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Abstract

Cannibalism (i.e., intraspecific predation) affects the population dynamics of many
invertebrate species. Cannibalism by the predatory cladoceran Bythotrephes
cederstromii has been observed and noted in laboratory settings on several occasions,
but no studies have published results of cannibalism experiments or explicitly
quantified Bythotrephes cannibalism rates. We performed two laboratory experiments
that demonstrated and quantified Bythotrephes cannibalism. Cannibalism occurred
frequently in our experiments, and cannibalism clearance rates were comparable to
those for Bythotrephes feeding on heterospecific prey. Further, our estimates of
clearance rates between conspecifics suggest that cannibalism could be an important
food source during certain periods of the year, and in particular places, for which
Bythotrephes densities are at the higher end of observed ranges. While more research is

needed, our results suggest that there are conditions in which cannibalism should be
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included in models of Bythotrephes predation, including bioenergetics models

predicting Bythotrephes consumption rates.

Keywords: Alternative prey, Density-dependence; Intraspecific predation;

Laurentian Great Lakes; Predator-prey interactions

Introduction

Cannibalism (i.e., intraspecific predation), defined as the consumption of all or part of
another conspecific individual, is ubiquitous in the animal kingdom, occurring in a wide
variety of terrestrial and aquatic taxa. It can occur during multiple stages in the life cycle
of an animal, and is generally associated with an asymmetry in vulnerability between the
cannibal and the victim; where the victim is often at a more vulnerable life history stage
than the cannibal (Elgar and Bernard 1992). Cannibalism can affect an animal’s
behavior, life history strategy, and reproductive success (Cushing et al. 2015) and can
therefore have important ecological consequences, including stabilizing (e.g., Andersson
et al. 2007) or destabilizing (e.g., Claessen et al. 2004 ) effects on population dynamics,
lowering a cannibalistic predator’s consumption of heterospecific prey (e.g., Rudolf
2008a), and promoting predator-prey coexistence (e.g., Rudolf 2007).

Rates of cannibalism can be influenced by a number of factors. Size appears to be a
key factor driving the asymmetry in vulnerability in many cannibalistic species, such
that increases in relative size differences among life stages increase rates of cannibalism
(DeAngelis et al. 1979, Bry and Gillet 1980, Polis 1981, Claessen et al. 2004). Food
availability may also influence cannibalism, as low food typically increases hunger levels

and foraging activity (Johansson 1992, 1993, Roberts et al. 2003, Duarte et al. 2010),
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causing animals to expand their diets to include conspecifics (Leonardsson 1991, Rudolf
2008a, b). Cannibalism can also be density dependent, (Holling 1959, Hassell 1978, Van
Buskirk 1989, Buddle et al. 2003, Richardson et al. 2010), whereby elevated conspecific
density both increases encounter probabilities between individuals and reduces per
capita food availability (Polis 1980, Ibanez and Keyl 2010).

Despite its general importance among diverse taxa, and suggestions of its presence,
cannibalism has not been explicitly studied in Bythotrephes cederstromii (hereafter
‘Bythotrephes’). Bythotrephes is a generalist zooplanktivore, with a preference for
epilimnetic prey (Pichler et al. 2021), native to European and Asian palearctic
freshwaters, which has invaded North American waters in the Great Lakes region
(Grigorovich et al. 1998, Yan et al. 2002; Barbiero and Tuchman 2004; Strecker et al.
2006, Kerfoot et al. 2016, Marino et al. 2019). The invasive species of the genus
Bythotrephes introduced in the North American lakes in 1970s-early 1980s was named
variously either B. cederstroemi (e.g., Sprules et al. 1990, Johansson et al. 1991) or B.
longimanus (e.g., Lehman 1987, Evans 1988, Sprules et al. 1990), but has recently been
identified as B. cederstromi (Korovchinsky and Arnott 2019). To date, references to
cannibalism are anecdotal or based on unpublished laboratory observations. For
instance, several workers have noted that Bythotrephes is cannibalistic when held in
experimental containers (e.g., Zozulya 1978, Mordukhai-Boltovskoi & Rivier 1987,
Vanderploeg et al. 1993, Schulz and Yurista 1999, Witt and Caceres 2004, Branstrator
2005, Kim and Yan 2010). There is also a report of cannibalism observed in situ using
SCUBA (K. Pangle, personal communication). There has been, however, no
quantification of cannibalism rates in Bythotrephes, nor examination of factors that

could affect cannibalism. Quantifying rates of cannibalism in Bythotrephes and the



72

73

74

75

76

71

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

factors that affect them is worthwhile because of the possibility that cannibalism is an
important factor contributing to Bythotrephes’ population growth and persistence in
lakes throughout Europe and North America.

