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Abstract

Sparse and inconsistent coverage of ocean observations makes analysis of climate impacts on
ocean physics and marine ecosystems challenging. As a result, ocean reanalyses (i.e., ocean
models constrained by observations through data assimilation) were developed to provide
historical ocean state estimates that are spatially and temporally uniform. Recent advances in high
performance computing and the number and quality of observations have led to the development
of high-resolution ocean reanalyses, which offer an opportunity to investigate coastal ocean
variability with enhanced fidelity. In this study, we evaluate the ability of three high-resolution
ocean reanalyses, including the Global Ocean Reanalysis and Simulations (GLORYS), the Ocean
Reanalysis System version 5 (ORAS5S), and the California Current System Reanalysis (CCSRA),
to accurately represent ocean temperature and salinity (from the surface to the bottom), sea surface
height, and mesoscale activity in the California Current Large Marine Ecosystem (CCLME).
Specifically, we compare these reanalyses to a variety of assimilated and independent in situ and
satellite derived observations along the U.S. west coast. We find that the reanalyses generally
reproduce large-scale variability in temperature and sea surface height within the CCLME,
including effects of major ENSO events and recent marine heatwaves. We also show that
GLORYS and CCSRA, with their finer horizontal resolution, have enhanced fidelity in simulating
nearshore ocean parameters such as coastal sea level and bottom temperature along the continental
shelf. Our results suggest that these tools can be used to study the fine-scale features of the

California Current System over the past several decades.
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1. Introduction

The spatial inhomogeneity of global ocean observations in the historical record makes
rigorous analyses of long-term ocean climate variability and change challenging. Ocean model
simulations generate continuous data in both time and space, ideal for ocean climate studies, but
are also affected by biases and errors that can lead to an unrealistic representation of key physical
processes. To overcome the respective limitations of observations and model simulations, while
harnessing the strengths of each, modelling centers blend dynamical models with atmospheric and
oceanic observations through data assimilation techniques. These efforts have resulted in
observationally constrained estimates of the climate state that: (1) Combine the full spatiotemporal
coverage of models with the accuracy of observations, and (2) Are easily accessible for scientific
and industrial applications (Balmaseda et al., 2015; Storto et al., 2019).

Despite these advantages, there can still be large uncertainties in ocean reanalysis products.
In particular, some parts of the global open ocean are historically under-observed (e.g., the
Southern Ocean), the ocean subsurface is much less constrained than the satellite-observable
surface, and coastal regions are often dominated by mesoscale ocean features that may not be
properly resolved by the relatively coarse resolution of many global ocean reanalyses (Balmaseda
et al., 2015; de Souza et al., 2021; Lee et al., 2009). As a result, reanalysis estimates in these
regions may be increasingly dependent on the underlying ocean model configuration and its
parameterization of subgrid scale processes, leading to large differences between ocean reanalyses
from different modeling centers. (Balmaseda et al., 2015; Masina et al., 2011; Storto et al., 2019;
Xue et al., 2017, 2012; Zhu et al., 2012).

Recent advances in ocean model physics (Breivik et al., 2015), the number and quality of

observations (Legeais et al., 2018), and data assimilation techniques (Sakov et al., 2012; Storto et
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al., 2018) have led to the development of several high-resolution global and regional ocean
reanalyses. With horizontal resolution as fine as 8 km, these new tools offer a unique opportunity
to study ocean variability and change, as well as their impacts on marine species distributions and
populations, with enhanced fidelity. Given the expanding use of ocean reanalyses for regional
studies of oceanography and ecology, it is important to verify the accuracy of these high-resolution
state estimates against independent (i.e., unassimilated) in situ ocean observations where available
(de Souza et al., 2021; Xie et al., 2008). Indeed, increasing model resolution presents its own set
of challenges, including (among others) potential errors in simulating mesoscale eddies and sharp
gradients in ocean properties, coupling tides and waves, downscaling of atmospheric forcing, and
the accuracy of bathymetry (e.g., (Storto et al., 2019). For example, (de Souza et al., 2021)
compared several high-resolution ocean reanalyses to a variety of observations in New Zealand
coastal waters and showed that some of the datasets inaccurately represented important coastal
boundary currents.

Another region that would also benefit from a thorough intercomparison of high-resolution
ocean reanalyses is the California Current Large Marine Ecosystem (CCLME; Figure 1). The
CCLME is home to a highly productive marine ecosystem with primary productivity and fish catch
disproportionately high for its spatial extent (Chavez and Messie, 2009). This elevated productivity
can be attributed to upwelling of nutrient rich waters along the U.S. west coast, which is driven by
the seasonal intensification of northerly winds in the spring and summer. These seasonal wind
changes and the associated impact on ocean properties are sensitive to climate variability on time
scales of weeks to decades (Checkley and Barth, 2009). In particular, upwelling in the CCLME is
strongly modulated by large-scale climate modes such as the El Nifio-Southern Oscillation

(ENSO), the Pacific Decadal Oscillation, and the North Pacific Gyre Oscillation (Di Lorenzo et
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al., 2008; Jacox et al., 2015, 2014). In recent years, there has been rapid growth in the use of ocean
reanalyses for oceanographic and ecological research in the CCLME, with reanalyses providing
the environmental information used to develop oceanographic indices (Jacox et al., 2018; Santora
et al., 2020), and to model species distribution shifts (e.g., (Abrahms et al., 2019; Brodie et al.,
2018) and population fluctuations (e.g., (Schroeder et al., 2014; Tolimieri et al., 2018).

There have been some previous comparisons between high-resolution reanalyses and
observations in the CCLME. For example, (Schroeder et al., 2014) showed that the high-resolution
(1/10°) data assimilative implementation of the Regional Ocean Model System (ROMS) from the
University of California Santa Cruz (hereafter referred to as the California Current System
reanalysis or CCSRA) compares well to in situ hydrographic measurements of ocean temperature,
salinity, and upper ocean stratification during boreal winter and spring in the coastal ocean between
Monterey Bay and Pt. Arenas. Additionally, (Neveu et al., 2016) showed that the CCSRA can
credibly capture the spatial distribution of Eddy Kinetic Energy (EKE) off California’s coast.
While these studies indicate that high-resolution ocean reanalyses may provide an accurate and
spatiotemporally consistent depiction of ocean properties in the CCLME over the last several
decades, they are primarily focused on a single regional ocean model. A careful analysis of the
strengths and weaknesses of several different high-resolution ocean reanalyses in this region would
benefit marine scientists interested in leveraging these tools for research into ocean climate
variability and its impact on marine ecosystems in the CCLME.

In this study, we independently verify the mean and variability of key ocean parameters in
the CCLME from three high-resolution ocean reanalyses—the Global Ocean Reanalysis and
Simulations (GLORYS), the Ocean Reanalysis System version 5 (ORAS5), and CCSRA. In

particular, we focus on the historical representation of temperature and salinity at the ocean
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surface, within the water column, and at the ocean bottom along the continental shelf, as well as
SSH along the U.S. west coast. These variables were chosen due to their importance as leading
indicators of marine resource response to climate variability (Ottersen et al., 2010; Pinsky et al.,
2013) and due to the availability of in situ and satellite observations suitable for model reanalysis

evaluation.

