

Cannibalism by the invasive invertebrate zooplanktivore *Bythotrephes cederströmii*

Paul E. Bourdeau*, Steven A. Pothoven, and Scott D. Peacor

Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA

48824

*-author to contact; email: peb112@humboldt.edu, current address: Department of Biological Sciences, Humboldt State University, Arcata, CA, USA, 95521

Abstract

12 Cannibalism (i.e., intraspecific predation) affects the population dynamics of many
13 invertebrate species. Cannibalism by the predatory cladoceran *Bythotrephes*
14 *cederstroemii* has been observed and noted in laboratory settings on several occasions,
15 but no studies have published results of cannibalism experiments or explicitly
16 quantified *Bythotrephes* cannibalism rates. We performed two laboratory experiments
17 that demonstrated and quantified *Bythotrephes* cannibalism. Cannibalism occurred
18 frequently in our experiments, and cannibalism clearance rates were comparable to
19 those for *Bythotrephes* feeding on heterospecific prey. Further, our estimates of
20 clearance rates between conspecifics suggest that cannibalism could be an important
21 food source during certain periods of the year, and in particular places, for which
22 *Bythotrephes* densities are at the higher end of observed ranges. While more research is
23 needed, our results suggest that there are conditions in which cannibalism should be

24 included in models of *Bythotrephes* predation, including bioenergetics models
25 predicting *Bythotrephes* consumption rates.

26

27 **Keywords:** Alternative prey, *Density-dependence*; *Intraspecific predation*;
28 *Laurentian Great Lakes*; *Predator-prey interactions*

29

30 **Introduction**

31 Cannibalism (i.e., intraspecific predation), defined as the consumption of all or part of
32 another conspecific individual, is ubiquitous in the animal kingdom, occurring in a wide
33 variety of terrestrial and aquatic taxa. It can occur during multiple stages in the life cycle
34 of an animal, and is generally associated with an asymmetry in vulnerability between the
35 cannibal and the victim; where the victim is often at a more vulnerable life history stage
36 than the cannibal (Elgar and Bernard 1992). Cannibalism can affect an animal's
37 behavior, life history strategy, and reproductive success (Cushing et al. 2015) and can
38 therefore have important ecological consequences, including stabilizing (e.g., Andersson
39 *et al.* 2007) or destabilizing (e.g., Claessen *et al.* 2004) effects on population dynamics,
40 lowering a cannibalistic predator's consumption of heterospecific prey (e.g., Rudolf
41 2008a), and promoting predator-prey coexistence (e.g., Rudolf 2007).

42 Rates of cannibalism can be influenced by a number of factors. Size appears to be a
43 key factor driving the asymmetry in vulnerability in many cannibalistic species, such
44 that increases in relative size differences among life stages increase rates of cannibalism
45 (DeAngelis et al. 1979, Bry and Gillet 1980, Polis 1981, Claessen *et al.* 2004). Food
46 availability may also influence cannibalism, as low food typically increases hunger levels
47 and foraging activity (Johansson 1992, 1993, Roberts et al. 2003, Duarte et al. 2010),

48 causing animals to expand their diets to include conspecifics (Leonardsson 1991, Rudolf
49 2008a, b). Cannibalism can also be density dependent, (Holling 1959, Hassell 1978, Van
50 Buskirk 1989, Buddle et al. 2003, Richardson et al. 2010), whereby elevated conspecific
51 density both increases encounter probabilities between individuals and reduces per
52 capita food availability (Polis 1980, Ibáñez and Keyl 2010).

53 Despite its general importance among diverse taxa, and suggestions of its presence,
54 cannibalism has not been explicitly studied in *Bythotrephes cederstroemii* (hereafter
55 'Bythotrephes'). *Bythotrephes* is a generalist zooplanktivore, with a preference for
56 epilimnetic prey (Pichler et al. 2021), native to European and Asian palearctic
57 freshwaters, which has invaded North American waters in the Great Lakes region
58 (Grigorovich et al. 1998, Yan et al. 2002; Barbiero and Tuchman 2004; Strecker et al.
59 2006, Kerfoot et al. 2016, Marino et al. 2019). The invasive species of the genus
60 *Bythotrephes* introduced in the North American lakes in 1970s-early 1980s was named
61 variously either *B. cederstroemi* (e.g., Sprules et al. 1990, Johansson et al. 1991) or *B.*
62 *longimanus* (e.g., Lehman 1987, Evans 1988, Sprules et al. 1990), but has recently been
63 identified as *B. cederstroemi* (Korovchinsky and Arnott 2019). To date, references to
64 cannibalism are anecdotal or based on unpublished laboratory observations. For
65 instance, several workers have noted that *Bythotrephes* is cannibalistic when held in
66 experimental containers (e.g., Zozulya 1978, Mordukhai-Boltovskoi & Rivier 1987,
67 Vanderploeg et al. 1993, Schulz and Yurista 1999, Witt and Cáceres 2004, Branstrator
68 2005, Kim and Yan 2010). There is also a report of cannibalism observed *in situ* using
69 SCUBA (K. Pangle, personal communication). There has been, however, no
70 quantification of cannibalism rates in *Bythotrephes*, nor examination of factors that
71 could affect cannibalism. Quantifying rates of cannibalism in *Bythotrephes* and the

72 factors that affect them is worthwhile because of the possibility that cannibalism is an
73 important factor contributing to *Bythotrephes*' population growth and persistence in
74 lakes throughout Europe and North America.

75 There are unexplained patterns in several studies that could be elucidated with the
76 inclusion of cannibalism by *Bythotrephes*. For example, bioenergetics and efficiency
77 models indicate that *Bythotrephes* consumption rates often exceed zooplankton
78 production in a number of deep oligotrophic lakes that *Bythotrephes* have invaded in
79 north America, including the Laurentian Great Lakes (Burkhardt and Lehman 1994,
80 Yurista and Schulz 1995, Yurista et al. 2010, Bunnell et al. 2011, Pothoven and Hook
81 2014) and some Canadian Shield lakes (e.g., Dumitru 2001). Abundance of conspecific
82 prey could therefore be a particularly important factor to consider in an effort to balance
83 estimates of prey production with predictions of *Bythotrephes* consumptive demand.

84 The objectives of this study were to (1) experimentally quantify rates of cannibalism
85 in *Bythotrephes*, and to (2) examine whether three factors known to influence
86 cannibalism: conspecific size, food availability, and conspecific density (Fox 1975, Wise
87 2006), affect these rates. Based on previous observations of *Bythotrephes* in the field
88 and in laboratory settings, our expectations were that their rates of cannibalism would
89 be comparable to their predation rates on other larger-bodied cladoceran prey (e.g.,
90 *Daphnia* and *Bosmina*). Further, based on prior theoretical and empirical work on
91 cannibalism in general, we hypothesized that cannibalism by *Bythotrephes* would
92 increase when: there are size (and therefore vulnerability) differences among instars,
93 there are no other prey available, and/or conspecific densities are high. An
94 understanding of *Bythotrephes* cannibalism rates and the factors that affect them may

95 assist predictions of *Bythotrephes* population dynamics and their influence on food
96 webs of the Laurentian Great Lakes and other lakes in Europe and North America.

97

98 **Methods**

99 *Collection, maintenance, and description of study animal*

100 We collected *Bythotrephes* from a 110 m depth site in Lake Michigan, offshore of
101 Muskegon, MI ($43^{\circ}11'29''$ N $86^{\circ}32'16''$ W), which is a sampling location frequently used
102 in NOAA zooplankton surveys (e.g., Pothoven et al. 2003). Slow vertical plankton tows
103 (i.e., $<1\text{ ms}^{-1}$) were performed with a conical zooplankton net with 363- μm mesh (1-m
104 diameter, 2-m length) lowered to a maximum depth of 40m. We covered the mesh
105 windows of the cod-end with duct tape to ensure the animals remained in water upon
106 collection and to avoid physical damage against the cod-end mesh. Upon net retrieval,
107 we gently poured the contents of the cod-end into a deep polypropylene cooler filled
108 halfway with 64 μm filtered lake water to ensure the animals remained submerged. We
109 kept animals in the shade during sorting to shield the animals from UV radiation. We
110 used a 5-mL pipettor with the plastic tip cut to a 9-mm diameter, to capture and transfer
111 actively swimming individuals to 60 mL glass jars (1 individual per jar) previously filled
112 with filtered, chilled lake water. Jars were packed into coolers with icepacks and
113 transported to Michigan State University in East Lansing, MI, where they were kept in
114 an incubator at 20°C prior to each experiment. *Bythotrephes* were not fed during this
115 time. A maximum of 72 hours passed between collection of individuals and use in
116 experiments. Prior to each experiment, we classified individual *Bythotrephes* as 1st, 2nd,
117 and 3rd instars. Instars can be easily identified, with minimal disturbance to the
118 individual, under a dissecting scope by the number of barbs on their caudal process

119 (Yurista 1992). To maximize relative size differences (and hence hypothesized
120 vulnerability) in our experiments, we used only 1st and 3rd instars in our experiments; 3rd
121 instars can be up to five times the biomass of 1st instars (Yurista and Schulz 1995).

