3 si 3 ×

   n (θ / 2) 
  (A3) 

×{K 2ρ 2 sin 2 (θ θ − / 2) + iK ρ sin ( / 2) 1 cosθ − 

− K 2ρ 2 sin 2 
 (θ / 2) + 3iK ρ sin (θ / 2) − 3 cos 2 (θ / 2)}

 
A non-singular expression for  V  can be represented as follows.  
Let  us define a function:  
 

 θ θ 3 

 2sin −θ +
2 24 , >

( )   
=

5 θ δ 
γ θ θ  . 

 n 

∑
∞ ( −1 ) θ 2n−4

 <
2 2n , θ δ

2 (2n + n= 1 !)
 
In our  numerical simulations we selected  𝛿𝛿 = 0.25. Let  us also  
introduce the following parameters:  
 

1β1 =  − + γ (θ θ) 2 ,  
24 

β2 = β θ 2
1 ,  

β3 = K ρβ1θ
3,  

 
and values  
 

2 2 4 θ n + 2 θ  θ  θM  
1 = 2 − 4K ρ si sin  2iK ρ sin − −1  4 iK ρ sin ,

2 2  2  2 
2 M  2

 = −  −θβ 2 
2 θγ θ + β + β −

K 3ρ
2 1 23 

3 ( )(1 ) (3 2 )  (1+ β 3 
2 ) 

− iK ρβ1 (2 + β2 )(1+ β2 ) . 
 
Then  
 

  1( β MV θ )  = e iK ρθ  
ie iβ3 /2 

1− β 2 − β γ2 
 (β ) 

1 1 −
   3  3

  24 3  
   K 2 ρ 2 (1+ β2 ) 

3    (A4)  

sin (θ / 2) i 
− +

2K ρ 4K 2ρ 2 + M 2 
 

 
The easiest way to  make sure that representations (A3) and  
(A4) in fact coincide is to do this numerically for not too small  
values of  θ, when (A3) due  to  cancellation of singularities starts  
to lose accuracy.  

APPENDIX B  
 
Let  us calculate the following function:  
 

1 L/2  L/2

B (ξ ξ, ) = ∫ dse −i sξ n  ∫ T (s − s ' ) e iξ ms ' ds  '               (B1) 
n m L −L/2  −L/2  

 
where ξn,ξm  are considered as real parameters which in contrast  
to (36) here can have arbitrary sign (it is  convenient at this  
point to set integration limits to  ). In terms of  
functions  one has:  
 

 L L
−i (ξ ξn − m )  i(ξ ξn − m ) 

2 ξ ξ + 2 −ξ −ξ −
T ( )S 1 e B ( n , m ) e B ( n , m )         (B2a) 

nm = 2  
( ) L ( ) L  ,

 i ξ ξn + m  
− ξ ξ e 2 B (− n , m ) e 

−i ξ ξ+
− n  m  

2 B (ξ , −ξ ) 
n m  



 

 −i(ξ ξn − m ) L
  i(ξ ξn − m ) L 

1 2 ξ ξ
( )C e B ( n , m ) + e 2 B (−ξn , − ξ +   T m ) . B2b) 

nm =          (
2  
 i(ξ ξn + m )

L
n ) L  −i(ξ ξ+

+
 m 2 ξ  −ξ 


2 −ξ ξ +

 

 e B ( n , m ) e B ( n , m )  
 
Let us introduce on the complex p-plane in (25) two cuts  that  
are parallel to the imaginary axis and pass  from point  𝑒𝑒 = 
−𝐾𝐾 − 𝑖𝑖𝑖𝑖 toward −𝑖𝑖∞ and from point  𝑒𝑒 = 𝐾𝐾 + 𝑖𝑖𝑖𝑖 toward +𝑖𝑖∞; 
it is thus assumed  that  K  has a small positive imaginary  
part:𝑖𝑖 → +0.  Such selection of cuts ensures that the imaginary  
part of  Kp in (14) (the argument of  the cylindrical functions in  
(25)) is always positive.  
 
We substitute into  the  (B1) representation (25) and integrate  
over  s′  first:  
 

L/2  

∫ T (s − s '  )ei sξm 'ds ' =
−L/2  

   (B3)  

i ∞ 

( ) ( )
i p  (

 e −ξm )L/2  − e −i p( −ξm )L/2

= H (1) K a J K a eips dp,
2 ∫ 0 p 0 p

−∞ i ( p −ξm ) 
 
where 𝐾𝐾𝑝𝑝  is given by (14). We will assume that th e original  
integration path with respect to  p in  (25), which g oes along real  
axis, was shifted slightly downwards.  Now we represent  the  
RHS of (B3) as a sum of  two integrals associated with the first- 
and the second exponential.  The integration path in the first  
term will be moved to the  upper half-plane of  p; it will be  
encompassing t he cut coming f rom point  𝑒𝑒 = 𝐾𝐾 + 𝑖𝑖𝑖𝑖  to  +𝑖𝑖∞; 
let us denote  this contour as  𝐶𝐶+. In the process of the path 
deformation the pole at  𝑒𝑒 = 𝜉𝜉𝑚𝑚  in (B3) is apparently crossed,  
and corresponding residue  must  be added to the result. It is  
easy to see from (14) that the argument of  𝐾𝐾𝑝𝑝  at the right edge  
of  the cut  as  compared  to  the left  edge increases  by  π  and  the  
integration path g oes in t he opposite direction. Thus, one  finds:  
 

