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Abstract—The Pocklington equation in its standard form
can be considered a Fredholm integral equation of the first
kind with a singular kernel. Managing the singularity
during numerical simulations presents certain practical
difficulties. In this paper, an alternative form of the
Pocklington equation for a thin, bent, ideally conducting
wire is derived in the form of a Fredholm integral equation
of the second kind with a regular kernel, which is better
suited for numerical treatment. The kernel of the integral
equation does not depend on the wire radius, which enters
only through diagonal elements of the interaction matrix.
Both cases of loop and open-ended wires are considered
with loop wire antennas allowing for a particularly simple
formulation. Numerical simulations confirm the validity of
the derived equations. Numerical results calculated for a
specific circular loop antenna match available
experimental data.

Index Terms—Thin wire antennas, ideal conductors, the
Pocklington equation.

1. INTRODUCTION

Classical integral or integral-differential equations of the
Pocklington and Hallen type [1,2], describing radiation and
scattering of EM fields by thin, ideally conducting wires, are
of significant practical interest and have been extensively
studied. These equations follow from the boundary condition
that requires absence of the tangential component of the total
electric field at the wire surface. The total electric field
consists of both a known incident and scattered field, the latter
due to a generally unknown current induced in the wire. The
scattered electric field at a given point on the wire surface
consists both ofa “far” field associated with observation points
separated from a given point on the wire by distances
significantly exceeding the wire’s radius a, and by a “near”
field associated with nearby observation points that can be
arbitrarily close to a given point on the wire. Near field
calculations require managing a logarithmic singularity in the
kernel of the Pocklington equation. This singularity is an
important feature that makes the Pocklington equation
solvable and well-posed [3,4]. This singularity can be avoided
by replacing the boundary condition at the wire’s surface by
the requirement that the electric field vanish at the central core
of the wire, since the total electric field inside an ideally
conducting wire must also tend to zero. Such a replacement,
however, renders the resulting equation, strictly speaking, non-
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solvable [5,6]. Moreover, such a replacement does not
eliminate the necessity of an accurate treatment of the near
field, which has a significantly different structure that the far
field.

Numerical solutions of the thin wire equations are usually
obtained with the help of the method of moments (see, e.g. [2],
or many other textbooks dealing with antenna theory). In this
case the problem generally reduces to calculation of integrals
of products of the kernel, and basis and trial functions selected
for numerical solution. The “exact” kernel of the Pocklington
equation can be generally expressed in terms of elliptic
functions, and the calculation of the corresponding integrals
may be nontrivial and time consuming (see, e.g., [7-9]). The
ultimate source of these complexities is the presence of the
near field. Calculations of contributions from the far field are
straightforward. There is, however, no distinct boundary
separating the near and far fields.

Most of the published work on wire antennas considers the
case of straight wires. Bent wires were first considered in [ 10-
12]. Concrete applications for the case of an elliptical wire
have also been presented (e.g., in [13]). In this development
an approximate kernel was used, and the near field calculation
was treated numerically. The issues associated with
singularities of the kernels in the integral equations pertain to
both straight and bent wires.

For the reasons outlined above, the representation of the
Pocklington equation in a form where the effects of the near
field are extracted and treated analytically, and the remaining
kernel of the integral term is rendered non-singular (including
the limit a = 0), is of interest. One possibility to achieve this
is to subtract from the kernel the corresponding logarithmic
term [14]. However, this makes the governing equation more
cumbersome because the logarithmic term, correctly
describing the interaction of currents at small distances, is
inaccurate at larger distances, and the corresponding
contributions must be compensated.

In this paper an alternative approach for handling the
singularity in the kernel of the Pocklington equation is
suggested. Namely, we demonstrate that the contribution from
the near field can be represented as a sum of two terms: an
integral with a wire-radius-independent, non-singular kernel,
and a second term in the form of a scalar factor that contains
the Hankel function with the argument proportional to the wire
radius. Thus, the Pocklington equation, which in its traditional
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form represents a Fredholm integral equation of the first kind
with a singular kernel, becomes essentially a Fredholm integral
equation of the second kind with a non-singular kernel. An
additional useful feature of the new representation is that the
non-singular kernel does not depend on the wire radius. Both
cases of a loop and open-ended wire antenna are considered.
The case for the loop antennas allows for a particularly simple
formulation.