There are unexplained patterns in several studies that could be elucidated with the
inclusion of cannibalism by Bythotrephes. For example, bioenergetics and efficiency
models indicate that Bythotrephes consumption rates often exceed zooplankton
production in a number of deep oligotrophic lakes that Bythotrephes have invaded in
north America, including the Laurentian Great Lakes (Burkhardt and Lehman 1994,
Yurista and Schulz 1995, Yurista et al. 2010, Bunnell et al. 2011, Pothoven and Hook
2014) and some Canadian Shield lakes (e.g., Dumitru 2001). Abundance of conspecific
prey could therefore be a particularly important factor to consider in an effort to balance
estimates of prey production with predictions of Bythotrephes consumptive demand.

The objectives of this study were to (1) experimentally quantify rates of cannibalism
in Bythotrephes, and to (2) examine whether three factors known to influence
cannibalism: conspecific size, food availability, and conspecific density (Fox 1975, Wise
2006), affect these rates. Based on previous observations of Bythotrephes in the field
and in laboratory settings, our expectations were that their rates of cannibalism would
be comparable to their predation rates on other larger-bodied cladoceran prey (e.g.,
Daphnia and Bosmina). Further, based on prior theoretical and empirical work on
cannibalism in general, we hypothesized that cannibalism by Bythotrephes would
increase when: there are size (and therefore vulnerability) differences among instars,
there are no other prey available, and/or conspecific densities are high. An

understanding of Bythotrephes cannibalism rates and the factors that affect them may
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assist predictions of Bythotrephes population dynamics and their influence on food

webs of the Laurentian Great Lakes and other lakes in Europe and North America.

Methods

Collection, maintenance, and description of study animal

We collected Bythotrephes from a 110 m depth site in Lake Michigan, offshore of
Muskegon, MI (43°11'29” N 86°32’16” W), which is a sampling location frequently used
in NOAA zooplankton surveys (e.g., Pothoven et al. 2003). Slow vertical plankton tows
(i.e., <1 ms!) were performed with a conical zooplankton net with 363-um mesh (1-m
diameter, 2-m length) lowered to a maximum depth of 40m. We covered the mesh
windows of the cod-end with duct tape to ensure the animals remained in water upon
collection and to avoid physical damage against the cod-end mesh. Upon net retrieval,
we gently poured the contents of the cod-end into a deep polypropylene cooler filled
halfway with 64 um filtered lake water to ensure the animals remained submerged. We
kept animals in the shade during sorting to shield the animals from UV radiation. We
used a 5-mL pipettor with the plastic tip cut to a 9-mm diameter, to capture and transfer
actively swimming individuals to 60 mL glass jars (1 individual per jar) previously filled
with filtered, chilled lake water. Jars were packed into coolers with icepacks and
transported to Michigan State University in East Lansing, MI, where they were kept in
an incubator at 20°C prior to each experiment. Bythotrephes were not fed during this
time. A maximum of 72 hours passed between collection of individuals and use in
experiments. Prior to each experiment, we classified individual Bythotrephes as 1st, 2nd,
and 34 instars. Instars can be easily identified, with minimal disturbance to the

individual, under a dissecting scope by the number of barbs on their caudal process
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(Yurista 1992). To maximize relative size differences (and hence hypothesized
vulnerability) in our experiments, we used only 15t and 3rd instars in our experiments; 34

instars can be up to five times the biomass of 1st instars (Yurista and Schulz 1995).