122

123 *General methodology*

124 We conducted two laboratory experiments with the purpose of quantifying rates of
125 *Bythotrephes* cannibalism under a range of experimental conditions. Experiments were
126 run using filtered (0.45 μm), aged (2 weeks) Lake Michigan water collected from the
127 same location where the *Bythotrephes* were collected and contained in 4-L glass jars,
128 which were used in the experiments. Because *Bythotrephes* tend to congregate in
129 corners near the bottom of stationary containers (personal observation), we attached the
130 jars to the outside of a large plankton wheel (87 cm wheel diameter, 122 cm row width, 8
131 rows, 4 jars aligned side to side per row) to prevent aggregation of individuals and thus
132 maintain a more uniform distribution of *Bythotrephes* in the jars. Each of the
133 experimental treatments were represented on one row of the wheel, randomly placed.
134 Thus, each row of the wheel acted as an experimental block. The plankton wheel rotated
135 jars top over bottom at a speed of approximately 2 minutes per revolution. We ran
136 experiments for approximately 10 hours under controlled temperature and light
137 conditions. We collected data on individual *Bythotrephes* by counting individual instars
138 during transfer to the jars and by visually inspecting the contents of the jars both during
139 and at the end of the experiment; allowing us to determine the total number of
140 *Bythotrephes* in the jar, including the number alive and swimming and those dead at
141 the bottom. At the end of the experiment, we removed and processed jars from the

142 wheel row-by-row. As each row was removed from the wheel, we employed methods
143 (see below) to stop predation.

144

145 *Experiment 1*

146 This experiment was designed first to determine *Bythotrephes* cannibalism rate and
147 second, how instar composition and alternative prey availability could influence that
148 rate. The experiment was a two-way factorial design, crossing two levels of instar
149 composition (1: eight 1st instars, and 2: six 1st instars and two 3rd instars) with two levels
150 of alternative prey availability (1: a background assemblage of zooplankton, and 2: no
151 background zooplankton). We reasoned that rates of cannibalism should be higher in
152 the mixed instar treatments, with 3rd instar *Bythotrephes* preferentially consuming
153 smaller, and presumably more vulnerable 1st instars, which can be 2-5 times smaller
154 than 3rd instars. We manipulated the presence of background zooplankton, because the
155 lack of alternative prey could increase the hunger levels and foraging activity of
156 *Bythotrephes* (Johansson 1991); forcing them to expand their diets to include
157 conspecifics (Leonardsson 1991). Each treatment combination was replicated 7 times.
158 Unfortunately, an oversight caused loss of some individuals during transfer into the
159 experimental jars. If there were fewer than 5 individuals in a jar (which occurred in 3 of
160 the 28 jars), we did not include these jars in our final analyses, leaving 25 of the 28 jars
161 with 5 to 8 *Bythotrephes*, with a median of 7. We found no significant differences in
162 initial *Bythotrephes* densities between different treatments (2-way ANOVA; Instar: $F_{1,22}$
163 = 0.15, $P = 0.704$, Treatment: $F_{1,22} = 0.91$, $P = 0.351$, Instar*Treatment: $F_{1,22} = 1.29$ $P =$
164 0.268). Background zooplankton assemblage with approximate equal densities of
165 component taxa/life stages were obtained by combining 20 subsamples with a

166 'thumbed' pipette in an aquarium holding natural assemblages of Lake Michigan
167 zooplankton. These zooplankton were obtained from a vertical plankton tow from 40m
168 depth and at the same location *Bythotrephes* were collected, with a 64 μm mesh net.
169 Average (\pm s.d.) densities (ind. L^{-1}) of sample background assemblages in experimental
170 jars were: 10.5 ± 2.1 *Daphnia mendotae*, 10 ± 2 juvenile diaptomid copepods, 6 ± 1 adult
171 diaptomid copepods, 3.75 ± 0.7 copepod nauplii, and 2.5 ± 0.25 cyclopoid copepods.
172 This high density of zooplankton, which greatly exceed average densities in Lake
173 Michigan, was chosen to be conservative in examining if known prey modify any
174 observed cannibalism. Water used in this experiment was a 75:25 mix of filtered, aged
175 Lake Michigan water and E-pureTM ultrapure water.

176 The experiment was run from 11:40 to 21:40 with temperatures in the room
177 between $21.5\text{--}21.9^\circ\text{C}$. Light intensity was 129, 37, and $4.5 \mu\text{mol}\cdot\text{m}^{-2}\cdot\text{s}^{-1}$ at the top, middle
178 and the bottom of the wheel, respectively; which is in the range of light intensity where
179 *Bythotrephes* should be capable of seeing and capturing its prey (Pangle and Peacor
180 2009). At the end of the experiment, as each block was removed from the wheel,
181 sodium bicarbonate was added to each jar to narcotize the *Bythotrephes* and stop
182 predation. The contents of each jar were then gently poured through a 64- μm mesh
183 filter, which captured intact individual *Bythotrephes* and all body parts (e.g., carapaces,
184 spines, etc.). Intact individuals represented those that were either alive at the end of the
185 experiment, or had died during the experiment without any obvious signs of
186 cannibalism (i.e., missing or severely damaged body parts), and so were not included as
187 cannibalized individuals in calculations of attack rates (see below). Individuals with
188 signs of missing or severely damaged body parts and isolated spines (which were never

189 consumed during cannibalism) were attributed to cannibalism. Although it was
190 impossible to precisely quantify what proportion of a cannibalized individual was
191 actually consumed, if only a spine was recovered, we assumed roughly 90% of that
192 victim was consumed, as the spine can comprise up to and sometimes over 10% of adult
193 body mass (Sullivan and Lehman 1998; Branstrator 2005). Partially cannibalized
194 individuals with missing or severely damaged body parts were assumed to be between
195 10-90% consumed, with a rough average of 50% based on our observations. We note
196 that other visible, shredded pieces of tissue were not detected in the jars.

197 Individual *Bythotrephes* and body parts were carefully removed from the mesh
198 with blunt-tipped plastic forceps under a dissecting scope, and delivered to a 50-mL
199 plastic vial filled with 95% EtOH for preservation.

200

201 *Experiment 2*

202 The second experiment was also designed to first determine *Bythotrephes* cannibalism
203 rate and second, how instar composition and conspecific density influence that rate. We
204 simultaneously manipulated instar composition and density in each of four treatments:
205 (1) six 1st instars and zero 3rd instars (1.5 ind. L⁻¹); (2) six 1st instars and two 3rd instars (2
206 ind. L⁻¹); (3) zero 1st instars and six 3rd instars (1.5 ind. L⁻¹); and (4) zero 1st instars and
207 twelve 3rd instars (3 ind. L⁻¹), each treatment was replicated 6 times.

208 The experiment was run from 10:48 to 20:35, with temperature in the room
209 ranging between 19.0 – 21.8°C throughout the duration of the experiment. Light
210 intensity was 129, 38, and 4.5 $\mu\text{mol}\cdot\text{m}^{-2}\cdot\text{s}^{-1}$ at top, middle, and bottom of the plankton
211 wheel, respectively. After 10 hours we removed jars from the wheel a half a block at a
212 time, at which point we covered them in black felt as a non-destructive way to stop

213 predation by the visually hunting *Bythotrephes* (rather than adding sodium bicarbonate
214 as in Experiment 1). We removed the black felt of each jar individually, visually
215 inspected the contents, and replaced the felt. Every individual in each jar was counted
216 and categorized as ‘dead-intact’, ‘dead with signs of attack’, or ‘alive’. As in Experiment
217 1, ‘dead-intact’ individuals were not used to calculate attack rates (see below). To
218 estimate cannibalism rates, we sought a duration for which there was a sufficient
219 number, but not too many, killed. Evaluating the number ‘dead’ in a non-destructive
220 way allowed us to evaluate if 10 hours was sufficient. Because the average number dead
221 was low (0.95 individuals per jar) we extended the experiment. Jars were placed back on
222 the wheel, and the experiment was restarted roughly 2 hours after stopping it for an
223 additional 10 hours of light on the wheel. At the end of this second period, individual
224 *Bythotrephes* were counted and categorized as in Experiment 1.

