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25 Abstract  

Sparse  and inconsistent  coverage  of ocean  observations  makes  analysis  of  climate  impacts  on  

ocean physics  and marine  ecosystems  challenging.  As  a  result,  ocean  reanalyses  (i.e.,  ocean  

models  constrained by  observations  through data  assimilation)  were  developed to provide  

historical  ocean state  estimates  that are  spatially and temporally  uniform.  Recent  advances in high  

performance  computing and  the  number and quality of observations  have  led  to the  development  

of high-resolution ocean reanalyses, which  offer an opportunity to investigate  coastal  ocean  

variability with enhanced fidelity. In this  study, we  evaluate  the  ability of three  high-resolution  

ocean reanalyses, including the Global Ocean Reanalysis and Simulations (GLORYS), the Ocean  

Reanalysis  System  version 5 (ORAS5), and the  California  Current  System  Reanalysis  (CCSRA), 

to accurately represent  ocean temperature  and salinity  (from  the  surface  to the  bottom), sea  surface  

height, and mesoscale  activity  in  the  California  Current  Large  Marine  Ecosystem  (CCLME).  

Specifically, we  compare  these  reanalyses  to a  variety of assimilated and independent  in situ  and  

satellite  derived observations  along the  U.S.  west  coast.  We  find that  the  reanalyses  generally  

reproduce  large-scale  variability  in temperature  and sea  surface  height  within the  CCLME, 

including effects  of  major ENSO  events  and recent  marine  heatwaves. We  also show  that  

GLORYS  and CCSRA, with their finer  horizontal  resolution, have  enhanced fidelity in simulating  

nearshore  ocean parameters  such as  coastal  sea  level  and bottom  temperature  along the  continental  

shelf.  Our results  suggest  that  these  tools  can be  used to study the  fine-scale  features  of the  

California Current System over the past several decades.   
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46 1.  Introduction  

The  spatial  inhomogeneity  of global  ocean observations  in the  historical  record makes  

rigorous  analyses  of long-term  ocean climate  variability and change  challenging. Ocean model  

simulations  generate  continuous  data  in both time  and space, ideal  for ocean climate  studies,  but  

are also affected by biases and errors that  can lead to an unrealistic representation of key physical  

processes. To overcome  the  respective  limitations  of observations  and model  simulations, while  

harnessing the  strengths  of each, modelling centers  blend dynamical  models  with atmospheric  and  

oceanic  observations  through  data  assimilation  techniques. These  efforts  have  resulted  in  

observationally constrained estimates  of the  climate  state  that:  (1) Combine  the  full  spatiotemporal  

coverage  of models  with the  accuracy of observations, and (2) Are  easily accessible  for scientific  

and industrial applications  (Balmaseda et al., 2015; Storto et  al., 2019).  

Despite  these  advantages, there  can still  be  large  uncertainties  in  ocean reanalysis  products. 

In particular, some  parts  of  the  global  open ocean are  historically under-observed (e.g., the  

Southern Ocean), the  ocean subsurface  is  much less  constrained than the  satellite-observable  

surface, and  coastal  regions  are  often dominated by mesoscale  ocean features  that  may not  be  

properly resolved by the relatively coarse resolution of many global ocean reanalyses  (Balmaseda  

et  al., 2015;  de  Souza  et  al., 2021;  Lee  et  al., 2009). As  a  result, reanalysis  estimates  in these  

regions  may be  increasingly dependent  on the  underlying ocean model  configuration and its  

parameterization  of subgrid  scale  processes, leading to large  differences  between  ocean  reanalyses  

from  different  modeling centers.  (Balmaseda  et  al., 2015;  Masina  et  al., 2011;  Storto et  al., 2019;  

Xue et al., 2017, 2012; Zhu et al., 2012).   

Recent  advances  in ocean model  physics  (Breivik et  al., 2015), the  number and quality of  

observations  (Legeais et al., 2018), and data  assimilation techniques  (Sakov et al., 2012; Storto et  
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al., 2018) have led to the development of several high-resolution global and regional ocean 

reanalyses. With horizontal resolution as fine as 8 km, these new tools offer a unique opportunity 

to study ocean variability and change, as well as their impacts on marine species distributions and 

populations, with enhanced fidelity. Given the expanding use of ocean reanalyses for regional 

studies of oceanography and ecology, it is important to verify the accuracy of these high-resolution 

state estimates against independent (i.e., unassimilated) in situ ocean observations where available 

(de Souza et al., 2021; Xie et al., 2008). Indeed, increasing model resolution presents its own set 

of challenges, including (among others) potential errors in simulating mesoscale eddies and sharp 

gradients in ocean properties, coupling tides and waves, downscaling of atmospheric forcing, and 

the accuracy of bathymetry (e.g., (Storto et al., 2019). For example, (de Souza et al., 2021) 

compared several high-resolution ocean reanalyses to a variety of observations in New Zealand 

coastal waters and showed that some of the datasets inaccurately represented important coastal 

boundary currents. 

Another region that would also benefit from a thorough intercomparison of high-resolution 

ocean reanalyses is the California Current Large Marine Ecosystem (CCLME; Figure 1). The 

CCLME is home to a highly productive marine ecosystem with primary productivity and fish catch 

disproportionately high for its spatial extent (Chavez and Messié, 2009). This elevated productivity 

can be attributed to upwelling of nutrient rich waters along the U.S. west coast, which is driven by 

the seasonal intensification of northerly winds in the spring and summer. These seasonal wind 

changes and the associated impact on ocean properties are sensitive to climate variability on time 

scales of weeks to decades (Checkley and Barth, 2009). In particular, upwelling in the CCLME is 

strongly modulated by large-scale climate modes such as the El Niño-Southern Oscillation 

(ENSO), the Pacific Decadal Oscillation, and the North Pacific Gyre Oscillation (Di Lorenzo et 
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al., 2008; Jacox et al., 2015, 2014). In recent years, there has been rapid growth in the use of ocean 

reanalyses for oceanographic and ecological research in the CCLME, with reanalyses providing 

the environmental information used to develop oceanographic indices (Jacox et al., 2018; Santora 

et al., 2020), and to model species distribution shifts (e.g., (Abrahms et al., 2019; Brodie et al., 

2018) and population fluctuations (e.g., (Schroeder et al., 2014; Tolimieri et al., 2018). 

There have been some previous comparisons between high-resolution reanalyses and 

observations in the CCLME. For example, (Schroeder et al., 2014) showed that the high-resolution 

(1/10˚) data assimilative implementation of the Regional Ocean Model System (ROMS) from the 

University of California Santa Cruz (hereafter referred to as the California Current System 

reanalysis or CCSRA) compares well to in situ hydrographic measurements of ocean temperature, 

salinity, and upper ocean stratification during boreal winter and spring in the coastal ocean between 

Monterey Bay and Pt. Arenas. Additionally, (Neveu et al., 2016) showed that the CCSRA can 

credibly capture the spatial distribution of Eddy Kinetic Energy (EKE) off California’s coast. 

While these studies indicate that high-resolution ocean reanalyses may provide an accurate and 

spatiotemporally consistent depiction of ocean properties in the CCLME over the last several 

decades, they are primarily focused on a single regional ocean model. A careful analysis of the 

strengths and weaknesses of several different high-resolution ocean reanalyses in this region would 

benefit marine scientists interested in leveraging these tools for research into ocean climate 

variability and its impact on marine ecosystems in the CCLME. 

