

1 **Can seamounts in the Gulf of Alaska be a spawning ground for sablefish settling in coastal**
2 **nursery grounds?**

3
4 G.A. Gibson^{a,*}, W.T. Stockhausen^b, K. Shotwell^b, A.L. Deary^b, J.L. Pirtle^c, K.O. Coyle^d, A.J.
5 Hermann^{e,f}

6
7 ^a*International Arctic Research Center, University of Alaska, Fairbanks, AK 99775-7340, USA*

8 ^b*Alaska Fisheries Science Center, NOAA/NMFS, 7600 Sand Point Way, NE, Seattle, WA 98115-6349*

9 ^c*NMFS Alaska Region, Habitat Conservation Division, P.O. Box 21668 709 W. 9th St., Rm 420, Juneau, AK, 99802-
10 1668*

11 ^d*Institute of Marine Science, University of Alaska, Fairbanks, AK 99775, USA*

12 ^e*Joint Institute for the Study of the Atmosphere and Ocean, University of Washington, Seattle WA 98195*

13 ^f*Pacific Marine Environmental Laboratory, NOAA, Seattle, WA 98115*

14
15 Key words: Sablefish, Seamounts, Modelling, Fish larvae, Gulf of Alaska

16
17 *Corresponding author. *E-mail address:* gagibson@alaska.edu (G.A. Gibson)

18
19 **Abstract**

20 In addition to their prevalence on the continental shelf, adult sablefish have been found over the
21 chain of seamounts far offshore in the Gulf of Alaska (GOA). Many of the females that were
22 observed had recently spawned or were ready to spawn. However, to date, it is not known what
23 role the seamounts play in sablefish life history and there are no observations of sablefish eggs or
24 larvae over the GOA seamounts. Due to their depth and remoteness, there are no suitable shallow
25 nursery areas in the vicinity of the seamounts. For successful recruitment, individuals hatching
26 from eggs spawned over seamounts would need to be transported hundreds of miles to suitable
27 areas inshore. Using an individual-based model (IBM) of sablefish, we have demonstrated that if
28 spawning occurs over any of the seamounts in the GOA seamount province it is likely that at
29 least some individuals will be successfully transported to shallow inshore nursery areas in the
30 coastal GOA. As our simulated individuals only exhibit vertical movement behavior this on-
31 shore transport results from the prevailing currents to which they were subjected and not from
32 any geographic or environmental homing capabilities. Our analysis indicates that the strength of
33 the on-shelf velocity is not the primary factor in determining the likelihood of transport to
34 nursery areas. We speculate that the size, strength, location, and direction of the eddies that
35 populate the GOA in any given year could be important in determining transport success. This
36 idea is reinforced by our path analysis which shows that there are markedly different pathways
37 taken by successful individuals among years. Our findings suggest that it may be necessary to
38 expand what is considered suitable habitat for young sablefish. With seamounts being a
39 potentially important spawning site for sablefish, future research priorities should include
40 ground-truthing with fishery or fishery-independent data collected from seamounts. Potential
41 applications of this expanded sablefish IBM include testing for connectivity between seamount
42 and slope spawning areas and the Aleutian Islands and Bering Sea and contributing to the
43 development of spatially explicit assessment models of sablefish.

44
45 **1. Introduction**

46

47 Sablefish are a groundfish of high commercial value (Fissel *et al.*, 2012; Marquez, 2020) and the
48 majority of the fishery catch is in the Gulf of Alaska (GOA; Hanselman *et al.*, 2014), despite
49 their extensive range that spans the west coast of Japan, up to the northern Bering Sea, and as far
50 south as Baja California (Hart, 1973; Sasaki, 1985; Wolotira *et al.*, 1993, DFO, 2013; Zolotov *et*
51 *al.*, 2021). Because it is such a lucrative fishery, even small changes to the annual catch results in
52 significant changes to the total value of the catch. Optimized catch quotas that maximize catch
53 while protecting the stock can be informed by knowledge of the spatial dynamics of the stock
54 (Hanselman *et al.*, 2014b). Annual stock assessments are primarily informed by longline surveys
55 for older sablefish that document location, size, and movement via tagging. Knowledge of how
56 environmental processes can influence the survival of younger sablefish, before their recruitment
57 to the fishery, is lacking but could also be very valuable for ecosystem-based management
58 (Shotwell *et al.*, 2014).

59
60 Adult female sablefish primarily spawn over 100 miles from shore at depths of ~300-800 m near
61 the edges of the continental slope (Mason *et al.*, 1983; Moser *et al.*, 1994; Hunter *et al.*, 1989).
62 After hatching at depth, the young sablefish larvae migrate to the upper water column and have a
63 peak abundance in the neuston by late spring (Doyle and Mier, 2015). The young sablefish are
64 still in the neuston in late summer (Sigler, 2001), but many have traversed the continental shelf
65 to shallow, near-shore, nursery grounds (Sasaki, 1985, Rutecki and Varosi, 1997). The young
66 fish spend the winter and following summer in coastal bays and inlets (Maloney and Sigler,
67 2008; Mason *et al.*, 1983; Rutecki and Varosi, 1997) before moving into deeper waters. Bracken
68 (1982) re-captured fish tagged in GOA inshore waters far offshore, some as far away as the
69 Bering Sea, demonstrating extensive adult migrations/movement. It has been proposed that
70 sablefish movements in the North Pacific capitalize on the prevailing current directions, with a
71 general westward movement of younger fish, out of the GOA and into the Bering Sea while the
72 larger more mature sablefish return eastwards to the GOA to spawn (Bracken, 1982; Heifetz and
73 Fujioka, 1991; Maloney, 2004). However, other studies found no relationship between sablefish
74 age, size, or sex and movement (Beamish and McFarlane, 1988). More recently it has been
75 shown that adult movement probabilities in the GOA vary annually and can be both westwards
76 (29%) and eastwards (30%; Hanselman *et al.*, 2014b). Sablefish spawning is thought to occur
77 primarily over the shelf break in the central and eastern GOA (Funk and Bracken, 1984; Beamish
78 *et al.* 1983). An individual-based model (IBM) of sablefish indicates that eggs spawned over the
79 continental shelf break in the eastern GOA were much more likely to produce successful settlers
80 than those spawned over the western continental shelf (Gibson *et al.*, 2019). This modeling study
81 also suggested that behavioral traits, or physical processes finer than those captured by the
82 model's 3km horizontal resolution, were responsible for the transport of sablefish larvae to some
83 of the better-known nursery areas.

84
85 In addition to their prevalence on the continental shelf, adult sablefish have been found over the
86 chain of seamounts far offshore in the GOA (Alton, 1986). These seamounts were formed by
87 volcanic activity and rise from the ocean floor at depths of 3,200–4,000 m to within a few
88 hundred meters of the ocean surface. The GOA Seamount Province (**Figure 1**) comprises nine
89 named seamounts and several smaller ones that range in size from <10 to 70 nmi².
90 Approximately half of these seamounts are located within the U.S. exclusive economic zone and
91 are protected as habitat areas of particular concern (Maloney, 2004; NMFS, 2006). The crests on
92 the majority of the seamounts in this chain are relatively flat with a soft substrate (Hughes,

93 1981). Most of the seamounts in the chain have a crest that is ~649-823 meters below the ocean
94 surface while at 421-549 meters below the surface, the Dickens crest is notably shallower
95 (Hughes, 1981). The crest of the Bowie seamount is shallower still at only 65-100 m below the
96 surface (Herzer, 1971). Tagged sablefish released in the Aleutian Islands, the Bering Sea, and
97 the western and central GOA have been recovered on GOA seamounts (Shaw and Parks, 1997)
98 and sablefish tagged on the GOA seamounts have been re-captured on the GOA continental shelf
99 (Kimura *et al.*, 1998; Maloney, 2004). Similarly, tagging evidence suggests migration between
100 the Bowie Seamount and the US west coast (Murie *et al.*, 1995; Beamish and Neville, 2003;
101 Whitaker and McFarlane, 1997). In addition to the migration of sablefish to and from the
102 seamounts, retention of adult sablefish over seamounts can also occur (Maloney, 2004). Maloney
103 (2004) suggested that the use of the GOA seamounts is part of the general migratory circulation
104 pattern that roughly follows the prevailing currents as the adult sablefish move back towards the
105 eastern GOA. However, the ability of sablefish to exert such highly migratory behavior could
106 allow suitable seamount habitat to be exploited independent of currents (Hoff and Stevens,
107 2005).

108
109 The sablefish found over the GOA seamounts span many year classes (55 for males and 33 for
110 females; Maloney, 2004), suggesting that the use of the seamounts is a common part of sablefish
111 life history. As has been noted in other sablefish populations (Kapur *et al.*, 2021), the sex-ratio of
112 the seamount population is skewed toward males, with a ratio of at least a 2:1 occurrence of
113 males to females (Hughes, 1981; Maloney, 2004). With an average age ranging from 13.7-30
114 years, the males are generally older than the females (9.8-23.8 years) but the females tend to be
115 larger (Maloney, 2004). Many of the females that were observed over the GOA seamounts had
116 recently spawned or were ready to spawn but, to date, there are no observations of young
117 sablefish in the vicinity. However, sampling has been sparse, with sablefish initially observed
118 during an exploration of the USA seamounts in 1979 (Hughes, 1981) and then again during
119 targeted sampling in 1999-2002 (Maloney, 2004). In both cases, sampling occurred during the
120 summer (June or July) and used longline fishing gear which would miss smaller individuals in
121 the upper water column. It is also possible that young sablefish were missed due to a mismatch in
122 the timing of sampling.

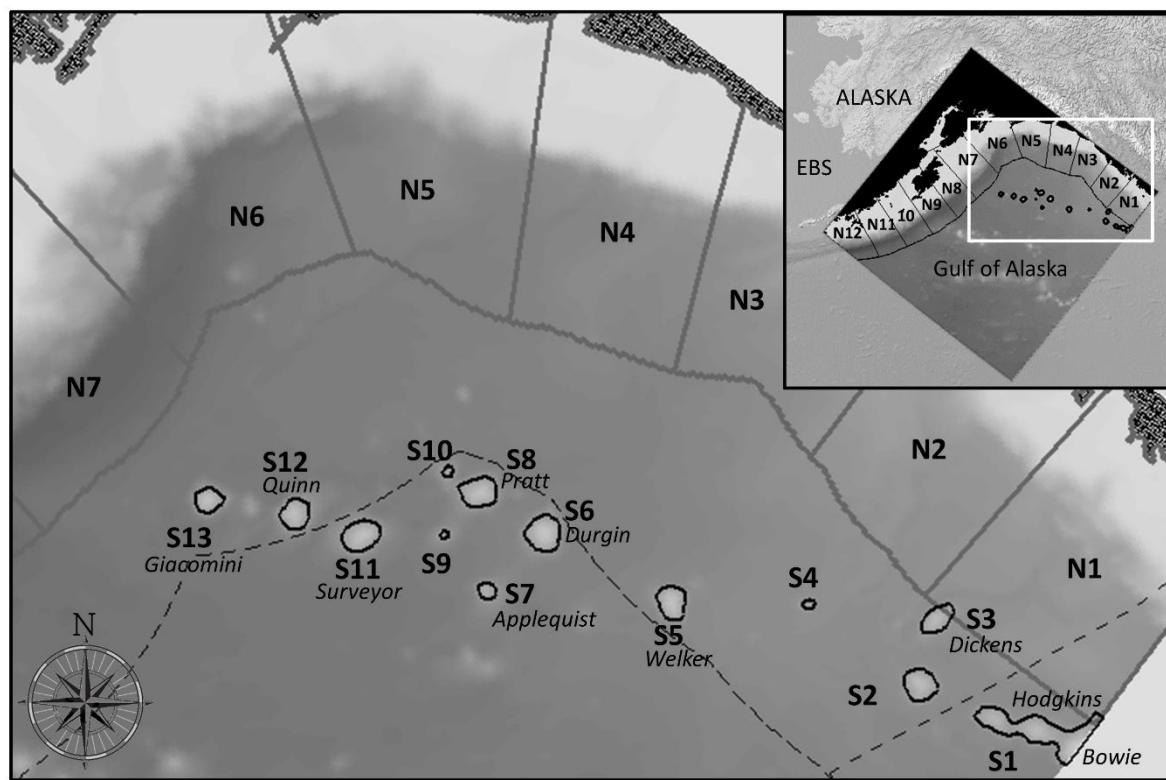
123
124 The presence of spawning-capable sablefish suggests that spawning might occur over seamounts;
125 however, due to their depth and remoteness, there are no suitable shallow nursery areas in the
126 vicinity of the seamounts. For successful recruitment, individuals hatching from eggs spawned
127 over seamounts would need to be transported to suitable areas inshore, a distance of at least 270
128 miles. Understanding the potential of the GOA seamounts to support sablefish spawning and
129 recruitment to the fishery would provide a more complete picture of sablefish life history. If
130 seamounts are viable spawning sites, interannual variation in larval transport from these
131 locations could explain some of the variability in annual recruitment success. The importance of
132 such secondary spawning sites may increase as ocean conditions change, altering development
133 rates and transport pathways.

134
135 Due to limited empirical data on sablefish distributions near seamounts, IBMs, that pair species-
136 specific biological characteristics of early life stages with modeled ocean currents and
137 conditions, are useful tools for exploring potential connectivity between spawning and nursery
138 sites (Gibson *et al.*, 2019, Stockhausen *et al.*, 2019, Hinckley *et al.*, 2019). Each life stage in

139 Gibson *et al.*'s (2019) sablefish IBM was assigned specific depth preferences and vertical
140 swimming speeds. The transition between each life stage depends on the individual size. As size
141 is so critical in determining life stage, and thus the depth and current regime that an individual is
142 exposed to, it is important to represent larval growth rates as realistically as possible. Here, we
143 update the original sablefish IBM (Gibson *et al.*, 2019) to include stage-specific temperature-
144 dependent growth rates, and then use this model to address the hypotheses that 1) sablefish
145 spawned over the GOA Seamount Province can be successfully transported to the inshore
146 nursery area regions and 2) some seamounts are more likely than others to support successful
147 transport to nursery habitats along the coast.

148

149 2. Methods


150

151 2.1. Model Description

152 Sablefish dynamics were simulated using a Lagrangian particle tracking IBM coupled to an
153 Eulerian hydrodynamic model of the region. This coupled model set-up has been previously
154 described (Gibson *et al.*, 2019) but, in brief, early life history characteristics (e.g. spawning
155 locations, larval behavior, and growth rates of young sablefish) are simulated using the Dispersal
156 Model for Early Life Stages (DisMELS; Cooper *et al.*, 2013, Stockhausen *et al.*, 2019). A
157 Regional Ocean Modeling System (ROMS) coupled to a lower trophic level Nutrient-
158 Phytoplankton-Zooplankton (NPZ) model was used to simulate the physical and lower trophic
159 level environment in the GOA through which the simulated sablefish individuals were
160 transported (Coyle *et al.*, 2019). The IBM was run for twenty-two consecutive years, from 1997
161 to 2018.