II. DERIVATION

The derivation that follows is somewhat lengthy. Before
proceeding we outline the major logical steps. First, we
specify a general equation representing an electric field in
terms of a current density for the case of a thin-wire and
substitute the corresponding expression into the boundary
condition. The boundary condition assumes an ideal conductor
and is formulated as a limit when an observation point tends to
the surface of the wire (egs. (1) — (5)). Second, to facilitate
calculation of the limit we divide the wire into two parts: the
points separated from the observation point by a distance 4s
that significantly exceeds radius of the wire a (i.e., the “far”
points responsible for the “far” field), and the points that can
be arbitrarily close to the observation point (i.e., the “near”
points responsible for the “near” field (see eqgs. (6)-(7)). Third,
we represent the current along the wire as a superposition of
harmonics (egs. (8)-(15)) and consider the contribution from
each harmonic separately. The calculation of the far field
contribution is straightforward, however, the contribution
from the near field requires a bit of extra work. Thus, at the
fourth step, we approximate a piece of the wire in the vicinity
of the observation point by a section of a straight cylinder and
calculate the near field by extending the section of the cylinder
to infinity and subtracting the contribution from the added
“wings” (eqs. (16)-(17)). The contribution from the infinite
cylinder is calculated using a well-known integral that leads to
an explicit formula where the limit can be calculated by a direct
substitution (eqs. (17)-(18)). Finally, combining all terms
yields our resulting eq. (23). The geometry and some notations
are illustrated in Fig.1.

Fig. 1: Illustration of the geometry and the field calculation procedure. A
section of the wire approximated by a small section of a straight cylinder is
shown in the center. The imaginary “wings” due to the extension of the
straight sectionto infinity are shown to the left and right. For easier rendering,
the rest of the curved wire beyond the central piece, which represent the
imaginary “wings”, is shifted upwards. Here (s,0) and (s,8") define,
respectively, the observation point and the contributing “near-field” (central
section) and “far- field” (wings) points at the wire surface, where s, s” describe
arc lengths along the wire axis, and 6, 8 azimuthal points on the wire surface.

Maxwell’s equations for a monochromatic wave of frequency
o propagating in free space are given by:
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where a time dependence exp( — iwt) is assumed, and fand
o represent the current and charge densities, respectively.
Applyingthe V7 X operator to the second equationin (1a) above
one obtains:

(v2+K2)E=—L(K2]~'+v(V-f)), (1b)
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where K = w/c is a wavenumber and the equation for the
conservation of charge iwg = V' was also used. From (1b) the
n-th component (n = /,2,3) of the electric field ata point R due
to the currents J (which we refer to as a scattered field) inindex
notation is given by
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coincides with the Green’s function for the wave equation in
3D within a factor of —1/(4m).

The boundary condition for an ideal conductor is given by:

=0, (3)
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where T is an arbitrary vector tangent to the surface X of the

ideal conductor and E(™is an incident electric field. Let us
consider the case of a thin wire:

Ka>>1,

where a is the radius of the wire. Let s be an arc length
calculated along the central line of the wire. We will assume
that the skin-layer depth is very small so that the volume
integration in (2) reduces to a surface integration. According
to the thin wire approximation we will assume that the current
at a given cross-section of the wire is uniformly distributed
over the wire circumference and is directed along the axis of
the wire. Then

J, dr
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where J is a total current at the wire's cross-section at a point



s and 7, = 7(s) are coordinates of the center line at point s.
Substituting (4) into (2), and the result into the boundary
condition (3), and setting in (3) T = d7,/ds we represent the
boundary condition in the following form:
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where 6, 0’ are azimuthal angles at the cross-section planes of
the wire at points s, s’, correspondingly, and the points g (s, 8)
and p(s’,0") describe the wire surface. We put in the LHS of
(5) a limit sign since if one immediately sets R = 5(s, ) the
integral will generally contain non-integrable singularities
(due to |R — R order terms).