In this study, we independently verify the mean and variability of key ocean parameters in 

the CCLME from three high-resolution ocean reanalyses—the Global Ocean Reanalysis and 

Simulations (GLORYS), the Ocean Reanalysis System version 5 (ORAS5), and CCSRA. In 

particular, we focus on the historical representation of temperature and salinity at the ocean 
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surface, within the water column, and at the ocean bottom along the continental shelf, as well as 

SSH along the U.S. west coast. These variables were chosen due to their importance as leading 

indicators of marine resource response to climate variability (Ottersen et al., 2010; Pinsky et al., 

2013) and due to the availability of in situ and satellite observations suitable for model reanalysis 

evaluation. 

2. Data and Methods 

2.1 The high-resolution ocean reanalyses 

Below are descriptions of the high-resolution ocean reanalyses evaluated in this study. The 

spatiotemporal availability of each is further summarized in Figure 1 and Table 1. 

a) GLORYS 

We evaluate data from the Global Ocean Reanalysis and Simulations (GLORYS) version 

1 global ocean reanalysis (Lellouche et al., 2021). Available through the Copernicus Marine 

Environmental Monitoring Service (CMEMS), GLORYS offers daily mean and monthly mean 

ocean variables at 1/12˚ (~8 km) horizontal resolution with 50 vertical levels. The reanalysis is 

generated using the Nucleus for European Modelling of the Ocean (NEMO) ocean model, forced 

at the surface by the European Center for Medium-Range Weather Forecasts (ECMWF) ERA-

Interim atmospheric reanalysis. Output is available for 1993-2019, during which the model 

assimilates along-track satellite altimetry, satellite sea surface temperature (SST), sea ice 

concentrations, and in situ profiles of temperature and salinity from the Coriolis Ocean database 

ReAnalysis (CORA) dataset (Szekely et al., 2019). 

b) ORAS5 
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The global Ocean Reanalysis System version 5 (ORAS5; (Zuo et al., 2019, 2017), which 

includes a dynamic-thermodynamic sea ice model and surface wave model, was developed at 

ECMWF. Like GLORYS, it uses the NEMO ocean model (version 3.4.1) and surface forcing from 

the ERA-Interim reanalysis. The ORAS5 assimilates in-situ profiles of temperature and salinity 

from the “EN4” dataset (Good et al., 2013), merged in situ and satellite SST from HadISST2, and 

along track satellite altimeter-derived sea-level anomalies from AVISO (Archiving, Validation 

and Interpretation of Satellite Oceanographic data). Monthly and daily mean fields are available 

from 1979 to present, at a horizontal resolution of 0.25˚ (~25 km). There are 75 vertical depth 

levels, with layer thickness increasing from 1 m near the surface to 200 m in the deep ocean. 

ORAS5 consists of five ensemble members obtained using perturbing forcing fields and slight 

sampling differences in the observations that were assimilated. Here we used the ensemble mean 

of the five members. 

c) CCSRA 

A series of California Current System (CCS) ocean reanalyses have been developed by the 

Ocean Modeling group at UC Santa Cruz (https://oceanmodeling.ucsc.edu). Here, we evaluate a 

historical reanalysis covering 1980-2010 (Neveu et al., 2016), and an extension covering 2011-

2018. In both cases, the CCSRA employ the Regional Ocean Modeling System with 4-dimensional 

variational data assimilation (ROMS 4D-Var; (Moore et al., 2011). The domain covers nearly the 

entire the U.S. west coast (30-48˚N) and offshore to 134˚W with a horizontal resolution of 0.1˚ 

(~10 km) and 42 terrain-following vertical levels (Figure 1). Surface forcing for the 1980-2010 

reanalysis is derived from a combination of ECMWF atmospheric reanalyses (ERA-40 and ERA-

Interim) and cross-calibrated multiplatform (CCMP) winds, while the extension uses higher-

resolution forcing from the Naval Research Laboratory’s Coupled Ocean Atmosphere Mesoscale 

https://oceanmodeling.ucsc.edu
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Prediction System (COAMPS). Ocean boundary conditions are provided by the Simple Ocean 

Data Assimilation (SODA) product for 1980-2010, and from the GLORYS product after 2010. 

Assimilated data include satellite SST from AVHRR, AMSR-E, and MODIS, satellite SSH from 

AVISO/CMEMS, and in situ temperature and salinity profiles from the EN3 database (Ingleby 

and Huddleston, 2007) for 1980-2010 and from the EN4 database (Good et al., 2013) post-2010. 

Due to changes in the surface forcing and ocean boundary conditions between the historical 

CCSRA and its extension, care must be taken when combining the two into a continuous record. 

In general, agreement is good for quantities that are well constrained by observations, including 

temperature. For SSH, the switch in ocean boundary conditions introduces a small offset (Section 

3.6) that could be misinterpreted as a trend or low frequency variability. Past studies have found 

that some variables (e.g., surface properties, upper ocean stratification) are suitable for 

concatenation (Brodie et al., 2018) while others (e.g., subsurface currents) are not (Tolimieri et al., 

2018). Thus, the prudent approach for any user would be to examine the reanalyses for any obvious 

inconsistencies that might preclude stitching them together for a specific application. 

2.2 Observations used for model evaluation 

Below are descriptions of the observations used to validate the three reanalyses described 

above. The spatiotemporal availability of all observations is further summarized in Figure 1 and 

Table 2. 

a) Sea surface temperature and sea surface salinity 

We first compare SST from the three reanalyses to those from the NOAA Optimum 

Interpolation Sea Surface Temperature version 2.1 (OISSTv2.1; (Huang et al., 2021; Reynolds et 

al., 2007) dataset, available for 1981 to present. The OISST blends satellite measurements with in 
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situ data from ship, buoys and Argo floats, using a number of steps to reduce biases and provide 

the data on a 0.25° grid. However, the processes inherent in creating the OISST smooths the SST 

field and thus the true or feature resolving resolution is less than 0.25° (Reynolds et al., 2013); the 

smoothing varies in time and space but can be more pronounced in coastal regions (Reynolds and 

Chelton, 2010). Therefore, in order to further validate the coastal environment in the reanalyses, 

we compare with SST measurements from six nearshore stations that span most of the U.S. west 

coast (see Figure 1 yellow diamonds and Table 2). These in situ observations were not assimilated 

into any of the reanalyses, and thus, provide an independent estimate of SST variability. 