162

163

164

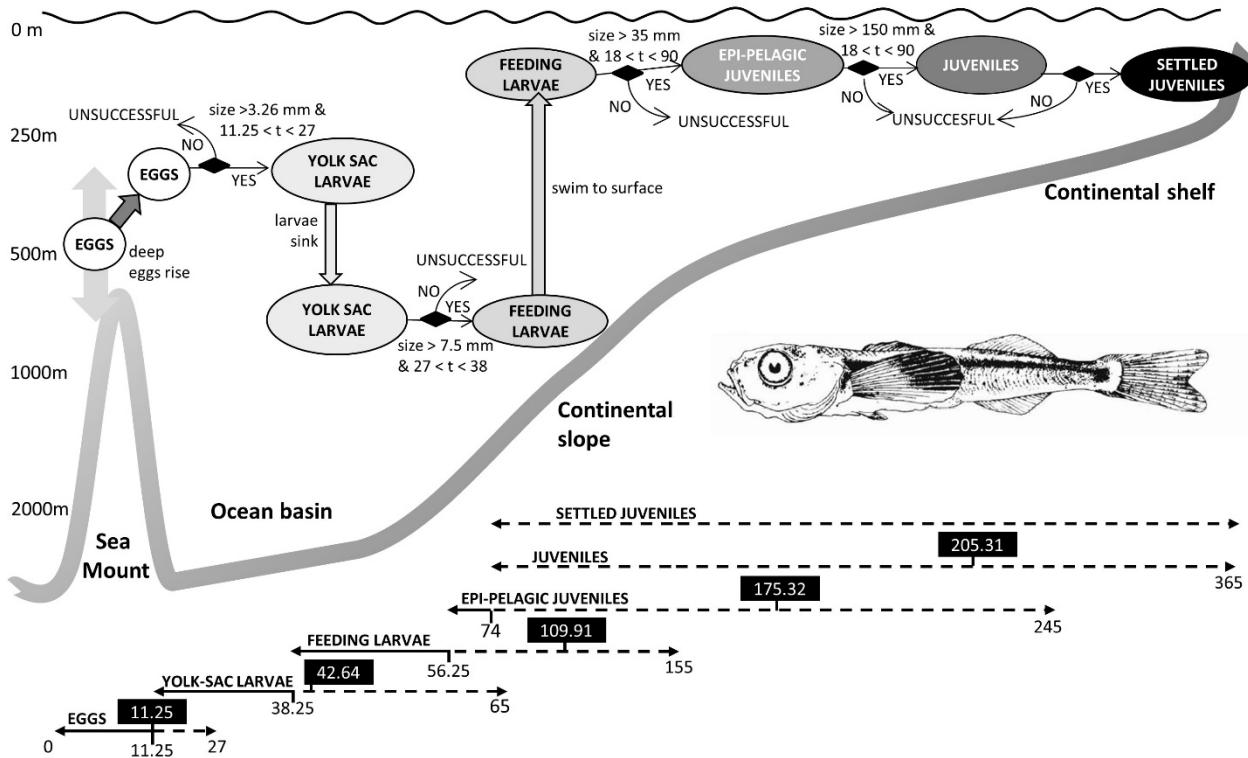
165 Figure 1. Location of the thirteen seamounts (S1-S13) in the Gulf of Alaska seamount province
166 and the twelve alongshore regions (N1-N12) used in our connectivity analysis. The location of
167 the US Exclusive economic zone as provided by Flanders Marine Institute (2019) is also shown
168 (dashed line).

169

170

171 2.2. Physical model

172 The GOA ROMS-NPZ skill in resolving common physical and biological features in the GOA
173 has been previously documented (Hinckley *et al.*, 2009; Dobbins *et al.*, 2009; Cheng *et al.*, 2012;
174 Coyle *et al.*, 2013; Hermann *et al.*, 2009; 2016). These models have been used to drive other
175 IBMs (Stockhausen *et al.*, 2019; Hinckley *et al.*, 2019), including the predecessor to the sablefish
176 IBM (Gibson *et al.*, 2019) presented here. Here we use a slightly updated version of the NPZ
177 model, as described in Coyle *et al.* (2019). The ROMS GOA model has a horizontal resolution of
178 approximately 3 km with $\sim 500 \times 500$ grid points. Grid boundaries extend from the Shumagin
179 Islands (162.74°W) in the western GOA to Prince of Wales Island in the eastern Gulf
180 (132.10°W), and from 46.66°N in the GOA basin up through Prince William Sound (64.19°N ,
181 **Figure 1**). The model has 42 vertical layers and uses a stretched z-coordinate system that allows
182 vertical refinement to resolve the surface boundary layer. The thickness of the upper layer
183 follows the bathymetry and varies from ~ 0.5 m over the shallow continental shelf to $\sim 5\text{-}10$ m
184 over the deeper ocean basin. The ROMS GOA model uses bathymetry based on ETOPO5 and
185 supplementary data as described in Danielson *et al.* (2016); smoothing of bathymetry was
186 applied for numerical stability. Any oceanic regions shallower than 10 m were set to 10 m deep.
187 Daily averages for physical oceanographic fields from the ROMS model were low-pass filtered
188 to eliminate tidal aliasing and were used to drive the IBM simulations within the DisMELS
189 framework. Since the development of the original Sablefish IBM (Gibson *et al.*, 2019) the
190 physical model was updated to use an improved representation of freshwater discharge along the
191 coastline. The new configuration is based on the fine-scale coupled land hydrology models of
192 Beamer *et al.* (2016) and has higher and deeper seasonal peaks and valleys than the original
193 runoff model (Royer *et al.*, 1982) due to increased spatial and temporal resolution (Hill *et al.*,
194 2015) as described in Coyle *et al.* (2019). Significant differences between these two products
195 have been discussed in Danielson *et al.* (2020); these include a climatological peak runoff in July
196 using the newer method, as compared to October from the older method.


197

198

199 2.3. IBM model

200 The sablefish IBM simulates five life stages including fertilized eggs, yolk-sac larvae, feeding
201 larvae, epi-pelagic juveniles, and ‘settled’ juveniles (**Figure 2**). Parameter selections and sources
202 for most parameters remain the same as the original model (Gibson *et al.*, 2019) but while the
203 original model had stage-specific constant growth rates, here we have updated the model to
204 include temperature-dependent growth rates and behaviors. The growth rate equations are
205 described below, while the stage-specific parameters i.e. depth preference, vertical swimming
206 speed, minimum and maximum stage duration, and transition size retain their original values
207 (Gibson *et al.*, 2019, cf. Table 1) unless otherwise noted. A detailed parameter sensitivity
208 analysis found results to be relatively robust to parameter values (Gibson *et al.*, 2019). As in the
209 previous version, individuals are presumed unable to exhibit complex horizontal movement
210 behavior strong enough to overcome horizontal currents, thus their position is determined

211 through advection from the ROMS model. However, individuals can control their vertical
 212 position in the water column according to their stage-specific “preferred” depth range and a
 213 mean vertical swimming speed. Space is considered to be continuous for the individuals i.e., they
 214 can move around, and their location is tracked within the ROMS grid cells. To ensure that the
 215 advection and biological processes of each individual were adequately resolved, the sablefish
 216 IBM used a sub-daily integration time-step of twenty minutes. At each of these biological time
 217 steps, the three-dimensional currents and temperature and NPZ fields from the daily ROMS-NPZ
 218 model output were interpolated to each individual’s location.
 219

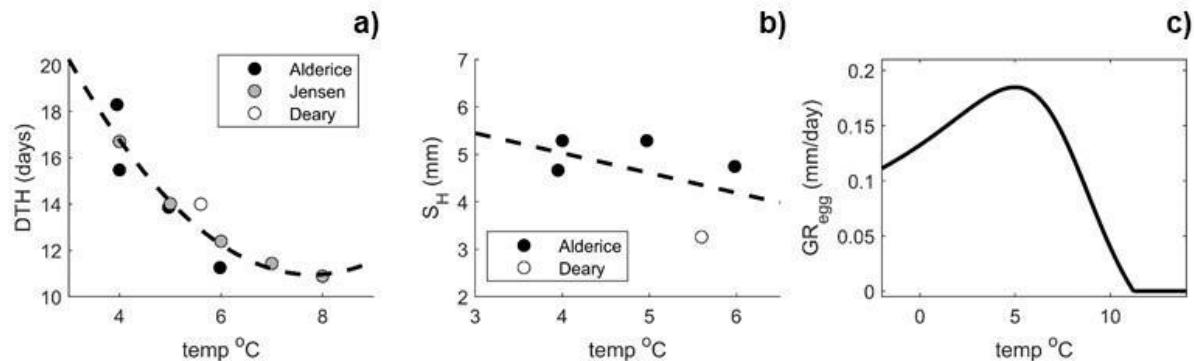
220
 221 Figure 2. Conceptual view (not to scale) of the sablefish individual-based-model, illustrating
 222 the life stages, assumed depth preferences, and rules determining progression from one life
 223 stage to the next. Movement from offshore spawning sites to inshore nursery sites is passive
 224 and dependent on advection. The inset figure shows a late-stage sablefish larvae (SL 33 mm)
 225 reproduced from Kendall and Matarese (1987). Black diamonds represent stage transition and
 226 associated rules for transition. See text and Gibson *et al.* (2019, cf. Table 1) for a description of
 227 model parameters. The potential time-period (days from initialization) that individuals could
 228 spend in each life stage is indicated, along with the mean transition time (white text on black)
 229 simulated for individuals from all seamounts and years.
 230

231 2.3.1. Egg stage

232
 233 Individual ‘sablefish’ particles were initialized over the seamounts at the egg stage. All eggs
 234 were assumed fertile, with the ability to develop to the hatching stage. To reflect current
 235 understanding of vertical positioning of eggs in the water column (Alderdice *et al.*, 1988) eggs
 236 are assumed capable of adjusting their vertical position to maintain a depth between 213 and

237 360 m. In reality, egg size is related to maternal factors (i.e. female size, female
 238 condition, batch number, etc.). To encapsulate some of this variability, in our updated version of
 239 the model, egg size (S_{egg}) at spawning is randomly assigned from a uniform distribution within
 240 the observed size range (1.8 and 2.2 mm, Mason *et al.*, 1983). While the simulated eggs do not
 241 technically grow in size, the time that the larvae take to hatch, and their size at hatch does vary.
 242 The number of days until hatch (DTH, **Eq. 1**) was simulated using a temperature-dependent
 243 quadratic formula fitted to observational data (Alderice *et al.*, 1988, Jensen and Damon 2002,
 244 Deary *et al.*, 2019, **Figure 3a**).

$$245 \quad DTH = 0.4046 \cdot T^2 - 6.307 \cdot T + 35.53, \quad \text{where } 11 < DTH < 27 \quad (1)$$


246 Using the few available data points (Alderice *et al.*, 1988; Deary *et al.*, 2019) we approximated
 247 the size of larvae at hatch (S_H , **Eq. 2**) to be a linear temperature-dependent function (**Figure 3b**).
 248

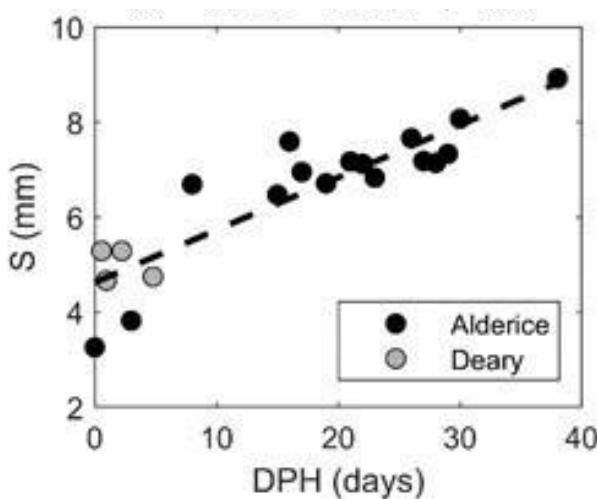
$$249 \quad S_H = -0.4189 \cdot T + 6.702 \quad (2)$$

250 From **Eq. 1** and **Eq. 2**, we approximated a growth rate for the embryos (GR_{egg} , **Eq. 3**) by
 251 assuming an average initial egg size of 2mm.
 252

$$253 \quad GR_{egg} = \frac{S_H - 2}{DTH} \quad , \quad GR_{egg} \geq 0 \quad (3)$$

254 This gave growth rates that varied between 0 and 0.18 mm/day for temperatures from -2 to
 255 11.2°C with a maximum at 5°C (**Figure 3c**). Temperatures exceeding 11.2°C would result in
 256 negative growth rates, so we assumed that growth does not occur in waters warmer than 11.2°C
 257 and set the associated growth rate to zero. The minimum time required for eggs to develop and
 258 hatch into yolk-sac larvae is 11.25 days, and a size of 3.26 mm had to be reached before an egg
 259 was considered hatched. Embryos that failed to reach the minimum size required for the
 260 transition to the next life stage within the allotted timeframe (twenty-seven days) were
 261 considered unsuccessful. Within this series of experiments, we found that all individuals reached
 262 transition size by 11.25 days and made the transition to yolk-sac larvae at that time.
 263

264 Figure 3. Data and formulations used to simulate egg growth rate. a) Days until hatch (DTH) vs.
 265 temperature. Observational data is from Alderice *et al.*, 1988 (black), Jensen and Damon 2002
 266 (grey), and Deary *et al.*, 2019 (white). Data was fitted with the quadratic curve $DTH = 0.4 \cdot$
 267 $T^2 - 6.3 \cdot T + 35.5$, $R^2=0.89$. b) Size (S_H) of larvae at hatch is estimated to be a temperature-
 268 dependent linear function of temperature with data Alderice *et al.*, 1988 (black) and Deary *et*
 269 *al.*, 2019 (white). c) Growth rate (GR_{egg}) of embryos is estimated to be a temperature-dependent
 270 function of temperature with a bell-shaped curve peaking at 5°C.


273 *al.*, 2019 (white) and function $S_H = -0.4189 \cdot T + 6.702$, $R^2=0.21$. c) Estimated temperature-
274 dependent growth rate for sablefish embryos using the formulation presented in **Eq. 3**.
275

276 2.3.2. Yolk-sac larval stage

277 Observational data (Alderice *et al.* 1988; Deary *et al.*, 2019) indicates that yolk sac larvae (YSL)
278 size increases linearly with days post-hatch (DPH, **Figure 4**) with the relationship shown in **Eq.**
279 **4**.

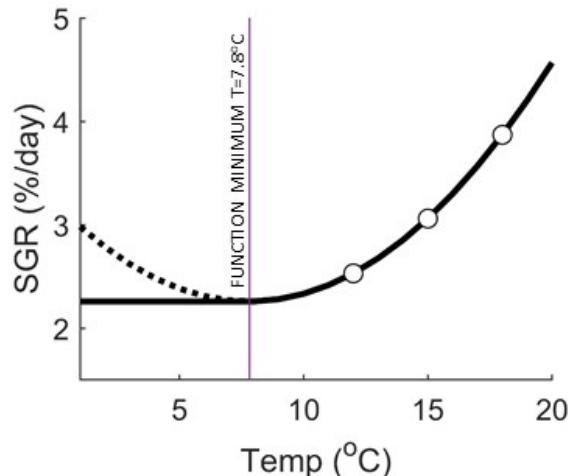
280 $S_{YSL} = 0.1105 \cdot DPH + 4.624$ (4)

283 The slope of the line (0.11 mm/day) is the temperature-independent growth rate we assumed for
284 YSL. Following a minimum of 27 days at this stage, the point at which feeding apparatus could
285 have developed and feeding might occur (Deary *et al.*, 2019), the larvae were assumed to have
286 used up their yolk sac and transitioned to the feeding larvae life stage, provided they reached a
287 minimum size of 7.5 mm. Individuals that did not reach the required size prior to 38 DPH were
288 considered unsuccessful. YSL have been observed to exhibit mass mortality (50%) when
289 temperatures exceed 9°C (Deary, per. Comm.). Thus, we assumed that temperatures higher than
290 this were lethal for this life stage. Within this series of experiments, we found the mean age of
291 transition to feeding larvae to be 42.64 days from spawning.