To facilitate calculation of the limit we will split the integration
over s’ in (5) into an integration over far points s’ that are
separated from the point s by some finite interval 4s with |s "
s|>4s and near points with |s-s|<4s. We will assume that the
selected half-length of the interval 4s significantly exceeds the
radius of the wire a but is significantly smaller than
characteristic radius of curvature c;;},, of the central line of the

wire
wire, that is, a « 4s « ¢}, Withrespect to the far points in

the RHS of (5) to an accuracy of O(Ka) one can set R= 7, and
R'= 7. With respect to the near points we will approximate
the corresponding piece of wire by a straight cylinder. Let us
assume that the observation point R tends to the point 3(s, 8)
on the wire surface along the ray that is orthogonal to the
central line of the wire at a point s and has azimuthal angle 6.
In this case for the near points one has:
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where D is the distance between the observation point and a
point 5(s’,8") on the straight cylinder surface and b = |R — 7|
is the distance between the observation point and the wire’s
central line. Performing a straightforward calculation for the
far points one can write (5) as:
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Note that U in (7) is a symmetric function U(s,s")=U(s',s).
Letus represent j as a superposition of the Fourier harmonics:
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where spectral parameter p has a dimension of wavenumber.
Now we represent (6) as follows:
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When calculating substitutions in (11) we take into account the
condition As > a and approximate
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One can easily check the integral representation of the middle
expression in (13) by differentiation with respect to As. Now
(10) becomes:
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To calculate in the RHS of (15) in the limit & —a we first
extend the integration over s'to infinite limits and then subtract
from the result the contribution from points |s-s'|>4s. Again,
for the "far" points approximation (12) can be used, and one
finds:
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Using formula 3.876 (1,2) from [15] one obtains:
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where
d*=b*+a’—2abcos(6-0").

When one crosses the surface of the cylinder the tangent
electric field remains continuous, and it does not matter
whether we calculate the limit b>—a from inside or outside of
the cylinder. Let us assume that the observation point
approaches the cylinder surface from inside of the cylinder
(which we thus consider a "hollow tube"). Integration of the
RHS of (17) over 8'is closely associated with the problem of
diffraction of EM waves from an infinite, perfectly conducting
cylinder, and it can be evaluated using formula 8.531(2) from
[15]:

f ( \/b2+a —2abcos(6- 0))6;0;' (18)

0
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Now the limit b —a can be calculated by simply setting in the

RHS of (18) b =a. Substituting (16) and (18) into (15) one
obtains:
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or, after replacing in the first integral in the RHS of (19)
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We note one important point here. After multiplication by f,
and integration over p according to (8), both the second and
third terms in the RHS of (19) become integrals over ds’ with
the integrands proportional to jg. For this reason, for an open-
ended antenna, the integration over s’ should proceed over the
length of the antenna only since jibecomes zero beyond it.
This fact is used in (24) below. For a loop antenna, however,
this is not true, since in this case jg becomes a periodic
function of s’, and the contribution from s’ lying beyond
(—L/2,L/2) has to be subtracted from the second term in (19)
(see equation (29) in the next Section).
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Normalization by K3 introduced in (21) makes V(s,s")
dimensionless. Itis also a symmetric function:

V(s,s")=V(s's)- (22)
It is demonstrated in Appendix A that the function V(s,s’) is
continuous ats=s'since singularities in the parentheses and U-
termin (21) cancel out. This fact represents the major finding
of this work. It confirms indirectly that approximation of the
piece of wire at |s —s'| < 4s by a straight cylinder is
sufficient and a more accurate approximation is not needed.
Due to the regularity of V(s,s’) at s=s’we can now extend the
integration over s’ in the second term of (20) to include the
interval |s — s'| < As, which introduces a small error of order
Ka but removes from consideration the arbitrary parameter As
subject to the assumption a K 4s < c,, Substituting the
result into (9) we find:
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Substituting into (23) the expression for JA'p by inverting (8):
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and integrating over p we obtain the following equation:
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In fact, T(s) in(24) coincides with the so-called “exact” kernel
ofthe Pocklington equation[1,2]. To verify this one canrepeat
the steps that led to representation (25) in reverse order, that is,
replace the product of H{Y and J, in (25) by the LHS of (18),
and then use representation (17). The integration over p then
produces a J-function and one obtains:

| eiK 2 +4asin’(0/2)
[ ———u.
Soyfs +4d’sin’ (6/2)