2. Data and Methods

2.1 The high-resolution ocean reanalyses

Below are descriptions of the high-resolution ocean reanalyses evaluated in this study. The
spatiotemporal availability of each is further summarized in Figure 1 and Table 1.

a) GLORYS

We evaluate data from the Global Ocean Reanalysis and Simulations (GLORYS) version
1 global ocean reanalysis (Lellouche et al., 2021). Available through the Copernicus Marine
Environmental Monitoring Service (CMEMS), GLORYS offers daily mean and monthly mean
ocean variables at 1/12° (~8 km) horizontal resolution with 50 vertical levels. The reanalysis is
generated using the Nucleus for European Modelling of the Ocean (NEMO) ocean model, forced
at the surface by the European Center for Medium-Range Weather Forecasts (ECMWF) ERA-
Interim atmospheric reanalysis. Output is available for 1993-2019, during which the model
assimilates along-track satellite altimetry, satellite sea surface temperature (SST), sea ice
concentrations, and in situ profiles of temperature and salinity from the Coriolis Ocean database
ReAnalysis (CORA) dataset (Szekely et al., 2019).

b) ORAS5
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The global Ocean Reanalysis System version 5 (ORASS5; (Zuo et al., 2019, 2017), which
includes a dynamic-thermodynamic sea ice model and surface wave model, was developed at
ECMWEF. Like GLORYS, it uses the NEMO ocean model (version 3.4.1) and surface forcing from
the ERA-Interim reanalysis. The ORASS assimilates in-situ profiles of temperature and salinity
from the “EN4” dataset (Good et al., 2013), merged in situ and satellite SST from HadISST2, and
along track satellite altimeter-derived sea-level anomalies from AVISO (Archiving, Validation
and Interpretation of Satellite Oceanographic data). Monthly and daily mean fields are available
from 1979 to present, at a horizontal resolution of 0.25° (~25 km). There are 75 vertical depth
levels, with layer thickness increasing from 1 m near the surface to 200 m in the deep ocean.
ORASS5 consists of five ensemble members obtained using perturbing forcing fields and slight
sampling differences in the observations that were assimilated. Here we used the ensemble mean
of the five members.

c) CCSRA

A series of California Current System (CCS) ocean reanalyses have been developed by the
Ocean Modeling group at UC Santa Cruz (https://oceanmodeling.ucsc.edu). Here, we evaluate a
historical reanalysis covering 1980-2010 (Neveu et al., 2016), and an extension covering 2011-
2018. In both cases, the CCSRA employ the Regional Ocean Modeling System with 4-dimensional
variational data assimilation (ROMS 4D-Var; (Moore et al., 2011). The domain covers nearly the
entire the U.S. west coast (30-48°N) and offshore to 134°W with a horizontal resolution of 0.1°
(~10 km) and 42 terrain-following vertical levels (Figure 1). Surface forcing for the 1980-2010
reanalysis is derived from a combination of ECMWF atmospheric reanalyses (ERA-40 and ERA-
Interim) and cross-calibrated multiplatform (CCMP) winds, while the extension uses higher-

resolution forcing from the Naval Research Laboratory’s Coupled Ocean Atmosphere Mesoscale


https://oceanmodeling.ucsc.edu

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

Prediction System (COAMPS). Ocean boundary conditions are provided by the Simple Ocean
Data Assimilation (SODA) product for 1980-2010, and from the GLORYS product after 2010.
Assimilated data include satellite SST from AVHRR, AMSR-E, and MODIS, satellite SSH from
AVISO/CMEMS, and in situ temperature and salinity profiles from the EN3 database (Ingleby
and Huddleston, 2007) for 1980-2010 and from the EN4 database (Good et al., 2013) post-2010.
Due to changes in the surface forcing and ocean boundary conditions between the historical
CCSRA and its extension, care must be taken when combining the two into a continuous record.
In general, agreement is good for quantities that are well constrained by observations, including
temperature. For SSH, the switch in ocean boundary conditions introduces a small offset (Section
3.6) that could be misinterpreted as a trend or low frequency variability. Past studies have found
that some variables (e.g., surface properties, upper ocean stratification) are suitable for
concatenation (Brodie et al., 2018) while others (e.g., subsurface currents) are not (Tolimieri et al.,
2018). Thus, the prudent approach for any user would be to examine the reanalyses for any obvious

inconsistencies that might preclude stitching them together for a specific application.

2.2 Observations used for model evaluation
Below are descriptions of the observations used to validate the three reanalyses described
above. The spatiotemporal availability of all observations is further summarized in Figure 1 and
Table 2.
a) Sea surface temperature and sea surface salinity
We first compare SST from the three reanalyses to those from the NOAA Optimum
Interpolation Sea Surface Temperature version 2.1 (OISSTv2.1; (Huang et al., 2021; Reynolds et

al., 2007) dataset, available for 1981 to present. The OISST blends satellite measurements with in
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situ data from ship, buoys and Argo floats, using a number of steps to reduce biases and provide
the data on a 0.25° grid. However, the processes inherent in creating the OISST smooths the SST
field and thus the true or feature resolving resolution is less than 0.25° (Reynolds et al., 2013); the
smoothing varies in time and space but can be more pronounced in coastal regions (Reynolds and
Chelton, 2010). Therefore, in order to further validate the coastal environment in the reanalyses,
we compare with SST measurements from six nearshore stations that span most of the U.S. west
coast (see Figure 1 yellow diamonds and Table 2). These in situ observations were not assimilated
into any of the reanalyses, and thus, provide an independent estimate of SST variability.

Sea surface salinity (SSS) from the reanalyses is compared to the Level-4 SSS data from
the Multi-Mission Optimally Interpolated Sea Surface Salinity (OISSS) Global Dataset V1.0
(Melnichenko et al., 2016). This dataset optimally interpolates Level-2 swath measurements of
SSS from the Aquarius, Soil Moisture Active Passive (SMAP), and Soil Moisture and Ocean
Salinity (SMOS) satellite missions to produce monthly mean SSS estimates from August 2011 to
present on a global 0.25° grid. We limit our SSS comparisons to 2012-2018, which is the longest
overlapping period between the satellite observations and the reanalyses.

b) Water column temperature and salinity

Water column temperature and salinity was obtained from two sources. First, temperature
profiles between the surface and 500m (or the bottom if shallower) were obtained from the
California Underwater Glider Network (CUGN, (Rudnick et al., 2017). The gliders follow three
paths originating from the California coast (at Monterey, Pt. Conception and Dana Pt.) extending
southwestward ~500 km offshore, with each out-and-back section taking 2-3 weeks to complete
(Figure 1; purple lines). Gliders dive between the surface and 500 m with each dive taking

approximately three hours and covering three km horizontally. Several statistical methods are
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applied to the original data, including a least squares fit and objective mapping, to obtain anomalies
and a mean seasonal cycle on a rectangular grid as a function of depth, distance offshore, and time
(Rudnick et al. 2017). We compare the reanalyses to this gridded data, which has a vertical
resolution of 10 m, a horizontal resolution of 5 km, and a temporal resolution of 10 days. Our
comparisons are for the period 2007 to 2018, the longest overlapping time period for the glider
data and the reanalyses. The CUGN data is not assimilated into ORAS5 or GLORYS, but it is
assimilated into the historical CCSRA reanalysis from 1980-2010. The CCSRA extension from
2011-2018 does not assimilate CUGN data.

Each reanalysis is further compared with Argo profile measurements of water column
temperature and salinity in the CCLME. Argo is a global network of autonomous profiling floats
that measure the temperature and salinity of the ocean’s upper 2000 m. Since 1999, the Argo
program has collected more than 2 million hydrographic profiles worldwide (Jayne et al., 2017).
Here, we evaluate 18,971 quality-controlled Argo profiles in the CCLME covering 2002-2018
(Figure 1a; shading). For our comparisons, we average profiles in three sub-regions within the
CCLME: (1) 40°N-50°N (referred to as North LME or NLME), (2) 30°N-40°N (referred to as
Central LME or CLME), and (3) 20°N-30°N (referred to as South LME or SLME). See Figure S1
for sub-region boundaries.

Prior to analysis, individual Argo profiles were categorized into one of the three CCLME
sub-regions based on their latitude and longitude. Profile measurements were then aggregated in
the vertical into 20m bins in order to acquire uniformly spaced temperature profiles in each sub-
region as a function of time. Finally, we averaged all profiles within a given month to produce
monthly mean water column temperature measurements as a function of depth. See Figure S1 and

Figure S2 for the density of Argo measurements in depth and time. While Argo measurements are



229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

assimilated into each of the ocean reanalyses discussed in this study, an intercomparison between
Argo and the reanalyses may shed light on any potential deficiencies in the individual data
assimilation schemes. In particular, differences in model physics, resolution, and the incorporation
of other in situ datasets may impact the overall assimilation of Argo measurements. When
compared to Argo data, all temperature and salinity anomalies are relative to the period 2002-
2018.
c) Bottom temperature