293
294 Figure 4. Data and formulations used to simulate yolk sac larvae size as a function of the number
295 of days post-hatch (DPH). Data from Alderice *et al.*, 1988 (black) and Deary *et al.*, 2019
296 (grey). Data were fitted with the linear equation $S = 0.11 \cdot DPH + 4.6$, $R^2=0.82$. The slope of
297 the line, representative of the constant daily growth rate, was 0.11 mm/day.

298 We also assumed that, while yolk-sac larvae can regulate density to maintain their vertical
299 position in the water column after sinking to a depth of 500-1000 m, this stage does not actively
300 swim—reflecting the fact that in the laboratory, newly hatched larvae did not exhibit
301 spontaneous movement (Alderice *et al.*, 1988). Minimum and maximum depths and swim
302 speeds were left unchanged from the previous version of the model.

303 2.3.3. Feeding larval stage


306 For the feeding larval stage, we initially fit a quadratic function to the temperature-dependent,
307 length-specific growth rates (SGR, Eq. 5) determined by Cook *et al.*, (2017) but assumed that
308 the SGR had a minimum of 2.26 %/day, as this was the minimum of the quadratic function
309 which was observed at a temperature of 7.82°C (Figure 5).

310

$$311 SGR = \max(2.26, 0.01556 \cdot T^2 - 0.24 \cdot T + 3.2) \quad (5)$$

312 Where $2.26 \leq SGR$

313 While based on only limited growth rate data, this function gives a growth rate that ranges from
314 0.16mm/day for the smallest individuals in this life stage (7.12mm) at temperatures below
315 7.82°C, and 1.35mm/day for the largest individuals (35mm) at 18°C. This range encapsulates the
316 constant growth rate parameter (0.48mm/day) that was previously estimated from observations in
317 the original model (Gibson *et al.*, 2019).

321
322 Figure 5. Data and formulations used to simulate feeding larvae specific growth rate (percentage
323 of standard length per day) as a function of temperature. Data came from Cook *et al.*, 2017
324 (white circles). Data were fitted with the quadratic equation $SGR = 0.01556 \cdot T^2 - 0.24 \cdot T +$
325 $3.21 (R^2=1.0)$ but growth rates at temperatures below 7.82°C, the temperature at the function
326 minimum, were fixed to 2.26% rather than increasing.

327
328 As in the original model, we assumed that following the transition to the feeding larval stage,
329 individuals ascend rapidly in the water column until they reach the surface ocean and actively
330 maintain their position during this life stage. While there is no marked morphological change
331 between the larval and juvenile stages (Kendall and Matarese, 1987), larvae are considered ‘*epi-*
332 *pelagic juveniles*’ once they have reached a total length of 35 mm. Feeding larvae that fail to
333 reach this size within 90 days are considered unsuccessful. Within this series of experiments, we
334 found the mean age of transition to epi-pelagic juveniles to be 109.91 days from spawning.

335
336
337
338
339 2.3.4. *Epi-pelagic juvenile stage*

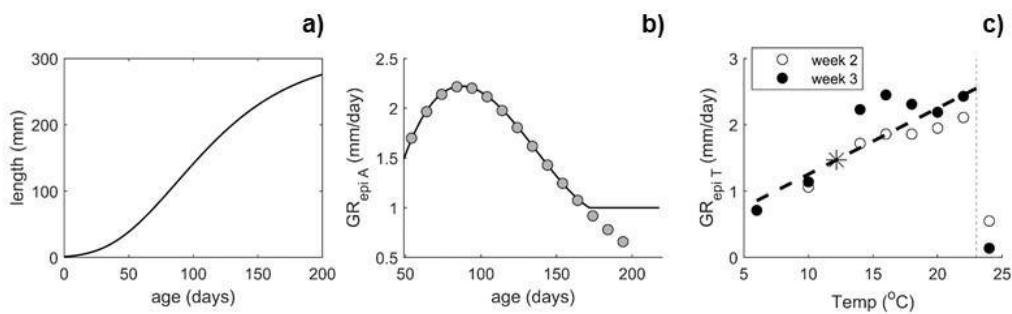
340 Epi-pelagic juveniles continue to maintain their position in the neuston but grow at a
 341 much faster rate than feeding larvae. Following the growth model presented in Boehlert and
 342 Yoklavich (1985), the size of individuals in this life stage was assumed to be a function of age
 343 (**Eq. 6, Figure 6a**). By computing the gradient of this sigmoidal curve, the growth rate as a
 344 function of age ($GR_{epi\ A}$) was obtained, which we fit with a cubic equation (**Eq. 7, Figure 6b**) for
 345 individuals from 48 to 137 days - the minimum and maximum time that an individual could be in
 346 the epipelagic juvenile stage. Boehlert and Yoklavich (1985) found the mean growth rate to be
 347 1.47 mm/day. No temperature measurements were reported, but assuming the linear temperature-
 348 dependent growth equation fitted to Sogard and Olla (2001) data (**Eq. 8, Figure 6c**) we assumed
 349 it occurred at a baseline temperature (T_B) of 12.1676°C. Thus, we derived an expression for the
 350 temperature and age-dependent growth rate of epi-pelagic juveniles (**Eq. 9**). Observed growth
 351 rates at 24°C were markedly reduced (Sogard and Olla, 2001), thus at temperatures $\geq 23^\circ\text{C}$, epi-
 352 pelagic juvenile growth rate was assumed to drop to 0.345mm/day.
 353

354 $Length(Age_{DPH}) = 1.2203 \cdot \exp\left(\left(\frac{0.1084}{0.0196}\right) \cdot (1 - \exp(-0.0196 \cdot Age_{DPH}))\right)$ (6)

355

356 $GR_{epi\ A} = 2.261 \cdot 10^{-6} Age_{DPH}^3 - 0.0009735 \cdot Age_{DPH}^2 + 0.1183 \cdot Age_{DPH} - 2.2$ (7)

357


358 $GR_{epi\ T} = 0.09965 \cdot T + 0.2575$ (8)

359

360 $GR_{epi} = GR_{epi\ A} + (T - 12.1676) \cdot 0.09965$ (9)

361

362 $GR_{epi\ A}$ has a maximum of 2.2198 mm/day at 87 days and 12.1676°C, which increases to a
 363 maximum of 3.1996 at 22°C.

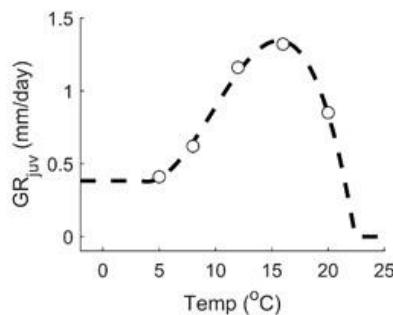
364

365

366 Figure 6. Data and formulations used to simulate epipelagic juvenile growth rate. a) Individuals
 367 length vs. age as specified by the Boehlert and Yoklavich (1985) growth equation. b) Age-
 368 dependent growth rate determined from the slope of the curve in a) and fitted with the
 369 polynomial (**Eq. 7**, $R^2=0.999$). c) Temperature-dependent growth rates determined by Sogard
 370 and Olla (2001). Data are fitted with **Eq. 8**, $R^2=0.77$). The asterisks indicate the mean growth
 371 rate (1.47mm/day) found by Boehlert and Yoklavich (1985), which, following **Eq. 8**, can be
 372 assumed to coincide with a temperature of 12.1676°C. The observed growth rates at 24°C were
 373 ignored when determining the linear relationship. The growth rate at or above 23°C was
 374 assumed to be 0.345 mm/day, the average of the week 2 and week 3 growth rates at 24°C.
 375

376 Once epi-pelagic juveniles reach 150 mm they are considered '*Juveniles*' with the ability to
377 'settle' in defined nursery areas, effectively recruiting to the population that will grow and
378 eventually enter the fishery. Within this series of experiments, we found the mean age of
379 transition to juveniles to be 175.32 days from spawning.

380


381 2.3.5. *Juvenile stage*

382 Following the transition to the juvenile stage, individuals continue to inhabit the upper water
383 column but undertake diel vertical migrations, moving higher in the water column at night
384 (Courtney and Rutecki, 2011; Sogard and Olla, 1998). The growth rate of individuals at this
385 stage is simulated using the temperature-dependent growth rate found for young of the year
386 (YOY) sablefish (Krieger *et al.*, 2019, Table 1). We fitted the data with a third-order polynomial
387 (**Figure 7**). Examining the roots of the polynomial, the growth rate was set to a minimum of 0.38
388 mm/day at temperatures below 3.45°C, and to an overall minimum of 0.0 mm/day to prevent
389 negative growth rates at temperatures exceeding 22.41°C. Maximum growth rate for this stage
390 was 1.34 mm/day at 15.6°C.

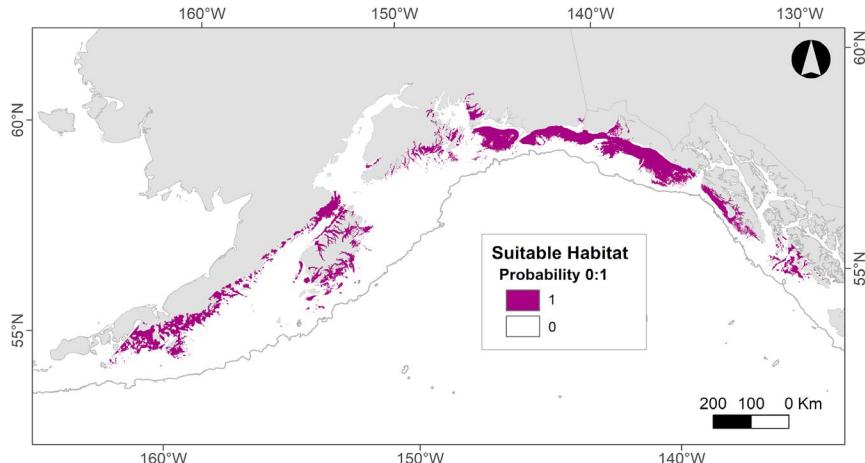
391

392 As discussed previously (Gibson *et al.*, 2019), juvenile sablefish do not fully transition from the
393 pelagic environment to the benthic environment but they do actively maintain their position over
394 desirable habitats, including inshore bays. Settled early juvenile sablefish habitat in the GOA
395 was previously modeled as the predicted probability of suitable habitat from a presence-only
396 maximum entropy species distribution model (SDM) fitted to their distribution in mixed gear-
397 type surveys and to a suite of environmental covariates (Pirtle *et al.*, 2019, Shotwell *et al.*, 2022)
398 (**Figure 8**). Here we consider the transition to a "settled" individual to occur if individuals are
399 over depths shallower than 100 m and over locations where the predicted probability of suitable
400 habitat (HSI) is ≥ 0.4 based on a threshold of equal training sensitivity and specificity from the
401 SDM. When juveniles find themselves over suitable habitat they transition to 'settled juveniles,'
402 and transport to a nursery area is deemed successful. Juveniles that fail to reach a suitable
403 nursery habitat prior to 365 days since initialization (the end of the simulation) are considered
404 unsuccessful. Within this series of experiments, we found the mean age of transition to settled
405 juveniles to be 205.31 days from spawning.

406

407

408 Figure 7. Fitted polynomial used to simulate juvenile sablefish growth rate. Open circles are
409 observed growth rates from Krieger *et al.*, 2019


410

411

412 2.3.6. *Settled Juvenile stage*

413 Here settled juveniles are considered to have the same growth rate function as juveniles. Settled
414 juveniles for the purpose of this experiment are fixed in both horizontal and vertical position
415 (bottom depth) and the environmental experiences of the individuals are tracked for the
416 remainder of the year since spawned, for a total of 365 days.

417

418
419 Figure 8: Settled early juvenile sablefish suitable habitat locations in the GOA (shaded areas)
420 inshore of the 1000 m depth contour within the GOA ROMS grid.

421

422

423 2.4. *Connectivity Experiment*

424 Seamounts in the Gulf of Alaska were identified by extracting the locations of the 2500m isobath
425 east of 147°W between 53-57°N. A series of thirteen individual polygons were identified that
426 corresponded to both named and unnamed seamounts (**Figure 1**). For each year of the
427 simulation, eggs were released on Feb. 20th, corresponding to the day of peak occurrence of
428 sablefish eggs in the GOA (Doyle and Mier, 2015). Eggs were initialized on a 500m resolution
429 horizontal grid over each of the 13 seamounts at 50 m depth intervals between 300 and 800
430 meters. A sensitivity analysis of the model output to the horizontal resolution of egg initialization
431 (Gibson *et al.*, 2019) previously found that the probability of individuals settling in any nursery
432 area was broadly similar, regardless of their initial spacing (from 500m -25km). Here we opted
433 to use the finer resolution to ensure that smaller-scale dynamics associated with the seamounts
434 were not missed. The size of the seamounts, and thus the number of individuals released over
435 each seamount, varied (**Table 1**), ranging from 846 for S9 to 44,905 for S1 (the Hodkins/Bowie
436 complex), for a total of 161,380 individuals per one-year model iteration.

437

438 2.5. *Analysis*

439 To assess interannual variability in the transport of young sablefish from potential deep ocean
440 seamount spawning sites to near-shore nursery areas, we calculate the probability of transport
441 from a spawning area to a settlement area for each year. To compare interannual differences in
442 connectivity, we looked at “total connectivity” (the probability of settlement integrated across all
443 spawning areas) and connectivity to/from specific alongshore areas.

444

445 2.5.1. *Connectivity Analysis*

446 It is not currently known whether sablefish spawn over the seamounts. Therefore, we made the
 447 simple assumption that the sablefish spawning stock is uniformly distributed across all
 448 seamounts in the Gulf of Alaska Seamount province. This assumption allows us to focus on
 449 evaluating the potential *relative* strength of connectivity from each seamount to potential nursery
 450 regions. Nursery areas were assumed to be relatively large scale and we divided the entire GOA
 451 into twelve approximately equal alongshore zones (**Figure 1**). The locations of individuals were
 452 assessed at the end of the model run to determine within which, if any, of the alongshore zones
 453 they settled. Settlement only occurred if the depth and habitat suitability criteria were met (see
 454 Section 2.3.5). For each model year (y), the strength of connectivity ($C_{N,S}$) between each
 455 seamount spawning site and each alongshore settlement site was calculated as the proportion of
 456 individuals released over a seamount (S) that settled into a nursery area (N). Annual connectivity
 457 matrices $C_{N,S}(y)$ were constructed for each year.

458

$$459 \quad C_{N,S}(y) = \frac{\text{No.Individuals settling in nursery area } N}{\text{No.Individuals spawned over seamount } S} \quad (10)$$

460

461 The annual connectivity matrices reflect the fraction of individuals released in each spawning
 462 area that were successfully “recruited” to each nursery area—*independent* of the size of the
 463 spawning stock in any spawning area. To provide a measure of central tendency, the overall
 464 median connectivity for each cell in the matrix was computed from the annual connectivity
 465 matrices:

466

$$467 \quad M_{N,S} = \text{median} \left(C_{N,S}(y) \right)_{y=1997}^{2018} \quad (11)$$

468 In addition, the overall temporal variability in connectivity was estimated using the temporal
 469 median absolute deviation (Leys *et al.*, 2013) of the annual connectivity matrices:

470

$$471 \quad \sigma MAD_{N,S} = \text{median}_{N,S} \left(\text{abs}(C_{N,S}(y) - M_{N,S}) \right) \cdot 1.4826 \quad (12)$$

472

473 To explore the interannual variability in connectivity between spawning and nursery sites, we
 474 examined: 1) interannual variability in “total connectivity” (C_{TOT}), the sum of all probabilities in
 475 the connectivity matrix for each year.

