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SST reanalysis products and empirical orthogonal function (EOF) analysis. We use six 

reanalysis products to compare ENSO variability between the pre- and post-1960 periods. 

These are: 

• 20CRv2c multi-member ensemble average of surface temperatures over the ocean 

(Twentieth Century reanalysis version 2c from 1901 to 2011 (REF.1);  

• CERA-20C (ECMWF CERA-20C from 1901 to 2010 (REF.2);  

• ERA-20C sea surface temperatures (ECMWF ERA-20C from 1901 to 2010 (REF.3);  

• ERSST v3b (Extended Reconstructed SST version 3b from 1901 to 2019 (REF.4); and 

• HadISST v1.1 (Hadley Centre Sea Ice and SST data set version 1.1 from 1901 to 2020 

(REF.5). 

• COBE Sea Surface Temperature from 1901 to 2020 (REF.6) 

The E-index and C-index from each product are averaged first before analysis to generate 

multi-product ensemble results presented in Fig. 1. Two analyses are used to examine linear 

trends of upper oceanic temperatures along the equatorial Pacific, which is presented in Fig. 

5b. These are:  

• ORA-s3 (ECMWF Ocean Analysis System: ORA-s3 from 1959 to 2011 (REF.7) 

• ORA-s4 (ECMWF Ocean Analysis System: ORA-s4 from 1958 to 2017 (REF.8).  

We use a traditional fixed location ENSO index (Niño3.4) and indices that separate EP- from 

CP-ENSO for which, apply EOF analysis to quadratically detrended monthly SST anomalies 

in an equatorial domain (15°S-15°N, 140°E-80°W). The two dominant modes, each with a 

principal pattern and a principal component (PC), are combined to describe the two El Niño 

regimes. Evolution of CP-El Niño and EP-El Niño regimes are described by a C-index 

((PC1+PC2)/√2) and E-index ((PC1-PC2)/√2), respectively. 

One experiment each model. We examine 43 CMIP6 models forced with observed historical 

emissions of greenhouse gases to 2014 and various Shared Socioeconomic Pathways (SSP) 

126, 245, 370, and 585. For the 2015-2020 period, we concatenate the historical to the SSP585 

simulations but concatenating to other SSP scenarios makes little difference to ENSO 

variability over the 1961-2020 period. To examine possible ENSO changes, we use traditional 

Niño3.4 index, as well as E-index and C-index. SST anomalies with reference to the monthly 

climatology of 1901-2020 are detrended and concatenated to depict ENSO evolution over the 
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full period spanning from piControl to 2100. 

We apply EOF analysis to monthly SST anomalies in each model over the period 1901-2020, 

such that in each model, the C-index and E-index have a standard deviation of one over the 120 

years so that they are comparable across models. ENSO indices over the rest of the full period 

are obtained by projecting onto the EOF patterns in a subset of 39 models that have at least 300 

years of piControl. The EOF analysis generates 39 virtual worlds each covering from a multi-

century preindustrial period to 2020. Likewise, conventional ENSO indices over the full period 

are constructed and scaled by the standard deviation over the 1901-2020 period. 

Large ensemble experiments. In the ‘model democracy’ (that is, one experiment each model) 

approach, the distinction between uncertainties from internal variability and from model 

structure is not clear. One way to isolate the impact of internal variability is to create an 

ensemble of simulations with a single climate model, by applying an infinitesimal perturbation 

to the initial condition of each member of experiments. Due to butterfly effect, the perturbation 

creates diverging weather and climate trajectories including ENSO, inducing an ensemble 

spread. Because the resulting sequences of internal variability are randomly phased and 

independent among the individual experiment, the forced change resulting from the common 

climate change forcing is examined qualitatively by assessing whether a majority of 

experiments produce a consistent change, and quantitatively by averaging over the experiments. 

We use all available CMIP6 large ensemble experiments in models with at least 10 experiments 

initiated from a time before 1900 (Supplementary Table 1). Each model is forced by the same 

historical anthropogenic and natural forcings from 1850 to 2014 and from 2015 to 2020 under 

one or more emission scenarios (SSP126, SSP245, SSP370 and SSP585). In the 2015-2020 

period, the difference in projected radiative forcing among emission scenarios is small, and we 

choose a scenario from each model that has the largest number of experiments. In total, there 

are seven models with a total of 282 experiments. We compare amplitude of ENSO variability 

between the pre- and post-1960 period. 