General methodology

We conducted two laboratory experiments with the purpose of quantifying rates of
Bythotrephes cannibalism under a range of experimental conditions. Experiments were
run using filtered (0.45 um), aged (2 weeks) Lake Michigan water collected from the
same location where the Bythotrephes were collected and contained in 4-L glass jars,
which were used in the experiments. Because Bythotrephes tend to congregate in
corners near the bottom of stationary containers (personal observation), we attached the
jars to the outside of a large plankton wheel (87 cm wheel diameter, 122 cm row width, 8
rows, 4 jars aligned side to side per row) to prevent aggregation of individuals and thus
maintain a more uniform distribution of Bythotrephes in the jars. Each of the
experimental treatments were represented on one row of the wheel, randomly placed.
Thus, each row of the wheel acted as an experimental block. The plankton wheel rotated
jars top over bottom at a speed of approximately 2 minutes per revolution. We ran
experiments for approximately 10 hours under controlled temperature and light
conditions. We collected data on individual Bythotrephes by counting individual instars
during transfer to the jars and by visually inspecting the contents of the jars both during
and at the end of the experiment; allowing us to determine the total number of
Bythotrephes in the jar, including the number alive and swimming and those dead at

the bottom. At the end of the experiment, we removed and processed jars from the
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wheel row-by-row. As each row was removed from the wheel, we employed methods

(see below) to stop predation.

Experiment 1

This experiment was designed first to determine Bythotrephes cannibalism rate and
second, how instar composition and alternative prey availability could influence that
rate. The experiment was a two-way factorial design, crossing two levels of instar
composition (1: eight 15t instars, and 2: six 1t instars and two 34 instars) with two levels
of alternative prey availability (1: a background assemblage of zooplankton, and 2: no
background zooplankton). We reasoned that rates of cannibalism should be higher in
the mixed instar treatments, with 3rd instar Bythotrephes preferentially consuming
smaller, and presumably more vulnerable 1st instars, which can be 2-5 times smaller
than 3rd instars. We manipulated the presence of background zooplankton, because the
lack of alternative prey could increase the hunger levels and foraging activity of
Bythotrephes (Johansson 1991); forcing them to expand their diets to include
conspecifics (Leonardsson 1991). Each treatment combination was replicated 7 times.
Unfortunately, an oversight caused loss of some individuals during transfer into the
experimental jars. If there were fewer than 5 individuals in a jar (which occurred in 3 of
the 28 jars), we did not include these jars in our final analyses, leaving 25 of the 28 jars
with 5 to 8 Bythotrephes, with a median of 7. We found no significant differences in
initial Bythotrephes densities between different treatments (2-way ANOVA; Instar: Fi .
= 0.15, P = 0.704, Treatment: F; .. = 0.91, P = 0.351, Instar*Treatment: F; ., =1.29 P =
0.268). Background zooplankton assemblage with approximate equal densities of

component taxa/life stages were obtained by combining 20 subsamples with a
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'‘thumbed' pipette in an aquarium holding natural assemblages of Lake Michigan
zooplankton. These zooplankton were obtained from a vertical plankton tow from 40m
depth and at the same location Bythotrephes were collected, with a 64 um mesh net.
Average (+ s.d.) densities (ind. L-1) of sample background assemblages in experimental
jars were: 10.5 *+ 2.1 Daphnia mendotae, 10 + 2 juvenile diaptomid copepods, 6 + 1 adult
diaptomid copepods, 3.75 £ 0.7 copepod nauplii, and 2.5 + 0.25 cyclopoid copepods.
This high density of zooplankton, which greatly exceed average densities in Lake
Michigan, was chosen to be conservative in examining if known prey modify any
observed cannibalism. Water used in this experiment was a 75:25 mix of filtered, aged
Lake Michigan water and E-pure™ ultrapure water.

The experiment was run from 11:40 to 21:40 with temperatures in the room
between 21.5-21.9°C. Light intensity was 129, 37, and 4.5 umol-m2-s! at the top, middle
and the bottom of the wheel, respectively; which is in the range of light intensity where
Bythotrephes should be capable of seeing and capturing its prey (Pangle and Peacor
2009). At the end of the experiment, as each block was removed from the wheel,
sodium bicarbonate was added to each jar to narcotize the Bythotrephes and stop
predation. The contents of each jar were then gently poured through a 64-um mesh
filter, which captured intact individual Bythotrephes and all body parts (e.g., carapaces,
spines, etc.). Intact individuals represented those that were either alive at the end of the
experiment, or had died during the experiment without any obvious signs of
cannibalism (i.e., missing or severely damaged body parts), and so were not included as
cannibalized individuals in calculations of attack rates (see below). Individuals with

signs of missing or severely damaged body parts and isolated spines (which were never
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consumed during cannibalism) were attributed to cannibalism. Although it was
impossible to precisely quantify what proportion of a cannibalized individual was
actually consumed, if only a spine was recovered, we assumed roughly 90% of that
victim was consumed, as the spine can comprise up to and sometimes over 10% of adult
body mass (Sullivan and Lehman 1998; Branstrator 2005). Partially cannibalized
individuals with missing or severely damaged body parts were assumed to be between
10-90% consumed, with a rough average of 50% based on our observations. We note
that other visible, shredded pieces of tissue were not detected in the jars.