476

$$477 \quad C_{TOT}(y) = \sum_{1997}^{2018} C_{N,S}(y) \quad (13)$$

478 To examine the covariance structure of connectivity between seamount spawning sites and
 479 inshore nursery areas in the GOA in space and time, we employed multivariate empirical
 480 orthogonal function (EOF) analysis. The EOF method, outlined in detail in Gibson *et al.*, 2019,
 481 derives spatial covariance across the series of annual mean connectivity matrices for each of the
 482 twenty-two years simulated. The analysis describes the data in terms of the EOF eigen-modes,
 483 ordered by the percentage of the total variance explained by each of the modes, which are
 484 statistically uncorrelated with one another. We present the spatial patterns (“modes”) and
 associated Principal Component (PC) time series for the first two modes of the analysis.

485
486
487
488
489
490
491
492
493
494
495
496
497
498

2.5.2. *Transport Analysis*

A “Path Analysis” was performed to search for common trajectories or areas of the GOA used heavily by the young sablefish as they are transported away from the seamounts. This was achieved by first binning all trajectory locations for all individuals simulated on all days of the simulation into grid cells, then counting the number of individuals within each grid cell. It is important to note that this bin count can include the same individuals on successive days due to retention within a bin, as well as multiple individuals briefly moving through a bin. For brevity, we present the results for individuals ‘spawned’ over S5 (the Welker Seamount), the seamount that had the highest fraction of successfully settling individuals, as well as S1 at the eastern end of the chain and S13 at the western end (refer to Figure 1 for seamount locations). We examine 2002, 2007, 2009, 2010, 2013, and 2018; years indicated by an EOF analysis to have different connectivity patterns.

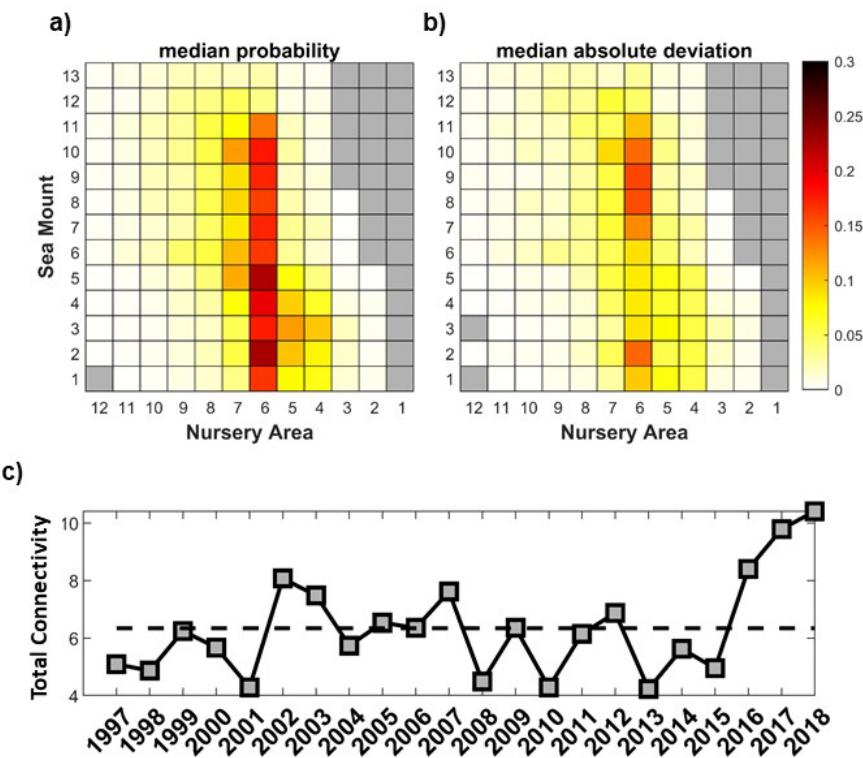
$$CellCount_{eta,xi} = \sum_1^{365} No. individuals in cell_{eta,xi} \quad (14)$$

499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517

2.5.3. *Environmental Indices*

We explored the correlation between a collection of environmental indices and the 1st principle component (PC1) from our EOF analysis. Temperature and transport are thought to impact sablefish recruitment (Shotwell *et al.*, 2014; Gibson *et al.*, 2019) and thus were the focus of our environmental analysis in addition to the Arctic Oscillation index, a large-scale climate index that impacts the North Pacific. Specific indices considered included the temperature along the upper 100m of the 500m isobath, the across-shelf and along-shelf velocity, and the Arctic Oscillation index (AO). To compute the along-shelf and across-shelf flow we first extracted the latitude and longitude of the 500m isobath from the ROMS model grid. Modeled u and v velocity components in the upper 100m were interpolated to these locations along the 500m isobath. Examples of the spatially explicitly annual averaged velocity over the GOA, along with the location of the 500m isobath, are shown in Appendix A for 2010 and 2018. From the gradient of the isobath location, we then resolved the velocities into along-shelf and across-shelf components of velocity. The monthly climatology of temperature, salinity, and velocity at each spatial point was determined and this seasonal cycle was removed from the time-series. Finally, the oceanographic variables were averaged seasonal (JFM, AMJ, JAS, OND) and annual over 5-degree bins to give indices for the eastern (135-140°W), east-central (140-145 °W), west-central (145-150 °W), and western (150-155°W) Gulf.

518
519
520
521
522
523
524
525

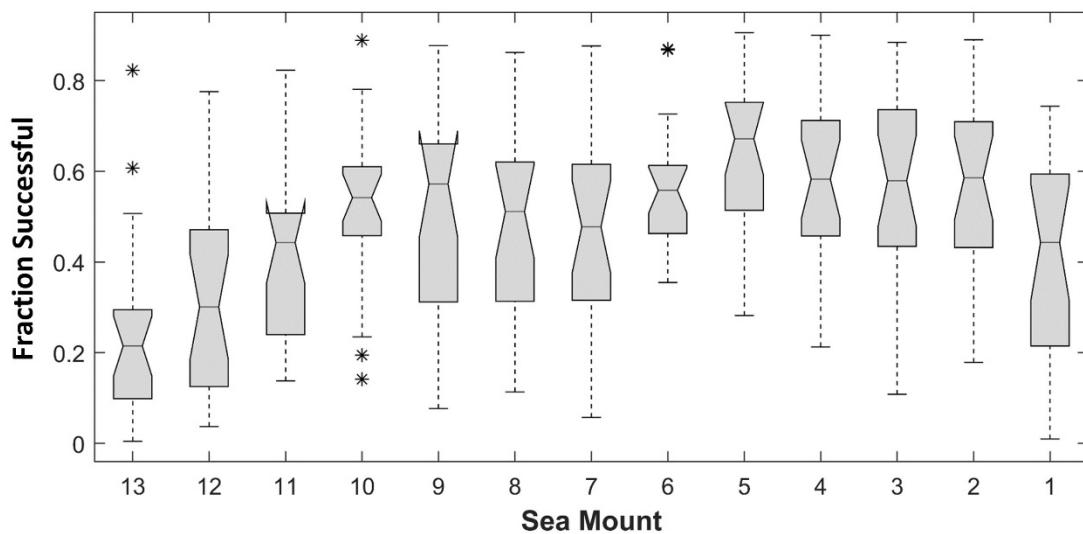

The AO (Thompson and Wallace, 1998) provides a measure of the atmospheric circulation over the Arctic. It consists of a positive phase when surface pressure in the polar region is below average and low and the cold Arctic air (polar vortex) is restricted to the polar region and a negative phase where the opposite is true. This atmospheric phenomenon can govern weather and climate patterns across mid- and high-latitude areas. Monthly average data is readily available (https://www.daculaweather.com/4_ao_index.php) and was used to develop annual and seasonally averaged AO indices.

526
527

3. **Results**

Our model experiments indicate that sablefish spawned over any of the seamounts in the Gulf of

528 Alaska seamount province have the potential to be successfully transported to shallow inshore
 529 nursery areas in the coastal Gulf of Alaska; spawning over some seamounts is significantly more
 530 likely to produce successful inshore settlement than others. The median connectivity
 531 (probability of settlement) from the seamounts to the inshore nursery areas (**Figure 9a**) indicates
 532 that eggs spawned over most seamounts are likely to settle in alongshore areas in the central
 533 Gulf, primarily in alongshore area 6, followed by alongshore area 7 to the west for eggs
 534 originating from seamounts 5-10. The easternmost seamounts were also most strongly connected
 535 to area 6, but individuals from these seamounts were secondarily more likely to settle in areas to
 536 the east (alongshore areas 4 and 5). Eggs from seamounts S12-S13 have a relatively low
 537 probability (<0.1) of settling in any of the alongshore areas. None of the seamounts produced
 538 settlers in the easternmost alongshore area (N1). Over the twenty-two-year period examined, the
 539 maximum connectivity between an individual spawning area and an individual nursery area was
 540 0.54. This maximum connection was from seamount M9 to nursery area 6 in the central Gulf of
 541 Alaska in 2018. The second strongest connection (0.47 in 1997) also occurred between this
 542 seamount-nursery area pair. The strongest annual median connectivity (0.23) was between M2
 543 and nursery area N6.

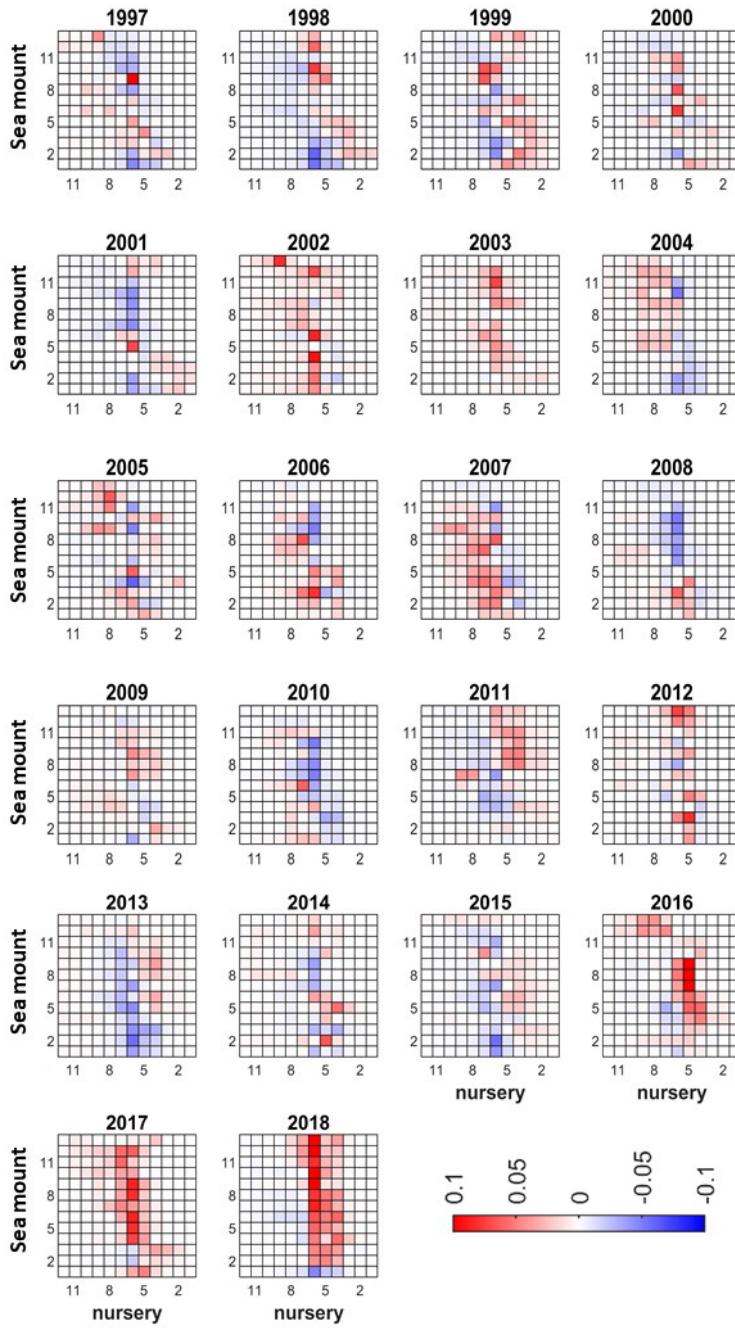


544
 545 Figure 9. Connectivity matrix showing the median probability that individuals released as eggs
 546 over each of the seamount spawning areas successfully settled in each alongshore nursery
 547 area (a), the associated deviation about the median (b), and the total connectivity in each year
 548 from all seamounts to all nursery areas (c). The total connectivity for each year was computed
 549 at the end of the simulation (365 days since spawning) and the median was computed from
 550 annual averages for each of the twenty-two years simulated (1997-2018).

551
 552 The connection between individual seamounts and nursery areas varied quite strongly inter-
 553 annually, and the deviation from the median was often of a similar magnitude to the median

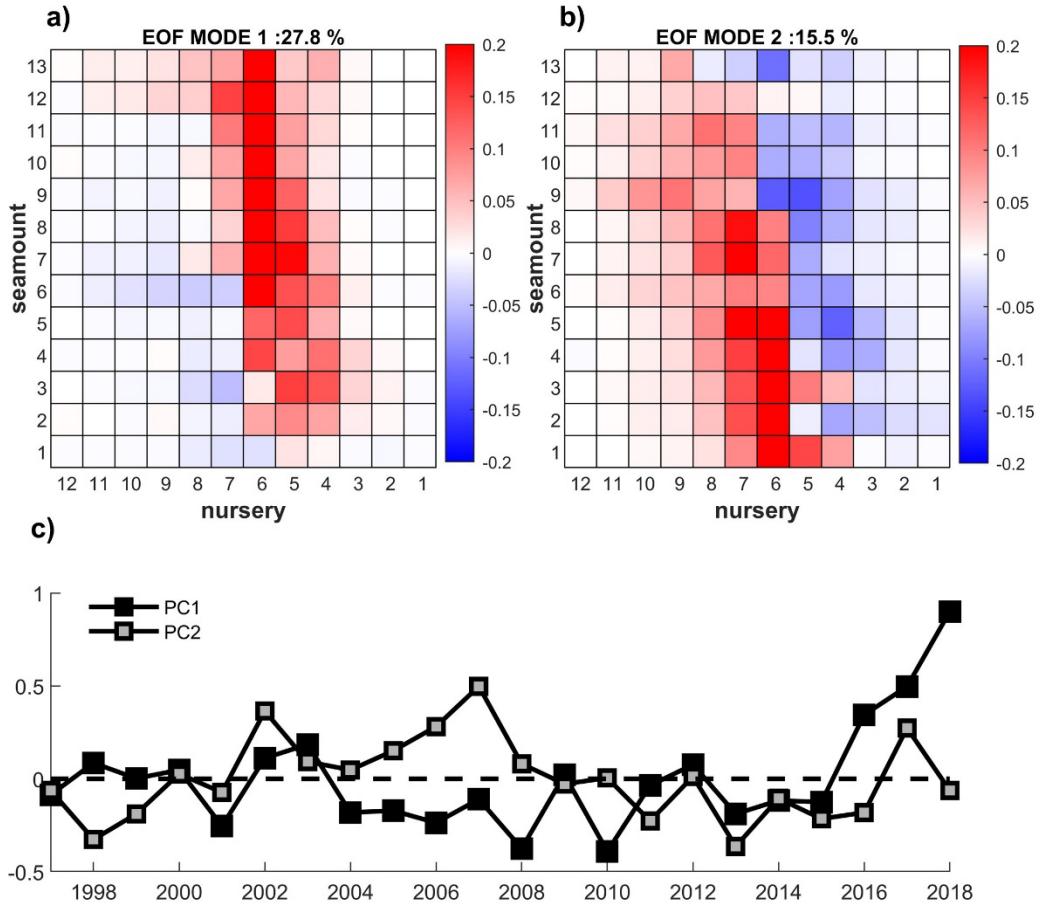
554 (Figure 9b). Reflecting the median connectivity pattern, for all seamounts, the largest deviation
 555 about the median connectivity was to nursery area 6. Total connectivity (C_{TOT}) between all
 556 seamounts and any of the 12 alongshore nursery areas also varied interannually (Figure 9c) with
 557 no discernible trend over the time series. The maximum ($C_{TOT}=10.4$) occurred in 2018, following
 558 increasingly larger values in 2016 ($C_{TOT}=8.4$) and 2017 ($C_{TOT}=9.8$). Prior to this recent increase
 559 in connectivity, the largest connectivity ($C_{TOT}=8.1$) occurred in 2002. A minimum connectivity
 560 ($C_{TOT}=4.2$) occurred in 2013 with similarly low values ($C_{TOT}=4.3$) in 2001 and 2010. Over all
 561 years examined, the fraction of eggs that successfully settled as juveniles in any shallow nursery
 562 areas along the GOA coast (Figure 10) increased from a median of 0.21, for individuals
 563 ‘spawned’ over the Giacomini seamount (S13) at the far west of the chain, to a median of 0.57
 564 for individuals ‘spawned’ over the S9. There was a slight decrease in the median fraction
 565 successful (~0.5) for M6-M8 followed by an increase to a maximum of 0.67 from S5 (the Welker
 566 Seamount). The fraction successful dropped to ~0.58 for individuals originating from M2-M4
 567 and decreased again to a median of 0.44 for individuals spawned over S1 (the Hodgkins/Bowie
 568 complex) at the easternmost end of the chain.
 569