225

226 *Quantifying cannibalism*

227 To quantify cannibalism, we first calculated per capita attack rates

$$228 a = \frac{\frac{1}{N} - \frac{1}{N_o}}{t}$$

229 where a is the mortality rate due to cannibalism; N is the number of individuals in the
230 jar at the beginning of the experiment minus the number of individuals cannibalized (as
231 distinguished from the total number dead) during the experiment; N_o is the number of
232 living individuals in the jar at the beginning of the experiment; and t is the duration (in
233 hours) of the experiment.

234 We calculated daily clearance rates (F) as

$$235 F = aVt$$

236 where V is volume of the jars, and t is the number of hours in a day (Riisgård 2001),
237 allowing us to get the volume of water cleared of conspecifics by *Bythotrephes* per unit
238 time per individual. Clearance rates provide the potential feeding rate of a predator on a
239 given prey, by representing the total volume covered by a predator in a given amount of
240 time to “clear” that volume of that specific prey. The utility of clearance rates is that
241 they can be easily used to predict feeding rates at different prey densities.

242

243 *Statistical analyses*

244 All statistical analyses were done in R (version 4.2.1, R Core Development Team, 2015).
245 Prior to analyses, all data were tested for normality and homoscedasticity with the
246 Shapiro-Wilk test and the Fligner-Killeen test, respectively. In Experiment 1, we
247 analyzed the separate and interactive effects of instar composition and background prey
248 on daily clearance rates with 2-way mixed effects ANOVA with treatment as a fixed
249 factor and block as a random factor. In Experiment 2, we analyzed the effects of the
250 instar composition/density treatments on *Bythotrephes* clearance rates. We used an
251 additive 2-way mixed effects ANOVA with treatment as a fixed factor and block as a
252 random factor, followed by Tukey’s honestly significant difference (HSD) tests to assess
253 post-hoc differences among treatment means for clearance rate data (Sokal and Rolhif
254 1995). All analyses were done on data collected at the end of day 2 of the experiment
255 (i.e., after 20 h). For each experiment, we conducted a *post-hoc* power analysis to
256 determine our statistical power using the package ‘pwr’(Champely et al. 2016) in R
257 (version 4.2.1).

258

259 **Results**

260 *Bythotrephes* appeared generally healthy and active throughout the duration of both
261 experiments, although a few (0.35 per jar in Experiment 1, and 0.5 per jar in Experiment
262 2) individuals died without any clear damage from a cannibalistic encounter. We
263 observed several instances of cannibalism in action during our observations in which
264 one *Bythotrephes* clearly killed a second. We also observed a number of instances where
265 two individuals were coupled in a manner expected during a cannibalistic attack, but in
266 which the encounters ended with seemingly no damage to the individuals (see
267 Discussion).

268 In Experiment 1, *Bythotrephes* cannibalized an average (\pm SE) of 0.27 ± 0.05 of
269 its conspecifics, across all jars (Fig 1a). Of those scored as cannibalized, 0.65 of 1st
270 instars were completely consumed (only spines remained) and 0.35 were partially
271 consumed; 0.25 of 3rd instars were completely consumed, 0.75 were partially consumed.
272 Average (\pm SE) clearance rate on conspecifics across jars was $0.75 \pm 0.21 \text{ L} \cdot \text{day}^{-1}$ (Fig.
273 1b), with a maximum clearance rate among jars of $3.4 \text{ L} \cdot \text{day}^{-1}$. We found no effects of
274 instar composition, background prey, or their interaction on clearance rates (Table 1). In
275 the mixed instar treatment, the average proportions of 1st and 3rd instars cannibalized
276 across background prey treatments were 0.25 ± 0.07 and 0.17 ± 0.07 , respectively (Fig.
277 1c). Post-hoc power analyses indicated that the design for Experiment 1 did not provide
278 sufficient power ($\beta = 0.40$) to detect even large treatment effect sizes (e.g., ≥ 0.35 ;
279 Cohen 1992).

280 In Experiment 2, *Bythotrephes* cannibalized an average (\pm SE) of 0.42 ± 0.04 of
281 its conspecifics across all jars (Fig. 2a). Sixty percent were completely consumed as only
282 the spine remained, and 0.40 were only partially consumed (i.e., dead individuals with

283 signs of shredding or parts of carapace and spine remaining. Average (\pm SE) clearance
284 rate due to cannibalism were $0.69 \pm 0.21 \text{ L} \cdot \text{day}^{-1}$ and per treatment ranged from 0.19 (\pm
285 0.03) to 1.2 (± 0.2) $\text{L} \cdot \text{day}^{-1}$ (Fig. 2b), with a maximum clearance rate of $1.6 \text{ L} \cdot \text{day}^{-1}$.
286 Average (\pm SE) clearance rates in the 3rd instar/1.5 ind. L^{-1} treatment (1.2 ± 0.2) were six
287 times higher than clearance rates in the mixed instar treatment (0.19 ± 0.03). Average
288 (\pm SE) clearance rates in the 3rd instar/3 ind. L^{-1} treatment (0.52 ± 0.10) and the 1st
289 instar treatment (0.6 ± 0.2), were intermediate to the previous two treatments (Table 2).
290 In the mixed instar treatment, the average (\pm SE) proportion of 1st and 3rd instars
291 cannibalized were 0.26 ± 0.09 and 0.42 ± 0.16 , respectively (Fig. 2c). *Post-hoc* power
292 analyses indicated that the experimental design in Experiment 2 afforded us sufficient
293 power ($\beta = 0.82$) to detect large treatment effect sizes (e.g., ≥ 0.35 ; Cohen 1992), but not
294 ($\beta = 0.47$) to detect moderate treatment effect sizes (e.g., ≥ 0.15 ; Cohen 1992).
295

296 **Discussion**

297 Our results indicate high rates of cannibalism in *Bythotrephes cederstroemii*. Average (\pm
298 SE; across jars) clearance rates were consistent between both of our experiments (0.75
299 $\pm 0.2 \text{ L} \cdot \text{d}^{-1}$ in Experiment 1 and $0.69 \pm 0.10 \text{ L} \cdot \text{d}^{-1}$ in Experiment 2). These clearance
300 rates are within the range of the average clearance rates previously reported for
301 *Bythotrephes* feeding on *Daphnia mendotae* ($0.17 \pm 0.01 \text{ L} \cdot \text{d}^{-1}$; Schulz and Yurista
302 1999), a common, and preferred prey item in lakes invaded by *Bythotrephes*
303 (Vanderploeg et al. 1993, Schulz and Yurista 1999). The cannibalism clearance rates
304 were also similar to those reported for *Bythotrephes* feeding on other prey, including

305 small cladocerans (*Bosmina* spp.: $1.4 \text{ L} \cdot \text{d}^{-1}$; and *D. retrocurva* $1.2 \text{ L} \cdot \text{d}^{-1}$), and copepod
306 nauplii ($0.17 \text{ L} \cdot \text{d}^{-1}$) (Vanderploeg et al. 1993).