Sea surface salinity (SSS) from the reanalyses is compared to the Level-4 SSS data from 

the Multi-Mission Optimally Interpolated Sea Surface Salinity (OISSS) Global Dataset V1.0 

(Melnichenko et al., 2016). This dataset optimally interpolates Level-2 swath measurements of 

SSS from the Aquarius, Soil Moisture Active Passive (SMAP), and Soil Moisture and Ocean 

Salinity (SMOS) satellite missions to produce monthly mean SSS estimates from August 2011 to 

present on a global 0.25˚ grid. We limit our SSS comparisons to 2012-2018, which is the longest 

overlapping period between the satellite observations and the reanalyses. 

b) Water column temperature and salinity 

Water column temperature and salinity was obtained from two sources. First, temperature 

profiles between the surface and 500m (or the bottom if shallower) were obtained from the 

California Underwater Glider Network (CUGN, (Rudnick et al., 2017). The gliders follow three 

paths originating from the California coast (at Monterey, Pt. Conception and Dana Pt.) extending 

southwestward ~500 km offshore, with each out-and-back section taking 2-3 weeks to complete 

(Figure 1; purple lines). Gliders dive between the surface and 500 m with each dive taking 

approximately three hours and covering three km horizontally. Several statistical methods are 
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applied to the original data, including a least squares fit and objective mapping, to obtain anomalies 

and a mean seasonal cycle on a rectangular grid as a function of depth, distance offshore, and time 

(Rudnick et al. 2017). We compare the reanalyses to this gridded data, which has a vertical 

resolution of 10 m, a horizontal resolution of 5 km, and a temporal resolution of 10 days. Our 

comparisons are for the period 2007 to 2018, the longest overlapping time period for the glider 

data and the reanalyses. The CUGN data is not assimilated into ORAS5 or GLORYS, but it is 

assimilated into the historical CCSRA reanalysis from 1980-2010. The CCSRA extension from 

2011-2018 does not assimilate CUGN data. 

Each reanalysis is further compared with Argo profile measurements of water column 

temperature and salinity in the CCLME. Argo is a global network of autonomous profiling floats 

that measure the temperature and salinity of the ocean’s upper 2000 m. Since 1999, the Argo 

program has collected more than 2 million hydrographic profiles worldwide (Jayne et al., 2017). 

Here, we evaluate 18,971 quality-controlled Argo profiles in the CCLME covering 2002-2018 

(Figure 1a; shading). For our comparisons, we average profiles in three sub-regions within the 

CCLME: (1) 40˚N-50˚N (referred to as North LME or NLME), (2) 30˚N-40˚N (referred to as 

Central LME or CLME), and (3) 20˚N-30˚N (referred to as South LME or SLME). See Figure S1 

for sub-region boundaries. 

Prior to analysis, individual Argo profiles were categorized into one of the three CCLME 

sub-regions based on their latitude and longitude. Profile measurements were then aggregated in 

the vertical into 20m bins in order to acquire uniformly spaced temperature profiles in each sub-

region as a function of time. Finally, we averaged all profiles within a given month to produce 

monthly mean water column temperature measurements as a function of depth. See Figure S1 and 

Figure S2 for the density of Argo measurements in depth and time. While Argo measurements are 
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assimilated into each of the ocean reanalyses discussed in this study, an intercomparison between 

Argo and the reanalyses may shed light on any potential deficiencies in the individual data 

assimilation schemes. In particular, differences in model physics, resolution, and the incorporation 

of other in situ datasets may impact the overall assimilation of Argo measurements. When 

compared to Argo data, all temperature and salinity anomalies are relative to the period 2002-

2018. 

c) Bottom temperature 

Bottom temperature data were obtained from three sources. First, the deepest portion of the 

glider profiles described above were used as near-bottom temperature measurements. Some 

comparisons were not practical as: (1) the shelf was too narrow for comparing reanalyses to gliders 

west of Dana Pt.; (2) the CCSRA grid points were too far away for a reasonable comparison with 

the CUGN location at 410 m in Monterey Bay as a result of using smoothed bathymetry, and (3) 

the ORAS5 reanalysis was too coarse for comparisons with the CUGN data to be 

meaningful. Second, we used temperature observations from conductivity, temperature, depth 

sensor (CTD) casts at three locations (See Table 2) along the Newport Hydrographic Line (Huyer 

et al., 2007), which extends west from the Oregon coast at 44.65°N (Figure 1; green line), to 

estimate the variability of bottom temperature during 2008 to 2018. Third, we use bottom 

temperature data that are collected as part of the U.S. West Coast Groundfish Bottom Trawl Survey 

(WCGBTS; (Keller et al., 2017), conducted between May and October of each year by NOAA’s 

Northwest Fisheries Science Center. Since 2003, the WCGBTS has covered the shelf/slope region 

of the entire U.S. west coast, sampling bottom depths of 55-1280m using a random stratified 

sampling design, with ~500-700 total stations per year (Figure 1; red dots). Each tow is ~15 

minutes in duration, covering ~0.55 km horizontally. The Newport Line and bottom trawl survey 
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data are not assimilated in any of the reanalyses. As mentioned previously, the CUGN data is only 

assimilated in the first segment of the CCSRA data (1980-2010). Therefore, many of these 

observations offer an independent metric by which to make our comparisons 

While the stratified random sampling pattern of the trawl data precludes the generation of 

climatologies and thus an evaluation of bottom temperature variability, it does provide much more 

thorough spatial coverage from which we can assess the ability of reanalyses to reproduce mean 

patterns of bottom temperature. Bottom temperature variability will instead be assessed using the 

measurements from the CUGN and Newport Line, which are more consistent in time and space 

than the trawl data. Comparing bottom temperature between observations and reanalyses is made 

further complicated by the relatively narrow shelf and steep bathymetry off the U.S. west coast. 

Even with ~10 km reanalysis resolution, the true bottom depth can be very different from the 

reanalysis bottom depth at the nearest grid point, which in turn can produce large differences in 

the observed and reanalysis bottom temperature. One can account for this discrepancy by matching 

the bottom temperature measurements with reanalysis output at the same depth (not necessarily at 

the reanalysis bottom). Specifically, for each bottom temperature observation we first find the 

closest reanalysis grid cell where the model bottom is deeper than the observed depth, and then 

linearly interpolate the reanalysis water temperature profile to the depth of the observation (Figure 

2). To illustrate the influence of using the reanalysis bottom temperature rather than a depth-

matched temperature, we compare the two methods for the bottom trawl data (Section 3.5). 

d) Coastal sea surface height 

To verify sea level variability along the U.S. west in the ocean reanalyses we compare them 

to data from nine tide gauges (Figure 1; black dots) maintained by the Joint Archive for Sea Level 

(JASL), which is a partnership between the University of Hawaii Sea Level Center (UHSLC) and 
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the National Centers for Environmental Information (NCEI). Here, we utilize the Research Quality 

Data Set (RQDS). These observations are not assimilated in any of the reanalyses discussed here, 

and therefore offer an independent metric by which to verify sea level changes. For this 

comparison, monthly SSH anomalies are relative to a long-term climatology of 1993-2018, which 

is the longest overlapping period between the tide gauges and the reanalyses. 

e) Eddy Kinetic Energy 

Finally, ocean mesoscale variability is ubiquitous along the U.S. west coast and plays a key 

role in modulating regional ocean dynamics such as coastal upwelling in the CCLME, which can 

impact primary productivity through the vertical transport of key nutrients in and out of the 

euphotic zone (Gruber et al., 2011; Renault et al., 2016). We assess the representation of mesoscale 

variability in the ocean reanalyses using geostrophic Eddy Kinetic Energy (EKE), calculated as: 

1
𝐸𝐾𝐸 = (𝑈′𝑔

2 + 𝑉′𝑔
2) (1)

2 

Where 𝑈′𝑔 and 𝑉′𝑔, respectively, are the zonal and meridional components of the daily mean 

geostrophic surface current anomalies estimated from daily mean SSH anomalies. The EKE in the 

ocean reanalyses is compared to the EKE calculated from AVISO satellite altimetry measurements 

(Ducet et al., 2000), which provides daily mean SSH anomalies from 1993-2012 on a 0.25˚ grid. 