Bottom temperature data were obtained from three sources. First, the deepest portion of the
glider profiles described above were used as near-bottom temperature measurements. Some
comparisons were not practical as: (1) the shelf was too narrow for comparing reanalyses to gliders
west of Dana Pt.; (2) the CCSRA grid points were too far away for a reasonable comparison with
the CUGN location at 410 m in Monterey Bay as a result of using smoothed bathymetry, and (3)
the ORASS reanalysis was too coarse for comparisons with the CUGN data to be
meaningful. Second, we used temperature observations from conductivity, temperature, depth
sensor (CTD) casts at three locations (See Table 2) along the Newport Hydrographic Line (Huyer
et al., 2007), which extends west from the Oregon coast at 44.65°N (Figure 1; green line), to
estimate the variability of bottom temperature during 2008 to 2018. Third, we use bottom
temperature data that are collected as part of the U.S. West Coast Groundfish Bottom Trawl Survey
(WCGBTS; (Keller et al., 2017), conducted between May and October of each year by NOAA’s
Northwest Fisheries Science Center. Since 2003, the WCGBTS has covered the shelf/slope region
of the entire U.S. west coast, sampling bottom depths of 55-1280m using a random stratified
sampling design, with ~500-700 total stations per year (Figure 1; red dots). Each tow is ~15

minutes in duration, covering ~0.55 km horizontally. The Newport Line and bottom trawl survey
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data are not assimilated in any of the reanalyses. As mentioned previously, the CUGN data is only
assimilated in the first segment of the CCSRA data (1980-2010). Therefore, many of these
observations offer an independent metric by which to make our comparisons

While the stratified random sampling pattern of the trawl data precludes the generation of
climatologies and thus an evaluation of bottom temperature variability, it does provide much more
thorough spatial coverage from which we can assess the ability of reanalyses to reproduce mean
patterns of bottom temperature. Bottom temperature variability will instead be assessed using the
measurements from the CUGN and Newport Line, which are more consistent in time and space
than the trawl data. Comparing bottom temperature between observations and reanalyses is made
further complicated by the relatively narrow shelf and steep bathymetry off the U.S. west coast.
Even with ~10 km reanalysis resolution, the true bottom depth can be very different from the
reanalysis bottom depth at the nearest grid point, which in turn can produce large differences in
the observed and reanalysis bottom temperature. One can account for this discrepancy by matching
the bottom temperature measurements with reanalysis output at the same depth (not necessarily at
the reanalysis bottom). Specifically, for each bottom temperature observation we first find the
closest reanalysis grid cell where the model bottom is deeper than the observed depth, and then
linearly interpolate the reanalysis water temperature profile to the depth of the observation (Figure
2). To illustrate the influence of using the reanalysis bottom temperature rather than a depth-
matched temperature, we compare the two methods for the bottom trawl data (Section 3.5).

d) Coastal sea surface height

To verify sea level variability along the U.S. west in the ocean reanalyses we compare them

to data from nine tide gauges (Figure 1; black dots) maintained by the Joint Archive for Sea Level

(JASL), which is a partnership between the University of Hawaii Sea Level Center (UHSLC) and
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the National Centers for Environmental Information (NCEI). Here, we utilize the Research Quality
Data Set (RQDS). These observations are not assimilated in any of the reanalyses discussed here,
and therefore offer an independent metric by which to verify sea level changes. For this
comparison, monthly SSH anomalies are relative to a long-term climatology of 1993-2018, which
is the longest overlapping period between the tide gauges and the reanalyses.
e) Eddy Kinetic Energy

Finally, ocean mesoscale variability is ubiquitous along the U.S. west coast and plays a key
role in modulating regional ocean dynamics such as coastal upwelling in the CCLME, which can
impact primary productivity through the vertical transport of key nutrients in and out of the
euphotic zone (Gruber et al., 2011; Renault et al., 2016). We assess the representation of mesoscale

variability in the ocean reanalyses using geostrophic Eddy Kinetic Energy (EKE), calculated as:
EKE =~ (U'2 +V'2) 1)
Where U’ and V', respectively, are the zonal and meridional components of the daily mean
geostrophic surface current anomalies estimated from daily mean SSH anomalies. The EKE in the
ocean reanalyses is compared to the EKE calculated from AVISO satellite altimetry measurements
(Ducet et al., 2000), which provides daily mean SSH anomalies from 1993-2012 on a 0.25° grid.
For consistency with the AVISO data, SSH anomalies from each reanalysis are computed relative
to the long-term mean of a 1993-2012 base period. The EKE in each reanalysis was first calculated

on the native model grid and then interpolated to the AVISO 0.25° grid in order to compare them

to the coarser AVISO data.

2.3 Analysis approach

a) Statistical methods
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The purpose of this study is to inform potential users of these high-resolution reanalyses
whether (and in what context) these different data assimilative models may act as a reliable
substitute for the comparably noisy, discontinuous and sporadic raw ocean measurements. To
support this goal, we evaluate each ocean parameter using a set of common statistical comparisons
that are broadly applicable to a range of potential research applications. These comparisons include
assessments of the reanalyses’ mean state and variability as measured by the mean bias, root-mean-
square error (RMSE), and correlation coefficient relative to observations. Where appropriate
statistical significance is evaluated using a Student’s t-test with a 95% confidence interval after
correcting the degrees of freedom for lag-1 autocorrelation.

b) Observation limitations

Due to the different spatiotemporal coverage and sampling schemes of different
observational platforms, each is well suited to some types of analyses but not others. For instance,
to assess the degree to which reanalysis data represents the observed variability of an ocean
parameter at any given location (as measured by RMSE and/or the correlation coefficient),
consistent measurements are required at that location for many years to derive a representative
climatology and anomalies. Some observational platforms do provide long records at one location
(such as the coastal station data analyzed in Section 3.1b), but these measurements are not useful
for assessing the variability of an ocean parameter over large areas. As a result, to validate
variability in reanalyses on a broader scale, we either: (1) aggregate sporadic point measurements
in time and space to produce a consistent record suitable for calculating anomalies for comparison
to the models (e.g., our approach with Argo profiles in Sections 3.3b and 3.4b) or (2) rely on
observational products that have been infilled or interpolated onto a grid, such as AVISO, OISST,

and OISSS. Gridded observations may feature statistical artifacts or biases introduced during
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interpolation (Reynolds et al., 2013; Reynolds & Chelton, 2010). However, by also comparing the
reanalyses to raw and in situ point measurements, such as the Newport line data, shore stations,
tide gauges, bottom trawl measurements, and Argo profiles, we hope to assess any sensitivities our
results may have to our choice of observations. We return to these topics in more detail in the

Discussion section.

3. Results

3.1 Sea surface temperature
a) Comparisons with OISST

The annual mean SST pattern in OISST features a tongue of cool SSTs along the U.S. west
coast, which is associated with the southward advection of cold water from high-latitudes by the
California Current, as well as broadscale upwelling driven by the climatological northerly winds
(Figure 3a). Overall, the reanalyses show modest SST biases relative to the annual mean OISST
data (Figure 3b-d). Additionally, each reanalysis exhibits a similar bias pattern: cool along the U.S.
west coast and warm offshore. Among the three reanalyses, GLORYS shows the largest warm
SST biases (~0.5°C) from 32°N-42°N, while the U.S. west coast SST biases in ORAS5 and
CCSRA are generally insignificant.

The greatest SST variability, as indicated by the standard deviation of the monthly means
in OISST, is adjacent to the coast with regions of somewhat enhanced variability extending farther
offshore of the California coast (Figure 3e). Additionally, there are areas of higher variability along
the southern half of Oregon and portions of California, including between Pt. Arena and Pt. Reyes
(~38°N) and in the vicinity of Pt. Conception and the Channel Islands (~34°N). While the

nearshore peak in the SST standard deviation is likely associated with upwelling driven SST



344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

changes, the offshore extension of elevated variability may be associated with enhanced eddy
activity in this region (see also Section 3.7). The monthly mean SST anomalies in each reanalysis
are highly correlated with the corresponding SST anomalies from OISST (Figure 3f-h), indicating
that the reanalyses credibly reproduce the regional structure of the observed variability. This is
further supported by the high pattern correlations between the OISST monthly standard deviation
pattern and those from the reanalyses (Figure S3e-h). Among the reanalyses, CCSRA most closely
resembles OISST, featuring the highest point-by-point correlations with the observed monthly
mean SST anomalies and the highest pattern correlation with the observed monthly standard
deviation pattern. In comparison, ORASS5 exhibits less variability than OISST over most of the
domain and GLORYS SST variability is generally greater than that in OISST, particularly in the
southwest portion of the domain (Figure S3f-g). These differences contribute to the overall lower
(yet still significant) point-by-point correlations between ORAS5/GLORYS and the OISST
monthly mean SST anomalies (Figure 3f-g).
b) Comparisons with nearshore stations