T(s) (26)
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The asymptotic form of the Bessel functions in (25), which
takes into account that generally K,a < 1, can also be used if

preferable. In particular, expanding in (26) j,(k,a) into a
power series one obtains:
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The first term n=0 in (27) corresponds to the so-called
“approximate” kernel, and the rest of the sum represents
corrections that are generally of order (aK)?“(a similar
representation was considered in [16]).

Equations (23) and (24) are the major results of this work. It
is easy to show that for a straight wire the kernel ¥ becomes
zero, and (24) coincides with the Pocklington equation. For
the case of a curved wire, (24) includes an additional integral
term. An important difference with respect to previously
considered formulations for curved wires [10-12] is that the
integral V-term in (24), which represents the effects of the
deviation of the wire from a straight segment, does not depend
on the wire’s radius and has a non-singular kernel.

III. THE CASE OF A LOOP WIRE

Let us assume that the wire forms a closed loop of length L
(not necessarily circular, or a single turn, or of trivial topology
[17]). In this case it is convenient to start with (23) in which
we can now set

=3 49 p-Zn) el

m=-0

For the case of a loop wire, however, we have to make in (23)
the modification mentioned in the paragraph following (21),
namely, since now the integration over s'in the second integral
termin (19) is limited to (—L/2, L/2), inthe RHS of(19) there
now appears an additional term exp(i2rms /L) K?%,,, where
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In (29), and in what follows,
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and

¢ (31

is the exponential integral function of imaginary argument.
Substituting (28) into (23), taking into account (29),
multiplying by exp(—i2nns/L) /(K?%L), and integrating over
s, one obtains the following governing equation:
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and the regular dimensionless function V (s, s”) in(33) is given
by (21). In fact, one can set in (32) J,(K,a) = 1.

For numerical simulations let us consider the case of a circular
wire loop of radius p. In this case

V(s,s'):V(”)(p,|t9—t9'

), (34)

where 68 = s/p is anazimuthal angle. Then one obtains V,,,, =
V. 96,m , where
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and (32) provides an explicit result:
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Let us consider the case of a plane wave propagating along the
z-axis orthogonal to a circular loop lying in the (x,y) plane
centered at the origin, with an incident electric field vector
directed along x-axis of amplitude Ey. Then, in the RHS of
(32), one has

E“”)(ﬂ)%: E,cos6>

and the integral in the RHS of(32) is nonzero forn = +1 only,
that is, the induced current is a sinusoidal function of the
arclength. The results of a numerical calculation of the x-
component of the total electric field (i.e., the sum of the
incident and scattered fields) as a function of y-coordinate is
shown in Fig.2. The radius of the circular loop was set to p=1
m, the wavelength to A=2 m, and radius ofthe wire to a=1 mm.
The electric field was calculated by direct numerical
integration (using Simpson’s rule) of the 3D integral in (2),
with j4, given by (35). The total electric field (Fig. 2, upper
plot) tends to zero at the surface of the wire as it should. An
enlarged section of the plot in the vicinity of the wire is shown
in the lower figure. One can see that at distances too close to
the wire direct numerical integration begins to lose accuracy.
It is worth mentioning that the second term Vl(c) in the
denominator of (35), which takes into account the curvature of
the loop, constitutes about 10.6 % of the first term.
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Fig. 2: The total normalized electric field amplitude |E/Eo| as a function ofthe
y-coordinate for a circular loop antenna centered on the x-y plane and a
normally incident plane wave with anx-directed electric field of magnitude E.
The total field tends to zero at the surface of the wire. The lower plot is an
enlarged version of the upper plot in the vicinity of the wire. The artificial rise
in the intensity is due to the loss of the accuracy of the direct numerical
integration in (2) when the observation point gets too close to the wire surface.
This reflects the fact that direct setting of the observation point onto the surface
of the wire leads to divergent integrals.