For consistency with the AVISO data, SSH anomalies from each reanalysis are computed relative 

to the long-term mean of a 1993-2012 base period. The EKE in each reanalysis was first calculated 

on the native model grid and then interpolated to the AVISO 0.25˚ grid in order to compare them 

to the coarser AVISO data. 

2.3 Analysis approach 

a) Statistical methods 



            

            

         

             

             

         

       

            

  

   

         

           

           

       

            

         

           

       

    

        

           

          

         

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

The purpose of this study is to inform potential users of these high-resolution reanalyses 

whether (and in what context) these different data assimilative models may act as a reliable 

substitute for the comparably noisy, discontinuous and sporadic raw ocean measurements. To 

support this goal, we evaluate each ocean parameter using a set of common statistical comparisons 

that are broadly applicable to a range of potential research applications. These comparisons include 

assessments of the reanalyses’ mean state and variability as measured by the mean bias, root-mean-

square error (RMSE), and correlation coefficient relative to observations. Where appropriate 

statistical significance is evaluated using a Student’s t-test with a 95% confidence interval after 

correcting the degrees of freedom for lag-1 autocorrelation. 

b) Observation limitations 

Due to the different spatiotemporal coverage and sampling schemes of different 

observational platforms, each is well suited to some types of analyses but not others. For instance, 

to assess the degree to which reanalysis data represents the observed variability of an ocean 

parameter at any given location (as measured by RMSE and/or the correlation coefficient), 

consistent measurements are required at that location for many years to derive a representative 

climatology and anomalies. Some observational platforms do provide long records at one location 

(such as the coastal station data analyzed in Section 3.1b), but these measurements are not useful 

for assessing the variability of an ocean parameter over large areas. As a result, to validate 

variability in reanalyses on a broader scale, we either: (1) aggregate sporadic point measurements 

in time and space to produce a consistent record suitable for calculating anomalies for comparison 

to the models (e.g., our approach with Argo profiles in Sections 3.3b and 3.4b) or (2) rely on 

observational products that have been infilled or interpolated onto a grid, such as AVISO, OISST, 

and OISSS. Gridded observations may feature statistical artifacts or biases introduced during 
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interpolation (Reynolds et al., 2013; Reynolds & Chelton, 2010). However, by also comparing the 

reanalyses to raw and in situ point measurements, such as the Newport line data, shore stations, 

tide gauges, bottom trawl measurements, and Argo profiles, we hope to assess any sensitivities our 

results may have to our choice of observations. We return to these topics in more detail in the 

Discussion section. 

3. Results 

3.1 Sea surface temperature 

a) Comparisons with OISST 

The annual mean SST pattern in OISST features a tongue of cool SSTs along the U.S. west 

coast, which is associated with the southward advection of cold water from high-latitudes by the 

California Current, as well as broadscale upwelling driven by the climatological northerly winds 

(Figure 3a). Overall, the reanalyses show modest SST biases relative to the annual mean OISST 

data (Figure 3b-d). Additionally, each reanalysis exhibits a similar bias pattern: cool along the U.S. 

west coast and warm offshore. Among the three reanalyses, GLORYS shows the largest warm 

SST biases (~0.5˚C) from 32˚N-42˚N, while the U.S. west coast SST biases in ORAS5 and 

CCSRA are generally insignificant. 

The greatest SST variability, as indicated by the standard deviation of the monthly means 

in OISST, is adjacent to the coast with regions of somewhat enhanced variability extending farther 

offshore of the California coast (Figure 3e). Additionally, there are areas of higher variability along 

the southern half of Oregon and portions of California, including between Pt. Arena and Pt. Reyes 

(~38°N) and in the vicinity of Pt. Conception and the Channel Islands (~34°N). While the 

nearshore peak in the SST standard deviation is likely associated with upwelling driven SST 
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changes, the offshore extension of elevated variability may be associated with enhanced eddy 

activity in this region (see also Section 3.7). The monthly mean SST anomalies in each reanalysis 

are highly correlated with the corresponding SST anomalies from OISST (Figure 3f-h), indicating 

that the reanalyses credibly reproduce the regional structure of the observed variability. This is 

further supported by the high pattern correlations between the OISST monthly standard deviation 

pattern and those from the reanalyses (Figure S3e-h). Among the reanalyses, CCSRA most closely 

resembles OISST, featuring the highest point-by-point correlations with the observed monthly 

mean SST anomalies and the highest pattern correlation with the observed monthly standard 

deviation pattern. In comparison, ORAS5 exhibits less variability than OISST over most of the 

domain and GLORYS SST variability is generally greater than that in OISST, particularly in the 

southwest portion of the domain (Figure S3f-g). These differences contribute to the overall lower 

(yet still significant) point-by-point correlations between ORAS5/GLORYS and the OISST 

monthly mean SST anomalies (Figure 3f-g). 

b) Comparisons with nearshore stations 

The reanalyses also generally compare well with SST data from six nearshore stations 

spanning the U.S. west coast (Figures 4 and S4). At the northernmost stations (Stonewall; 44.7˚N 

and Charleston; 43.3˚N), CCSRA and GLORYS exhibit insignificant annual mean biases, while 

ORAS5 has a significant warm bias at Charleston. However, all three reanalyses show high 

monthly mean correlations and relatively small RMSE of ~0.25-0.4˚C when compared to station 

data at these latitudes. At Trinidad Beach (41.1˚N), GLORYS and ORAS5 exhibit significant cold 

biases. While CCSRA does not have a significant mean bias at this station, all three reanalyses 

show lower (yet still significant) monthly correlations, which also correspond to elevated RMSE 

values of ~0.5-0.6˚C. The reanalyses compare most favorably at the Farallon Islands (37.7˚N), 
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where they have the smallest biases, highest correlations, and lowest RMSE values of any of the 

stations compared here. The southern stations (Newport Beach; 33.6˚N and Scripps Pier; 32.9˚N) 

show the largest differences among the reanalyses. For example, at Newport Beach, GLORYS 

exhibits a significant cold bias of about 1˚C, while ORAS5 and CCSRA show warm biases of 

~0.8˚C and 1˚C, respectively. At the Scripps Pier, both ORAS5 and GLORYS show significant 

cold biases, while CCSRA does not have a significant bias. These potential reanalysis errors are 

further highlighted by overall lower monthly correlations and higher RMSE values at these 

southern stations, especially for GLORYS at Newport Beach. The cold biases in GLORYS at these 

southern latitudes may be due to enhanced upwelling rates. We will explore this possibility in more 

detail in Section 3.3a. 