Individual Bythotrephes and body parts were carefully removed from the mesh
with blunt-tipped plastic forceps under a dissecting scope, and delivered to a 50-mL

plastic vial filled with 95% EtOH for preservation.

Experiment 2

The second experiment was also designed to first determine Bythotrephes cannibalism
rate and second, how instar composition and conspecific density influence that rate. We
simultaneously manipulated instar composition and density in each of four treatments:
(1) six 15t instars and zero 3td instars (1.5 ind. L-1); (2) six 15t instars and two 3'd instars (2
ind. L-1); (3) zero 1t instars and six 3'd instars (1.5 ind. L-1); and (4) zero 15t instars and
twelve grd instars (3 ind. L1), each treatment was replicated 6 times.

The experiment was run from 10:48 to 20:35, with temperature in the room
ranging between 19.0 — 21.8°C throughout the duration of the experiment. Light
intensity was 129, 38, and 4.5 umol-m-2-s at top, middle, and bottom of the plankton
wheel, respectively. After 10 hours we removed jars from the wheel a half a block at a

time, at which point we covered them in black felt as a non-destructive way to stop
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predation by the visually hunting Bythotrephes (rather than adding sodium bicarbonate
as in Experiment 1). We removed the black felt of each jar individually, visually
inspected the contents, and replaced the felt. Every individual in each jar was counted
and categorized as ‘dead-intact’, ‘dead with signs of attack’, or ‘alive’. As in Experiment
1, ‘dead-intact’ individuals were not used to calculate attack rates (see below). To
estimate cannibalism rates, we sought a duration for which there was a sufficient
number, but not too many, killed. Evaluating the number ‘dead’ in a non-destructive
way allowed us to evaluate if 10 hours was sufficient. Because the average number dead
was low (0.95 individuals per jar) we extended the experiment. Jars were placed back on
the wheel, and the experiment was restarted roughly 2 hours after stopping it for an
additional 10 hours of light on the wheel. At the end of this second period, individual

Bythotrephes were counted and categorized as in Experiment 1.

Quantifying cannibalism
To quantify cannibalism, we first calculated per capita attack rates

1

11
a=N_No
t

where a is the mortality rate due to cannibalism; N is the number of individuals in the
jar at the beginning of the experiment minus the number of individuals cannibalized (as
distinguished from the total number dead) during the experiment; N, is the number of
living individuals in the jar at the beginning of the experiment; and ¢ is the duration (in
hours) of the experiment.

We calculated daily clearance rates (F) as

F =alt

10
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where V'is volume of the jars, and t is the number of hours in a day (Riisgard 2001),
allowing us to get the volume of water cleared of conspecifics by Bythotrephes per unit
time per individual. Clearance rates provide the potential feeding rate of a predator on a
given prey, by representing the total volume covered by a predator in a given amount of
time to “clear” that volume of that specific prey. The utility of clearance rates is that

they can be easily used to predict feeding rates at different prey densities.

Statistical analyses

All statistical analyses were done in R (version 4.2.1, R Core Development Team, 2015).
Prior to analyses, all data were tested for normality and homoscedasticity with the
Shapiro-Wilk test and the Fligner-Killeen test, respectively. In Experiment 1, we
analyzed the separate and interactive effects of instar composition and background prey
on daily clearance rates with 2-way mixed effects ANOVA with treatment as a fixed
factor and block as a random factor. In Experiment 2, we analyzed the effects of the
instar composition/density treatments on Bythotrephes clearance rates. We used an
additive 2-way mixed effects ANOVA with treatment as a fixed factor and block as a
random factor, followed by Tukey’s honestly significant difference (HSD) tests to assess
post-hoc differences among treatment means for clearance rate data (Sokal and Rolhf
1995). All analyses were done on data collected at the end of day 2 of the experiment
(i.e., after 20 h). For each experiment, we conducted a post-hoc power analysis to
determine our statistical power using the package ‘pwr’(Champely et al. 2016) in R

(version 4.2.1).