We have also considered the case of delta-gap excitation of the
loop assuming

B (7)o po)e
In Fig. 3 we show the amplitudes of the harmonics j, of the

induced current in the upper plot, and the resulting current | =
%7, inthe lower plot. The voltage was setto Vy =1 V.
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Fig.3: The upper figure shows the amplitudes of the harmonics ofthe induced
current | as a function of the harmonic index for a J-gap loop antenna and the
geometry described in Fig. 2. The lower figure shows the real and imaginary
parts of the resulting current (solid and dashed lines, respectively) as a function
of'azimuthal angle 6.

The dependence of the input admittance of the loop, which is
defined as a ratio of the induced current at the point of
excitation (p,0) to the voltage V5, is shown in Fig. 4 as a
function of the ratio of the loop diameter 2p to the wavelength.
The circles represent the theoretical results presented in Storer
(eq.(10) in [18]), and the solid/dashed lines the theory
presented here for the real/imaginary parts of the input
admittance. The agreement is good with the exception ofa
slight deviation of the imaginary part of the admittance for
relatively small loops. A possible reason for this may be the
additional approximations introduced in [18] to evaluate
analytically certain integrals that here were calculated by
direct numerical integration.

Input admittance
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Fig. 4. The theoretical input admittance of the circular loop wire antenna for
the geometry described in Fig. 2 calculated from eq. (35) with a J-gap
excitationas a function of the normalized loop diameter 2p7”/L. Both the real
and imaginary parts of the impedance (solid and dashed lines, respectively)
are shown. The circles indicate theoretical results reproduced according to
eq. (10) in [18].

A comparison between our theoretical result for the input
admittance and the measured input admittance from Kennedy
[19]is showninFig. 5. The latter was generated by digitizing
Fig. 11 in [19]. The agreement is exceptionally good for the
real part and deviates only slightly for the imaginary part.



Together, Figures 4 and 5 demonstrate the relatively good
agreement between the new theory developed here and earlier
theoretical developments and measurement campaigns. As
was mentioned before, the function 7 in (21) and (34) is in
fact non-singular. A non-singular analytic form of the
function V (s, s") for a circular loop is presented for reference
purposes in Appendix A.
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Fig. 5. The theoretical input admittance of the circular loop wire antenna for
the geometry described in Fig. 2 calculated from eq. (35) with a J-gap
excitation as a function of the normalized loop diameter 2pn?*/. compared
with the measured results of Kennedy [19]. Both the real- and imaginary
parts of the admittance (solid and dashed lines, respectively) are shown.

IV. THE CASE OF AN OPEN-ENDED WIRE

For the case of open-ended wire, the governing equation (24)
coincides with the standard Pocklington equation with an
additional integral term having a non-singular kernel. Thus,
all methods developed for numerical solution of the
Pocklington equation can be applied to (24) with a
straightforward modification.

The first and the second integral terms in (24) are significantly
different. Namely, the kernel 7 of the second term represents
a non-singular function and can be calculated by any suitable
integration scheme (e.g., by the Simpson’s rule) with a grid of
points with a density that is not related to wire radius a. The
first integral in (24), on the other hand, has a logarithmic
singularity at s' =s, and in the vicinity of this point varies on
the scale of the wire radius a. This logarithmic singularity
ensures that the Pocklington equation for a straight wire with
the exact kernel is solvable [3], and special care must be taken
to account for this singularity in the numerical simulations. In
this Section we suggest an alternative approximate form of the
Pocklington equation that does not have such a problem. In this
form a wire radius a enters the governing equation only in
diagonal elements of the interaction matrix.