3.2 Sea surface salinity 

a) Comparisons with OISSS 

The annual mean SSS pattern in OISSS features salinity values that decrease with latitude, 

reaching a minimum in the coastal regions of the Pacific Northwest, which is likely associated 

with increased freshwater fluxes from the Columbia River outflow at ~46˚N (Figure 5a). Despite 

the high pattern correlations between the annual mean SSS in the reanalyses and the OISSS data 

(Figure S5b-d), each of the reanalyses have significant mean SSS biases, particularly off the 

Oregon and Washington coast (Figure 5b-d). The bias patterns in GLORYS and ORAS5 are 

similar, with mainly salty biases offshore north 45˚N and mainly fresh biases in a horseshoe pattern 

along the coast and extending offshore from 40˚N-50˚N. South of 40˚N, both GLORYS and 

ORAS5 have mostly insignificant biases. In contrast, CCSRA has significant salty biases from 

40˚N-50˚N and significant negative biases offshore south of 40˚N. The large biases in each of the 
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reanalyses near the Columbia River outflow suggests unrealistic freshwater forcing in this region. 

GLORYS and ORAS5 have potentially too much freshwater input, while the salty nearshore biases 

in CCSRA are consistent with its omission of freshwater sources (Neveu et al., 2016). 

Monthly SSS variability is relatively weak throughout the CCS, except near the Columbia 

River outflow where monthly standard deviations reach as high as 0.35 PSU (Figure 5e). The 

monthly mean SSS anomalies in GLORYS are highly correlated with the OISSS anomalies 

offshore and south of about 40˚N, but are not significantly correlated with the observations off the 

coast of Oregon and Washington (Figure 5f). In comparison, ORAS5 has the highest overall 

correlations with the satellite data; however, it is less correlated along the coast from 30˚N-50˚N 

(Figure 5g). The SSS anomalies in CCSRA are significantly correlated with OISSS south of 38˚N, 

but the correlations are insignificant nearly everywhere north of 38˚N (Figure 5h). Overall, ORAS5 

has the highest pattern correlation with the observed monthly mean standard deviation pattern (r 

= 0.84), while GLORYS and CCSRA have weaker pattern correlations of 0.77 and 0.60, 

respectively (Figure S5e-h). 

3.3 Water column temperature 

a) Comparisons with glider lines 

When compared to annual mean temperature data from the CUGN, each of the three ocean 

reanalyses displays a different annual mean temperature bias pattern that is broadly consistent 

across the three different glider lines (Figures 6 and S6). For example, GLORYS shows a nearshore 

significant warm bias centered at ~30m depth, as well as a cold bias along the continental shelf at 

~60-180m depth at Monterey and Pt. Conception at the surface at Dana Pt. (Figure 6d-f). The 

warm bias may be due to GLORYS having a slightly deeper nearshore mean thermocline than 
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observed (Figure S6a-f). Due to the strong vertical temperature gradients found within the 

thermocline, even subtle shifts in its mean position can result in large model biases. The coastal 

cold biases are most significant at Pt. Conception and may be related to differences in nearshore 

vertical transport rates, as indicated by the shallower isotherm slopes below ~90m and within 

~40km of the coast in GLORYS compared to CUGN (Figure S6b,e). The cold biases near the 

surface at Dana Pt. may be due to enhanced upwelling in GLORYS, as indicated by the more 

vertically tilted annual mean isotherms above 90m within 20km of the coast. Enhanced upwelling 

at these latitudes may also explain the significant cold SST biases seen at Newport Beach and the 

Scripps Pier (Figure 4a). At each glider line, ORAS5 shows significant warm temperature biases 

at all vertical levels within ~150-200km of the coastline (Figure 6g-i). These warm biases are likely 

the result of weaker overall upwelling rates in ORAS5, as indicated by the generally flatter 

nearshore mean isotherms when compared to observations (Figure S6g-i). Weaker upwelling in 

ORAS5 may be due to the coarser resolution of its ocean model. Finally, CCSRA features 

significant warm biases at each glider line that extend offshore and slope upwards towards to the 

coast (Figure 6j-l). These biases are related to a systematically deeper mean thermocline in CCSRA 

when compared to CUGN (Figure S6j-l). Overall, the annual mean temperature in GLORYS has 

the lowest pattern root mean square error (RMSE) when compared to the CUGN data at each 

location (ranging from 0.17˚C to 0.21˚C), while ORAS5 tends to have the highest (ranging from 

0.30˚C to 0.36˚C). 

All three reanalyses show high monthly mean correlations with the CUGN data above 

~30m at Monterey, above ~50m at Pt. Conception, and above ~90 m at Dana Pt (Figure 7). The 

correlations in each reanalysis are lower below these depths, with the exception of GLORYS at 

Monterey and Pt. Conception where there are high correlations offshore at all depths. Overall, 
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GLORYS has the highest correlations with observations across each CUGN domain, while 

ORAS5 has the weakest. The different correlation patterns among reanalyses may be related to 

their different monthly mean standard deviation patterns when compared to observations (Figure 

S6, shading). Overall, GLORYS and ORAS5 have similar pattern RMSE values with the observed 

temperature variability maps (ranging from 0.08˚C to 0.13˚C), while CCSRA has slightly higher 

RMSE values (ranging from 0.13˚C to 0.16˚C). 

b) Comparisons with Argo profiles 

All three reanalyses generally reproduce the timing and relative magnitude of CCLME 

subsurface temperature anomalies observed by Argo floats (Figure 8), including major interannual 

warming events in 2004-2006 and 2014-2016 related to El Niño and Northeast Pacific marine 

heatwaves (Amaya et al. 2016; Li et al. 2020) and cooling events in 2007-2009 related to La Niña 

(Okumura and Deser, 2010). The multi-year warming from 2014-2016 seen in observations and 

the reanalyses is most pronounced and consistent in the CLME and SLME, likely due to the 

southward shift in large-scale anomalous atmospheric forcing associated with major marine 

heatwaves in the Northeast Pacific in late 2014 and early 2015 (Amaya et al., 2016). Argo 

measurements in the SLME also show resurgent warming in 2017-2018, which is generally 

reproduced by GLORYS and ORAS5 (SLME is outside the CCSRA domain). Finally, there is 

evidence in the Argo record of downward propagating warm waters from the surface in 2014-2015 

to 100-150 m in 2015-2016 (particularly in the CLME and SLME). These downward propagating 

anomalies are evident in each reanalysis, although the magnitude of the CLME anomalies during 

this period are overall weaker in CCSRA. 

While the ocean reanalyses generally have weaker temperature anomalies then those 

computed from Argo, the discrepancy is likely due to the relatively small number of Argo profile 
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measurements in both depth and time that go into area averages (Figures S1 and S2). Indeed, if we 

resample daily mean GLORYS vertical temperature data to the same time and depth locations as 

the Argo data, we find that agreement between the two is greatly improved (Figure S7). This result 

highlights an advantage of ocean reanalyses, which provide a uniform dataset in time and space, 

over in situ observations that can give a biased view of the ocean state due to under sampling (see 

Section 5 for a more detailed discussion). 