570 The interquartile range (IQR) in fraction successfully settling over the model years examined
 571 was smallest (0.15) for S10 and S6 and ranged from 0.2-0.35 for the other seamounts. The size
 572 of the notches in the boxplots is indicative of the uncertainty in the value of the median and the
 573 bounds of the notches are determined by $\text{median} \pm 1.58 * \text{IQR} / \sqrt{n}$, where n is the sample size. Here
 574 $n=22$, the number of years in our study. It is generally accepted that lack of overlap in the
 575 notches of two boxes is evidence of a statistically significant difference (at a 95% confidence
 576 level) in their medians. (McGill *et al.*, 1978). As the notch for S13 does not overlap with the
 577 notches determined for S1-S11 (Figure 10), we can conclude that the median likelihood of
 578 successful settlement to any of the alongshore nursery areas was significantly less for individuals
 579 spawned over seamount S13 than these other seamounts. Likewise, we can conclude that the
 580 median fraction successful from S5 is significantly higher than the median fraction successful
 581 from S1, S11, and S12.



582
 583 Figure 10. Boxplots showing the probability of individuals released over each seamount (S1-
 584 S13) settling in any alongshore nursery area. Values were computed for the twenty-two-year
 585 simulation period (1997-2018). The probability extremes are represented by the upper and

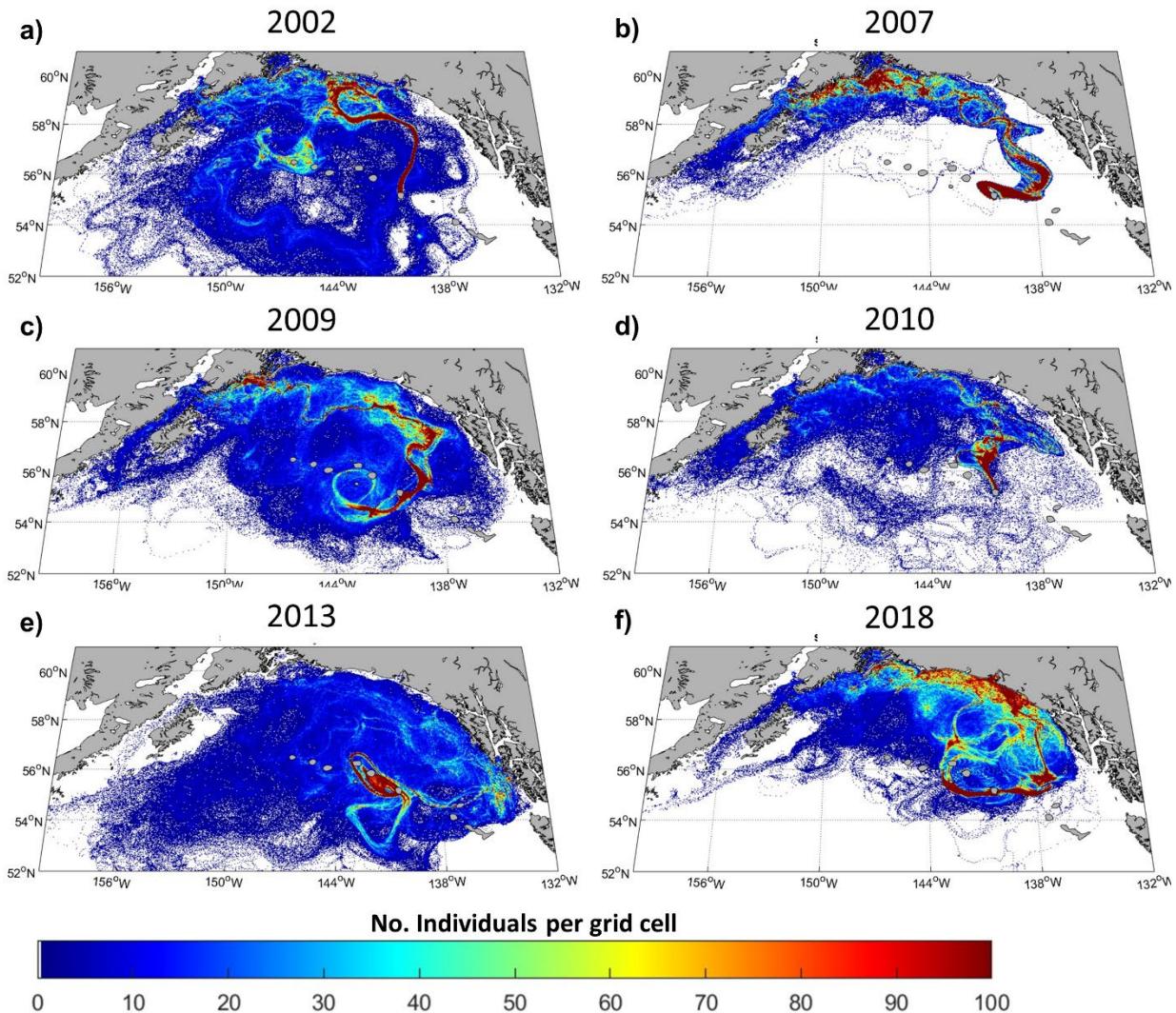
586 lower whiskers and computed as $Q3 + 1.5 * (Q3 - Q1)$ and $Q1 - 1.5 * (Q3 - Q1)$ respectively where
587 Q1 is the 25th percentile and Q3 is the 75th percentile. Outlying data points, beyond the
588 whiskers, are represented by an asterisk (*).


589
590 Annual deviations from median connectivity between individual seamounts and alongshore
591 nursery areas (**Figure 11**) show that the change in the strength of the pairwise connections was
592 not homogenous. In most years, some seamounts and nursery areas had a stronger than median
593 connection, while others had a weaker than median connection. Years that saw a greater than
594 median connectivity from the seamounts to nursery areas in the western GOA often had a weaker
595 than median connectivity to the nursery areas in the eastern GOA. 2003 stands out as a year that
596 had above median connectivity from most seamounts to most nursery areas. 2016-2018 were
597 years that broadly exhibited much greater than average connectivity, although connectivity from
598 some of the eastern seamounts was below average. The dominant patterns in relative
599 connectivity between seamount and nursery area pairs throughout the 22-year study period are
600 underscored in the EOF analysis (**Figure 12**). The first two EOFs of the annual connectivity
601 matrix, which together accounted for 43.3% of the total variance, both show strong similarity in
602 the strength of the connection from each seamount to each nursery area indicating that there is
603 synchrony across the seamounts in the GOA seamount province to the nearshore environment.
604 The first principal component of the EOF analysis (PC1) explained 27.8 % of the total variance
605 while the second principal component (PC2) explained an additional 15.5 % of the total variance.
606 In general, positive PC1 scores were associated with stronger connectivity from all seamounts to
607 nursery areas in the eastern GOA (alongshore areas 1-6) but lower connectivity to the western
608 GOA (along nursery shore areas 7-11). Positive PC1 scores were associated with increased
609 connectivity between S12 and S13 at the far western end of the seamount chain and the nursery
610 areas. Positive PC2 scores are associated with reduced connectivity to the east-central GOA,
611 especially to nursery areas 4 and 5, but increased connectivity to the west-central GOA (i.e.
612 nursery areas 7 and 8).

613

614
615
616
617
618
619

Figure 11. Annual deviations from the median connectivity for each seamount-nursery area pair.
Red indicates above median connectivity while blue indicates below median connectivity.

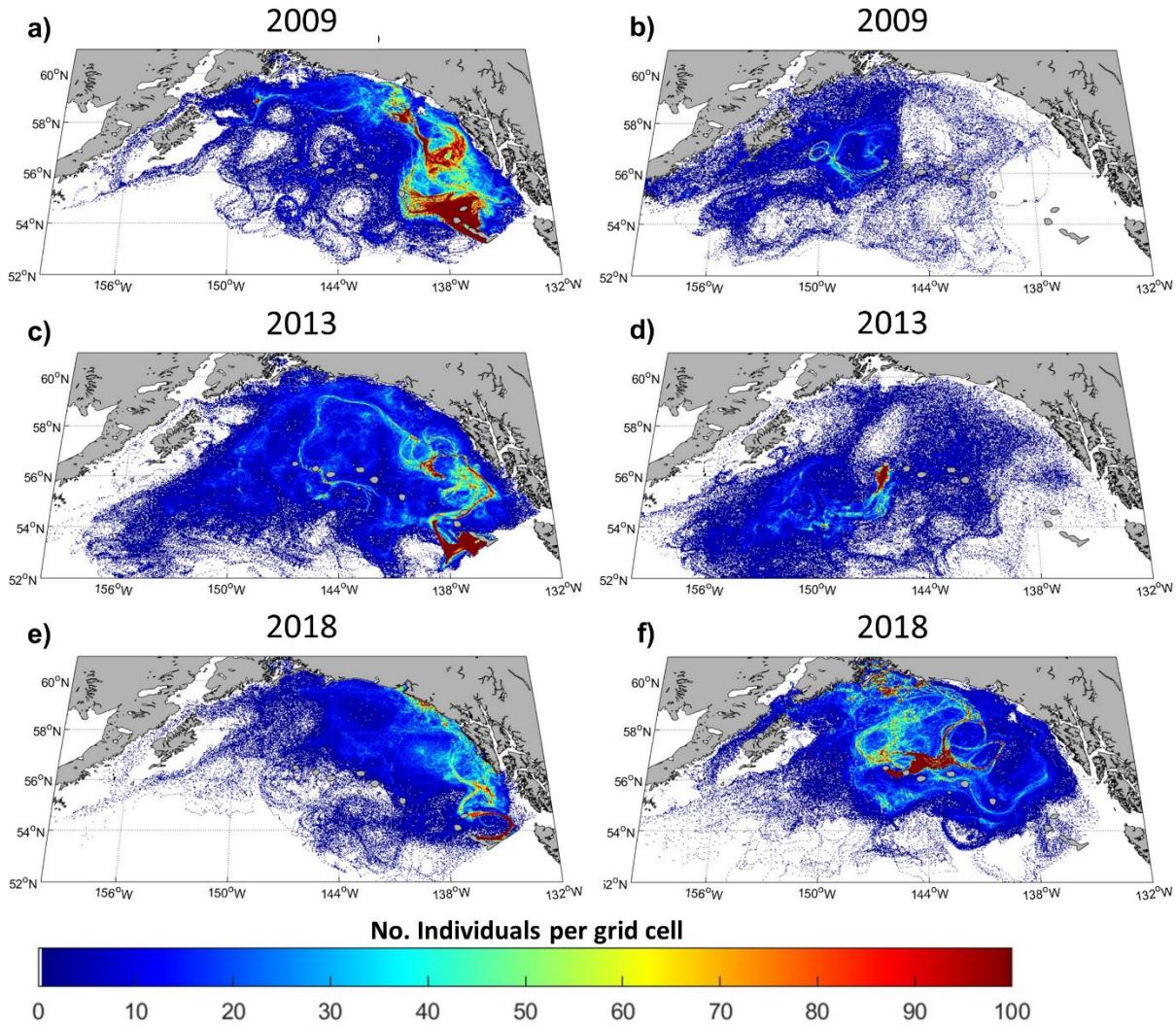


620
 621 Figure 12. First (a) and second (b) mode spatial patterns from an EOF analysis of the annual
 622 mean probability of connection between the spawning area- nursery area pairs across the
 623 GOA for the 1997-2018 period. The corresponding 1st (black) and 2nd (grey) principal
 624 component time-series (PC) are shown in (c).
 625

626 Path analysis visually illustrates that the dominant transport pathways for individuals that
 627 successfully settled also varied interannually (**Figure 13**). In 2002, a year that had relatively high
 628 total connectivity, a slightly positive PC1 (0.11) and a strongly positive PC2 (0.36) individuals
 629 spawned over the Welker seamount (S5), the seamount that had the largest fraction successful,
 630 were primarily transported directly north before taking a hard westward turn along the shelf
 631 break before traversing the shelf to the shallow nursery areas in the central gulf (**Figure 13a**). In
 632 2007, a year with similarly high total connectivity but an even stronger positive PC2 (0.50) and a
 633 slightly negative PC1 (-0.11), individuals from S5 were initially transported to the north-west
 634 before sharply reversing direction to the southeast to pass M4 before eventually being
 635 transported northwards to the coast (**Figure 13b**); Individuals appear to primarily reach the coast
 636 in the vicinity of N5-N7. In 2009, a year of average connectivity and average PC1 (0.02) and
 637 PC2 (-0.03) scores there appears to be a bifurcated transport pathway with individuals being
 638 transported both northeast and southwest away from the seamount (**Figure 13c**); The individuals
 639 that were transported northwards appear to have been transported westwards in the shelf break
 640 current with no strong across shelf transport. Both 2010 and 2013 were years with low total
 641 connectivity. In 2010, PC1 was strongly negative (-0.39) but PC2 was average (0.01) while in

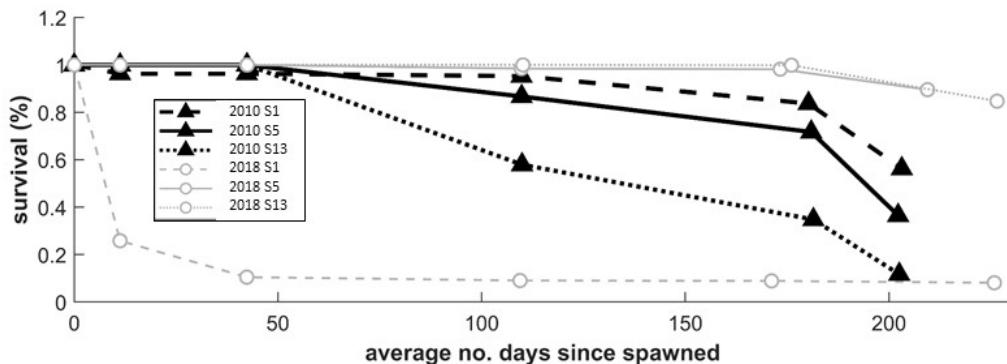
642 2013 both PC1 and PC2 were negative (-0.19 and -0.36 respectively). In both years the path
 643 analysis indicates that most individuals were trapped in eddies in the vicinity of the seamounts
 644 (**Figures 13 d and e**). Individuals that made it to a coastal settlement area did not follow a well-
 645 defined path. 2018 had the strongest total connectivity (10.4) of the years examined. While PC2
 646 was slightly below average (-0.06) PC1 was strongly positive (0.9). While the initial transport
 647 away from the seamount was also bifurcated in this year, with concentrated transport both to the
 648 east and west (**Figure 13f**), most individuals were then transported northwards and crossed
 649 directly onto the shelf to reach the coast between N3 and N5.