Results

11
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Bythotrephes appeared generally healthy and active throughout the duration of both
experiments, although a few (0.35 per jar in Experiment 1, and 0.5 per jar in Experiment
2) individuals died without any clear damage from a cannibalistic encounter. We
observed several instances of cannibalism in action during our observations in which
one Bythotrephes clearly killed a second. We also observed a number of instances where
two individuals were coupled in a manner expected during a cannibalistic attack, but in
which the encounters ended with seemingly no damage to the individuals (see
Discussion).

In Experiment 1, Bythotrephes cannibalized an average (+ SE) of 0.27 + 0.05 of
its conspecifics, across all jars (Fig 1a). Of those scored as cannibalized, 0.65 of 15t
instars were completely consumed (only spines remained) and 0.35 were partially
consumed; 0.25 of 31 instars were completely consumed, 0.75 were partially consumed.
Average (+ SE) clearance rate on conspecifics across jars was 0.75 + 0.21 L - day! (Fig.
1b), with a maximum clearance rate among jars of 3.4 L - day!. We found no effects of
instar composition, background prey, or their interaction on clearance rates (Table 1). In
the mixed instar treatment, the average proportions of 1st and 3td instars cannibalized
across background prey treatments were 0.25+ 0.07 and 0.17 £ 0.07, respectively (Fig.
1c). Post-hoc power analyses indicated that the design for Experiment 1 did not provide
sufficient power (B = 0.40) to detect even large treatment effect sizes (e.g., > 0.35;
Cohen 1992).

In Experiment 2, Bythotrephes cannibalized an average (+ SE) of 0.42 + 0.04 of
its conspecifics across all jars (Fig. 2a). Sixty percent were completely consumed as only

the spine remained, and 0.40 were only partially consumed (i.e., dead individuals with

12
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signs of shredding or parts of carapace and spine remaining. Average (+ SE) clearance
rate due to cannibalism were 0.69 + 0.21 L. - day* and per treatment ranged from 0.19 (+
0.03) to 1.2 (£ 0.2) L - day (Fig. 2b), with a maximum clearance rate of 1.6 L - day™.
Average (£ SE) clearance rates in the 3 instar/1.5 ind. L-* treatment (1.2 + 0.2) were six
times higher than clearance rates in the mixed instar treatment (0.19 + 0.03). Average
(£ SE) clearance rates in the 34 instar/3 ind. L-! treatment (0.52 + 0.10) and the 15t
instar treatment (0.6 + 0.2), were intermediate to the previous two treatments (Table 2).
In the mixed instar treatment, the average (+ SE) proportion of 1st and 3'd instars
cannibalized were 0.26 + 0.09 and 0.42 + 0.16, respectively (Fig. 2¢). Post-hoc power
analyses indicated that the experimental design in Experiment 2 afforded us sufficient
power (B = 0.82) to detect large treatment effect sizes (e.g., > 0.35; Cohen 1992), but not

(B = 0.47) to detect moderate treatment effect sizes (e.g., > 0.15; Cohen 1992).

Discussion

Our results indicate high rates of cannibalism in Bythotrephes cederstromii. Average (+
SE; across jars) clearance rates were consistent between both of our experiments (0.75
+ 0.2 L - d'in Experiment 1 and 0.69 + 0.10 L - d*in Experiment 2). These clearance
rates are within the range of the average clearance rates previously reported for
Bythotrephes feeding on Daphnia mendotae (0.17 + 0.01 L - d*; Schulz and Yurista
1999), a common, and preferred prey item in lakes invaded by Bythotrephes
(Vanderploeg et al. 1993, Schulz and Yurista 1999). The cannibalism clearance rates

were also similar to those reported for Bythotrephes feeding on other prey, including
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small cladocerans (Bosmina spp.: 1.4 L - d*; and D. retrocurva 1.2 L. - d*), and copepod
nauplii (0.17 L - d*) (Vanderploeg et al. 1993).