The reanalyses also generally compare well with SST data from six nearshore stations
spanning the U.S. west coast (Figures 4 and S4). At the northernmost stations (Stonewall; 44.7°N
and Charleston; 43.3°N), CCSRA and GLORYS exhibit insignificant annual mean biases, while
ORASS5 has a significant warm bias at Charleston. However, all three reanalyses show high
monthly mean correlations and relatively small RMSE of ~0.25-0.4°C when compared to station
data at these latitudes. At Trinidad Beach (41.1°N), GLORYS and ORASS5 exhibit significant cold
biases. While CCSRA does not have a significant mean bias at this station, all three reanalyses
show lower (yet still significant) monthly correlations, which also correspond to elevated RMSE

values of ~0.5-0.6°C. The reanalyses compare most favorably at the Farallon Islands (37.7°N),
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where they have the smallest biases, highest correlations, and lowest RMSE values of any of the
stations compared here. The southern stations (Newport Beach; 33.6°N and Scripps Pier; 32.9°N)
show the largest differences among the reanalyses. For example, at Newport Beach, GLORYS
exhibits a significant cold bias of about 1°C, while ORASS5 and CCSRA show warm biases of
~0.8°C and 1°C, respectively. At the Scripps Pier, both ORAS5 and GLORY'S show significant
cold biases, while CCSRA does not have a significant bias. These potential reanalysis errors are
further highlighted by overall lower monthly correlations and higher RMSE values at these
southern stations, especially for GLORY'S at Newport Beach. The cold biases in GLORYS at these
southern latitudes may be due to enhanced upwelling rates. We will explore this possibility in more

detail in Section 3.3a.

3.2 Sea surface salinity
a) Comparisons with OISSS

The annual mean SSS pattern in OISSS features salinity values that decrease with latitude,
reaching a minimum in the coastal regions of the Pacific Northwest, which is likely associated
with increased freshwater fluxes from the Columbia River outflow at ~46°N (Figure 5a). Despite
the high pattern correlations between the annual mean SSS in the reanalyses and the OISSS data
(Figure S5b-d), each of the reanalyses have significant mean SSS biases, particularly off the
Oregon and Washington coast (Figure 5b-d). The bias patterns in GLORYS and ORAS5 are
similar, with mainly salty biases offshore north 45°N and mainly fresh biases in a horseshoe pattern
along the coast and extending offshore from 40°N-50°N. South of 40°N, both GLORYS and
ORASS5 have mostly insignificant biases. In contrast, CCSRA has significant salty biases from

40°N-50°N and significant negative biases offshore south of 40°N. The large biases in each of the
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reanalyses near the Columbia River outflow suggests unrealistic freshwater forcing in this region.
GLORYS and ORASS have potentially too much freshwater input, while the salty nearshore biases
in CCSRA are consistent with its omission of freshwater sources (Neveu et al., 2016).

Monthly SSS variability is relatively weak throughout the CCS, except near the Columbia
River outflow where monthly standard deviations reach as high as 0.35 PSU (Figure 5e). The
monthly mean SSS anomalies in GLORYS are highly correlated with the OISSS anomalies
offshore and south of about 40°N, but are not significantly correlated with the observations off the
coast of Oregon and Washington (Figure 5f). In comparison, ORAS5 has the highest overall
correlations with the satellite data; however, it is less correlated along the coast from 30°N-50°N
(Figure 5g). The SSS anomalies in CCSRA are significantly correlated with OISSS south of 38°N,
but the correlations are insignificant nearly everywhere north of 38°N (Figure 5h). Overall, ORAS5
has the highest pattern correlation with the observed monthly mean standard deviation pattern (r
= 0.84), while GLORYS and CCSRA have weaker pattern correlations of 0.77 and 0.60,

respectively (Figure S5e-h).

3.3 Water column temperature
a) Comparisons with glider lines
When compared to annual mean temperature data from the CUGN, each of the three ocean
reanalyses displays a different annual mean temperature bias pattern that is broadly consistent
across the three different glider lines (Figures 6 and S6). For example, GLORY'S shows a nearshore
significant warm bias centered at ~30m depth, as well as a cold bias along the continental shelf at
~60-180m depth at Monterey and Pt. Conception at the surface at Dana Pt. (Figure 6d-f). The

warm bias may be due to GLORYS having a slightly deeper nearshore mean thermocline than
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observed (Figure S6a-f). Due to the strong vertical temperature gradients found within the
thermocline, even subtle shifts in its mean position can result in large model biases. The coastal
cold biases are most significant at Pt. Conception and may be related to differences in nearshore
vertical transport rates, as indicated by the shallower isotherm slopes below ~90m and within
~40km of the coast in GLORYS compared to CUGN (Figure S6b,e). The cold biases near the
surface at Dana Pt. may be due to enhanced upwelling in GLORYS, as indicated by the more
vertically tilted annual mean isotherms above 90m within 20km of the coast. Enhanced upwelling
at these latitudes may also explain the significant cold SST biases seen at Newport Beach and the
Scripps Pier (Figure 4a). At each glider line, ORASS5 shows significant warm temperature biases
atall vertical levels within ~150-200km of the coastline (Figure 6g-i). These warm biases are likely
the result of weaker overall upwelling rates in ORAS5, as indicated by the generally flatter
nearshore mean isotherms when compared to observations (Figure S6g-i). Weaker upwelling in
ORAS5 may be due to the coarser resolution of its ocean model. Finally, CCSRA features
significant warm biases at each glider line that extend offshore and slope upwards towards to the
coast (Figure 6j-1). These biases are related to a systematically deeper mean thermocline in CCSRA
when compared to CUGN (Figure S6j-1). Overall, the annual mean temperature in GLORYS has
the lowest pattern root mean square error (RMSE) when compared to the CUGN data at each
location (ranging from 0.17°C to 0.21°C), while ORASS tends to have the highest (ranging from
0.30°C to 0.36°C).

All three reanalyses show high monthly mean correlations with the CUGN data above
~30m at Monterey, above ~50m at Pt. Conception, and above ~90 m at Dana Pt (Figure 7). The
correlations in each reanalysis are lower below these depths, with the exception of GLORYS at

Monterey and Pt. Conception where there are high correlations offshore at all depths. Overall,
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GLORYS has the highest correlations with observations across each CUGN domain, while
ORASS has the weakest. The different correlation patterns among reanalyses may be related to
their different monthly mean standard deviation patterns when compared to observations (Figure
S6, shading). Overall, GLORYS and ORASS have similar pattern RMSE values with the observed
temperature variability maps (ranging from 0.08°C to 0.13°C), while CCSRA has slightly higher
RMSE values (ranging from 0.13°C to 0.16°C).
b) Comparisons with Argo profiles

All three reanalyses generally reproduce the timing and relative magnitude of CCLME
subsurface temperature anomalies observed by Argo floats (Figure 8), including major interannual
warming events in 2004-2006 and 2014-2016 related to El Nifio and Northeast Pacific marine
heatwaves (Amaya et al. 2016; Li et al. 2020) and cooling events in 2007-2009 related to La Nifia
(Okumura and Deser, 2010). The multi-year warming from 2014-2016 seen in observations and
the reanalyses is most pronounced and consistent in the CLME and SLME, likely due to the
southward shift in large-scale anomalous atmospheric forcing associated with major marine
heatwaves in the Northeast Pacific in late 2014 and early 2015 (Amaya et al., 2016). Argo
measurements in the SLME also show resurgent warming in 2017-2018, which is generally
reproduced by GLORYS and ORAS5 (SLME is outside the CCSRA domain). Finally, there is
evidence in the Argo record of downward propagating warm waters from the surface in 2014-2015
to 100-150 m in 2015-2016 (particularly in the CLME and SLME). These downward propagating
anomalies are evident in each reanalysis, although the magnitude of the CLME anomalies during
this period are overall weaker in CCSRA.