307 Conspecifics could represent an important food source for *Bythotrephes* when other
308 prey items are at low densities or unavailable. In offshore waters of Lake Michigan,
309 consumption requirements are a high proportion, or can exceed production, of *Bosmina*
310 and *D. mendotae* at some points during the year, especially late in the season and
311 occasionally as early as July or August (Pothoven and Vanderploeg 2018, Pothoven and
312 Vanderploeg 2019). During these periods, *Bythotrephes* can reach a volumetric biomass
313 roughly equal and greater than that of its preferred (i.e., those on which it has the
314 highest clearance rates) cladoceran prey, *D. mendotae* and *Bosmina* (Sprules et al. 1990,
315 Vanderploeg et al. 1993, Pangle and Peacor 2009). For example, in Lake Michigan in
316 2007 and 2008, *Bythotrephes* increased in density through November (and then was at
317 lower levels in December). In the months of October and November, average
318 *Bythotrephes* biomass density (e.g., $\text{mg} \cdot \text{L}^{-1}$) was on the same order of magnitude or
319 exceeds that of *D. mendotae* and *Bosmina* (Vanderploeg et al. 2012). Analyzing
320 clearance rates allows us to estimate feeding rates in the field based on experimental
321 results; the feeding rate in mass per unit time is a product of the clearance rate and
322 biomass density. Because both biomass density and clearance rate of conspecifics is
323 similar to that of *D. mendotae* and *Bosmina* during certain times, our results suggest
324 that feeding rates on conspecifics could be similar to that of *Bythotrephes*' preferred
325 zooplankton prey, and thus conspecifics could provide an important food source for
326 *Bythotrephes* during these times. A similar conclusion is reached for copepod prey,
327 which in October through December have higher average densities than *D. mendotae*
328 and *Bosmina*, but for which the clearance rates are much lower (Vanderploeg et al.

329 1993). In essence, when examining feeding rates using biomass density, because the
330 clearance rates are on the same order of magnitude or larger than other prey, and the
331 mass of individual *Bythotrephes* is far greater than those prey, calculations of feeding
332 rates show that conspecifics could be an important resource even though densities are
333 substantially lower.

334 The above analysis indicates that cannibalism could supply a substantial portion of
335 resources to the diet of *Bythotrephes*, but ignores the temporal allocation of the
336 resource. It is necessary to further consider whether the frequency of cannibalism in the
337 diet would influence an individual *Bythotrephes*. For example, at the clearance rate of
338 $0.7 \text{ L} \cdot \text{d}^{-1}$ observed in our experiment, an individual *Bythotrephes* would capture 1
339 conspecific in 71, 14, and 3 days when the density is 20, 100 and 500 ind L^{-1} ,
340 respectively. These densities are at the upper end of densities reported in the literature
341 (Table S1), as described in the next paragraph. It is unclear if eating 1 conspecific in 71
342 days (viewed another way, 1 out of 7 *Bythotrephes* eating a conspecific every 10 days)
343 would influence population dynamics, but it seems reasonable to assume that 1 in every
344 14 days, or especially 1 in every 3 days, would be important to the diet and influence a
345 population. Some pelagic predatory crustaceans, including *Bythotrephes*, are known to
346 have long gut residence times of up to 12-13 hours (Yurista and Schulz 1995, Murtaugh
347 1984, Lehman 1993, Ritz 2008). However, individuals that go long bouts between
348 feeding (i.e., starved individuals) may retain significant amounts of material in their gut
349 for more than three days (e.g., Murtaugh 1984).

350 Are *Bythotrephes* densities in natural systems high enough to influence the
351 population dynamics based on the clearance rates found in our experiments? We
352 performed a non-exhaustive review of the literature on *Bythotrephes* density using

353 Google Scholar's Advanced Search Page to find articles with 'abundance' OR 'density'
354 OR 'survey' AND '*Bythotrephes*' that were dated between 1984 (date of first reported
355 *Bythotrephes* invasion to the Laurentian Great Lakes) and the present. As with most
356 zooplankton in deep lakes, *Bythotrephes* are found to be highly aggregated as a function
357 of depth (e.g., Petruniak 2009, Walsh et al. 2016), and therefore densities are likely
358 often highly variable across depths. Nevertheless, of the 44 studies we identified that
359 reported *Bythotrephes* density, only seven reported densities as a function of depth
360 (Table S1). Approximate average (\pm sd) maximum volumetric densities (ind. \cdot m $^{-3}$)
361 reported were 325 ± 600 ($n = 8$) when density was computed from water column strata,
362 and were 105 ± 295 ($n = 33$) when density was computed from the entire water column.
363 For those studies in which the density of different layers and the entire water column
364 were reported, the layer with the highest density was roughly 6 ± 3 times greater than
365 when density was computed from the entire water column, suggesting that
366 *Bythotrephes* densities reported from entire water column estimates are likely much
367 lower than those at certain depth strata where *Bythotrephes* is more aggregated (Table
368 S1). Further, studies that performed stratified sampling will also underestimate
369 maximum volumetric densities, because the strata are still likely averaging over a range
370 of *Bythotrephes* densities (Scofield et al. 2020, Vanderploeg et al. 2015), and single
371 strata likely only partially encompass peak densities. Taken together, *Bythotrephes*
372 densities are frequently in the range of 100 ind. \cdot m $^{-3}$, and with upper estimates in the
373 thousands ind. \cdot m $^{-3}$. Our literature survey, in combination with inferences about
374 heterogeneity in density as a function of depth, suggest that *Bythotrephes* are often in

375 the range in which cannibalism occurs frequently enough to influence individual, and
376 therefore population, growth rates.

377 Two factors influence the estimate of cannibalism rates in the field based on the
378 laboratory results. Our experiments ignored any satiation effects. *Bythotrephes* are a
379 considerably large prey item, and satiation could be reached after consuming one
380 individual. This factor reduces the estimate of cannibalism rate in the field, thus making
381 the estimate conservative. We also only had a rough estimate of how much of the killed
382 conspecific was actually eaten. Across both experiments, an average of 50% of the
383 cannibalized individuals were identified by remaining spines with no bodies attached,
384 with the remaining 50% of cannibalized individuals identified by spines with some
385 attached and shredded carapace. Although it has been shown that *Bythotrephes* has low
386 ingestion efficiency (59%; Burkhardt and Lehman 1994), consumption of conspecifics is
387 likely providing a resource at a satiating level because of the very large size of
388 conspecific prey. These two factors therefore do not diminish the inferences made above
389 concerning the influence of cannibalism on individual and population growth rate.

390 The existence of cannibalism could help resolve existing discrepancies between
391 predicted bioenergetic requirements or experimentally-determined consumption rates
392 by *Bythotrephes* and available heterospecific prey. For example, bioenergetics and
393 efficiency models indicate that *Bythotrephes* consumption rates derived from laboratory
394 experiments would exceed observed zooplankton production in the deep oligotrophic
395 lakes *Bythotrephes* often inhabit (Burkhardt and Lehman 1994, Yurista and Schulz
396 1995, Dumitru 2001, Yurista et al. 2010, Bunnell et al. 2011, Pothoven and Hook 2014).
397 Because cannibalism can help overcome the effects of a limited supply of energy, it could
398 provide *Bythotrephes* an unaccounted-for food source, which could resolve these

399 discrepancies. More research is required to investigate if the discrepancies are
400 encountered as a function of *Bythotrephes* density (i.e., occur when densities are
401 sufficiently high for cannibalism to influence growth rates).

402 Our experiments had low statistical power to detect moderate (Experiment 2) or
403 even large (Experiment 1) treatment effects on *Bythotrephes* cannibalism rates. It is
404 therefore difficult to draw inferences about the effects of the three factors commonly
405 documented to influence cannibalism rates: food availability, size, and population
406 density. In many species, increases in relative size (and therefore vulnerability)
407 differences among life stages increase rates of cannibalism (DeAngelis et al. 1979, Bry
408 and Gillet 1980, Polis 1981). Our expectation was that rates of cannibalism would be
409 highest in mixed instar treatments with 3rd instar *Bythotrephes* selectively cannibalizing
410 1st instars, which may have 2-5 times smaller biomass than 3rd instars, and presumably
411 more vulnerable to attack by 3rd instars. Whereas we did find evidence in experiment 2
412 that 3rd instars cannibalize more than 1st instars do, they cannibalized other 3rd instars
413 just as much, if not more, than 1st instars; suggesting either that size differences between
414 1st and 3rd instars may not influence vulnerability. Because *Bythotrephes* is a raptorial
415 predator that is not gape-limited, with mouth-parts that can shred even relatively larger
416 prey items, it is possible that size differences among instars do not play a large role in
417 cannibalism. However, the distribution of instar types in the population could still
418 influence the prevalence of cannibalism. For example, since 1st instars seem to attack
419 fewer conspecifics than 3rd instars, populations with higher proportions of 3rd instars
420 may be more likely to exhibit cannibalistic behavior.