Conspecifics could represent an important food source for Bythotrephes when other
prey items are at low densities or unavailable. In offshore waters of Lake Michigan,
consumption requirements are a high proportion, or can exceed production, of Bosmina
and D. mendotae at some points during the year, especially late in the season and
occasionally as early as July or August (Pothoven and Vanderploeg 2018, Pothoven and
Vanderploeg 2019). During these periods, Bythotrephes can reach a volumetric biomass
roughly equal and greater than that of its preferred (i.e., those on which it has the
highest clearance rates) cladoceran prey, D. mendotae and Bosmina (Sprules et al. 1990,
Vanderploeg et al. 1993, Pangle and Peacor 2009). For example, in Lake Michigan in
2007 and 2008, Bythotrephes increased in density through November (and then was at
lower levels in December). In the months of October and November, average
Bythotrephes biomass density (e.g., mg - L-*) was on the same order of magnitude or
exceeds that of D. mendotae and Bosmina (Vanderploeg et al. 2012). Analyzing
clearance rates allows us to estimate feeding rates in the field based on experimental
results; the feeding rate in mass per unit time is a product of the clearance rate and
biomass density. Because both biomass density and clearance rate of conspecifics is
similar to that of D. mendotae and Bosmina during certain times, our results suggest
that feeding rates on conspecifics could be similar to that of Bythotrephes’ preferred
zooplankton prey, and thus conspecifics could provide an important food source for
Bythotrephes during these times. A similar conclusion is reached for copepod prey,
which in October through December have higher average densities than D. mendotae

and Bosmina, but for which the clearance rates are much lower (Vanderploeg et al.
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1993). In essence, when examining feeding rates using biomass density, because the
clearance rates are on the same order of magnitude or larger than other prey, and the
mass of individual Bythotrephes is far greater than those prey, calculations of feeding
rates show that conspecifics could be an important resource even though densities are
substantially lower.

The above analysis indicates that cannibalism could supply a substantial portion of
resources to the diet of Bythotrephes, but ignores the temporal allocation of the
resource. It is necessary to further consider whether the frequency of cannibalism in the
diet would influence an individual Bythotrephes. For example, at the clearance rate of
0.7 L.- d* observed in our experiment, an individual Bythotrephes would capture 1
conspecific in 71, 14, and 3 days when the density is 20, 100 and 500 ind L,
respectively. These densities are at the upper end of densities reported in the literature
(Table S1), as described in the next paragraph. It is unclear if eating 1 conspecific in 71
days (viewed another way, 1 out of 7 Bythotrephes eating a conspecific every 10 days)
would influence population dynamics, but it seems reasonable to assume that 1 in every
14 days, or especially 1 in every 3 days, would be important to the diet and influence a
population. Some pelagic predatory crustaceans, including Bythotrephes, are known to
have long gut residence times of up to 12-13 hours (Yurista and Schulz 1995, Murtaugh
1984, Lehman 1993, Ritz 2008). However, individuals that go long bouts between
feeding (i.e., starved individuals) may retain significant amounts of material in their gut
for more than three days (e.g., Murtaugh 1984).

Are Bythotrephes densities in natural systems high enough to influence the
population dynamics based on the clearance rates found in our experiments? We

performed a non-exhaustive review of the literature on Bythotrephes density using
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Google Scholar’s Advanced Search Page to find articles with ‘abundance’ OR ‘density’
OR ‘survey’ AND ‘Bythotrephes’ that were dated between 1984 (date of first reported
Bythotrephes invasion to the Laurentian Great Lakes) and the present. As with most
zooplankton in deep lakes, Bythotrephes are found to be highly aggregated as a function
of depth (e.g., Petruniak 2009, Walsh et al. 2016), and therefore densities are likely
often highly variable across depths. Nevertheless, of the 44 studies we identified that
reported Bythotrephes density, only seven reported densities as a function of depth
(Table S1). Approximate average (+ sd) maximum volumetric densities (ind. - m-3)
reported were 325 + 600 (n = 8) when density was computed from water column strata,
and were 105 *+ 295 (n = 33) when density was computed from the entire water column.
For those studies in which the density of different layers and the entire water column
were reported, the layer with the highest density was roughly 6 + 3 times greater than
when density was computed from the entire water column, suggesting that
Bythotrephes densities reported from entire water column estimates are likely much
lower than those at certain depth strata where Bythotrephes is more aggregated (Table
S1). Further, studies that performed stratified sampling will also underestimate
maximum volumetric densities, because the strata are still likely averaging over a range
of Bythotrephes densities (Scofield et al. 2020, Vanderploeg et al. 2015), and single
strata likely only partially encompass peak densities. Taken together, Bythotrephes
densities are frequently in the range of 100 ind. - m3, and with upper estimates in the
thousands ind. - m3. Our literature survey, in combination with inferences about

heterogeneity in density as a function of depth, suggest that Bythotrephes are often in
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the range in which cannibalism occurs frequently enough to influence individual, and
therefore population, growth rates.