While the ocean reanalyses generally have weaker temperature anomalies then those

computed from Argo, the discrepancy is likely due to the relatively small number of Argo profile
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measurements in both depth and time that go into area averages (Figures S1 and S2). Indeed, if we
resample daily mean GLORYS vertical temperature data to the same time and depth locations as
the Argo data, we find that agreement between the two is greatly improved (Figure S7). This result
highlights an advantage of ocean reanalyses, which provide a uniform dataset in time and space,
over in situ observations that can give a biased view of the ocean state due to under sampling (see

Section 5 for a more detailed discussion).

3.4 Water column salinity
a) Comparisons with glider lines

The reanalyses each exhibit salinity bias patterns that are broadly consistent across the
different glider lines (Figure 9). For example, GLORY'S has significant fresh biases near the coast,
which peak at the surface at Monterey and at ~60m-90m at Pt. Conception and Dana Pt. (Figure
9d-f). In contrast, ORASS has significant salty biases mainly below 120m along each glider line,
with significant fresh biases near the surface at Monterey and Pt. Conception (Figure 9g-i). Many
of the fresh biases seen in GLORYS and ORAS5 may be associated with differences in vertical
transport near the coast. For example, the CUGN data at Monterey shows annual mean isohalines
of 33.1-33.5 PSU outcropping within ~200km of the coastline, however, neither GLORYS nor
ORASS5 show outcropping isohalines beyond 33.2 PSU, resulting in fresh biases nearshore (Figure
S8). On the other hand, CCSRA has isohalines at Monterey that have a similar slope to
observations, resulting in weaker biases nearshore. At Dana Pt., there is a layer of saltier water
seen in the annual mean CUGN data from the surface to ~60m within ~100km of the coast (Figure
9c¢). This shallow, salty water is not reproduced in any of the reanalyses, contributing to the fresh

biases seen here in GLORYS and ORASS5 (Figure S8, bottom row). Additionally, CCSRA has a
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systematically weaker and shallower halocline at all three glider lines than in the CUGN, resulting
in positive significant salty biases that slope upwards from offshore to onshore and which overlie
significant fresh biases at deeper depths (Figures 9j-1 and S8).

In general, the monthly mean correlations between CUGN and reanalysis water column
salinity are overall lower than the corresponding temperature correlations (comparing Figures 7
and 10). The lower overall salinity correlations are consistent with the large differences seen in the
monthly mean standard deviation patterns between the CUGN and reanalysis data (Figure S8).
Despite these clear deficiencies, the reanalyses do have regions of significant salinity anomaly
correlations along each glider line, with the highest correlations for all three reanalyses found at
Dana Pt (Figure 10, bottom row). In this region, each reanalysis shows significant correlations
throughout the water column, with the highest values near the surface for GLORYS and ORAS5
and from 90-120m for CCSRA. Further, both GLORYS and CCSRA show significant (albeit
weaker) correlations with CUGN salinity data throughout the water column at Monterey and Pt.
Conception, with the highest correlations in GLORY'S found near the surface west of 120°W and
the highest correlations in CCSRA found below ~50m along each line (Figure 10, top and middle
rows). In contrast, ORASS has noticeably weaker correlations at Monterey and Pt. Conception,
with insignificant values throughout much of the water column (Figure 10g-h). However, ORAS5
does have significant correlations near the surface along the glider lines and at depth within ~40km
of the coast.

b) Comparisons with Argo profiles

The reanalyses broadly reproduce the timing of major interannual salinity anomalies

observed by Argo profiles (Figure 11). For example, in the NMLE and CLME there was a period

of fresher than normal conditions from the surface to ~150m from 2003-2006, which is seen in
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GLORYS and ORASS, but less so in CCSRA. This period of fresh anomalies also encompasses
the SLME in GLORYS and ORASS, but there are very few Argo profiles during this time with
which to validate the reanalyses (Figure S2c). Additionally, Argo profiles show a period of salty
anomalies beginning in ~2016 in each sub-region that is broadly captured by the reanalyses.
Despite these similarities, there are some important differences between the Argo salinity data and
the reanalyses. For example, Argo shows fresh anomalies in 2009-2010 and 2013-2015 in the
NLME, which are mostly absent in the reanalyses. There are also larger and more persistent salty
anomalies in GLORYS and ORASS5 in the SLME from 2014-2016 than seen in Argo. While
GLORYS and ORASS show larger anomalies during this time period, the Argo profiles tend to
have larger salinity anomalies overall, which as discussed previously is likely related to the limited

number of individual Argo profiles in these regions (Figures S1-S2, S7).

3.5 Bottom Temperature
a) Comparisons with the CUGN and Newport Line

Both GLORYS and CCSRA produce monthly mean bottom temperature data that are
significantly correlated with nearby CUGN values at the Monterey Bay (Line 66) and Pt.
Conception (Line 80) locations as well as data taken from CTD casts along the Newport Line
(Figure 12; note ORASS5 is omitted from this comparison due to its inability to resolve the shelf).
For the CUGN lines, both the GLORYS and CCSRA bottom depth correlations decrease with
depth, while the reanalyses have peak correlations with the Newport Line data at 55m depth. At
CUGN Line 66, GLORYS and CCSRA have similar correlations with observations. However, at
CUGN Line 80 and along the Newport Line, GLORY'S has noticeably higher correlations.

b) Comparisons with bottom trawl data
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While the stratified random sampling pattern of the trawl data precludes the generation of
climatologies, it does provide much more thorough spatial coverage from which we can assess the
ability of reanalyses to reproduce mean patterns of bottom temperature. As described in the
methods (Section 2.2c), there are discrepancies between reanalysis bottom depth and true bottom
depth, and consequently there is considerable scatter when comparing the observed and reanalysis
bottom temperature at the same location. Despite these discrepancies, there is good agreement
between the reanalyses (especially GLORYS) and the observations (Pearson correlation
coefficients r = 0.76 and 0.92 for CCSRA and GLORYS, respectively; Figure 13). This effect is
less pronounced in GLORYS than in CCSRA, as the terrain-following coordinate system used in
the latter requires additional bathymetric smoothing that introduces greater differences between
modeled and true bottom depth. However, when bottom depth differences are accounted for (i.e.,
reanalysis temperature is taken from the depth of the trawl measurement), both GLORY'S and
CCSRA exhibit strong fidelity to observed bottom temperatures (r = 0.97 and 0.96, respectively).
Patterns of mean bias differ between the two reanalyses, with CCSRA tending to be too warm at
the coldest temperatures and too cold at the warmest temperatures, while GLORYS is slightly

warm at high temperatures (Figure 13).

3.6 Sea surface height

Coastal sea level measurements from tide gauges and reanalyses exhibit large monthly and
interannual fluctuations that are likely associated with local wind forcing and propagating coastally
trapped waves (Amaya et al., 2022) that may be stochastically forced or driven by major ENSO
events, including the 1997-1998 and 2015-2016 El Nifio events (Figures S9-S11). The SSH

anomalies in each reanalysis are significantly correlated with the tide gauge measurements at every
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location (Figure 14a). However, GLORY'S produces the highest correlation values at every station
except the Humboldt Bay tide gauge at ~40°N. Latitudinal patterns in RMSE roughly mirror those
in the correlation, with the lowest RMSEs in the south of the domain and larger values in the north
(Figure 14b). GLORYS tends to have the lowest RMSE values, while ORASS has the highest

values north of 36°N.

3.7 Eddy Kinetic Energy

The annual mean EKE pattern from AVISO data shows a band of elevated values that
roughly follow the North American coastline from 20°N-45°N, with peak values centered offshore
in the CCLME around 37°N (Figures 15 and S12). In comparison, GLORYS has a significant
positive bias throughout much of the CCLME from 30°N-40°N, while ORASS5 has a significant
negative bias throughout the entire domain. The EKE bias pattern in CCSRA exhibits significant
positive biases near the edges of the regional model domain, likely associated with the lateral
boundary conditions used to force the regional model, however, CCSRA tends to have the smallest
biases in the main EKE region (Figure 15b-d). When considering monthly EKE variability, we see
that both GLORYS and CCSRA are significantly correlated with the observations throughout their
respective domains, while ORASS5 generally has insignificant correlations (Figure 15e-h).