421 Availability of alternative prey may also influence cannibalism, with low prey
422 availability increasing predator hunger levels and foraging activity (Johansson 1991);

423 forcing them to expand their diets to include conspecific prey (Leonardsson 1991). In
424 contrast to our expectations, we observed trends for higher cannibalism in the
425 experimental treatments with available zooplankton prey. Due to our lack of statistical
426 power, however, our study is inconclusive in evaluating the impact of alternative prey.
427 Nevertheless, cannibalism by *Bythotrephes* was observed in both the presence and
428 absence of background heterospecific prey assemblages.

429 Whereas the relationship between per cannibal consumption rate and population
430 size is often positively density dependent, (Holling 1959, Hassell 1978, Van Buskirk
431 1989), daily attack rates in Experiment 2 did not increase with *Bythotrephes* density,
432 (e.g., from $\alpha = 0.3 (\pm 0.05)$ at 1.5 ind. L^{-1} to $\alpha = 0.13 (\pm 0.03)$ at 3 ind. L^{-1}) suggesting that
433 the *Bythotrephes* densities used in the experiment (i.e., 1.5 and 3 ind. L^{-1}) were at
434 saturation. Saturation is indeed very likely, as the densities we used in our experiments
435 were chosen to maximize encounter rates in the experiment and were high compared to
436 natural densities which are approximately between 0.01 and 0.04 ind. L^{-1} (Pothoven et
437 al. 2003, Pangle and Peacor 2009, Vanderploeg et al. 2012).

438 As noted previously (see Results), during our observations we noticed pairs of
439 *Bythotrephes* attached to one another via thoracic appendages for minutes at a time,
440 sometime several minutes. Sometimes these couplings ended with the individuals
441 involved swimming away, seemingly unharmed. It is unclear whether these were
442 unsuccessful cannibalistic attacks or some other type of interaction. Similar interactions
443 have been observed in another large-bodied carnivorous cladoceran, *Leptodora kindtii*,
444 and attributed to mating rather than unsuccessful cannibalistic attacks because
445 individuals involved in these interactions were unharmed and often the same size,
446 suggesting against vulnerability-based intraspecific predation (Browman et al. 1989).

447 Males are rare in the population until fall, and because we ran the experiments in
448 August and early September, mating-associated couplings were likely to have been rare.
449 We also note, that in several other observed couplings, one of the paired individuals was
450 killed and partially consumed by the other.

451 We have demonstrated and quantified *Bythotrephes* cannibalism in a laboratory
452 setting, with estimates that conspecifics could represent a substantial portion of the
453 *Bythotrephes* diet during certain periods of the year in systems where *Bythotrephes*
454 reach high densities. Given the predicted advantages of cannibalism to *Bythotrephes*, a
455 next step is to more directly examine its importance in natural populations, as
456 understanding its role could facilitate predicting the establishment, success, and impact
457 of *Bythotrephes* populations.

458

459 **Acknowledgements**

460 We thank D Donahue and D Mason for logistical support at the Lake Michigan Field
461 Station and the crew of the R/V 5501 for their help collecting *Bythotrephes*. N
462 Davenport, M Davis, and A Rafalski provided laboratory assistance. Funding was
463 provided by the National Oceanic and Atmospheric Administration and National
464 Science Foundation grant OCE-0826020 to SDP. SDP acknowledges support from
465 Michigan State University AgBioResearch. This is GLERL contribution number XXXX.

466

467 **Literature cited**

468 Andersson, J., Byström, P., Claessen, D., Persson, L., & De Roos, A. M., 2007.
469 Stabilization of population fluctuations due to cannibalism promotes resource
470 polymorphism in fish. *The American Naturalist* 169: 820-829.

471

472 Barbiero, R. P., & Tuchman, M. L., 2004. Changes in the crustacean communities of

473 Lakes Michigan, Huron, and Erie following the invasion of the predatory cladoceran

474 *Bythotrephes longimanus*. Canadian Journal of Fisheries and Aquatic Sciences 61: 2111-

475 2125.

476

477 Bourdeau, P. E., Pangle, K. L., & Peacor, S. D., 2011. The invasive predator *Bythotrephes*

478 induces changes in the vertical distribution of native copepods in Lake

479 Michigan. Biological Invasions 13: 2533-2545.

480

481 Bourdeau, P. E., Pangle, K. L., & Peacor, S. D., 2015. Factors affecting the vertical

482 distribution of the zooplankton assemblage in Lake Michigan: The role of the invasive

483 predator *Bythotrephes longimanus*. Journal of Great Lakes Research 41: 115-124.

484

485 Branstrator, D. K., 2005. Contrasting life histories of the predatory cladocerans

486 *Leptodora kindtii* and *Bythotrephes longimanus*. Journal of Plankton Research 27:

487 569-585.

488

489 Branstrator, D. K. (1995) Ecological interactions between *Bythotrephes cederstroemi*

490 and *Leptodora kindtii* and the implications for species replacement in Lake Michigan.

491 Journal of Great Lakes Research 21: 670–679.

492

493 Browman, H. I., Kruse, S., & O'Brien, W. J., 1989. Foraging behavior of the predaceous

494 cladoceran, *Leptodora kindti*, and escape responses of their prey. *Journal of Plankton*
495 *Research* 11: 1075-1088.

496

497 Bry, C., & Gillet, C., 1980. Reduction of cannibalism in pike (*Esox lucius*) fry by isolation
498 of full-sib families. *Reproduction Nutrition Développement* 20: 173-182.

499

500 Buddle, C. M., Walker, S. E., & Rypstra, A. L., 2003. Cannibalism and density-
501 dependent mortality in the wolf spider *Pardosa milvina* (Araneae: Lycosidae). *Canadian*
502 *Journal of Zoology* 81: 1293-1297.

503

504 Bunnell, D. B., Davis, B. M., Warner, D. M., Chriscinske, M. A., & Roseman, E. F., 2011.
505 Planktivory in the changing Lake Huron zooplankton community: *Bythotrephes*
506 consumption exceeds that of Mysis and fish. *Freshwater Biology* 56: 1281-1296.

507

508 Burkhardt, S., & Lehman, J. T., 1994. Prey consumption and predatory effects of an
509 invertebrate predator (*Bythotrephes*: Cladocera, Cercopagidae) based on phosphorus
510 budgets. *Limnology and Oceanography* 39: 1007-1019.

511

512 Butorina, L. G., 2000. A review of the reproductive behavior of *Polyphemus pediculus*
513 (L.) Müller (Crustacea: Branchiopoda). *Hydrobiologia* 427: 13-26.

514

515 Champely, S., Ekstrom, C., Dalgaard, P., Gill, J., Wunder, J., & Rosario, H. D., 2016.
516 Package 'pwr'. 2015. URL: <https://cran.r-project.org/web/packages/pwr/pwr.pdf>
517 (visited on 04/27/2016).

518

519 Claessen, D., A. M. de Roos, and L. Persson, 2004. Population dynamic theory of size-
520 dependent cannibalism. *Proceedings of the Royal Society B* 271: 333-340.

521

522 Cohen, J., 1992. Statistical power analysis. *Current Directions in Psychological
523 Science* 1: 98-101.

524

525 Cushing, J. M., Henson, S. M., & Hayward, J. L., 2015. An evolutionary game-theoretic
526 model of cannibalism. *Natural Resource Modeling* 28: 497-521.

527

528 DeAngelis, D. L., Travis, C. C., & Post, W. M., 1979. Persistence and stability of seed-
529 dispersed species in a patchy environment. *Theoretical Population Biology* 16: 107-125.

530

531 Dobler, R., & Kölliker, M., 2010. Kin-selected siblicide and cannibalism in the European
532 earwig. *Behavioral Ecology* 21: 257-263.

533

534 Duarte, C., Jaramillo, E., Contreras, H., & Acuña, K., 2010. Cannibalism and food
535 availability in the talitrid amphipod *Orchestoidea tuberculata*. *Journal of Sea Research*
536 64: 417-421.

537

538 Elgar, M. A. C., & Bernard, J., 1992. *Cannibalism: ecology and evolution among diverse
539 taxa* (No. 591.53 E53).

540

541 Evans, M.S., 1988. *Bythotrephes cederstroemi*: its new appearance in Lake Michigan.

542 Journal of Great Lakes Research 14: 234-240.

543

544 Fox, L. R., 1975. Factors influencing cannibalism, a mechanism of population limitation

545 in the predator *Notonecta hoffmanni*. Ecology 56: 933-941.

546

547 Gerritsen, J., & Strickler, J. R., 1977. Encounter probabilities and community structure

548 in zooplankton: a mathematical model. Journal of the Fisheries Board of Canada 34: 73-

549 82.