3.4 Water column salinity 

a) Comparisons with glider lines 

The reanalyses each exhibit salinity bias patterns that are broadly consistent across the 

different glider lines (Figure 9). For example, GLORYS has significant fresh biases near the coast, 

which peak at the surface at Monterey and at ~60m-90m at Pt. Conception and Dana Pt. (Figure 

9d-f). In contrast, ORAS5 has significant salty biases mainly below 120m along each glider line, 

with significant fresh biases near the surface at Monterey and Pt. Conception (Figure 9g-i). Many 

of the fresh biases seen in GLORYS and ORAS5 may be associated with differences in vertical 

transport near the coast. For example, the CUGN data at Monterey shows annual mean isohalines 

of 33.1-33.5 PSU outcropping within ~200km of the coastline, however, neither GLORYS nor 

ORAS5 show outcropping isohalines beyond 33.2 PSU, resulting in fresh biases nearshore (Figure 

S8). On the other hand, CCSRA has isohalines at Monterey that have a similar slope to 

observations, resulting in weaker biases nearshore. At Dana Pt., there is a layer of saltier water 

seen in the annual mean CUGN data from the surface to ~60m within ~100km of the coast (Figure 

9c). This shallow, salty water is not reproduced in any of the reanalyses, contributing to the fresh 

biases seen here in GLORYS and ORAS5 (Figure S8, bottom row). Additionally, CCSRA has a 
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systematically weaker and shallower halocline at all three glider lines than in the CUGN, resulting 

in positive significant salty biases that slope upwards from offshore to onshore and which overlie 

significant fresh biases at deeper depths (Figures 9j-l and S8). 

In general, the monthly mean correlations between CUGN and reanalysis water column 

salinity are overall lower than the corresponding temperature correlations (comparing Figures 7 

and 10). The lower overall salinity correlations are consistent with the large differences seen in the 

monthly mean standard deviation patterns between the CUGN and reanalysis data (Figure S8). 

Despite these clear deficiencies, the reanalyses do have regions of significant salinity anomaly 

correlations along each glider line, with the highest correlations for all three reanalyses found at 

Dana Pt (Figure 10, bottom row). In this region, each reanalysis shows significant correlations 

throughout the water column, with the highest values near the surface for GLORYS and ORAS5 

and from 90-120m for CCSRA. Further, both GLORYS and CCSRA show significant (albeit 

weaker) correlations with CUGN salinity data throughout the water column at Monterey and Pt. 

Conception, with the highest correlations in GLORYS found near the surface west of 120˚W and 

the highest correlations in CCSRA found below ~50m along each line (Figure 10, top and middle 

rows). In contrast, ORAS5 has noticeably weaker correlations at Monterey and Pt. Conception, 

with insignificant values throughout much of the water column (Figure 10g-h). However, ORAS5 

does have significant correlations near the surface along the glider lines and at depth within ~40km 

of the coast. 

b) Comparisons with Argo profiles 

The reanalyses broadly reproduce the timing of major interannual salinity anomalies 

observed by Argo profiles (Figure 11). For example, in the NMLE and CLME there was a period 

of fresher than normal conditions from the surface to ~150m from 2003-2006, which is seen in 
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GLORYS and ORAS5, but less so in CCSRA. This period of fresh anomalies also encompasses 

the SLME in GLORYS and ORAS5, but there are very few Argo profiles during this time with 

which to validate the reanalyses (Figure S2c). Additionally, Argo profiles show a period of salty 

anomalies beginning in ~2016 in each sub-region that is broadly captured by the reanalyses. 

Despite these similarities, there are some important differences between the Argo salinity data and 

the reanalyses. For example, Argo shows fresh anomalies in 2009-2010 and 2013-2015 in the 

NLME, which are mostly absent in the reanalyses. There are also larger and more persistent salty 

anomalies in GLORYS and ORAS5 in the SLME from 2014-2016 than seen in Argo. While 

GLORYS and ORAS5 show larger anomalies during this time period, the Argo profiles tend to 

have larger salinity anomalies overall, which as discussed previously is likely related to the limited 

number of individual Argo profiles in these regions (Figures S1-S2, S7). 

3.5 Bottom Temperature 

a) Comparisons with the CUGN and Newport Line 

Both GLORYS and CCSRA produce monthly mean bottom temperature data that are 

significantly correlated with nearby CUGN values at the Monterey Bay (Line 66) and Pt. 

Conception (Line 80) locations as well as data taken from CTD casts along the Newport Line 

(Figure 12; note ORAS5 is omitted from this comparison due to its inability to resolve the shelf). 

For the CUGN lines, both the GLORYS and CCSRA bottom depth correlations decrease with 

depth, while the reanalyses have peak correlations with the Newport Line data at 55m depth. At 

CUGN Line 66, GLORYS and CCSRA have similar correlations with observations. However, at 

CUGN Line 80 and along the Newport Line, GLORYS has noticeably higher correlations. 

b) Comparisons with bottom trawl data 
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While the stratified random sampling pattern of the trawl data precludes the generation of 

climatologies, it does provide much more thorough spatial coverage from which we can assess the 

ability of reanalyses to reproduce mean patterns of bottom temperature. As described in the 

methods (Section 2.2c), there are discrepancies between reanalysis bottom depth and true bottom 

depth, and consequently there is considerable scatter when comparing the observed and reanalysis 

bottom temperature at the same location. Despite these discrepancies, there is good agreement 

between the reanalyses (especially GLORYS) and the observations (Pearson correlation 

coefficients r = 0.76 and 0.92 for CCSRA and GLORYS, respectively; Figure 13). This effect is 

less pronounced in GLORYS than in CCSRA, as the terrain-following coordinate system used in 

the latter requires additional bathymetric smoothing that introduces greater differences between 

modeled and true bottom depth. However, when bottom depth differences are accounted for (i.e., 

reanalysis temperature is taken from the depth of the trawl measurement), both GLORYS and 

CCSRA exhibit strong fidelity to observed bottom temperatures (r = 0.97 and 0.96, respectively). 

Patterns of mean bias differ between the two reanalyses, with CCSRA tending to be too warm at 

the coldest temperatures and too cold at the warmest temperatures, while GLORYS is slightly 

warm at high temperatures (Figure 13). 

3.6 Sea surface height 

Coastal sea level measurements from tide gauges and reanalyses exhibit large monthly and 

interannual fluctuations that are likely associated with local wind forcing and propagating coastally 

trapped waves (Amaya et al., 2022) that may be stochastically forced or driven by major ENSO 

events, including the 1997-1998 and 2015-2016 El Niño events (Figures S9-S11). The SSH 

anomalies in each reanalysis are significantly correlated with the tide gauge measurements at every 
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location (Figure 14a). However, GLORYS produces the highest correlation values at every station 

except the Humboldt Bay tide gauge at ~40˚N. Latitudinal patterns in RMSE roughly mirror those 

in the correlation, with the lowest RMSEs in the south of the domain and larger values in the north 

(Figure 14b). GLORYS tends to have the lowest RMSE values, while ORAS5 has the highest 

values north of 36˚N. 

3.7 Eddy Kinetic Energy 

The annual mean EKE pattern from AVISO data shows a band of elevated values that 

roughly follow the North American coastline from 20˚N-45˚N, with peak values centered offshore 

in the CCLME around 37˚N (Figures 15 and S12). In comparison, GLORYS has a significant 

positive bias throughout much of the CCLME from 30˚N-40˚N, while ORAS5 has a significant 

negative bias throughout the entire domain. The EKE bias pattern in CCSRA exhibits significant 

positive biases near the edges of the regional model domain, likely associated with the lateral 

boundary conditions used to force the regional model, however, CCSRA tends to have the smallest 

biases in the main EKE region (Figure 15b-d). When considering monthly EKE variability, we see 

that both GLORYS and CCSRA are significantly correlated with the observations throughout their 

respective domains, while ORAS5 generally has insignificant correlations (Figure 15e-h). 