In what follows it will be more convenient to replace the limits
of integration in (24) by (0, L), and represent the current in the
form

= ijm sin(&,s), (36)

m=1

T
=m-— -
ecm L

This representation ensures fulfillment of the boundary
conditions j(0) = j(L) = 0. Let us substitute (36) into (24),
represent d?/ds?T(s —s’) = —d?/dsdsT(s — s'), multiply
the result by 2sin(&,L) /(K%L), and integrate by parts
transferring the action of the differential operators from the
kernel T to the sin-functions. As a result, one obtains:

Sbupr,y | Sgop . & (37)
;[Zlm K2 T:zm Vnm ]m =1 LKZ .([Sln(é:ns)E (Vy) ds ds
where
T(5>_zdeSIH JT §— S')Sin(g S')ds (38)
nm _L "
0
<c>_gj'dscos j s—5")cos(£,5')ds (39)
/1/71 L -
0 0
and

L L
Vo =2 Jissin(9) ] (5.5)sn 6,5 s
0 0

Expressing (24) in terms of the functions sin(§, L) somewhat
restricts the class of the RHS of (24), however, it simplifies the
results. To maintain similarity with the case of loop wires we
will represent (37) in the following form:

K'l EY
—H(K,a)j,+ ) (T, +V,) ) =
o e (Kia) iyt (T Vo) (40)

where

T T(S) §r7§m T(U

w0 ke (ka)s, @D

nm

The last term in (41) will be compensated by corresponding
contributions in T,Eif , T,Efrz so that T,,in the LHS of (41) is in
fact independent on wire radius a. The procedure for the
calculation of entries T, is presented in Appendix B. For

straight wires one has in (40) V;,,,, = 0.

The results of a case study of (40) are shown on Fig. 6. A
standing plane wave impinges on a piece of straight wire of
length L =2.25 mat an angle 30° so that

The wavelength is 4 = 1 m and the wire radius is ¢ = 1 mm.
The incident field is distributed along the wire length
symmetrically so that only modes with odd indices m in (36)
are excited. Twenty odd modes were included into the
numerical solution of (40). The amplitudes of the excited
modes as a function of mode index are shown on the upper plot



of Fig. 6 (only odd modes are shown and the strength of the
electric field was set to £y = 1 V/m). The dependence of the
total electric field as a function of y-coordinate (which is
orthogonal to the plane of incidence) is shown on the lower
plot (which is similar to Fig. 2). The total electric field at the
wire tends to zero confirming the validity of the obtained
solution.
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Fig. 6. The mode amplitude |j,| asa functionof mode index ¢ (top) and the total
normalized electric field amplitude |E,/Eo| as a function of the y-coordinate
(bottom) for a straight wire antenna centered on the x-y plane and a plane wave
ofamplitude Ey normally incident at an azimuthal angle of 30°.

V. THE CASE OF A SECTIONED WIRE

The case of a single-piece wire was so far considered in this
work. However, generalization of the governing equation for
the case of an antenna consisting of multiple pieces is
straightforward. Eq. (24) inthis case takes the following form:

, 4 L2 & '
[K d) J Tloms)ittds e K3 | Vig(58)035'= 49

=L,/2
) o di@
=idne,0E"™ (ry“’))—“

ds

where ¢g=1,2,...,0 is an index representing different pieces of
the wire, and

o) {_ K s2'-83 e (s2 'i—s)z ]em% Sw
+%qu,(s,S'),
where
—(K2r2 +iKr—l)(%:),d§z)]— —
U, (S,S')zilj —(K2r2 +3iKr—3)X »(44)

=) _74) g(9) 7)) _ 7)) gz(g)
X }’} B r.‘v' drw ’.‘s - ’?Y' drjv'
9 9
r ds r ds'

where the bracketed term is evaluated at r I‘f_y(‘”—f_qu')‘.
Clearly Ugq(s,s) = Uqgq(s',s) and Vg (s,s’) are non-

singular functions.

VI. DISCUSSION AND CONCLUSIONS

In this work the Pocklington equation for a thin, bent, ideally
conducting wire was derived in a special form where the
integral term, which represents curvature effects, has a non-
singular kernel independent on wire radius (see (24)). To the
best of authors’ knowledge such a form of the Pocklington
equation was not considered in the literature previously.

For loop wires the derived equation can be conveniently
formulated in terms of the Fourier-harmonics of the current
(see (32)). Numerical simulations for a circular wire confirm
fulfillment of the boundary condition. A similar equation was
derived for the open-ended wires (see (37) and also for
sectioned wires (see (42)).