550

551 Getto, P., Diekmann, O., & De Roos, A. M., 2005. On the (dis) advantages of

552 cannibalism. Journal of Mathematical Biology 51: 695-712.

553

554 Grigorovich, I. A., Pashkova, O. V., Gromova, Y. F., & van Overdijk, C. D., 1998.

555 *Bythotrephes longimanus* in the Commonwealth of Independent States: variability,

556 distribution and ecology. Hydrobiologia 379: 183-198.

557

558 Hassell, M. P., 1978. The dynamics of arthropod predator- prey systems. Princeton

559 University Press, Princeton, New Jersey, USA.

560

561 Holling, C. S., 1959. The components of predation as revealed by a study of small-

562 mammal predation of the European pine sawfly. The Canadian Entomologist 91: 293-

563 320.

564

565 Ibáñez, C. M., & Keyl, F., 2010. Cannibalism in cephalopods. *Reviews in Fish Biology*
566 and *Fisheries* 20: 123-136.

567

568 Jarnagin, S. T., 1998. Direct and indirect estimates of death rates and predator-
569 mediated dispersal of *Bythotrephes cederstroemi*. Michigan Technological University.

570

571 Johansson, F, 1991. Foraging modes in an assemblage of odonate larvae—effects of prey
572 and interference. *Hydrobiologia* 209: 79-87.

573

574 Johansson, F., 1992. Effects of zooplankton availability and foraging mode on
575 cannibalism in three dragonfly larvae. *Oecologia* 91: 179-183.

576

577 Johansson, F., 1993. Intraguild predation and cannibalism in odonate larvae: effects of
578 foraging behaviour and zooplankton availability. *Oikos* 66: 80-87.

579

580 Johannsson, O.E., Mills, E.L. & O'Gorman, R., 1991. Changes in the nearshore and
581 offshore zooplankton communities in Lake Ontario: 1981–88. *Canadian Journal of*
582 *Fisheries and Aquatic Sciences* 48: 1546-1557.

583

584 Kerfoot, W. C., Hobmeier, M. M., Yousef, F., Lafrancois, B. M., Maki, R. P., & Hirsch, J.
585 K., 2016. A plague of waterfleas (*Bythotrephes*): impacts on microcrustacean
586 community structure, seasonal biomass, and secondary production in a large inland-
587 lake complex. *Biological Invasions* 18: 1121-1145.

588

589 Kim, N., & Yan, N. D., 2010. Methods for rearing the invasive zooplankton *Bythotrephes*
590 in the laboratory. Limnology and Oceanography: Methods 8: 552-561.

591

592 Korovchinsky, N.M. & Arnott, S.E., 2019. Taxonomic resolution of the North American
593 invasive species of the genus *Bythotrephes* Leydig, 1860 (Crustacea: Cladocera:
594 Cercopagidae). Zootaxa 4691: 125-138.

595

596 Lehman, J.T., 1987. Palearctic predator invades North American Great Lakes. Oecologia
597 74: 478-480.

598

599 Leonardsson, K., 1991. Effects of cannibalism and alternative prey on population
600 dynamics of *Saduria entomon* (Isopoda). Ecology 72: 1273-1285.

601

602 Marino Jr, J. A., Peacor, S. D., Bunnell, D. B., Vanderploeg, H. A., Pothoven, S. A., Elgin,
603 A. K., Bence, J. R., Jiao, J., & Ionides, E. L., 2019. Evaluating consumptive and
604 nonconsumptive predator effects on prey density using field time-series data. Ecology
605 100: e02583.

606

607 Mordukhai-Boltovskoi, F. D. & I. K. Rivier, 1987. Predatory cladocerans Podonidae,
608 Polypheidae, Cercopagidae, and Leptodoridae of the world fauna. Keys to the Fauna of
609 the USSR published by the Zoological Inst. of the Academy Sciences of the USSR, No.
610 148, Nauka Press, Leningrad, 183 pp. (In Russian.)

611

612 Muirhead, J., & Sprules, W. G., 2003. Reaction distance of *Bythotrephes longimanus*,
613 encounter rate and index of prey risk for Harp Lake, Ontario. Freshwater Biology, 48:
614 135-146.

615

616 Pangle, K.L., & Peacor, S.D., 2009. Light-dependent predation by the invertebrate
617 planktivore *Bythotrephes longimanus*. Canadian Journal of Fisheries and Aquatic
618 Sciences 66: 1748-1757.

619

620 Pangle, K. L., Peacor, S. D., & Johannsson, O. E., 2007. Large nonlethal effects of an
621 invasive invertebrate predator on zooplankton population growth rate. Ecology 88: 402-
622 412.

623

624 Persson, L., Byström, P., & Wahlström, E., 2000. Cannibalism and competition in
625 Eurasian perch: population dynamics of an ontogenetic omnivore. Ecology 81: 1058-
626 1071.

627

628 Persson, L., Claessen, D., De Roos, A. M., Byström, P., Sjögren, S., Svanbäck, R.,
629 Wahlström, E., & Westman, E., 2004. Cannibalism in a size-structured population:
630 energy extraction and control. Ecological Monographs 74: 135-157.

631

632 Petruniak, J., 2009. Analysis of *Bythotrephes longimanus* spatial dynamics in Harp
633 Lake, Ontario. York University.

634

635 Pichler, A., Walters, T. L., Frischer, M. E., Nejstgaard, J. C., & Ptáčníková, R., 2021.

636 Application of species-specific primers to estimate the *in situ* diet of *Bythotrephes*

637 [Cladocera, Onychopoda] in its native European range via molecular gut content

638 analysis. *Journal of Plankton Research* 43: 945-956.

639

640 Polis, G. A., 1980. The effect of cannibalism on the demography and activity of a natural

641 population of desert scorpions. *Behavioral Ecology and Sociobiology* 7: 25-35.

642

643 Polis, G. A., 1981. The evolution and dynamics of intraspecific predation. *Annual Review*

644 of Ecology and Systematics 12: 225-251.

645

646 Pothoven, S. A., & Vanderploeg, H. A., 2018. Factors leading to coexistence of *Bosmina*

647 *longirostris* and *Daphnia galeata mendotae* in offshore Lake Michigan. *Fundamental*

648 and *Applied Limnology* 192: 79-89.

649

650 Pothoven, S. A., & Vanderploeg, H. A., 2019. Variable demographics and consumption

651 requirements of *Bythotrephes longimanus* (Crustacea, Cercopagididae) along a

652 nearshore to offshore gradient in Lake Michigan. *Hydrobiologia* 830: 63-75.

653

654 Pothoven, S. A., & Höök, T. O., 2014. Predatory demands of *Bythotrephes* and

655 *Leptodora* in Saginaw Bay, Lake Huron. *Journal of Great Lakes Research* 40: 106-112.

656

657 Pothoven, S. A., Fahnenstiel, G. L., & Vanderploeg, H. A., 2003. Population
658 characteristics of *Bythotrephes* in Lake Michigan. *Journal of Great Lakes Research* 29:
659 145-156.

660

661 Pothoven, S. A., & Fahnenstiel, G. L., 2015. Spatial and temporal trends in zooplankton
662 assemblages along a nearshore to offshore transect in southeastern Lake Michigan from
663 2007 to 2012. *Journal of Great Lakes Research* 41: 95-103.

664

665 R Core Team, 2015. R: A language and environment for statistical computing. R
666 Foundation for Statistical Computing, Vienna, Austria. URL [https://www.R-
667 project.org/](https://www.R-project.org/).

668

669 Richardson, M. L., Mitchell, R. F., Reagel, P. F., & Hanks, L. M., 2010. Causes and
670 consequences of cannibalism in noncarnivorous insects. *Annual Review of Entomology*
671 55: 39-53.

672

673 Riisgård, H. U., 2001. On measurement of filtration rates in bivalves—the stony road to
674 reliable data: review and interpretation. *Marine Ecology Progress Series* 211: 275-291.

675

676 Roberts, J. A., Taylor, P. W., & Uetz, G. W., 2003. Kinship and food availability
677 influence cannibalism tendency in early-instar wolf spiders (Araneae: Lycosidae).
678 *Behavioral Ecology and Sociobiology* 54: 416-422.

679

680 Rudolf, V. H., 2007. The interaction of cannibalism and omnivory: consequences for
681 community dynamics. *Ecology* 88: 2697-2705.