The strong negative EKE biases and low correlations seen in ORAS5 may be due, in part,
to the model’s coarse resolution (0.25°), which is not eddy resolving. Additionally, although
ORASS5 does assimilate satellite altimetry data, these observations are rejected from the
assimilation scheme in the nearshore environment (i.e., when the ocean bottom depth is shallower
than 500m) and are strongly down weighted within ~800km of the coastline (Zuo et al. 2019). As

a result, the mean structure and variability of the mesoscale features are generally not captured in
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ORASS. Itis also important to note that our comparisons are somewhat hampered by the resolution
of the gridded AVISO data. The higher EKE values in both GLORYS and CCSRA are due to their
higher horizontal resolutions, which allow their respective ocean models to simulate finer scale
circulation features, thus increasing the level of eddy activity relative to AVISO. Therefore, in
reality (where ocean currents are not limited by horizontal grid resolution), it is likely that the

magnitude of EKE in the CCS is actually closer to that seen in the high-resolution reanalyses.

4, Summary

In this study, we compared the output from three high-resolution ocean reanalysis
products—the 1/4° ORASS, the 1/12° GLORYS, and the 1/10° CCSRA—to0 a variety of in situ and
satellite-derived observations in the CCLME. For surface temperature, we found that all three
analyses were generally able to capture the observed mean state and monthly variability as
measured by satellite observations and coastal station data over the last several decades. In
particular, when comparing to unassimilated SST data from six stations along the U.S. west coast,
we showed that the nearest grid cells in each reanalysis were highly correlated with the
observations, with typical correlation values exceeding 0.80 and even reaching as high as 0.97 at
some stations (Figure 4). Comparing across the reanalyses, we found that CCSRA has the most
accurate depiction of monthly SST throughout the CCLME, while GLORYS and ORASS5,
respectively, slightly overestimated and underestimated the larger-scale SST variability (Figures
3 and S3). For sea surface salinity, we found significant biases in all three reanalyses near the
outflow of the Columbia River at 46°N (Figures 5 and S5), suggesting an influence of unrealistic

(or missing) freshwater forcing in the models at this location.
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Comparisons to different measures of water column temperature throughout the CCS saw
large differences among the ocean reanalyses. For example, each reanalysis depicted significant
warm mean temperature biases relative to CUGN data (Figure 6). These biases were the result of
differences in the mean position of the thermocline (as in GLORYS and CCSRA) or differences
in vertical transport rates (as in ORASS). Despite these mean biases, monthly mean temperature
data from each reanalysis were significantly correlated with the CUGN data above ~50m.
However, GLORYS showed a clear advantage over ORAS5 and CCSRA with the highest
correlations throughout the water column (Figure 7). Comparisons to CUGN salinity data were
less favorable among the reanalyses (Figures 9 and 10), with each reanalysis showing large biases
related to differences in vertical transport rates (as in GLORYS and ORAS5) and differences in
the mean position of the halocline (as in CCSRA), as well as weaker overall point-by-point
correlations than with the corresponding temperature observations. All three reanalyses credibly
reproduce the large-scale subsurface temperature and salinity anomalies measured by Argo
profiles, including the downward propagation of recent warm anomalies associated with the 2015-
2016 marine heatwave and the recent salty conditions throughout the CCS after 2016 (Figures 8
and 11).

When comparing bottom temperature measurements from the reanalyses to observations,
GLORY'S was the best performer. In particular, GLORY'S consistently had the highest correlations
with monthly mean bottom temperature estimates from the CUGN and the Newport Line (Figure
12). Additionally, due to GLORYS having more realistic bathymetry than CCSRA, it also had
bottom temperatures that were much more highly correlated with bottom temperature
measurements from nearby trawls (Figure 13). However, accounting for differences in bottom

depth between the trawl measurements and the reanalysis led to marked improvements for
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CCSRA. Overall, the favorable comparisons between the reanalyses and various bottom
temperature observations are impressive given the difficulty of comparing pointwise
measurements on the steep bathymetry along the west coast.

The reanalyses also showed impressive correlations with monthly mean SSH
measurements from nine coastal tide gauges, producing significant correlation values ranging from
0.67 to 0.91 and accurately depicted major El Nifio-driven sea level changes along the U.S. west
coast (Figures 14 and S9-S11). However, CCSRA and GLORY' S continued to stand out, producing
lower overall RMSE values at each tide gauge location when compared to ORASS. Finally, both
GLORYS and CCSRA produced patterns of ocean mesoscale activity (i.e., EKE) that compared
well to AVISO satellite measurements, while ORAS5 underestimated the intensity of EKE
throughout the CCS due to its coarser resolution and the decision to down weight satellite altimetry

data near coastlines during the assimilation process (Figure 15).

5. Discussion

5.1 Choosing a reanalysis for California Current ecosystem science
As is often the case when evaluating reanalyses (Balmaseda et al., 2015; Storto et al., 2019),
the “best” product to use depends on the application. However, based on the results above, we can

offer some general guidelines as well as some more targeted examples.

5.1.1 General considerations
Model resolution is an obvious consideration when choosing a reanalysis. For research into
coastal ocean processes along the U.S. west coast, the higher resolution of GLORYS or CCSRA

clearly provides enhanced fidelity of the nearshore environment including surface and bottom
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temperature, sea level variability, mean coastal upwelling, and the representation of coastally
trapped waves (Amaya et al., 2022). However, given the small scale of many of the eddies off the
U.S. west coast, Neveu et al. (2016) concluded that the CCSRA horizontal resolution was
insufficient to fully represent the observed EKE variability. Throughout the broader CCLME,
ORASS is generally comparable to GLORYS and CCSRA (with the exception of its poorer
representation of EKE), so studies interested in larger-scale ocean variability may prefer ORAS5
with its coarser resolution and smaller overall storage requirements.

Another clear consideration is the spatiotemporal coverage of a particular analysis. For
example, GLORYS only provides data starting in 1993, so studies requiring output prior to 1993
would be limited to either CCSRA or ORASS. Similarly, the CCSRA domain limits analysis to
the CCS region, whereas the global ocean models used by GLORYS and ORAS5 do not have such
geographical restrictions. As a result, studies utilizing GLORYS and ORAS5 are able to
investigate the relationship between the CCS and remote regions (e.g., tropical Pacific) within the
same reanalysis dataset. In general, the resolution and performance of GLORYS and CCSRA will
make them preferable to ORASS unless the application requires both global coverage and a
historical record extending earlier than 1993, or if the additional computing/storage burden
incurred by using a higher resolution reanalysis is prohibitive.

Finally, potential users of these products should note that they may all be quite limited in
certain respects. In our analysis, a chief example is the relatively large salinity errors in each
reanalyses when compared to observations. In particular, the large mean salinity biases and weaker
overall monthly mean correlations may limit the utility of the reanalysis salinity data in the CCS,
especially in the nearshore environment and at higher latitudes near the Oregon and Washington

border. Indeed, to the best of our knowledge, none of the reanalyses considered here explicitly
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represent freshwater inputs (i.e., rivers) to the California Current System at all. Thus, they are not
well tailored to applications that are very sensitive to that aspect of the oceanography, though the
effects of freshwater inputs will be captured indirectly by assimilation of temperature and salinity
observations in the coastal ocean. We do note, however, that our salinity comparisons were limited
to relatively short periods (2012-2018 for OISSS, 2007-2018 for CUGN, and 2002-2018 for Argo)
and that satellite salinity data have known biases and errors (particularly at higher latitudes), which
may influence our comparisons (e.g., Melnichenko et al., 2014). Therefore, it is possible that the
apparent deficiencies seen in the reanalysis salinity data will improve as satellite salinity

measurements increase in number and accuracy.

5.1.2 Targeted applications

The general guidelines offered above can be further tailored in the context of specific
applications, which we demonstrate here by drawing on a range of CCS case studies. For example,
in recent years ocean reanalyses have been increasingly relied upon to generate ecologically-
relevant oceanographic indices. The Temperature Observations to Avoid Loggerheads (TOTAL;
Welch et al., 2019)) tool tracks the risk of Loggerhead Turtle bycatch in California’s drift gillnet
fishery based on SST anomalies in the Southern California Bight. In summers following persistent
warm SST anomalies, temporary closures can be enacted. In this case, CCSRA is likely the most
attractive reanalysis due its ability to capture the mean and variability of SST anomalies in the
region, and its long record that provides a more robust assessment of historical variability,
especially related to ENSO events. The Habitat Compression Index (HCI; Schroeder et al., 2022),
which tracks the presence of cool-water habitat nearshore, has been related to regional ecosystem

shifts and whale entanglement risk. Again, the fidelity of CCSRA for fine-scale nearshore SST
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variability, as well the relatively high resolution of its wind forcing and associated representation
of coastal upwelling, make it well suited to this application.