Pre-industrial multi-century-long experiments. Another approach to assess impact of 

transient greenhouse warming involves comparing ENSO variability in a period (60-year) with 

a probability distribution in a baseline period without or with little influence from greenhouse 

warming, referred to as ‘noise’. Diagnosis of noise is performed using multi-century-long 

piControl experiments without climate change. The noise is compared to a potential signal 
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using a ‘signal-to-noise’ ratio threshold. A ratio greater than 2.0 indicates that the signal is 

greater than the 95 percentile of the noise, that is, unusually strong sitting within the top 5% 

value of the baseline distribution. 

Outputs from 39 climate models participating in CMIP6 in the ‘model democracy’ approach 

are used to evaluate how unusual the observed post-1960 ENSO is, compared to the range of 

fluctuations due to internal variability without greenhouse warming in  long piControl 

simulation of at least 300 years (Supplementary Table 2). These model outputs are 

concatenated to a historical simulation starting from the mid-19th century and forced with 

historical forcings to 2014, and a future warming experiment from 2015 under SSP585, sharing 

a common integration period of 1850-2100. 

Statistical significance test. A Bootstrap method10 is used to examine whether the increased 

ENSO variability in the post-1960 is statistically significant. Although the multi-model average 

largely removes the influence from internal variability, there is still some residual influence 

from internal variability. To gauge the size of the residual influence, the 43 values of the ENSO 

index variability in Fig. 2a in the pre-1960 period from the 43 models are re-sampled randomly 

to construct 10,000 realisations of mean variability. In this random re-sampling process, a 

sample is allowed to be selected again. The standard deviation of the 10,000 inter-realisations 

of mean variability in the pre-1960 is determined. The same is carried out for the post-1960 

period. The increased variability of ENSO index in the future period is greater than the sum of 

the two re-sampling standard deviation values, indicating that the variability difference 

between the two periods is statistical significance above the 95% confidence level (Fig. 2a & 

Fig. 2b). Identical analysis is carried out for the multi-member experiments (Fig. 3b & Fig. 3d).  



5 
 

 

Supplementary Fig. 1 | Inter-model consensus on increased ENSO SST variability after 

1960. ENSO Niño3.4 SST standard deviation for the 1901-1960 and 1961-2020 periods from 

43 available CMIP6 models. The green and purple bars represent the 1901-1960 and 1961-

2020 periods, respectively. The grey shading indicates models which do not simulate an 

increase in ENSO standard deviation. Majority (76.7%) of models simulate an increase in 

ENSO Niño SST variability. Error bars on the multi-model mean are calculated as 1.0 standard 

deviation of 10,000 inter-realisations of a Bootstrap method.  
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Supplementary Fig. 2 | Inter-model consensus on increased ENSO grid-point SST 

variability after 1960. Multi-model mean change of grid-point SST standard deviation (oC) 

between 1901-1960 and 1961-2020. Stippling indicates that more than 70% of models show a 

same-signed change.  
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Supplementary Fig. 3 | Simulated increase in post-1970 ENSO variability. (a, b) | E-index 

and C-index standard deviation (s.d.) for the 1901-1950 and 1971-2020 periods from 43 

available CMIP6 models. The green and purple bars represent the 1901-1950 and 1971-2020 

periods, respectively. The grey shading indicates models which do not simulate an increase in 

ENSO variability. The percentage of models that simulate an increase is denoted on the top 

right. The range in the multi-model mean bars is defined as the two s.d. value of inter-model 

variability. (c, d) | Nonlinear relationship between the first and second principal components 

for the 1901 to 1960 period, and the 1971 to 2020 period, respectively. The blue, orange, and 

red dots indicate strong La Niña, central Pacific El Niño, and strong eastern Pacific El Niño 

events, respectively. The coloured numbers indicate the frequency of each type of events.  
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Supplementary Fig. 4 | Increased post-1960 Niño3.4 variability in butterfly-effect 

ensembles of experiments. a | Pre-1960 (1901-1960) variability versus post-1960 (1961-2020) 

variability for seven large ensembles in seven models. Number of experiments in each model 

producing an increase (decrease) in post-1960 ENSO variability is indicated in the top-left 

(bottom right) corner.  Different SSPs are chosen to concatenate time series for the period of 

2015-2020 because the SSP has the largest number of experiments (see Supplementary Table 

1). b | Large ensemble mean Niño3.4 variability in the pre-1960 and the post-1960 60-year 

periods. The Niño3.4 index for each ensemble experiment is standardised over the full 1901-

2020 period before calculating the ensemble average. The mean across the seven large 

ensemble averages is shown in the 2nd group of bars from right (LE MMEM) and the CMIP6 

MMEM of the model democracy approach is also shown. The error bars represent the ±1.0 

standard deviation range using a Bootstrap method.  
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Supplementary Fig. 5 | Increased post-1960 ENSO variability in butterfly-effect 

ensembles of experiments. a | Pre-1950 (1901-1950) variability versus post-1970 (1971-2020) 