682

683 Rudolf, V. H., 2008a. The impact of cannibalism in the prey on predator–prey systems.
684 *Ecology* 89: 3116-3127.

685

686 Rudolf, V. H., 2008b. Impact of cannibalism on predator–prey dynamics: size-
687 structured interactions and apparent mutualism. *Ecology* 89: 1650-1660.

688

689 Schulz, K. L., & Yurista, P. M., 1999. Implications of an invertebrate predator's
690 (*Bythotrephes cederstroemi*) atypical effects on a pelagic zooplankton
691 community. *Hydrobiologia*, 380: 179-193.

692

693 Scofield, A. E., Watkins, J. M., & Rudstam, L. G., 2020. Heterogeneity in zooplankton
694 distributions and vertical migrations: Application of a laser optical plankton counter in
695 offshore Lake Michigan. *Journal of Great Lakes Research* 46: 780-797.

696

697 Sokal, R. R., & Rohlf, F. J., 1995. *Biometry: the principals and practice of statistics in*
698 *biological research*. WH Freeman and Company, New York.

699

700 Sprules, W. G., Riessen, H. P., & Jin, E. H., 1990. Dynamics of the *Bythotrephes*
701 invasion of the St. Lawrence great lakes. *Journal of Great Lakes Research* 16: 346-351.

702

703 Straile, D., & Hälbich, A., 2000. Life history and multiple antipredator defenses of an
704 invertebrate pelagic predator, *Bythotrephes longimanus*. *Ecology* 81: 150-163.

705

706 Strecker, A. L., Arnott, S. E., Yan, N. D., & Girard, R., 2006. Variation in the response of
707 crustacean zooplankton species richness and composition to the invasive predator
708 *Bythotrephes longimanus*. *Canadian Journal of Fisheries and Aquatic Sciences* 63:
709 2126-2136.

710

711 Sullivan, C. A., & Lehman, J. T., 1998. Character variation and evidence for spine length
712 selection in the invertebrate predator *Bythotrephes* (Crustacea: Cladocera) from Lakes
713 Michigan, Huron, and Erie. *Archiv für Hydrobiologie* 142: 35-52.

714

715 Van Buskirk, J., 1989. Density-dependent cannibalism in larval dragonflies. *Ecology* 70:
716 1442-1449.

717

718 Van den Bosch, F., De Roos, A. M., & Gabriel, W., 1988. Cannibalism as a life boat
719 mechanism. *Journal of Mathematical Biology* 26: 619-633.

720

721 Vanderploeg, H. A., Liebig, J. R., & Omair, M., 1993. *Bythotrephes* predation on Great
722 Lakes' zooplankton measured by an in-situ method: implications for zooplankton
723 community structure. *Archiv für Hydrobiologie* 127: 1-8.

724

725 Vanderploeg, H. A., Pothoven, S. A., Fahnenstiel, G. L., Cavaletto, J. F., Liebig, J. R.,
726 Stow, C. A., Nalepa, T. F., Madenjian, C. P., & Bunnell, D. B., 2012. Seasonal

727 zooplankton dynamics in Lake Michigan: Disentangling impacts of resource limitation,
728 ecosystem engineering, and predation during a critical ecosystem transition. *Journal of*
729 *Great Lakes Research* 38: 336-352.

730

731 Vanderploeg, H. A., Pothoven, S. A., Krueger, D., Mason, D. M., Liebig, J. R., Cavaletto,
732 J. F., Ruberg, S. A., Lang, G. A., & Ptáčníková, R., 2015. Spatial and predatory
733 interactions of visually preying nonindigenous zooplankton and fish in Lake Michigan
734 during midsummer. *Journal of Great Lakes Research* 41: 125-142.

735

736 Walsh, J. R., Munoz, S. E., & Vander Zanden, M. J., 2016. Outbreak of an undetected
737 invasive species triggered by a climate anomaly. *Ecosphere* 7: e01628.

738

739 Witt, A. M., & Cáceres, C. E., 2004. Potential predator-prey relationships between
740 *Bythotrephes longimanus* and *Cercopagis pengoi* in southwestern Lake Michigan.
741 *Journal of Great Lakes Research* 30: 519-527.

742

743 Yan, N. D., Girard, R., & Boudreau, S., 2002. An introduced invertebrate predator
744 (*Bythotrephes*) reduces zooplankton species richness. *Ecology Letters* 5: 481-485.

745

746 Young, J. P. W., 1978. Sexual swarms in *Daphnia magna*, a cyclic parthenogen.
747 *Freshwater Biology* 8: 279-281.

748

749 Yurista, P. M., 1992. Embryonic and postembryonic development in *Bythotrephes*
750 *cederstroemii*. *Canadian Journal of Fisheries and Aquatic Sciences* 49: 1118-1125.

751

752 Yurista, P. M., & Schulz, K. L., 1995. Bioenergetic analysis of prey consumption by
753 *Bythotrephes cederstroemi* in Lake Michigan. Canadian Journal of Fisheries and
754 Aquatic Sciences 52: 141-150.

755

756 Yurista, P. M., Vanderploeg, H. A., Liebig, J. R., & Cavaletto, J. F., 2010. Lake Michigan
757 *Bythotrephes* prey consumption estimates for 1994–2003 using a temperature and size
758 corrected bioenergetic model. Journal of Great Lakes Research 36: 74-82.

759

760 Zozulya, S. S., 1978. Some aspects of the feeding behavior of *Bythotrephes longimanus*
761 (Leydig). In: Study on behavior of aquatic invertebrates in nature. Materials from the
762 Third All-Union symposium on the behaviour of aquatic invertebrates. *Borok* 14–15. (In
763 Russian.)

764

765

766

767

768

769

770

771

772

773

774

775 **Tables**

Table 1. Results of 2-way analysis of variance (ANOVA) on the main and interactive effects of conspecific instar composition and presence/absence of background heterospecific zooplankton prey and experimental block on the clearance rates of *Bythotrephes* on conspecifics in Experiment 1.

Source	DF	SS	MS	F	P
Instar	1	0.197	0.197	0.219	0.647
Background	1	4.081	4.081	4.520	0.051
Instar*Background	1	0.336	0.336	0.373	0.551
Block	6	6.782	1.130	1.252	0.336
Residuals	15	13.543	0.903		

776

Table 2. Results of 1-way analysis of variance (ANOVA) on the effect of instar composition/density treatments and experimental block on the ln-transformed clearance rates of *Bythotrephes* on conspecifics in Experiment 2.

Source	DF	SS	MS	F	P
Treatment	3	8.796	2.932	5.938	0.007
Block	5	3.953	0.791	1.601	0.220
Residuals	15	7.407	0.494		