It was mentioned before that the wire is not required to be
single-turn and can generally have an arbitrary shape.
However, for the case of multiple turns/recurrences it is
assumed that different turns are not too close to each other.
When deriving the basic equations (23) and (24) it was
assumed that the distance between the points separated by the
arclength exceeding A4s > a are “far” points, that is, the
distance between a given point and all other points on the wire
beyond As significantly exceeds a. Hence, the separation
between corresponding points of the wire for different turns
should significantly exceed radius of the wire.

APPENDIX A

Letussetin(7) s'=s+ t where t > 0 and t - +0. One has:

(AT)

By differentiating the identity (d,7,0,7) =1 one has
(0,7, 827) = 0, and differentiating the latter identity one more
time one finds (9,7, d37) = —(027)2. Using these identities,
one obtains:

2
r =

P o[ =t -a' +0(F),

r:t[l_ﬁﬁjm(f*), (A2)
2
where
1 )2
a :E(ﬁfi’) .

Using (A2) one can also represent (A1) in the following form:



*H,—rv—rar+—azr+ af+la§f r+0(r').
A 5 5 0F+20,

Now by straightforward calculations one obtains the following
expansions:

" —6r+t82 + 263F+0( )

ds'

J 1-6ar’ +0(r),

[_7”: ,_j ( —h d’j 1-2ar+0(r).
ro o ds' r ds 2

Using these expansions, one obtains:

iKr

6—3[(K2r2 +iKr—l)(1—6411”2)—(K2r2 +3iKr—3)><
B

x[l—%aﬁjz +O(r3)} ¢ [%—%—3“}0(1)

r r r

U(s+t,s)=

and then using (A2):

U(s+t,s) =¢N

Quite similarly one considers the case of negative #: t — —0.
In the latter case parameter ¢ in the resulting formula has to be
replaced by |t|. It is interesting that parameter o associated with
curvature of the central line disappears from the final formula
for U(s + t,s). One can see that the first two (singular) terms
in (21) cancel out by corresponding terms in U.

Let us consider the case of a circle with radius p and let >0 is
an angle between s and s’ points on the circle. In this case

|s'—s| =p0, r= 2psin§

and

iK psin(6/2)

e x
( K’p'¢® szzﬁzj K’p’sin®(0/2)
x [K p’sin’(6/2)+iK psin(6/2)- Jcos&—

iK pf

{ (A3)
~[K?p?sin® (0/2)+3iK psin(0/2)~3 ]cos’ (0/2)}

A non-singular expression for ¥ can be represented as follows.
Let us define a function:

3

2sin—-0+—
—_
7(0)= 0 . .
(1) 0
. 0<5
;22"(2%1)!’ <

In our numerical simulations we selected § = 0.25. Let us also
introduce the following parameters:

1
p=-541(0)0"

ﬁz = ﬁ]gzv
ﬁs :K,Dﬂﬂ},

and values
M, =2-4Kp’ sin4§+sin2g(%Kpsing—lj—MKpsing,

M,=-

2

2 2 ) _
W[w}’(e)(l*ﬁz) -0 (3+25,)

—-iKpp, (2“'/82)(1 +ﬁz):|'

Then

(A4)

R o o oy U

sin(002) i }
2

2Kkp  4K*)p’

The easiest way to make sure that representations (A3) and
(A4) in fact coincide is to do this numerically for not too small
values of &, when (A3) due to cancellation of singularities starts
to lose accuracy.

APPENDIX B

Let us calculate the following function:

L2 L2

B(£.6)= L e [ 1(s

-L/2 -L2

S—g v) eii,,,f'dsv (BI)

where &,,&, are considered as real parameters which in contrast
to (36) here can have arbitrary sign (it is convenient at this
point to set integration limits to (—L/2,L/2)). In terms of
functions B(g € )one has:

n m

L

( Sot)
(e,

1“*

() 1 ? ””” ZB(é:/x’é:m)
””” 2B< gn’gm)

(B2a)



(B2b)

Let us introduce on the complex p-plane in (25) two cuts that
are parallel to the imaginary axis and pass from point p =
—K — ie toward —ioo and from point p = K + i€ toward +ioo;
it is thus assumed that K has a small positive imaginary
part:e = +0. Suchselection of cuts ensures that the imaginary
part of K, in (14) (the argument of the cylindrical functions in
(25)) is always positive.