650
 651
 652


653
 654 Figure 13. Path analysis shows the dominant pathways taken by individuals as they are
 655 transported away from the Welker seamount (S5). The count per grid cell is a sum of all
 656 individuals in a cell for each of the 365 days of the experiment.

657

658 Transport from the other seamounts in the chain also varied quite markedly interannually. For
 659 example, path analysis for seamount 1 indicates that in 2009, a year with average connectivity


660 and average PC1 and PC2, there was initially strong retention of the individuals around the
661 easterly seamounts before transport on and across the shelf to coastal settlement areas (**Figure**
662 **14a**); there was no strong transport from S13 to the settlement areas (**Figure 14b**). In 2013, a
663 year with low total connectivity, individuals from S1 appear to be initially retained south of the
664 seamounts before being transported north-eastwards, towards the coast; however, there was no
665 strong transport pathway across the shelf (**Figure 14c**). In this year, individuals from S13 also
666 appear to have been initially south of the seamount and were then broadly dispersed around the
667 gulf with no clear transport coastwards (**Figure 14d**). In 2018, the year with the strongest total
668 connectivity, a transport pathway east then north from S1 to the coast is apparent (**Figure 14e**)
669 while individuals from S13 were transported eastwards as far as S12 before taking multiple paths
670 north to reach the coast (**Figure 14f**).
671

672 The survival of individuals from one life stage to the next varied by seamount spawning site and
673 year. Even in years with high overall connectivity to the inshore nursery sites, individuals from
674 some seamounts had low survival. For example, in 2018, the year with the highest overall
675 connectivity, only 26% of the eggs released from S1, the Hodkins-Bowie complex, successfully
676 transitioned to the yolk-sac larval stage (**Figure 15**) and only 10% transitioned to the feeding
677 larvae stage. Examination of the individual life histories indicates that this is because the
678 individuals were lost from the system via advection to the east and out of the model domain. In
679 2010, a year with relatively low connectivity between seamounts and nursery areas most
680 individuals (>96%) successfully transitioned through to the feeding larvae stage (**Figure 15**).
681 However, only 58% of individuals initiated over S13 transitioned to epi-pelagic juveniles and
682 only 35% transitioned to juveniles. Examination of these life histories reveals that this was due to
683 the individuals being transported out of the system through the western edge of the model grid.
684

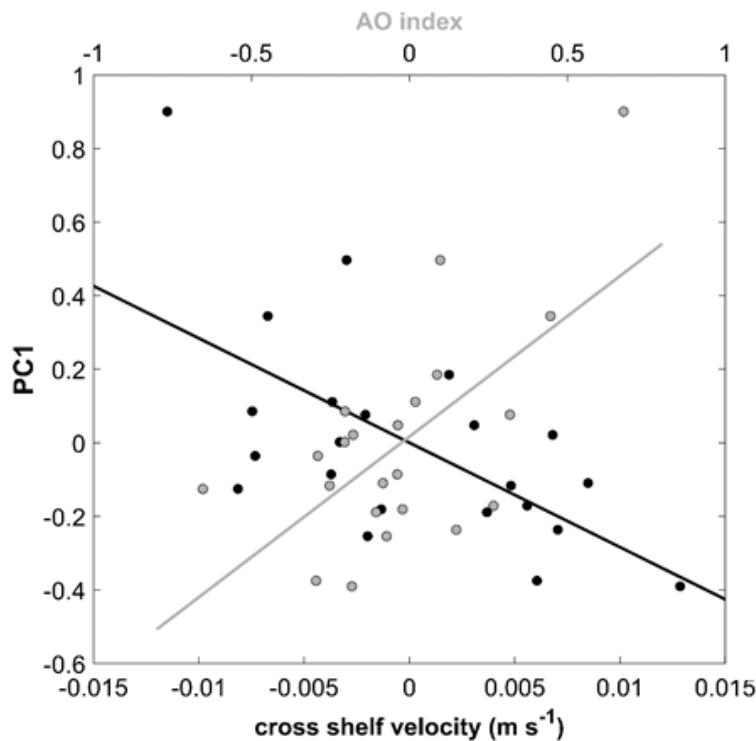

685
686
687
688
689
690
691
692
693

Figure 14. Path analysis showing the transport pathways taken by individuals as they are transported away from the Hodgkins-Bowie complex (S1) at the eastern end of the seamount chain (a, c, e) and the Giacomini seamount (S13) at the western end of the chain (b, d, f). The count per grid cell is a sum of all individuals in a cell for each of the 365 days of the experiment.

694
695
696
697

Figure 15. Fraction of individuals surviving to each life stage transition for individuals released from seamount S1 (Hodkins-Bowie), S5 (Welker), and S13 (Giacomini) in 2010 and 2018.

698
699
700
701
702
703

Figure 16. Relationship between PC1 and annual average cross-shelf velocity ($r=-0.62$, $p=<0.01$) in the eastern Gulf of Alaska (135° - 140° W, black points and line) and PC1 and the July-September Arctic Oscillation index ($r= 0.64$, $p=<0.01$, grey points and line).

704 The PC1 time series from our EOF analysis of the connectivity matrices were negatively
705 correlated ($r=0.62$ respectively) with the annual average on-shelf flow in the Eastern GOA
706 (Table 2, Figure 16). No significant correlations were found between PC1 and on-shelf flow in
707 other regions or seasons (Table 2). The average temperature and salinity along the 500m isobath
708 in each season and domain in the GOA also showed no relationship to PC1. We found a positive

709 correlation between both PC1 ($r=0.64$) and C_{TOT} ($r=0.69$) and the AO time series for the summer
710 (July-September) time period (**Figure 16**). No significant correlations were found between either
711 metric and the AO for other seasons, and no relationship was found between C_{TOT} and on-shelf
712 velocity or temperature in any season.

713

714 4. Discussion

715 Using an IBM of sablefish, we have demonstrated that if sablefish were spawned over any of the
716 seamounts in the GOA seamount province it is likely that at least some individuals will be
717 successfully transported to shallow inshore nursery areas in the coastal GOA. Due to their
718 distance from shore, sampling over the seamounts is relatively rare. However, females that have
719 recently spawned, or are ready to spawn, have been observed over the seamounts (Maloney,
720 2004) which has raised the questions of the role of these geographic features in sablefish life
721 history. Here we have shown that larval transport hundreds of miles from the seamounts to
722 suitable nursery habitat along the Gulf of Alaska coast within an appropriate timeframe is not
723 only possible, but likely. Our simulated individuals currently only exhibit vertical movement
724 behavior, thus the predicted on-shore transport results from the prevailing currents and not due to
725 any geographic or environmental homing capabilities.

726

727 In general, the strongest connection from each of the seamounts in the chain was to the central
728 GOA nursery areas. While in some years juvenile sablefish are found in nursery habitats all
729 along the GOA coast, often their nursery areas are thought to be more restricted. For example,
730 juvenile sablefish are consistently found in St. John Baptist Bay (SJBB) in Southeast Alaska.
731 While a small percentage of individuals released over the seamounts at the eastern end of the
732 chain were transported to nursery areas near SJBB (alongshore nursery areas three), it was not a
733 dominant mode of connectivity. An earlier version of the sablefish IBM (Gibson *et al.*, 2019)
734 indicated that transport to this bay is also not the most likely outcome for individuals spawned
735 over the continental shelf. This led the authors to hypothesize that individuals settling in SJBB
736 were either taking advantage of sub-mesoscale physical transport mechanisms not captured by
737 the model, or they were originating from source areas to the south of the model domain – i.e. off
738 of the coast of Washington. Connectivity between most seamounts and inshore areas was not
739 significantly different and EOF analysis found that connectivity from the seamounts tends to
740 vary in unison. The connectivity from the westernmost seamount in the chain (S13) was
741 significantly less than for most of the other seamounts. It is likely that individuals ‘spawned’
742 over this far western seamount exited the GOA to the west, as was the case for individuals
743 spawned off of the western GOA shelf break in an earlier version of the model (Gibson *et al.*,
744 2019).

745

746 It is not typical for research surveys to extend much beyond the continental shelf break due to
747 time and logistical constraints. However, in addition to the limited evidence of adult sablefish
748 spawning over the seamounts (Maloney 2004), juvenile sablefish have been observed close to the
749 seamounts on a few occasions. During a research cruise in the eastern GOA that occurred July-
750 August 2016, age-0 sablefish were found beyond the shelf break (Strasburger, *et al.*, 2018), in
751 the vicinity of seamounts; however, it was not known where these individuals originated from. A
752 much older research cruise in the eastern GOA during May 1990 (Wing and Kamikawa, 1995)
753 also found the highest catches of sablefish larvae to be 160km offshore, beyond the shelf break
754 near the seamounts. The authors attributed their presence to offshore transport resulting from the

755 absence of the Haida and Sitka eddies, as well as an absence of the more typical downwelling
756 system that is often found in the region.

757
758 While the prevailing oceanography across the GOA plays a crucial role in the onshore transport
759 of individuals that were spawned over the seamounts our results show that the strength of the
760 cross-shelf velocity is not the primary factor in determining the likelihood of transport to nursery
761 areas. Both total connectivity and the 1st PC for connectivity (PC1) between the seamounts and
762 the inshore nursery areas was negatively correlated with the annual averaged on-shelf velocity in
763 the eastern GOA and no other correlations between seasonal or annually-averaged on-shelf
764 velocity could be found. In 2018, the year with the strongest simulated connectivity, the on-shelf
765 velocity in the east was the lowest of all years examined. Path and survival analysis indicates that
766 in this year individuals from the western end of the seamount chain were transported east and
767 retained in the GOA where they could successfully transition through the early life stages
768 becoming juveniles with the ability to settle, rather than being advected out of the system to the
769 west, as is more typical. A positive correlation between PC1 and the AO index suggests that the
770 mechanisms impacting the transport of individuals from the seamounts to the inshore areas could
771 be acting on a gulf-wide scale. We speculate that the size, strength, location, and direction of the
772 eddies that populate the GOA (i.e. Appendix A) in any given year, and the temporal and spatial
773 alignment of these features with sablefish early life history, are important in determining
774 transport success. Indeed, Shotwell *et al.* (2014) discussed that young of the year (YOY)
775 sablefish entering surface waters may be entrained in coastally-derived eddies translating along
776 the shelf-break. Similarly, Goldstein *et al.* (2020) found that cross-shelf transport and settlement
777 of Arrowtooth flounder in the GOA was augmented by transient retentive mesoscale eddies.
778 Anticyclonic eddies may become trapped as they translate along the shelf-break through the
779 Alaskan Stream eddy corridor during periods of increased circulation (Henson and Thomas,
780 2008). This may increase the entrained nutrients in a given area and allow for more productive
781 waters and transport of larval fish along the eddy path (Atwood *et al.*, 2010). The timing of these
782 mesoscale features can be short or long-lived (Okkonen *et al.*, 2003; Ladd *et al.*, 2007) and it
783 could simply be a matter of luck as to whether the timing of sablefish spawning coincides with
784 the favorable transport by an eddy. This idea is reinforced by the large deviation about median
785 connectivity and by our path analysis which shows that there are markedly different pathways
786 taken by successful individuals year on year.

787
788 Sablefish recruitment is defined as the number of age-2 sablefish entering the population as
789 estimated in the stock assessment model (Hanselman *et al.*, 2014). Past analysis (Gibson *et al.*,
790 2019) found that the total connectivity between all potential sablefish spawning sites along the
791 GOA continental shelf and inshore nursery areas showed a stronger correlation with recruitment
792 estimates than the strength of connections to or from specific regions. While we have not directly
793 related the connectivity from seamount sites to recruitment, it is worth noting that the most
794 recent years for which recruitment estimates are available (2018 through 2020) correspond to
795 simulation years with strong connectivity two years prior (2016 through 2018) when the
796 individuals would have been in the larval stage and being transported onto the shelf (Goethel *et*
797 *al.*, 2021). We speculate that the increase in recruitment could be related to an increase in
798 seamount-spawned individuals reaching favorable settlement areas. The ecosystem and
799 socioeconomic profile (ESP) associated with the sablefish stock assessment (Goethel *et al.*,
800 2021, cf. Appendix 3C,) provides a series of indicators for monitoring ecosystem linkages to the

801 stock. The sablefish ESP states that catch per unit effort of sablefish in nearshore surveys along
802 the western GOA and the Aleutian Islands has been the highest in the time series over the years
803 2018 to 2021 approximately corresponding to sablefish year classes from 2015 to 2018. Catch
804 per unit effort of sablefish has also increased in the sablefish targeted pot fishery and incidental
805 catch has increased in the non-sablefish target fisheries of the eastern Bering Sea since 2016. All
806 three indicators support the idea of higher connectivity years, demonstrated in this analysis, and
807 also suggest that the sablefish can utilize different habitats when their population expands or
808 environmental conditions change.

809
810 As noted earlier, the connectivity from the western GOA (both seamount and slope region) was
811 lower than other areas investigated and likely due to individuals exiting the system. Verification
812 of this distribution shift into the Aleutian Islands and the eastern Bering Sea due to connectivity
813 increases and contributions of the seamounts in the most recent years could be possible if these
814 individuals were able to be tracked further into these areas. This type of exploration would
815 require an expansion of the 3km ROMS GOA model past the western boundary through the
816 Aleutian Islands and into the Bering Sea. If a continuous ROMS model were developed for the
817 whole Alaska region, we would be able to test such linkages and also develop more relevant
818 indicators for the management of the fishery in either the sablefish ESP or for use specifically in
819 the stock assessment model.