The strong negative EKE biases and low correlations seen in ORAS5 may be due, in part, 

to the model’s coarse resolution (0.25˚), which is not eddy resolving. Additionally, although 

ORAS5 does assimilate satellite altimetry data, these observations are rejected from the 

assimilation scheme in the nearshore environment (i.e., when the ocean bottom depth is shallower 

than 500m) and are strongly down weighted within ~800km of the coastline (Zuo et al. 2019). As 

a result, the mean structure and variability of the mesoscale features are generally not captured in 



             

          

       

     

           

   

  

   

         

         

        

          

         

         

           

       

             

        

      

            

          

      

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

ORAS5. It is also important to note that our comparisons are somewhat hampered by the resolution 

of the gridded AVISO data. The higher EKE values in both GLORYS and CCSRA are due to their 

higher horizontal resolutions, which allow their respective ocean models to simulate finer scale 

circulation features, thus increasing the level of eddy activity relative to AVISO. Therefore, in 

reality (where ocean currents are not limited by horizontal grid resolution), it is likely that the 

magnitude of EKE in the CCS is actually closer to that seen in the high-resolution reanalyses. 

4. Summary 

In this study, we compared the output from three high-resolution ocean reanalysis 

products—the 1/4˚ ORAS5, the 1/12˚ GLORYS, and the 1/10˚ CCSRA—to a variety of in situ and 

satellite-derived observations in the CCLME. For surface temperature, we found that all three 

analyses were generally able to capture the observed mean state and monthly variability as 

measured by satellite observations and coastal station data over the last several decades. In 

particular, when comparing to unassimilated SST data from six stations along the U.S. west coast, 

we showed that the nearest grid cells in each reanalysis were highly correlated with the 

observations, with typical correlation values exceeding 0.80 and even reaching as high as 0.97 at 

some stations (Figure 4). Comparing across the reanalyses, we found that CCSRA has the most 

accurate depiction of monthly SST throughout the CCLME, while GLORYS and ORAS5, 

respectively, slightly overestimated and underestimated the larger-scale SST variability (Figures 

3 and S3). For sea surface salinity, we found significant biases in all three reanalyses near the 

outflow of the Columbia River at 46˚N (Figures 5 and S5), suggesting an influence of unrealistic 

(or missing) freshwater forcing in the models at this location. 
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Comparisons to different measures of water column temperature throughout the CCS saw 

large differences among the ocean reanalyses. For example, each reanalysis depicted significant 

warm mean temperature biases relative to CUGN data (Figure 6). These biases were the result of 

differences in the mean position of the thermocline (as in GLORYS and CCSRA) or differences 

in vertical transport rates (as in ORAS5). Despite these mean biases, monthly mean temperature 

data from each reanalysis were significantly correlated with the CUGN data above ~50m. 

However, GLORYS showed a clear advantage over ORAS5 and CCSRA with the highest 

correlations throughout the water column (Figure 7). Comparisons to CUGN salinity data were 

less favorable among the reanalyses (Figures 9 and 10), with each reanalysis showing large biases 

related to differences in vertical transport rates (as in GLORYS and ORAS5) and differences in 

the mean position of the halocline (as in CCSRA), as well as weaker overall point-by-point 

correlations than with the corresponding temperature observations. All three reanalyses credibly 

reproduce the large-scale subsurface temperature and salinity anomalies measured by Argo 

profiles, including the downward propagation of recent warm anomalies associated with the 2015-

2016 marine heatwave and the recent salty conditions throughout the CCS after 2016 (Figures 8 

and 11). 

When comparing bottom temperature measurements from the reanalyses to observations, 

GLORYS was the best performer. In particular, GLORYS consistently had the highest correlations 

with monthly mean bottom temperature estimates from the CUGN and the Newport Line (Figure 

12). Additionally, due to GLORYS having more realistic bathymetry than CCSRA, it also had 

bottom temperatures that were much more highly correlated with bottom temperature 

measurements from nearby trawls (Figure 13). However, accounting for differences in bottom 

depth between the trawl measurements and the reanalysis led to marked improvements for 



         

        

  

       

           

          

       

          

           

        

          

    

  

   

    

          

            

   

  

   

       

          

         

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

CCSRA. Overall, the favorable comparisons between the reanalyses and various bottom 

temperature observations are impressive given the difficulty of comparing pointwise 

measurements on the steep bathymetry along the west coast. 

The reanalyses also showed impressive correlations with monthly mean SSH 

measurements from nine coastal tide gauges, producing significant correlation values ranging from 

0.67 to 0.91 and accurately depicted major El Niño-driven sea level changes along the U.S. west 

coast (Figures 14 and S9-S11). However, CCSRA and GLORYS continued to stand out, producing 

lower overall RMSE values at each tide gauge location when compared to ORAS5. Finally, both 

GLORYS and CCSRA produced patterns of ocean mesoscale activity (i.e., EKE) that compared 

well to AVISO satellite measurements, while ORAS5 underestimated the intensity of EKE 

throughout the CCS due to its coarser resolution and the decision to down weight satellite altimetry 

data near coastlines during the assimilation process (Figure 15). 

5. Discussion 

5.1 Choosing a reanalysis for California Current ecosystem science 

As is often the case when evaluating reanalyses (Balmaseda et al., 2015; Storto et al., 2019), 

the “best” product to use depends on the application. However, based on the results above, we can 

offer some general guidelines as well as some more targeted examples. 

5.1.1 General considerations 

Model resolution is an obvious consideration when choosing a reanalysis. For research into 

coastal ocean processes along the U.S. west coast, the higher resolution of GLORYS or CCSRA 

clearly provides enhanced fidelity of the nearshore environment including surface and bottom 
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temperature, sea level variability, mean coastal upwelling, and the representation of coastally 

trapped waves (Amaya et al., 2022). However, given the small scale of many of the eddies off the 

U.S. west coast, Neveu et al. (2016) concluded that the CCSRA horizontal resolution was 

insufficient to fully represent the observed EKE variability. Throughout the broader CCLME, 

ORAS5 is generally comparable to GLORYS and CCSRA (with the exception of its poorer 

representation of EKE), so studies interested in larger-scale ocean variability may prefer ORAS5 

with its coarser resolution and smaller overall storage requirements. 

Another clear consideration is the spatiotemporal coverage of a particular analysis. For 

example, GLORYS only provides data starting in 1993, so studies requiring output prior to 1993 

would be limited to either CCSRA or ORAS5. Similarly, the CCSRA domain limits analysis to 

the CCS region, whereas the global ocean models used by GLORYS and ORAS5 do not have such 

geographical restrictions. As a result, studies utilizing GLORYS and ORAS5 are able to 

investigate the relationship between the CCS and remote regions (e.g., tropical Pacific) within the 

same reanalysis dataset. In general, the resolution and performance of GLORYS and CCSRA will 

make them preferable to ORAS5 unless the application requires both global coverage and a 

historical record extending earlier than 1993, or if the additional computing/storage burden 

incurred by using a higher resolution reanalysis is prohibitive. 