Two factors influence the estimate of cannibalism rates in the field based on the
laboratory results. Our experiments ignored any satiation effects. Bythotrephes are a
considerably large prey item, and satiation could be reached after consuming one
individual. This factor reduces the estimate of cannibalism rate in the field, thus making
the estimate conservative. We also only had a rough estimate of how much of the killed
conspecific was actually eaten. Across both experiments, an average of 50% of the
cannibalized individuals were identified by remaining spines with no bodies attached,
with the remaining 50% of cannibalized individuals identified by spines with some
attached and shredded carapace. Although it has been shown that Bythotrephes has low
ingestion efficiency (59%; Burkhardt and Lehman 1994), consumption of conspecifics is
likely providing a resource at a satiating level because of the very large size of
conspecific prey. These two factors therefore do not diminish the inferences made above
concerning the influence of cannibalism on individual and population growth rate.

The existence of cannibalism could help resolve existing discrepancies between
predicted bioenergetic requirements or experimentally-determined consumption rates
by Bythotrephes and available heterospecific prey. For example, bioenergetics and
efficiency models indicate that Bythotrephes consumption rates derived from laboratory
experiments would exceed observed zooplankton production in the deep oligotrophic
lakes Bythotrephes often inhabit (Burkhardt and Lehman 1994, Yurista and Schulz
1995, Dumitru 2001, Yurista et al. 2010, Bunnell et al. 2011, Pothoven and Hook 2014).
Because cannibalism can help overcome the effects of a limited supply of energy, it could

provide Bythotrephes an unaccounted-for food source, which could resolve these
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discrepancies. More research is required to investigate if the discrepancies are
encountered as a function of Bythotrephes density (i.e., occur when densities are
sufficiently high for cannibalism to influence growth rates).

Our experiments had low statistical power to detect moderate (Experiment 2) or
even large (Experiment 1) treatment effects on Bythotrephes cannibalism rates. It is
therefore difficult to draw inferences about the effects of the three factors commonly
documented to influence cannibalism rates: food availability, size, and population
density. In many species, increases in relative size (and therefore vulnerability)
differences among life stages increase rates of cannibalism (DeAngelis et al. 1979, Bry
and Gillet 1980, Polis 1981). Our expectation was that rates of cannibalism would be
highest in mixed instar treatments with 3rd instar Bythotrephes selectively cannibalizing
1st instars, which may have 2-5 times smaller biomass than 3rd instars, and presumably
more vulnerable to attack by 34 instars. Whereas we did find evidence in experiment 2
that 3rd instars cannibalize more than 15t instars do, they cannibalized other 34 instars
just as much, if not more, than 1st instars; suggesting either that size differences between
1st and 3rd instars may not influence vulnerability. Because Bythotrephes is a raptorial
predator that is not gape-limited, with mouth-parts that can shred even relatively larger
prey items, it is possible that size differences among instars do not play a large role in
cannibalism. However, the distribution of instar types in the population could still
influence the prevalence of cannibalism. For example, since 15t instars seem to attack
fewer conspecifics than 3rd instars, populations with higher proportions of 34 instars
may be more likely to exhibit cannibalistic behavior.

Availability of alternative prey may also influence cannibalism, with low prey

availability increasing predator hunger levels and foraging activity (Johansson 1991);

18



423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

forcing them to expand their diets to include conspecific prey (Leonardsson 1991). In
contrast to our expectations, we observed trends for higher cannibalism in the
experimental treatments with available zooplankton prey. Due to our lack of statistical
power, however, our study is inconclusive in evaluating the impact of alternative prey.
Nevertheless, cannibalism by Bythotrephes was observed in both the presence and
absence of background heterospecific prey assemblages.

Whereas the relationship between per cannibal consumption rate and population
size is often positively density dependent, (Holling 1959, Hassell 1978, Van Buskirk
1989), daily attack rates in Experiment 2 did not increase with Bythotrephes density,
(e.g., from a = 0.3 (+ 0.05) at 1.5 ind. L-* to a = 0.13 (£ 0.03) at 3 ind. L-!) suggesting that
the Bythotrephes densities used in the experiment (i.e., 1.5 and 3 ind. L-*) were at
saturation. Saturation is indeed very likely, as the densities we used in our experiments
were chosen to maximize encounter rates in the experiment and were high compared to
natural densities which are approximately between 0.01 and 0.04 ind. L (Pothoven et
al. 2003, Pangle and Peacor 2009, Vanderploeg et al. 2012).