820
821 The spawning center for sablefish has historically been thought to be in deep water over the
822 GOA continental shelf. If the seamounts do indeed play a role in the life history of the species it
823 may be useful to consider the potential contribution of the seamount habitat to the sablefish
824 population. While we have demonstrated that if sablefish did spawn over the seamounts,
825 transport to coastal nursery areas is likely, we acknowledge the present limits of our
826 understanding as to the contribution of the seamount population to the sablefish population as a
827 whole. To address this question would require a true measure of the spawning biomass on the
828 seamounts to compare potential contributions of recruits relative to the contribution by the more
829 consistently monitored slope population. Sablefish are managed in Alaska using a harvest control
830 rule that aims to preserve sufficient spawning biomass. With seamounts being a potentially
831 important spawning site for sablefish this presents future research priorities for ground-truthing
832 with fishery or fishery-independent data. Sampling for YOY sablefish has been conducted in the
833 past (Sigler *et al.*, 2001, Strasburger *et al.*, 2018) including tagging of YOY (Strasburger *et al.*,
834 2018). Tag recovery information from larval sablefish tagged in the vicinity of the seamount
835 areas would be valuable, although technically challenging due to their small size, in validating
836 our findings and represents a research priority that would help evaluate the importance of
837 seamounts to sablefish populations in the Pacific.

838
839 Information on connectivity from this IBM could also be used to inform the movement of
840 sablefish during their first year of life within a spatially integrated life cycle model that is in
841 development for Alaska sablefish (Goethel *et al.*, 2021). This type of stock assessment model
842 could be used to generate regional estimates of recruitment that can then be linked with relevant
843 environmental indicators as explored in the ESP to understand spatial shifts in the sablefish
844 population. Explorations of alternative habitats and hypotheses regarding the designation of
845 stock distributions used in management, such as the use of seamounts for Alaska sablefish, may
846 become more important with increased environmental variability due to climate change. This
847 study provides an example of utility for IBMs in testing habitat expansions or distributional

848 shifts and contributing to next-generation stock assessments (Lynch *et al.*, 2018).
849

850 Acknowledgments

851
852 This publication is the result in part of research sponsored by the Cooperative Institute
853 for Alaska Research with funds from the National Oceanic and Atmospheric
854 Administration under cooperative agreement NA13OAR4320056 with the University of
855 Alaska. Additional support for this research was provided through the North Pacific Research
856 Board (NPRB) Gulf of Alaska Integrated Ecosystem Research Program Synthesis Project #1533
857 (<https://www.nprb.org/gulf-of-alaska-project>), the Joint Institute for the Study of the Atmosphere
858 and Ocean (JISAO) under NOAA Cooperative Agreement NA15OAR4320063, and the National
859 Marine Fisheries Service (NMFS), and the NMFS Alaska Essential Fish Habitat Research Plan.
860 The findings and conclusions in the paper are those of the authors and do not necessarily
861 represent the views of the National Marine Fisheries Service. Reference to trade names does not
862 imply endorsement by the National Marine Fisheries Service, NOAA.
863
864
865

866 References

867
868 Alderdice, D.F., Jensen, J.O.T., and Velsen, F.P.J., 1988. Preliminary trials on incubation of
869 sablefish eggs. *Aquaculture*. 69, 271–290.
870 Alton, M.S., 1986. Fish and crab populations of Gulf of Alaska seamounts. In R. N. Uchida, S.
871 Hayasi, and G. W. Boehlert (editors), *Environment and resources of seamounts in the North*
872 *Pacific*, U.S. Dep. Commerce, NOAA Tech. Rep. NMFS 43. pp. 45–51.
873 Atwood, E., Duffy-Anderson, J.T., Horne, J.K., and Ladd, C., 2010. Influence of mesoscale
874 eddies on ichthyoplankton assemblages in the Gulf of Alaska. *Fish. Oceanogr.* 19(6), 493–
875 507.
876 Beamish, R.J., and McFarlane, G.A., 1988. Resident and dispersal behavior of adult sablefish
877 (*Anoplopoma fimbria*) in the slope waters off Canada's west coast. *Canadian Journal of*
878 *Fisheries and Aquatic Sciences*. 45, 152–164.
879 Beamish, R.J., and Neville, C.M., 2003. The importance of establishing Bowie Seamount as an
880 experimental research area. In: Beumer, J., Grant, A., Smith, D. (Eds.), *Aquatic Protected*
881 *Areas: What Works Best and How do We Know?* Proceedings of the World Congress on
882 *Aquatic Protected Areas*, Cairns, Australia, August 2002, Australian Society for Fish
883 *Biology*. North Beach, Australia, pp. 652–663.
884 Beamish, R.J., and McFarlane, G.A., 1983. Summary of results of the Canadian sablefish tagging
885 program. In: *Proceedings of the International Sablefish Symposium*, March 29–31, 1983,
886 Anchorage, AK, pp. 147–183. Alaska Sea Grant Report. 83-8
887 Boehlert, G.W. and Yoklavich, M.M., 1985. Larval and Juvenile growth of sablefish,
888 *Anoplopoma Fimbria*, as determined from otolith increments. *Fishery Bulletin*. 83, No.3,
889 475-481.
890 Bracken, B.E., 1982. Sablefish (*Anoplopoma fimbria*) migration in the Gulf of Alaska based on
891 gulf-wide tag recoveries, 1973-1982. Alaska Department of Fish and Game. Informational
892 Leaflet No. 199.
893 Castro-Gutiérrez, J., Cabrera-Castro, R., Czerwinski, I.A. Báez, José, C. 2022. Effect of climatic

894 oscillations on small pelagic fisheries and its economic profit in the Gulf of Cadiz. *Int J*
895 *Biometeorol.* 66, 613–626.

896 Cheng, W., Hermann, A.J., Coyle, K.O., Dobbins, E.L., Kachel, N.B., and Stabeno, P.J., 2012.
897 Macro- and micro-nutrient flux to a highly productive submarine bank in the Gulf of
898 Alaska: A model-based analysis of daily and interannual variability. *Prog. Oceanogr.* 101,
899 63–77.

900 Cook, M. A., Lee, J.S.F, Massee, K.M., Wade, T.H., and Goetz, F.W., 2017. Effects of rearing
901 temperature on growth and survival of larval sablefish (*Anoplopoma fimbria*). *Aquaculture*
902 *Research.* 49. 10.1111/are.13473.

903 Cooper, D.W., Duffy-Anderson, J.T., Stockhausen, W.T., and Cheng, W., 2013. Modeled
904 connectivity between northern rock sole (*Lepidopsetta polyxystra*) spawning and nursery
905 areas in the eastern Bering Sea. *J. Sea Res.* 84, 2–12.

906 Courtney, D., and Rutecki, T.L., 2011. Inshore movement and habitat use by juvenile sablefish,
907 *Anoplopoma fimbria*, implanted with acoustic tags in southeast Alaska, AFSC Processed
908 Report 2011-01, 39 p. Alaska Fish. Sci. Cent., NOAA, Natl. Mar. Fish. Serv., Auke Bay
909 Laboratories, 17109 Lena Point Loop Road Juneau, AK 99801.

910 Coyle, K.O., Gibson, G. A., Hedstrom, K., Hermann, A. J., and Hopcroft, R.R., 2013.
911 Zooplankton biomass, advection and production on the northern Gulf of Alaska shelf from
912 simulations and field observations. *J. Mar. Syst.* 128, 185–207.

913 Coyle, K.O., Hermann, A.J. and Hopcroft, R.R., 2019. Modeled spatial-temporal distribution of
914 productivity, chlorophyll, iron and nitrate on the northern Gulf of Alaska shelf relative to
915 field observations. *Deep Sea Research Part II: Topical Studies in Oceanography.* Volume
916 165, 163–191.

917 Danielson, S. L., Dobbins, E. L., Jakobsson, M., Johnson, M. A., Weingartner, T. J., Williams,
918 W. J., and Zarayskaya, Y., 2016. Sounding the northern seas, *Eos*, 96.

919 Danielson, S.L., Hill, D.F., Hedstrom, K.S., Beamer, J. and Curchitser, E., 2020. Demonstrating
920 a high-resolution Gulf of Alaska ocean circulation model forced across the coastal interface
921 by high-resolution terrestrial hydrological models. *Journal of Geophysical Research: Oceans*,
922 125(8), p.e2019JC015724.

923 Deary, A.L., Porter, S.M., Dougherty, A.B. and Duffy-Anderson, J.T., 2019. Preliminary
924 observations of the skeletal development in pre-flexion larvae of sablefish *Anoplopoma*
925 *fimbria*. *Ichthyol Res.* 66, 177–182.

926 DFO, 2013. A Review of Sablefish Population Structure in the Northeast Pacific Ocean and
927 Implications for Canadian Seamount Fisheries. *DFO Can. Sci. Advis. Sec. Sci. Resp.*
928 2013/017.

929 Dobbins, E.L., Hermann, A.J., Stabeno, P., Bond, N. A., and Steed, R.C., 2009. Modeled
930 transport of freshwater from a line-source in the coastal Gulf of Alaska. *Deep. Res. Part II*
931 *Top. Stud. Oceanogr.* 56, 2409–2426.

932 Doyle, M.J., and Mier, K.L., 2015. Early life history pelagic exposure profiles of selected
933 commercially important fish species in the Gulf of Alaska. *Deep-Sea Res. II.*

934 Fissel, B., Dalton, M., Felthoven, R., Garber-Yonts, B., Haynie, A., Kasperski, S., Lee, J., Lew,
935 D., Pfeiffer, and L., Seung, C., 2012. Stock Assessment and Fishery Evaluation Report for
936 the Groundfish Fisheries of the Gulf of Alaska and Bering Sea/Aleutian Islands Area:
937 Economic status of the groundfish fisheries off Alaska, 2011, 309 p.

Flanders Marine Institute (2019). Maritime Boundaries Geodatabase: Maritime Boundaries and
Exclusive Economic Zones (200NM), version 11. Available online at

938 Funk, F., and Bracken, B.E., 1984. Status of the Gulf of Alaska Sablefish (*Anoplopoma fimbria*)
939 resource in 1983. Informational Leaflet No. 235. Alaska Department of Fish and Game Division
940 of Commercial Fisheries Juneau, Alaska 55 p.

941 Gibson, G.A. Stockhausen, W., Coyle, K.O., Hinckley, S., Parada, C., Hermann, A., Doyle, M.
942 and Ladd, C., 2019. An individual-based model for Sablefish: Exploring the connectivity
943 between potential spawning and nursery grounds in the Gulf of Alaska. Deep Sea Res. II.
944 165, 89–112.

945 Goethel, D.R., Hanselman, D.H., Rodgveller, C.J., Echave, K.B., Williams, B.C., Shotwell, S.K.,
946 Sullivan, J.Y., Hulson, P.F., Malecha, P.W., Siwicke, K.A., and Lunsford, C.R., 2021.
947 Assessment of the Sablefish Stock in Alaska. In Stock assessment and fishery evaluation
948 report for the groundfish resources of the Gulf of Alaska and Bering Sea Aleutian Islands.
949 North Pacific Fishery Management Council, 605 W 4th Ave, Suite 306 Anchorage, AK
950 99501.

951 Goldstein, E. D., Pirtle, J. L., Duffy-Anderson, J. T., Stockhausen, W. T., Zimmermann, M.,
952 Wilson, M. T., Mordy, C.W. (2020). Eddy retention and seafloor terrain facilitate cross-
953 shelf transport and delivery of fish larvae to suitable nursery habitats. *Limnology and*
954 *Oceanography* 65, 2800–2818. doi: [10.1002/limo.11553](https://doi.org/10.1002/limo.11553).

955 Hanselman, D.H., Lunsford, C.R., and Rodgveller, C.J., 2014. Assessment of the sablefish stock
956 in Alaska, in: Stock Assessment and Fishery Evaluation Report for the Groundfish
957 Resources of the Gulf of Alaska. North Pacific Fishery Management Council, 605W. 4th
958 Avenue, Suite 306, Anchorage, AK 99501, pp. 576–717.

959 Hanselman, D.H., Heifetz, J., Echave, K.B., and Dressel, S.C., 2014b. Move it or lose it :
960 movement and mortality of sablefish tagged in Alaska. Can. J. Fish. Aquat. Sci. 72(2), 238–
961 251.

962 Hart, J.L., 1973. Pacific fishes of Canada. Bull. Fish. Res. Bd. Can. 180, 740 p.

963 Heifetz, J., and Fujioka, J.T., 1991. Movement dynamics of tagged sablefish in the northeastern
964 Pacific. Fisheries Research. 11(3–4). 355–374.

965 Henson, S.A., and Thomas, A.C., 2008. A census of oceanic anticyclonic eddies in the Gulf of
966 Alaska. Deep-Sea Res. I, 55. 163–176.

967 Herzer, R.H. (1971) Bowie Seamount. A Recently Active, Flat-topped Seamount in the
968 Northeast Pacific Ocean. Can. J. Earth Sci. 8. 676–687.

969 Hermann, A.J., Hinckley, S., Dobbins, E.L., Haidvogel, D.B., Bond, N.A., Mordy, C., Kachel,
970 N., and Stabeno, P.J., 2009. Deep-Sea Research II Quantifying cross-shelf and vertical
971 nutrient flux in the Coastal Gulf of Alaska with a spatially nested , coupled biophysical
972 model. Deep-Sea Res. Part II 56, 2474–2486.

973 Hinckley, S., Stockhausen, W.T., Coyle, K.O., Laurel, B. Gibson, G.A., Parada, C. Hermann,
974 A.J., Doyle, M., Hurst, T., Punt, and A. Ladd, C., 2019. Connectivity between spawning
975 and nursery areas for Pacific cod (*Gadus macrocephalus*) in the Gulf of Alaska. Deep Sea
976 Res. II. 165, 113–126.

977 Hinckley, S., Coyle, K.O., Gibson, G., Hermann, A. J., Dobbins, E.L., 2009. A biophysical NPZ
978 model with iron for the Gulf of Alaska: Reproducing the differences between an oceanic
979 HNLC ecosystem and a classical northern temperate shelf ecosystem. Deep-Sea Res. Part II
980 Top. Stud. Oceanogr. 56, 2520–2536.

981 Hoff, G.R. and Stevens, B., 2005. Faunal Assemblage Structure on the Patton Seamount (Gulf of
982 Alaska, USA). Alaska Fisheries Research Bulletin. Vol. 11, No. 1

983 Hughes, S.E., 1981. Initial U.S. Exploration of Nine Gulf of Alaska Seamounts and Their
984 Associated Fish and Shellfish Resources Marine Fisheries Review. 43(1).

985 Hunter, J.R., Macewicz, B.J., and Kimbrell, C. A., 1989. Fecundity and other aspects of the
986 reproduction of sablefish, *Anoplopoma fimbria*, in central California waters. CalCOFI Rep.
987 30, 61–72.

988 Jensen, J. O. T., and Damon, W., 2002. Digital photo-microscopy of sablefish (*Anoplopoma*
989 *fimbria*) embryonic development. In J. Jensen, C. Clark, & D. M. Kinlay (Eds.), *Incubation*
990 of fish: biology and techniques (pp. 49– 58). Vancouver, Canada: International Congress on
991 the Biology of Fish.

992 Kapur, M. S., Lee, Q., Correa, G. M., Haltuch, M., Gertseva, V., and Hamel, O. S., 2021.
993 DRAFT Status of Sablefish (*Anoplopoma fimbria*) along the US West coast in 2021. Pacific
994 Fisheries Management Council, Portland, Oregon. 136p.

995 Kendall, A.W. and Matarese, A., 1987. Biology of eggs , larvae , and epipelagic juveniles of
996 sablefish , *Anoplopoma fimbria*, in relation to their potential use in management. Marine
997 Fisheries Review. 49, 1–13.

998 Kimura, D.K., Shimada, A.M., and Shaw, F.R., 1998. Stock structure and movement of tagged
999 sablefish, *Anoplopoma fimbria*, in offshore northeast Pacific waters and the effects of El
1000 Niño-Southern Oscillation on migration and growth. Fish. Bull. 96, 42-481.