Moving to more complex ecological models, additional considerations will drive the choice
of reanalysis. As described above, CCSRA is a good choice for surface-oriented analyses, and has
been successfully applied in species distribution models focused on the near-surface environment
(e.g., Becker et al., 2016). In contrast, GLORYS more realistically captures the bathymetry of the
relatively narrow shelf off the US west coast and generally does a better job reproducing observed
bottom temperature variability; therefore, it is likely a better choice for species distribution models
of benthic organisms such as groundfish (e.g., Ward et al., 2022), provided the shorter historical
record is adequate. Issues of internal consistency of reanalyses can also have different impacts
depending on the nature of ecological model employed. Changes in the configuration of CCSRA,
between its 1980-2010 historical run and an extension starting in 2011, introduce inconsistencies
in some fields. For aspects of the ocean circulation that are well constrained by observations or
surface forcing (e.g., SST, SSH, upwelling), these inconsistences are of less concern. But some
ecological models rely on hydrographic properties that are not well constrained by observations
and are more sensitive to changes in model configuration. For example, life-stage specific
recruitment models have been developed for several groundfish species in the CCS (Haltuch et al.,
2020; Tolimieri et al., 2018) based on mixed layer depth, ocean temperature, and alongshore and
cross-shore currents in different vertical and horizontal sectors of the water column. For the
subsurface alongshore and cross-shore currents in particular, the 1980-2010 and post-2010
versions of CCSRA cannot be combined as a consistent reanalysis. In this case GLORYS would

offer a self-consistent alternative, and while data limitations preclude direct assessment of
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subsurface currents, the subsurface structure (temperature and salinity) in GLORYS is generally

very good relative to the other reanalyses.

5.2 Sources of differences between reanalyses

It is important to consider what factors may lead to one reanalysis comparing more
favorably to observations than another reanalysis, particularly if those observations are assimilated
by each of the reanalyses (e.g., Argo data is assimilated in all three reanalyses analyzed here). As
discussed previously, differences in model resolution likely plays a key role in producing different
reanalysis solutions, especially in the nearshore coastal region. Additionally, the resolution and
fidelity of the atmospheric forcing for each of the ocean models may play a role. Different data
assimilation schemes (e.g., 3D-Var versus 4D-Var) and different subgrid parametrizations may
also impact how reanalyses compare to observations. For example, the underestimation of sea level
variance in ORASS is partly due to suboptimal parameter specifications for observation errors and
data sampling (Zuo et al. 2019). However, it is difficult to assess the sensitivity of reanalysis errors
to these model design choices without delving deeper into the raw model forcing files or (in some
cases) the actual model code, neither of which are readily available to the average user of these
reanalyses. Therefore, deciding which ocean reanalysis is most appropriate for a given application
should be based on which physical processes are of interest and what computational resources are

available to the user.

5.3 Considerations for comparing reanalyses and observations
In addition to the CCS-specific results, our analysis further highlights several important

considerations that are generally applicable when comparing raw and/or post-processed
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observations to reanalysis products. A critical factor for why reanalyses may differ from each other
and from nature is the change in the number and types of data that are assimilated over time.
Inclusion of new sources of data can lead to discontinuities, while the lack of data, especially early
in the record, enhance the contribution of model bias to reanalysis errors. For example, Lellouche
et al. (2021) noted that salinity coverage by ARGO was insufficient to constrain model error prior
to 2014 in GLORYS. Temporal changes in atmospheric reanalyses used as boundary conditions
also can influence ocean reanalyses. The horizontal resolution of the SSTs used as boundary
conditions in ERA-interim increased in 2002. This increased small-scale variability in the
atmospheric reanalysis winds, which were transmitted to the ocean reanalyses that used ERA-
interim, including the three reanalyses examined here; ORAS5 and CCSRA also used other
atmospheric reanalyses during portions of their record, which likely contributed to discontinuities.
Another change in the reanalyses occurred in 2004, with the inclusion of a large number of ARGO
profiles. To accommodate the increase in the vertical profiles the time window in which the bias
correction was performed was reduced by a third in GLORY'S (Lellouche et al., 2021). This led to
arapid increase of EKE in GLORYS, which may have contributed to its excessive SST variability.

In addition to temporal changes in the type and number of observations, some mean biases
may depend on the particular observational data used for comparisons, particularly if one is
comparing to raw measurements that have been post-processed or smoothed onto a uniform grid
(such as OISST, OISSS, and AVISO data analyzed here) since the interpolation process may
introduce statistical artifacts or biases (Reynolds et al., 2013; Reynolds & Chelton, 2010).
Although, the weaknesses of interpolating raw observations onto a grid may be partially
outweighed by the benefits of post-processing bias adjustments to satellite and ship observations

to compensate for platform differences and sensor biases over time (e.g., Reynolds 1993; Reynolds
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etal., 2007; Banzon et al., 2016; Huang et al., 2020). Further, reanalysis data at any given grid cell
represents the characteristics of a volume of water, while in situ measurements are often from
single points and may therefore benefit from similar bias corrections for comparisons with model
output (Chang et al., 2021).

Additionally, the raw Argo profile measurements showed stronger temperature changes
than those observed in any of the reanalyses, which may be surprising considering each reanalysis
assimilates Argo. However, resampling GLORY'S to match the Argo data produced much more
consistent results (Figure S7), indicating that apparent discrepancies are in fact largely due to
sampling differences. Similarly, EKE values derived on the native GLORYS grid were much
higher than the coarser AVISO gridded observations (Figures 15 and S12), and it is possible that
the real-world intensity of EKE may be closer to the values seen in GLORYS than in pure
observations. For benthic conditions over the continental shelf and slope, an important
consideration is that the depth of the real ocean bottom can be significantly different than the depth
of the nearest reanalysis grid cell. This depth difference leads to discrepancies between the
observed and reanalysis bottom temperature, which are worse when the bathymetry is less realistic
(i.e., compare CCSRA and GLORYS in Figure 13). A more accurate representation of the bottom
conditions can be obtained by using the reanalysis temperature at the depth of the real ocean
bottom, even if it is not the bottom in the reanalysis. However, this extra analytical step is not
trivial and requires obtaining the full water column temperature data from the reanalysis, rather
than a single level. In general, differences between observations and reanalyses are greatly reduced
by controlling for the sampling limitations presented by the observations. Indeed, if there were
substantially more Argo profiles in the CCS or if the spatial footprint of satellite altimetry

measurements was more similar to GLORY'S or CCSRA, then the observations may begin to look
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more like the reanalyses. This suggests that even our best estimates of the “truth” can sometimes
be limited by sampling frequency in time and space, and therefore, that the high-resolution
reanalyses may provide a more realistic and more uniform representation of undersampled ocean

variables in the CCLME.
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Table 1 Attributes of the three reanalyses used in this study. The acronyms in the table are: First
Guess at the Appropriate Time (FGAT); Copernicus Marine Environment Monitoring Service
(CMEMS); eXpendable BathyThermograph (XBT); Mechanical Bathythermograph (MBT);
Advanced Very High-Resolution Radiometer (AVHRR); Coriolis Ocean database ReAnalysis

(CORA); Operational Sea Surface Temperature and Ice Analysis (OSTIA).

Reanalysis GLORYS ORAS5 CCSRA
Mercator Ocean
Institute International ECMWEF University of California Santa Cruz
(consortium)
Ocean Model NEMO OCEANS5 ROMS
Domain global global California Current System
Horizontal 1/12° 1/4° 1/10°
resolution
Levels 50 75 42
Vertical Depth (z) Depth (z) Terrain following (p)
Coordinate P p g(p
First level 0.5m 0.5m variable
i . ) ERA40 (1982-87),
Atmospheric . ERA-Interim (1979 ERA40+CCMP winds (1987-2001),
. ERA-Interim 2015), ECMWF-NWP : ;
Forcing ERA Interim+CCMP winds (2001-
(2015-present)
present)
Assimilation 3D-Var Kalman Filter 3D-Var FQAT with 5 AD-Var
Scheme day window
AVHRR: SST, g%ﬂsiﬁgoozzlﬁ AVHRR, AMSR-E, and MODIS: SST,
Assimilated CMEMS: SLA, IéN4' In s.itu ’ AVISO/CMEMS: SSH,
Observations CORA: In-situ S EN3: In situ T/S profiles for 1980-2010
. T/S profiles with XBT ] . .
T/S profiles ) EN4: In situ T/S profiles for post-2010
and MBT correction
Archive period daily/monthly daily 6 hourly
Period 1993-2019 1979-2018 1980-2019
References Lellouche etal. 2021 Zuo et al. 2017, 2019 Neveu et al. 2016
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Table 2 Description of observations used for comparison with reanalyses.