777

778

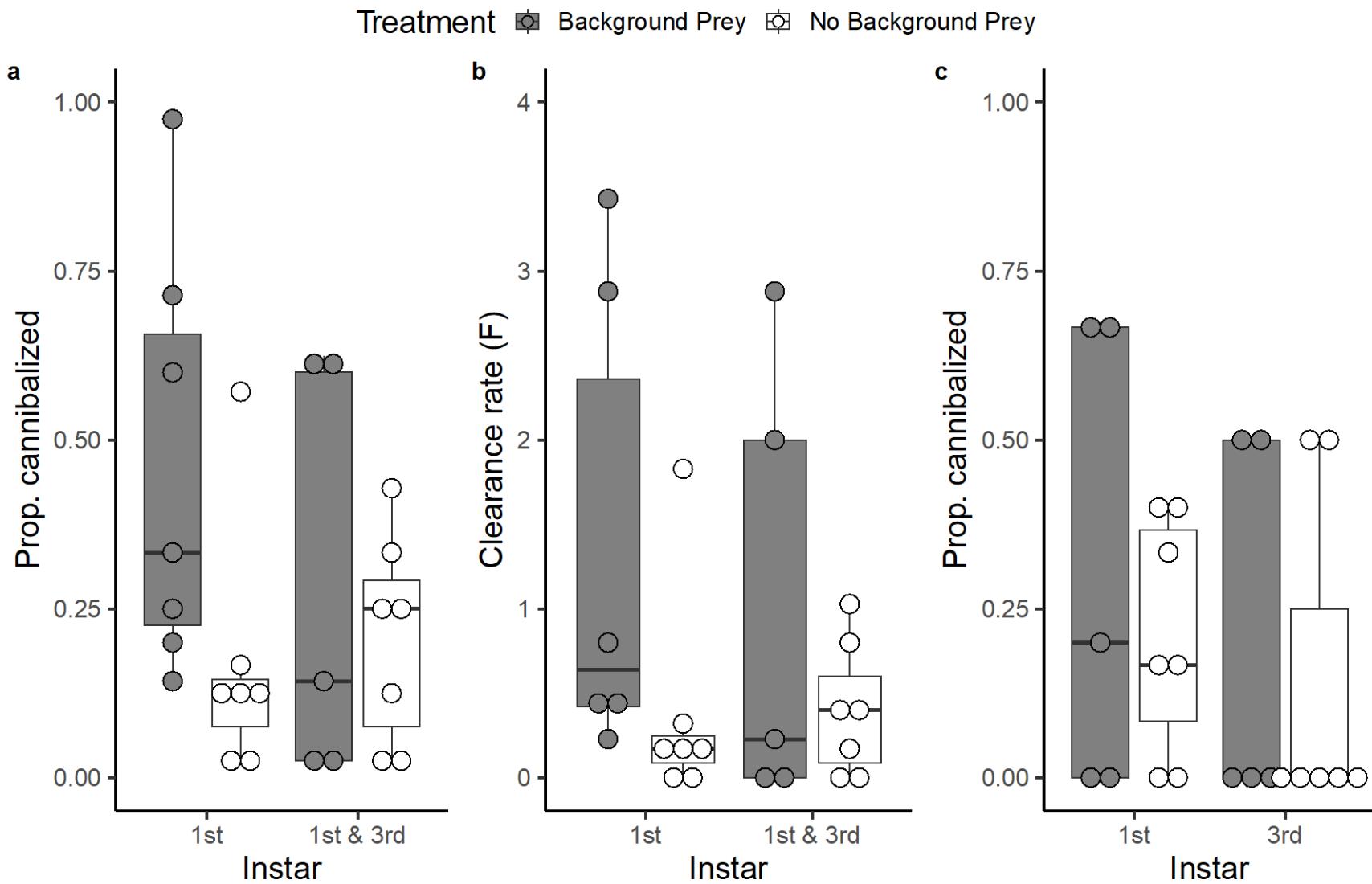
Table 3. Post-hoc comparisons of between treatment differences in ln-transformed clearance rates in Experiment 2.

KEY: 1 – 1st instars; 3 – 3rd instars; 1&3 – Mixed 1st and 3rd instars; 3x2 – 3rd instars at double density (3.0 ind.·L⁻¹).

Pairwise comparisons that are significantly different are in bold.

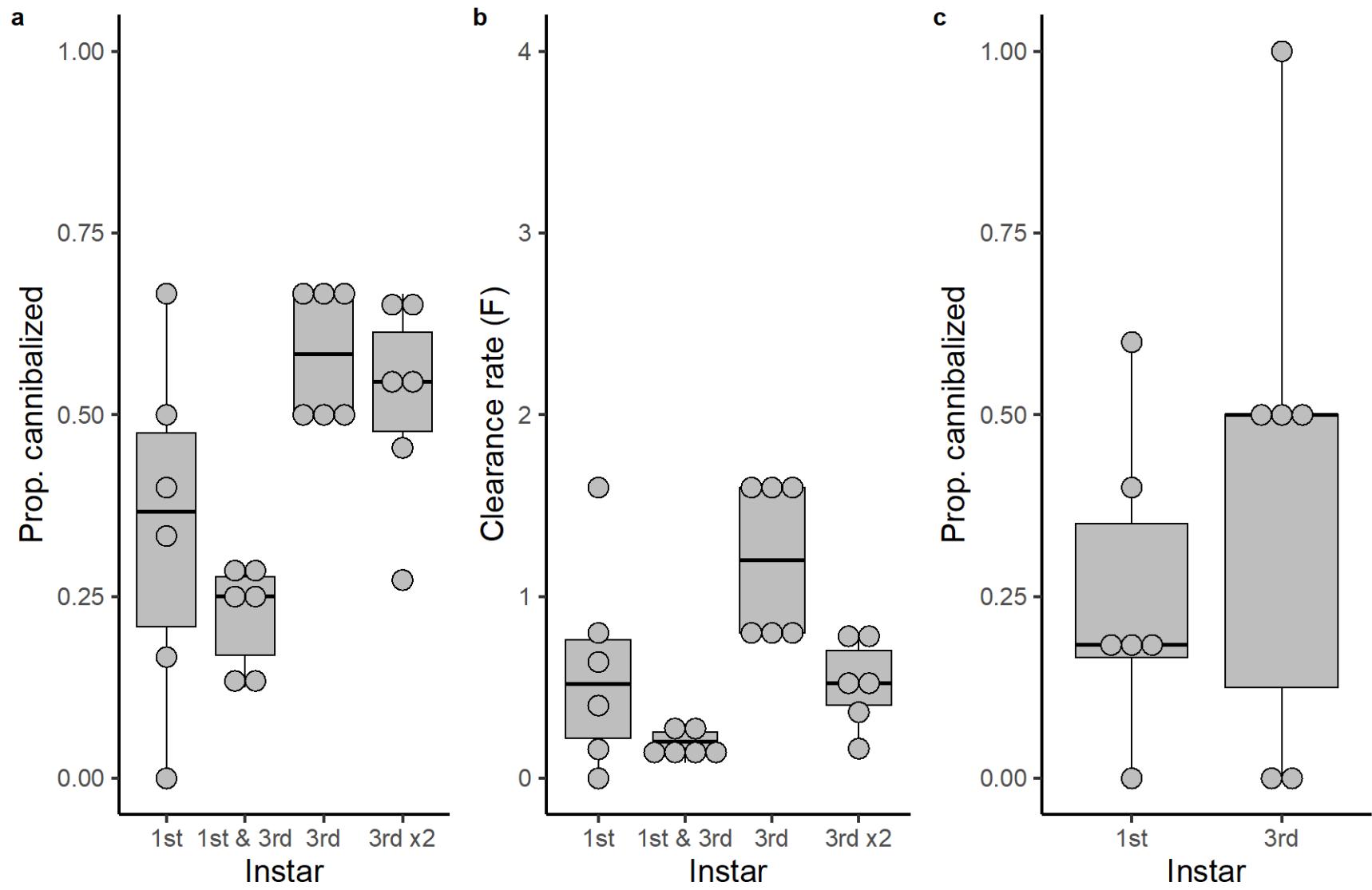
Comparison	Difference	Lower	Upper	P
1&3-1	-0.566	-1.736	0.603	0.521
3-1	1.112	-0.057	2.282	0.065
3x2-1	0.279	-0.890	1.449	0.900
3-1&3	1.679	0.509	2.848	0.004
3x2-1&3	0.846	-0.324	2.015	0.203
3x2-3	-0.833	-2.002	0.336	0.213

780 **Figure legends**


781 Figure 1. Effects of conspecific instar composition and presence/absence of background
782 heterospecific zooplankton prey on (a) proportion of *Bythotrephes* instars cannibalized
783 in all replicates of each treatment, (b) daily clearance rates of *Bythotrephes* in each
784 experimental treatment, and (c) proportion of instars cannibalized in the mixed instar
785 (1st & 3rd) treatment, in Experiment 1. Points represent individual data points from each
786 replicate jar, jittered to reduce overlap. Lower and upper box boundaries indicate the
787 25th and 75th percentiles, respectively, the line inside the box is the median, and the
788 lower and upper error lines are the 10th and 90th percentiles, respectively. Key –
789 Treatment indicates presence or absence of background heterospecific zooplankton
790 assemblage; Instar represents composition of 1st and 3rd instars.

791

792 Figure 2. Effects of instar composition/density treatments on (a) proportion of
793 *Bythotrephes* instars cannibalized in all replicates of each treatment, (b) daily clearance
794 rates of *Bythotrephes* in each experimental treatment, and (c) proportion of instars
795 cannibalized in the mixed instar (1st and 3rd) treatment in Experiment 2. Points
796 represent individual data points from each replicate jar, jittered to reduce overlap.
797 Lower and upper box boundaries indicate the 25th and 75th percentiles, respectively, the
798 line inside the box is the median, and the lower and upper error lines are the 10th and
799 90th percentiles, respectively. Instar represents composition and density of 1st and 3rd
800 instars.


801

802 Figure 1

803

804 Figure 2