1001 Ladd, C., Mordy, C.W., Kachel, N.B., Stabeno, P.J., 2007. Northern Gulf of Alaska eddies and
1002 associated anomalies. Deep-Sea Res. I, 54, 487-509.

1003 Leys, C., Ley, C., Klein, O., Bernard, P. Licata, L. (2013) Detecting outliers: Do not use standard
1004 deviation around the mean, use absolute deviation around the median. Journal of
1005 Experimental Social Psychology. Volume 49, Issue 4, 764-766.

1006 Lynch, P.D., Methot, R.D., and Link, J.S., (eds.), 2018. Implementing a Next Generation Stock
1007 Assessment Enterprise. An Update to the NOAA Fisheries Stock Assessment Improvement
1008 Plan. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-F/SPO-183, 127 p.
1009 doi:10.7755/TMSPO.183

1010 Maloney, N.E. and Sigler, M.F. 2008. Age-specific movement patterns of sablefish
1011 (*Anoplopoma fimbria*) in Alaska. Fish. Bull. 106, 305-316.

1012 Maloney, N.E., 2004. Sablefish, *Anoplopoma fimbria*, populations on Gulf of Alaska seamounts.
1013 Mar. Fish. Rev. 66, 1–12.

1014 Marquez, R.I., 2020. Fisheries of the Exclusive Economic Zone off Alaska; North Pacific
1015 Observer Program Standard Ex-Vessel Prices. Federal Register. 85, No. 244, 82447-82455.

1016 Mason, J. C., Beamish, R. J., and McFarlane G. A., 1983. Sexual Maturity, Fecundity,
1017 Spawning, and Early Life History of Sablefish (*Anoplopoma fimbria*) off the Pacific Coast
1018 of Canada. Canadian Journal of Fisheries and Aquatic Sciences. 40(12), 2126-2134.

1019 Mason, J.C., Beamish, R.J., McFarlane, G.A., 1983. Sexual maturity, fecundity, and early life
1020 history of sablefish (*Anoplopoma fimbria*) off the Pacific Coast of Canada. Can. J. Fish.
1021 Aquat. Sci. 40, 2126–2134.

1022 McGill, R. Tukey, J.W. and Larsen, W.A., 1978. Variations of Box Plots, The American
1023 Statistician. 32(1), 12-16

1024 Moser, H.G., Chakter, R.L., Smith, P.E., Lo, N.C.H., Ambrose, D.A. Meyer, C.A., Sandknop,
1025 E.M. and Watson, W., 1994. Sablefish early life history and Biomass estimation. CalCOFI
1026 Rep., Vol. 35.

1027 Murie, D.J., Mitton, M., Saunders, M.W., and McFarlane, G.A., 1995. A summary of sablefish
1028 tagging and biological studies conducted during 1982-198 by the Pacific Biological Station.

1029 Can. Data Rep. Fish. Aquat. Sci. 959: 84p.

1030 National Marine Fisheries Service (NMFS). 2006. Final Rule: Fisheries of the Exclusive

1031 Economic Zone off Alaska. Federal Register 71 (124), 36694-36714. Codified at 50 CFR

1032 Part 679.

1033 Okkonen, S.R., Weingartner, T.J., Danielson, S.L., Musgrave, D.L., Schmidt, G.M., 2003. Satellite

1034 and hydrographic observations of eddy-induced shelf-slope exchange in the northwestern

1035 Gulf of Alaska. *J. Geophys. Res.*, 108(C2), 3033.

1036 Pirtle, J.L., Shotwell, S.K., Zimmermann, M., Reid, J.A., and Golden, N., 2019. Habitat suitability

1037 models for groundfish in the Gulf of Alaska, Deep Sea Research Part II: Topical Studies in

1038 Oceanography. 165, 303-321.

1039 Royer, T. C. (1979). On the effect of precipitation and runoff on coastal circulation in the Gulf of

1040 Alaska. *Journal of Physical Oceanography*, 9(3), 555– 563.

1041 Rutecki, T.L., and Varosi, E.R., 1997. Distribution, age, and growth of juvenile sablefish,

1042 *Anoplopoma fimbria*, in the Gulf of Alaska, pp. 55–63, in: Wilkins, M.E., Saunders, M.W.

1043 (eds.), *Biology and Management of Sablefish, Anoplopoma fimbria*. U.S. Dep. Commer.,

1044 NOAA Technical Report NMFS-130, 286 p.

1045 Sasaki, T., 1985. Studies on the sablefish resources of the North Pacific Ocean. *Bull. Far Seas*

1046 *Fish. Res. Lab.* 22, 107.

1047 Shaw, F., and N. Parks. 1997. Movement patterns of tagged sablefish recovered on seamounts in

1048 the N.E. Pacific Ocean and Gulf of Alaska. In M. E. Wilkins and M. W. Saunders (Editors),

1049 *Biology and management of sablefish, Anoplopoma fimbria*, p. 151–158. U.S. Dep.

1050 Commer., NOAA Tech Rep. NMFS 130.

1051 Shotwell, S.K., Hanselman, D.H., Belkin, I.M., 2014. Toward biophysical synergy: Investigating

1052 advection along the Polar Front to identify factors influencing Alaska sablefish recruitment.

1053 *Deep-Sea Res. Part II Top. Stud. Oceanogr.* 107, 40–53.

1054 Shotwell, S.K., Pirtle, J.L., Watson, J.T., Deary, A.L., Doyle, M.J., Barbeaux, S.J., Dorn, M.

1055 Gibson, G.A., Goldstein, E., Hanselman, D.H., Hermann, A.J., Hulson, P.J.F., Laurel,

1056 Moss, B.J.H. , Ormseth, O., Robinson, D., Rogers, L.A., Rooper, C.N., Spies, I.,

1057 Strasburger, W., Suryan, R.M., and Vollenweider, J.J., 2022. Synthesizing integrated

1058 ecosystem research to create informed stock-specific indicators for next generation stock

1059 assessments. *Deep Sea Research Part II: Topical Studies in Oceanography*. 198.

1060 Sigler, M.F., Rutecki, T.L., Courtney, D.L., Karinen, J.F., and Yang, M.-S., 2001. Young of the

1061 year sablefish abundance, growth, and diet in the Gulf of Alaska. *Alaska Fish. Res. Bull.* 8,

1062 57–70.

1063 Sogard, S., and Olla, B., 2001. Growth and behavioral responses to elevated temperatures by

1064 juvenile sablefish *Anoplopoma fimbria* and the interactive role of food availability. *Mar.*

1065 *Ecol. Prog. Ser.* 217, 121–134.

1066 Stockhausen, W.T., Coyle, K.O., Hermann, A.J., Doyle, M., Gibson, G.A., Hinckley, S. Ladd,

1067 C., and Parada, C., 2019. Running the Gauntlet: Connectivity between natal and nursery

1068 areas for Pacific ocean perch (*Sebastes alutus*) in the Gulf of Alaska, as inferred from a

1069 biophysical Individual-based Model. *Deep Sea Res. II*. 165, 74–88.

1070 Strasburger, W. W., Moss, J. H. Siwicke, K. A. and Yasumiishi, E. M., 2018. Results from the

1071 eastern Gulf of Alaska ecosystem assessment, July through August 2016. U.S. Dep.

1072 Commer., NOAA Tech. Memo. NMFS-AFSC-363, 90 p.

1073 Thompson, D. W. J., and J. M. Wallace, 1998. The Arctic Oscillation signature in the winter

1074 geopotential height and temperature fields, *Geophys. Res. Lett.*, 25, 1297–1300.

1075 Whitaker, D.J., and McFarlane, G.A., 1997. Identification of Sablefish, *Anoplopoma fimbria*
 1076 (Pallas, 1811), Stocks from seamounts of the Canadian Pacific Coast using parasites as
 1077 biological tags. N.O.A.A. Technical Report, National Marine Fisheries Service 130, 131–
 1078 136.

1079 Wing, B. L., and Kamikawa. D. J., 1995. Distribution of neustonic sablefish larvae and
 1080 associated ichthyoplankton in the eastern Gulf of Alaska, May 1990. U.S. Dep. Commer.,
 1081 NOAA Tech. Memo. NMFS- AFSC-53, 48 p.

1082 Wolotira, R.J.J., Sample, T.M., Noel, S.F., and Iten, C.R., 1993. Geographic and bathymetric
 1083 distributions for many commercially important fishes and shellfishes off the west coast of
 1084 North America, based on research survey and commercial catch data, 1912-1984. U.S.
 1085 Dept. Commer., NOAA Technical Memorandum NMFS-AFSC-6, 184 p.

1086 Zolotov, A.O., 2021. The Long-Term Dynamics of Sablefish (*Anoplopoma fimbria*) Stocks in
 1087 the Western Bering Sea and Prospects for their Commercial Exploitation. Russ J Mar Biol
 1088 47, 563–582.

1089

1090

1091 **Table 1. Summary of number of individuals released over each seamount, and the**
 1092 **seamount area determined at a bathymetric depth of 2,500m.**

Seamount No.	Seamount Name	Area at 2500m below sea level.	No. Individuals
1	Hodgkins-Bowie	1864	44,904
2	-	598	14,376
3	Dickens	459	11,040
4	-	68	1,608
5	Welker	549	13,236
6	Durgin	709	17,082
7	Applequist	158	3,804
8	Pratt	630	15,198
9	-	36	846
10	-	62	1,476
11	Surveyor	664	16,008
12	Quinn	503	12,108
13	Giacomini	378	9,090
			Total: 160,776

1093

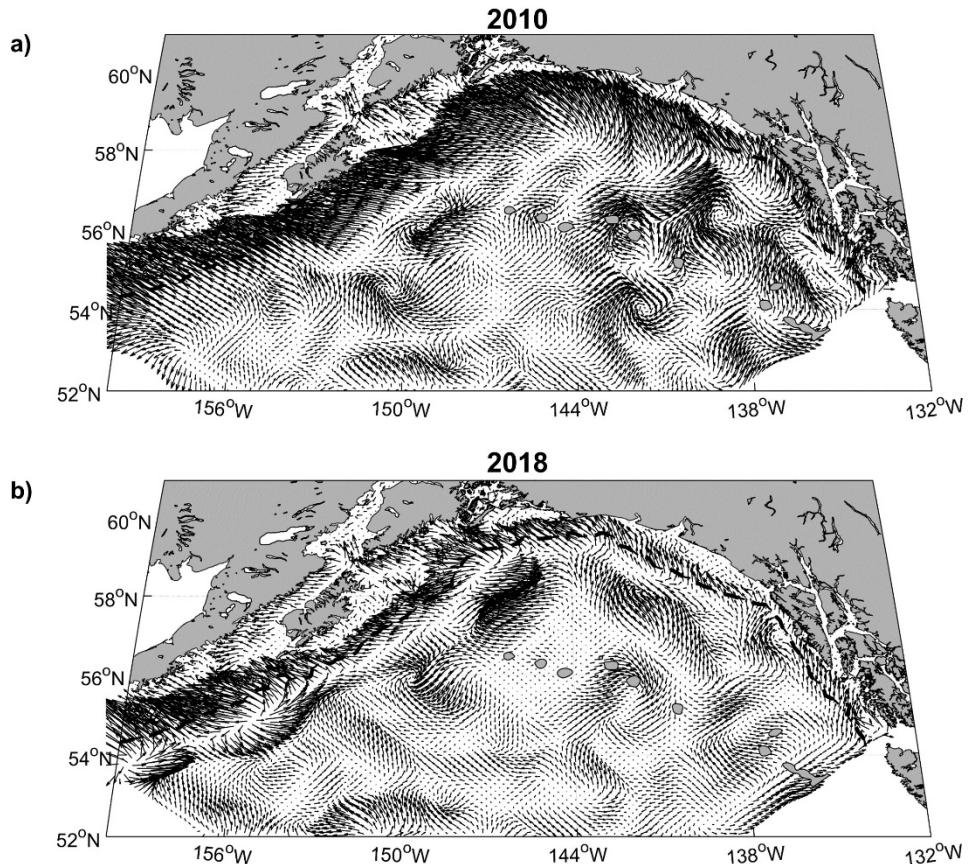
1094
1095
1096
1097
1098
1099
1100

Table 2. Pearson's linear correlation coefficient as a measure of the degree of linear dependence between PC1 and C_{TOT} and indices quantifying cross-shelf velocity and temperature along the 500m isobath (as predicted by the ROMS model) averaged over the upper 100m, and between PC1 and C_{TOT} and the Arctic Oscillation index. No mathematical correction was made for multiple comparisons. Correlations are rounded to two decimal places. Associated p -values are also reported, and correlations with a p -value < 0.1 are indicated with an asterisk.

Variable	PC1		C_{TOT}	
	<i>r</i>	<i>p</i>	<i>r</i>	<i>p</i>
<i>East</i>				
Spring Cross Shelf Velocity	-0.31	0.15	-0.09	0.70
Summer Cross Shelf Velocity	-0.33	0.13	-0.20	0.38
Annual Cross Shelf Velocity	-0.62*	<0.01	-0.35	0.11
<i>East Central</i>				
Spring Cross Shelf Velocity	0.06	0.78	0.10	0.65
Summer Cross Shelf Velocity	0.07	0.77	0.13	0.55
Annual Cross Shelf Velocity	0.08	0.74	0.18	0.42
<i>West Central</i>				
Spring Cross Shelf Velocity	-0.06	0.78	0.03	0.88
Summer Cross Shelf Velocity	-0.05	0.81	-0.06	0.79
Annual Cross Shelf Velocity	0.03	0.89	-0.01	0.98
<i>West</i>				
Spring Cross Shelf Velocity	0.21	0.35	0.09	0.69
Summer Cross Shelf Velocity	0.22	0.33	0.24	0.29
Annual Cross Shelf Velocity	0.38	0.08	0.27	0.23
<i>East</i>				
Spring Cross Shelf Temp.	-0.07	0.77	-0.09	0.70
Summer Cross Shelf Temp.	-0.10	0.65	-0.13	0.56
Annual Cross Shelf Temp.	-0.05	0.80	-0.11	0.62
<i>East Central</i>				
Spring Cross Shelf Temp.	-0.13	0.56	-0.19	0.41
Summer Cross Shelf Temp.	-0.18	0.42	-0.18	0.42
Annual Cross Shelf Temp.	-0.09	0.68	-0.15	0.50
<i>West Central</i>				
Spring Cross Shelf Temp.	-0.11	0.64	-0.17	0.46
Summer Cross Shelf Temp.	-0.30	0.18	-0.30	0.17
Annual Cross Shelf Temp.	-0.13	0.56	-0.18	0.42
<i>West</i>				
Spring Cross Shelf Temp.	-0.07	0.75	-0.13	0.56
Summer Cross Shelf Temp.	-0.22	0.32	-0.29	0.19
Annual Cross Shelf Temp.	0.02	0.93	-0.15	0.50
<i>Arctic Oscillation Index</i>				
Jan.-Mar.	0.25	0.26	0.33	0.13
Apr.-Jun.	0.25	0.27	0.17	0.46
Jul.-Sep.	0.64*	<0.01	0.69*	<0.01
Oct.-Dec.	-0.16	0.49	-0.19	0.40

Annual	0.28	0.20	0.30	0.17
--------	------	------	------	------

1101


1102

1103

1104 Appendix A

1105

1106 Spatially explicitly annual averaged velocity over the GOA for a) 2010 and b) 2018. Velocities
 1107 were averaged over the upper 100 meters of the water column. The location of the 500m isobath
 1108 is also shown (dashed line).

1109