E-index variability for large ensembles in seven models. Number of experiments in each model 

producing an increase (decrease) in post-1970 ENSO variability is indicated in the top-left 

(bottom right) corner.  Different SSPs are chosen to concatenate time series for the period of 

2015-2020 to allow the largest number of experiments (Supplementary Table 1). b | Large 

ensemble mean E-index variability in the pre-1960 and the post-1960 60-year periods. The E-

index for each ensemble experiment is standardised over the 1901-2020 period before 

calculating the ensemble average. The mean across the seven large ensemble averages is shown 

in the 2nd group of bars from right (LE MMEM) and the CMIP6 MMEM of the model 

democracy approach is also shown. The error bars represent the ±1.0 standard deviation range 

using a Bootstrap method. (c, d) | The same as (a, b), respectively, but for C-index.  
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Supplementary Fig. 6 | High variability of the post-1960 ENSO. Histogram (grey bars) of 

100,000 realisations of a Bootstrap method for 60-year running standard deviation (s.d.) of 

Niño3.4 SST in piControl from all 39 CMIP6 models that have at least 300 years of piControl. 

The dashed yellow, green and purple lines indicate the upper 10, 5 and 2.5 percentile values of 

the histogram. Observed Niño3.4 SST variability (s.d.) in 1901-1960 and 1961-2020, averaged 

from multiple reanalysis datasets, are shown in solid blue and black lines, respectively. All the 

indices are normalised with reference to the 1901-2020 period prior to analysis. 
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Supplementary Fig. 7 | Projected increase in future ENSO variability. a | E-index standard 

deviation for the 1961-2020 (green bars) and 2041-2100 (purple bars) periods from 43 available 

CMIP6 models. Models that simulate a decrease are greyed out. Error bars on the multi-model 

mean are calculated as 1.0 standard deviation of 10,000 inter-realisations of a Bootstrap method. 

The percentage of models that simulate an increase is also denoted on the top right. (b, c) | 

Same as a, respectively, but for (b) C-index, (c) Niño3.4 index. All the indices are normalised 

with reference to the 1901-2020 period prior to analysis. 
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Supplementary Fig. 8 | Continued increase of ENSO variability into the future. Multi-

experiment mean Niño3.4 standard deviation for the 1901-1960 (yellow-edge bars), 1961-2020 

(green-edge bars) and 2041-2100 (purple-edge bars) periods from each butterfly-effect large 

ensemble (LE) experiments and the multi-model ensemble average (MMEM). ENSO 

variability progressively increases into the future in majority of models.    
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Supplementary Fig. 9 | Continued increase of ENSO variability into the future period of 

2021-2080. (a) | Histogram of 100, 000 realisations of 39-value ensemble means of a Bootstrap 

method on 60-year running standard deviation of E-index in piControl (gray bars), E-index 

standard deviation in the 1961-2020 (green bars) and the 2021-2080 (purple bars) periods, 

respectively, from the 39 CMIP6 models that have at least 300 years of piControl. Solid lines 

and shadings indicate multi-model mean and 1.0 s.d. of the 100,000 inter-realisations 

respectively. (b) | Evolution of strong El Niño frequency (events per 100 years) simulated over 

a period from piControl to 2100, diagnosed in 60-year sliding windows moving forward from 

the start of the last 300 years of piControl (black), covering the entire historical period till 2014 

(green) and extending into the 21st century under a high-emission scenario SSP585 (purple). 

Solid lines and shadings indicate multi-model mean and 95% confidence intervals based on a 
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Poisson distribution, respectively. The dashed black line indicates the mean level of piControl. 

(c, d) | Same as (a, b) but for C-index variability and strong La Niña frequency, respectively. 

(e, f) | Multi-experiment mean E-index and C-index standard deviation for the 1901-1960 

(yellow-edge bars), 1961-2020 (green-edge bars) and 2021-2080 (purple-edge bars) periods 

from each butterfly effect large ensemble (LE) experiments and the multi-model ensemble 

average (MMEM). ENSO variability progressively increases into the future, featuring an 

increasing frequency of strong El Niño and strong La Niña events.    
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Supplementary Table 1 | Information of CMIP6 butterfly-effect large ensemble of 

experiments used in this study. Names of models, the associated institutions and countries, 

number of experiments, and emission scenarios used in this study. 