As noted previously (see Results), during our observations we noticed pairs of
Bythotrephes attached to one another via thoracic appendages for minutes at a time,
sometime several minutes. Sometimes these couplings ended with the individuals
involved swimming away, seemingly unharmed. It is unclear whether these were
unsuccessful cannibalistic attacks or some other type of interaction. Similar interactions
have been observed in another large-bodied carnivorous cladoceran, Leptodora kindtii,
and attributed to mating rather than unsuccessful cannibalistic attacks because
individuals involved in these interactions were unharmed and often the same size,

suggesting against vulnerability-based intraspecific predation (Browman et al. 1989).
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Males are rare in the population until fall, and because we ran the experiments in
August and early September, mating-associated couplings were likely to have been rare.
We also note, that in several other observed couplings, one of the paired individuals was
killed and partially consumed by the other.

We have demonstrated and quantified Bythotrephes cannibalism in a laboratory
setting, with estimates that conspecifics could represent a substantial portion of the
Bythotrephes diet during certain periods of the year in systems where Bythotrephes
reach high densities. Given the predicted advantages of cannibalism to Bythtorephes, a
next step is to more directly examine its importance in natural populations, as
understanding its role could facilitate predicting the establishment, success, and impact

of Bythotrephes populations.
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Tables

Table 1. Results of 2-way analysis of variance (ANOVA) on the main and

interactive effects of conspecific instar composition and presence/absence of

background heterospecific zooplankton prey and experimental block on the

clearance rates of Bythotrephes on conspecifics in Experiment 1.

Source DF SS MS F P
Instar 1 0.197 0.197 0.219 0.647
Background 1 4.081 4.081 4.520 0.051
Instar*Background 1 0.336 0.336 0.373 0.551
Block 6 6.782 1.130 1.252 0.336
Residuals 15 13.543 0.903

Table 2. Results of 1-way analysis of variance (ANOVA) on the effect of

instar composition/density treatments and experimental block on the

In-transformed clearance rates of Bythotrephes on conspecifics in

Experiment 2.

Source DF SS MS F p
Treatment 3 8.796 2.032 5.938 0.007
Block 5 3.953 0.791 1.601 0.220
Residuals 15 7.407 0.494
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Table 3. Post-hoc comparisons of between treatment

differences in In-transformed clearance rates in Experiment 2.

KEY: 1 — 1st instars; 3 — 3'd instars; 1&3 — Mixed 15t and 3rd
instars; 3x2 — 3td instars at double density (3.0 ind.-L1).

Pairwise comparisons that are significantly different are in

bold.

Comparison Difference = Lower Upper p
1&3-1 -0.566 -1.736 0.603 0.521
3-1 1.112 -0.057 2.282 0.065
3x2-1 0.279 -0.890 1.449 0.900
3-1&3 1.679 0.509 2.848 0.004
3x2-1&3 0.846 -0.324 2.015 0.203
3x2-3 -0.833 -2.002 0.336 0.213
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Figure legends

Figure 1. Effects of conspecific instar composition and presence/absence of background
heterospecific zooplankton prey on (a) proportion of Bythotrephes instars cannibalized
in all replicates of each treatment, (b) daily clearance rates of Bythotrephes in each
experimental treatment, and (c) proportion of instars cannibalized in the mixed instar
(1t & 3rd) treatment, in Experiment 1. Points represent individual data points from each
replicate jar, jittered to reduce overlap. Lower and upper box boundaries indicate the
25th and 75th percentiles, respectively, the line inside the box is the median, and the
lower and upper error lines are the 10th and 9oth percentiles, respectively. Key —
Treatment indicates presence or absence of background heterospecific zooplankton

assemblage; Instar represents composition of 15t and 3rd instars.

Figure 2. Effects of instar composition/density treatments on (a) proportion of
Bythotrephes instars cannibalized in all replicates of each treatment, (b) daily clearance
rates of Bythotrephes in each experimental treatment, and (c¢) proportion of instars
cannibalized in the mixed instar (15t and 31d) treatment in Experiment 2. Points
represent individual data points from each replicate jar, jittered to reduce overlap.
Lower and upper box boundaries indicate the 25th and 75th percentiles, respectively, the
line inside the box is the median, and the lower and upper error lines are the 10th and
goth percentiles, respectively. Instar represents composition and density of 15t and 3d

instars.
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