Data Set

Description

Period

References

OISST v2.1

Merged satellite and in situ
SST data mapped to a 1/4° grid

1982-present

Reynolds et al. 2007; Huang et al.

2021

OISSSv1.0

Merged satellite SSS data mapped to a
1/4° grid

2012-2018

Melnichenko et al. 2016

Nearshore
stations

SST from Stonewall Bank (44.7°N,
124.5°W), Charleston (43.3°N, 124.3°W),
Trinidad Beach (41.1°N, 124.1°W),
Farallons: (37.7°N, 123.0°W, Newport
Beach (33.6°N, 117.9°W), Scripps Pier
(32.9°N, 117.3°W).

1993-present
(with gaps)

https://shorestations.ucsd.edu/shore-

stations-data/

Gliders

California Underwater Glider Network
(CUGN), 3 sections that extend ~500 km
offshore. Surface to 500 m (or near
bottom)

2008-2018

Rudnick et al. 2017

Newport
line

CTD casts at three locations along the
Newport Hydrographic Line extends
offshore from Oregon coast at 44.7°N for
locations:

T1:124.1°W (25 m)
T3:124.1°W (55 m)

T4: 124.3°W (75 m)

Bottom depth in parentheses

2008-2018

Huyer et al. 2007

Argo

Profiling floats drift at a depth of 1000
meters over 10 days, then dive to 2000
meters and return to the surface. ~4000
currently deployed over the global ocean
with 18,97 profiles in the CCLME during
2002-18.

2002-2018

Jayne et al. 2017

Tide
Gauges

Sea level from 9 tide gauges spanning the
west coast

Varies

Bottom
Trawls

Bottom temperature measurements from
U.S. West Coast Groundfish Bottom
Trawl Survey (WCGBTS)

Varies

Keller et al., 2017

AVISO

Satellite altimetry measurements on a
0.25° grid

1993-2012

Ducett et al. 2000
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Figure 1 (a) Spatial distribution and (b) temporal availability of all data sets used in this study.

Shading in (a) denotes total number of Argo profiles since 2002, binned in 1° x 1° grid cells. Black

line outlines in the CCLME. Dashed gray line denotes the CCSRA regional domain. Black lines

for each dataset in (b) indicates that the data was available for the given time step somewhere

within the CCLME.
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Figure 2 Bottom temperature locations used for comparing the CUGN and Newport Line (black
X’s) to nearby GLORYS (red dots) and CCSRA (blue dots) grid points in Figure 12. The
comparisons are conducted as follows: the nearest reanalysis grid point where the bottom is deeper
than at the observed location is selected (dashed line connect the observed and reanalysis data
locations), then the temperatures are interpolated from the reanalyses bottom depth to the observed
bottom depth. Comparisons are made at depths of 30m, 70m and 410m in Monterey Bay and at
70m, 130m and 300m off Pt. Conception, and at 25m, 55m, 75m on the Newport line. Comparisons
between CCSRA and CUGN at 410m in Monterey Bay were omitted since the nearest deeper
CCSRA grid points were too far away for a reasonable comparison. The ORASS5 reanalysis was

omitted since it is too coarse for this comparison to be meaningful.
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OISST - Reanalysis SST comparison 1993-2018
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Figure 3 (a) Annual mean SST (°C) pattern from OISST. (b)-(d) Annual mean SST bias patterns
from the GLORYS, ORAS5 and CCSRA reanalyses, respectively. (e) Monthly mean standard
deviation pattern (°C) from OISST. (f)-(h) Anomaly correlation coefficients between monthly
mean SST anomalies from OISST and each reanalyses. Significant biases at 95% confidence in
the top row are denoted by green hatching. All monthly correlations reported in the bottom row

are significant at 95% confidence.
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Figure 4 (a) Annual mean SST bias values (°C) from GLORY'S (red), CCSRA (blue), and ORAS5

(grey) relative to the mean SST at each shore station (indicated by latitude). (b) As in (a), but for

the anomaly correlation coefficient between monthly mean SST anomalies from each reanalyses

and each shore station. (c) As in (a), but for the monthly root mean square error (RMSE; °C). Open

circles in (a) indicate significant mean biases at 95% confidence. Closed circles in (b) indicate

significant correlations with 95% confidence.
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OISSS - Reanalysis SSS comparison 2012-2018
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Figure 5 As in Figure 3, but for OISSS and reanalysis sea surface salinity (PSU).
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Glider Temperature Comparison 2007-2018
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Figure 6 (a)-(c) Annual mean temperature (°C) along CUGN Line 66 (Monterey), Line 80 (Pt.
Conception), and Line 90 (Dana Pt.), respectively. (d)-(1) Annual mean temperature bias (°C) along
each glider line in (d)-(f) GLORYS, (g)-(i) ORASS5, and (j)-(I) CCSRA. Gray hatching indicates a

significant mean bias with 95% confidence.
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Glider Temperature Comparison 2007-2018
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Figure 7 (a)-(c) Monthly mean temperature standard deviation (°C) along CUGN Line 66
(Monterey), Line 80 (Pt. Conception), and Line 90 (Dana Pt.), respectively. (d)-(I) Anomaly
correlation coefficients of monthly mean temperature data from CUGN with (d)-(f) GLORYS, (g)-
(i) ORASS, and (j)-(I) CCSRA. White stipples indicate an insignificant correlation with 95%

confidence.
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Figure 8 Depth/time cross-sections of monthly mean water temperature anomalies ("C) averaged
in three CCLME sub-regions—the North LME (NLME; top row), Central LME (CLME; middle
row), and South LME (SLME; bottom row). Data are from (a)-(c) Argo profiles binned in the
vertical in 20 m bins, (d)-(f) GLORYS, (g)-(i) ORASS5, and (j)-(k) CCSRA. Note the reanalysis

data feature their native vertical resolution. See Methods for more details.
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Glider Salinity Comparison 2007-2018
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Figure 9 As in Figure 6, but for CUGN and reanalysis water column salinity (PSU).
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Figure 10 As in Figure 7, but for CUGN and reanalysis water column salinity (PSU).
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Monthly Bottom Temperature Anomalies (°C)
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Figure 12 Monthly mean bottom temperature anomaly (°C) timeseries at select locations along
(a)-(c) CUGN Line 66, (d)-(f) CUGN Line 80, and (g)-(i) the Newport Line. In each panel the
observational data are in black and data from the nearest GLORYS and CCSRA grid cells are in
red and blue, respectively. See Figure 2 for precise data locations. Anomaly correlation
coefficients between the observations and each reanalyses are shown in each panel. Asterisks

indicate significant correlations with 95% confidence.
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Figure 13 Comparison of CCSRA and GLORY'S with bottom temperature data from the west
coast groundfish bottom trawl survey. (left) maps indicate differences between trawl depths and
model bottom depths at the same location. (right) scatter plots of observed bottom temperatures
compared to reanalysis temperatures extracted two ways: (1) at the model bottom (gray), which
may be a substantially different depth from the trawl depth, and (2) at the depth of trawl sample

(blue). See Methods for more detail.
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Figure 15 (a) Annual mean geostrophic Eddy Kinetic Energy (EKE; cm? s?) based on SSH
anomalies from AVISO satellite observations. (b)-(d) Annual mean EKE biases in GLORYS,
ORASS5, and CCSRA, respectively. (€) Monthly mean EKE standard deviation in AVISO. (f)-(h)
Anomaly correlation coefficients between monthly mean EKE values from AVISO and each
reanalyses. Stipples in (b)-(d) indicate a significant mean bias with 95% confidence. Stipples in

(f)-(h) indicate an insignificant correlation with 95% confidence.
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