Model Institute, Country Number of experiments SSP used 

ACCESS-ESM1-511,12 CSIRO, Australia 40 SSP585 

CanESM513,14 CCCMA, Canada 50 SSP585 

CESM2-LE15 NCAR, USA; ICCP, Korea 80 SSP370 

EC-Earth316,17 Europe-wide consortium 21 SSP245 

IPSL-CM6A-LR18,19 IPSL, France 11 SSP245 

MIROC620,21 JAMSTEC, Japan 50 SSP585 

MIROC-ES2L22,23 JAMSTEC, Japan 30 SSP245 
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Supplementary Table 2 | Information of CMIP6 models used in this study. Names of 

models, the associated institutions and countries, their ensemble members, length of piControl 

experiemnt, and emission scenarios used in this study. 

Model Institute, Country Ensemble 
piControl  

years 
SSP used 

ACCESS-CM224,25 CSIRO, Australia r1i1p1f1 500 SSP585 

ACCESS-ESM1-511,12 CSIRO, Australia r1i1p1f1 1000 SSP585 

BCC-CSM2-MR26,27 BCC, China r1i1p1f1 600 SSP585 

CAMS-CSM1-028,29 CAMS, China r1i1p1f1 500 SSP585 

CAS-ESM2-030,31 CAS, China r1i1p1f1 549 SSP585 

CESM232,33 NCAR, USA r4i1p1f1 NAN SSP585 

CESM2-WACCM34,35 NCAR, USA r1i1p1f1 499 SSP585 

CIESM36,37 Tsinghua University, China r1i1p1f1 500 SSP585 

CMCC-CM2-SR538,39 CMCC, Italy r1i1p1f1 500 SSP585 

CMCC-ESM240,41 CMCC, Italy r1i1p1f1 500 SSP585 

CNRM-CM6-142,43 CNRM, France r1i1p1f2 500 SSP585 

CNRM-CM6-1-HR44,45 CNRM, France r1i1p1f2 300 SSP585 

CNRM-ESM2-146,47 CNRM, France r1i1p1f2 500 SSP585 

CanESM513,14 CCCMA, Canada r1i1p1f1 1000 SSP585 

CanESM5-CanOE48,49 CCCMA, Canada r1i1p2f1 501 SSP585 

E3SM-1-150,51 DOE, USA r1i1p1f1 251 SSP585 

EC-Earth316,52 Europe-wide consortium r1i1p1f1 459 SSP585 

EC-Earth3-CC53,54 Europe-wide consortium r1i1p1f1 505 SSP585 

EC-Earth3-Veg55,56 Europe-wide consortium r1i1p1f1 500 SSP585 

EC-Earth3-Veg-LR57,58 Europe-wide consortium r1i1p1f1 501 SSP585 

FGOALS-f3-L59,60 CAS, China r1i1p1f1 500 SSP585 

FGOALS-g361,62 CAS, China r1i1p1f1 700 SSP585 

FIO-ESM-2-063,64 FIO, China r1i1p1f1 575 SSP585 

GFDL-CM465,66 NOAA-GFDL, USA r1i1p1f1 500 SSP585 

GFDL-ESM467,68 NOAA-GFDL, USA r1i1p1f1 500 SSP585 

GISS-E2-1-G69,70 NASA/GISS, USA r1i1p1f2 345 SSP585 

HadGEM3-GC31-LL71,72 MOHC, UK r1i1p1f3 2000 SSP585 

HadGEM3-GC31-MM73,74 MOHC, UK r1i1p1f3 500 SSP585 

INM-CM4-875,76 INM, Russia r1i1p1f1 531 SSP585 

INM-CM5-077,78 INM, Russia r1i1p1f1 1201 SSP585 

IPSL-CM6A-LR18,79 IPSL, France r1i1p1f1 2000 SSP585 

KACE-1-0-G80,81 NIMS-KMA, Korea r1i1p1f1 NAN SSP585 

KIOST-ESM82,83 KIOST, Korea r1i1p1f1 150 SSP585 

MCM-UA-1-084,85 UA, USA r1i1p1f2 500 SSP585 

MIROC620,21 JAMSTEC, Japan r1i1p1f1 800 SSP585 

MIROC-ES2L22,86 JAMSTEC, Japan r1i1p1f2 500 SSP585 

MPI-ESM1-2-HR87,88 MPI-M, Germany r1i1p1f1 500 SSP585 

MPI-ESM1-2-LR89,90 MPI-M, Germany r1i1p1f1 1000 SSP585 

MRI-ESM2-091,92 MRI, Japan r1i1p1f1 701 SSP585 
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NESM393,94 NUIST, China r1i1p1f1 500 SSP585 

NorESM2-LM95,96 NCC, Norway r1i1p1f1 501 SSP585 

NorESM2-MM97,98 NCC, Norway r1i1p1f1 500 SSP585 

UKESM1-0-LL99,100 MOHC, UK r1i1p1f2 1000 SSP585 
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