We substitute into the (B1) representation (25) and integrate
over s’ first:

(B3)
i(p-&,)L12 _ eﬂ(pfgm)m
(p-2) dp,
where K, is given by (14). We will assume that the original
integration path with respect to p in (25), which goes along real
axis, was shifted slightly downwards. Now we represent the
RHS of (B3) as a sum of two integrals associated with the first-
and the second exponential. The integration path in the first
term will be moved to the upper half-plane of p; it will be
encompassing the cut coming from point p = K + i€ to +io;
let us denote this contour as C,. In the process of the path
deformation the pole atp = &, in (B3) is apparently crossed,
and corresponding residue must be added to the result. It is
easy to see from (14) that the argument of K, at the right edge
of the cut as compared to the left edge increases by m and the
integration path goes in the opposite direction. Thus, one finds:

in(s+L12)

é‘iH((]l)(Kpa)JO(Kpa) p_é:m dp:
= I (H(()l) (Kpa)_Hél)(epra))JO (K[)a) ip(s+L/2)

el pP- m

dp

Since H{V(ei™z) = —H? (2) (see [15], eq. 8.476(8)) one
finds:

ip(s+L12)

J‘H(()U(KF(Z)JO(KFQ) p_(: dp= (B4)
c, m
ip(s+L/2)
ZZCI[/”Jﬁ(KFa) 3 dp

The Bessel function in the integrand of the RHS of (B4) grows
for large p” = Imp > 0 as exp(2ap”), however this growth
is compensated by the exponential which decays as
exp(—(s + L/2)p"). Thus, the integral actually diverges for
the points s which are closer to the left end of the wire than 2a,
and converges otherwise. Neglecting the effects of wire ends,
which are not accurately accounted for in this approach

10

anyway, we will set in (B4) J, (Kp a) =~ 1. This approximation
restricts the maximal index of modes that may be included into
analysis, that is, they have to satisfy

K, |a<<1.

The second integral in (B3) is analyzed quite similarly. This
time the integration path is moved down and encompasses the
cut in the lower half-space of p denoted as C_. The only
difference with the previous case is that now the pole at p =
&nwhen moving integration path is not crossed. As a result,
one obtains:

Ln
_J,ZT(S -s')eds'=ize* H" (K ,a)+ (B5)
e P _gm

SPL2)

dp.
Clright) p _gm

Now we multiply equation (B5) by L™!exp(—ié,s) and
integrate over s. Straightforward calculations give the
following result:

B(£,&,)=inH" (K,a)(E ~&, )+ W (&, )+ W (=¢,,-¢,), (BO)

where §(&, — &) = 1if &, = &, and is zero otherwise, and

| % gilarann

p _
:ZI (K+& +it)(K+&, +it) '

0

e"(fﬁim )Le’Zei(KJrir)l_

(B7)

(gL,

The explicit expression for W (¢, &,,) can be easily worked
out and is as follows. For &, # &,,0one has:

=i(81=Gn L2

_.e O ‘K+§n
Te-er| ke,

—l%Slgn(K + gm ) - El(l(K + ét“ )L) + e‘(i”ié’”)LEi(l‘(K * ém )L)i|

W(fﬂ,fm) +i%sign(K+§”)—

(B8)

and, for &, = &,

1- e‘(’“sﬁ.ﬂ

(K+¢)L

(B9)

W(&LE)=-i ~Ei(i(K+¢&,)L).

Now substituting (B6) into (B2) and then into (41) one obtains
the expression for the interaction matrix 7, in (40). Note, that
the terms proportional to Hél)(Kna) in (41) cancel out, and the
expression for 7, includes only W-terms given by (BS), (B9)
and thus are non-singular and do not depend on wire radius a.
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