∫ H (1) 
0 (K a  p ) eJ (K a) 

ip(s+L/2)

0 p dp =
C  

p −ξ
+ m

 

( ( ) ( )) ( ) e ip(s+L/2) 
= (1) 

0 p − H (1) iπ
0 p J0 K ap dp

C(
∫ H K a e  K a
left ) p −ξ

+ 
m 

 
Since 𝐻𝐻(1)(𝑒𝑒𝑖𝑖𝑖𝑖𝑧𝑧) = −𝐻𝐻(2)

0 0 (𝑧𝑧)  (see [15], eq. 8.476(8)) one  
finds:  
 

( ) ( ) eip(s+L/2)

  ∫ H (1) 
0 K ap J  0 K a  p dp = 

C p −ξ 
+ m 

         (B4)  

e ip(s+L/2) 
= 2 ∫ J 2 

0 (K p a ) dp
( left ) ξC+ 

p − m

 
The Bessel function in the integrand of the  RHS of (B4)  grows  
for large 𝑒𝑒′′ = 𝐼𝐼𝜋𝜋 𝑒𝑒 > 0   as  𝑒𝑒𝑒𝑒𝑒𝑒(2𝑎𝑎𝑒𝑒′′), however this growth 
is compensated by the exponential which decays as  
𝑒𝑒𝑒𝑒𝑒𝑒(−(𝑠𝑠 + 𝐿𝐿/2)𝑒𝑒′′). Thus, the integral actually diverges  for  
the points  s  which are closer to the left end of the wire than  2a, 
and converges otherwise. Neglecting the effects of wire ends,  
which are not accurately accounted for in this approach  
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anyway, we will set in (B4)  𝐽𝐽0�𝐾𝐾𝑝𝑝𝑎𝑎� ≈ 1. This approximation 
restricts the  maximal index of modes that may be included into  
analysis, that is, they  have to satisfy  
 

K an <<1.  
 
The second integral in (B3) is analyzed quite similarly.  This  
time the integration path is  moved down and encompasses the  
cut in the lower half-space of  p denoted as  𝐶𝐶−. The only 
difference with  the previous case is that  now the pole at  𝑒𝑒 = 
𝜉𝜉𝑚𝑚when moving integration path is  not crossed.  As a result,  
one obtains:   
 

L/2  

∫ T (s − s ')e i sξ m ' ds  ' = iπei sξ m H (1) 
0 (Kma) + 

−L/2  
  (B5)  

∞ ip(s+L/2) ∞ ip(s−L/2) 

           + e −iξmL/2  e edp − e i Lξ m /2 dp
(
∫ . 

C left )
+

p −ξm C( r
∫
ight ) p −ξ

− 
m

 
Now we multiply equation (B5) by 𝐿𝐿−1 𝑒𝑒𝑒𝑒𝑒𝑒(−𝑖𝑖𝜉𝜉𝑖𝑖𝑠𝑠)  and  
integrate over  s. Straightforward calculations  give the  
following result:  
 

B (ξ ξ, ) = iπ H  (1) 
n m 0 ( K an )δ (ξ n −ξm ) +W (ξ ξn , m ) +W (−ξm , −ξn ) ,   (B6)    

 
where 𝛿𝛿(𝜉𝜉𝑖𝑖 − 𝜉𝜉𝑚𝑚 ) = 1  if 𝜉𝜉𝑖𝑖 = 𝜉𝜉𝑚𝑚  and is zero otherwise, and  
 

1 ∞ e −i(ξ ξn − m )L/2  − ei(ξn +ξ e i K i 

W ( n m )
m )L/2  ( + t )L

ξ ξ, =             (B7)  
L ∫ d t.

0 (K +ξn + it )(K +ξm + it ) 
 
The explicit expression for  𝑊𝑊(𝜉𝜉𝑖𝑖, 𝜉𝜉𝑚𝑚)  can be easily worked  
out and is as follows. For  𝜉𝜉𝑖𝑖 ≠ 𝜉𝜉𝑚𝑚one has:  
 

e −i(ξ ξ− )L/2   K +ξW (
n

ξ ξ, )
m π

n m = i − log + i sign (K 
(  n +ξ ) −
ξn − ξ n

m ) L  K +ξm 2 (B8)  

π 
− i sign (K ( ) +ξm ) − Ei (i (K +ξn ) L) + e i ξ ξn − m  LEi (i (K +ξ

2 m ) L)
 
and, for  𝜉𝜉𝑖𝑖 = 𝜉𝜉𝑚𝑚 :  
 

1− ei K  ( +ξ )L

W (ξ ξn , n ) 
n

= −i − Ei (i ( K +ξn ) L)             (B9)  .
(K +ξn ) L 

 
Now substituting (B6) into (B2) and then into (41) one obtains  
the expression for the interaction matrix Tnm in (40). Note, that  
the terms proportional to 𝐻𝐻(1)

 (𝐾𝐾𝑖𝑖𝑎𝑎)0  in (41) cancel out, and the  
expression for  Tnm includes only W-terms  given by (B8), (B9)  
and thus are  non-singular and do not depend on wire radius  a.  
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