Finally, potential users of these products should note that they may all be quite limited in 

certain respects. In our analysis, a chief example is the relatively large salinity errors in each 

reanalyses when compared to observations. In particular, the large mean salinity biases and weaker 

overall monthly mean correlations may limit the utility of the reanalysis salinity data in the CCS, 

especially in the nearshore environment and at higher latitudes near the Oregon and Washington 

border. Indeed, to the best of our knowledge, none of the reanalyses considered here explicitly 
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represent freshwater inputs (i.e., rivers) to the California Current System at all. Thus, they are not 

well tailored to applications that are very sensitive to that aspect of the oceanography, though the 

effects of freshwater inputs will be captured indirectly by assimilation of temperature and salinity 

observations in the coastal ocean. We do note, however, that our salinity comparisons were limited 

to relatively short periods (2012-2018 for OISSS, 2007-2018 for CUGN, and 2002-2018 for Argo) 

and that satellite salinity data have known biases and errors (particularly at higher latitudes), which 

may influence our comparisons (e.g., Melnichenko et al., 2014). Therefore, it is possible that the 

apparent deficiencies seen in the reanalysis salinity data will improve as satellite salinity 

measurements increase in number and accuracy. 

5.1.2 Targeted applications 

The general guidelines offered above can be further tailored in the context of specific 

applications, which we demonstrate here by drawing on a range of CCS case studies. For example, 

in recent years ocean reanalyses have been increasingly relied upon to generate ecologically-

relevant oceanographic indices. The Temperature Observations to Avoid Loggerheads (TOTAL; 

Welch et al., 2019)) tool tracks the risk of Loggerhead Turtle bycatch in California’s drift gillnet 

fishery based on SST anomalies in the Southern California Bight. In summers following persistent 

warm SST anomalies, temporary closures can be enacted. In this case, CCSRA is likely the most 

attractive reanalysis due its ability to capture the mean and variability of SST anomalies in the 

region, and its long record that provides a more robust assessment of historical variability, 

especially related to ENSO events. The Habitat Compression Index (HCI; Schroeder et al., 2022), 

which tracks the presence of cool-water habitat nearshore, has been related to regional ecosystem 

shifts and whale entanglement risk. Again, the fidelity of CCSRA for fine-scale nearshore SST 
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variability, as well the relatively high resolution of its wind forcing and associated representation 

of coastal upwelling, make it well suited to this application. 

Moving to more complex ecological models, additional considerations will drive the choice 

of reanalysis. As described above, CCSRA is a good choice for surface-oriented analyses, and has 

been successfully applied in species distribution models focused on the near-surface environment 

(e.g., Becker et al., 2016). In contrast, GLORYS more realistically captures the bathymetry of the 

relatively narrow shelf off the US west coast and generally does a better job reproducing observed 

bottom temperature variability; therefore, it is likely a better choice for species distribution models 

of benthic organisms such as groundfish (e.g., Ward et al., 2022), provided the shorter historical 

record is adequate. Issues of internal consistency of reanalyses can also have different impacts 

depending on the nature of ecological model employed. Changes in the configuration of CCSRA, 

between its 1980-2010 historical run and an extension starting in 2011, introduce inconsistencies 

in some fields. For aspects of the ocean circulation that are well constrained by observations or 

surface forcing (e.g., SST, SSH, upwelling), these inconsistences are of less concern. But some 

ecological models rely on hydrographic properties that are not well constrained by observations 

and are more sensitive to changes in model configuration. For example, life-stage specific 

recruitment models have been developed for several groundfish species in the CCS (Haltuch et al., 

2020; Tolimieri et al., 2018) based on mixed layer depth, ocean temperature, and alongshore and 

cross-shore currents in different vertical and horizontal sectors of the water column. For the 

subsurface alongshore and cross-shore currents in particular, the 1980-2010 and post-2010 

versions of CCSRA cannot be combined as a consistent reanalysis. In this case GLORYS would 

offer a self-consistent alternative, and while data limitations preclude direct assessment of 
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subsurface currents, the subsurface structure (temperature and salinity) in GLORYS is generally 

very good relative to the other reanalyses. 

5.2 Sources of differences between reanalyses 

It is important to consider what factors may lead to one reanalysis comparing more 

favorably to observations than another reanalysis, particularly if those observations are assimilated 

by each of the reanalyses (e.g., Argo data is assimilated in all three reanalyses analyzed here). As 

discussed previously, differences in model resolution likely plays a key role in producing different 

reanalysis solutions, especially in the nearshore coastal region. Additionally, the resolution and 

fidelity of the atmospheric forcing for each of the ocean models may play a role. Different data 

assimilation schemes (e.g., 3D-Var versus 4D-Var) and different subgrid parametrizations may 

also impact how reanalyses compare to observations. For example, the underestimation of sea level 

variance in ORAS5 is partly due to suboptimal parameter specifications for observation errors and 

data sampling (Zuo et al. 2019). However, it is difficult to assess the sensitivity of reanalysis errors 

to these model design choices without delving deeper into the raw model forcing files or (in some 

cases) the actual model code, neither of which are readily available to the average user of these 

reanalyses. Therefore, deciding which ocean reanalysis is most appropriate for a given application 

should be based on which physical processes are of interest and what computational resources are 

available to the user. 

5.3 Considerations for comparing reanalyses and observations 

In addition to the CCS-specific results, our analysis further highlights several important 

considerations that are generally applicable when comparing raw and/or post-processed 
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observations to reanalysis products. A critical factor for why reanalyses may differ from each other 

and from nature is the change in the number and types of data that are assimilated over time. 

Inclusion of new sources of data can lead to discontinuities, while the lack of data, especially early 

in the record, enhance the contribution of model bias to reanalysis errors. For example, Lellouche 

et al. (2021) noted that salinity coverage by ARGO was insufficient to constrain model error prior 

to 2014 in GLORYS. Temporal changes in atmospheric reanalyses used as boundary conditions 

also can influence ocean reanalyses. The horizontal resolution of the SSTs used as boundary 

conditions in ERA-interim increased in 2002. This increased small-scale variability in the 

atmospheric reanalysis winds, which were transmitted to the ocean reanalyses that used ERA-

interim, including the three reanalyses examined here; ORAS5 and CCSRA also used other 

atmospheric reanalyses during portions of their record, which likely contributed to discontinuities. 

Another change in the reanalyses occurred in 2004, with the inclusion of a large number of ARGO 

profiles. To accommodate the increase in the vertical profiles the time window in which the bias 

correction was performed was reduced by a third in GLORYS (Lellouche et al., 2021). This led to 

a rapid increase of EKE in GLORYS, which may have contributed to its excessive SST variability. 

In addition to temporal changes in the type and number of observations, some mean biases 

may depend on the particular observational data used for comparisons, particularly if one is 

comparing to raw measurements that have been post-processed or smoothed onto a uniform grid 

(such as OISST, OISSS, and AVISO data analyzed here) since the interpolation process may 

introduce statistical artifacts or biases (Reynolds et al., 2013; Reynolds & Chelton, 2010). 

Although, the weaknesses of interpolating raw observations onto a grid may be partially 

outweighed by the benefits of post-processing bias adjustments to satellite and ship observations 

to compensate for platform differences and sensor biases over time (e.g., Reynolds 1993; Reynolds 
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et al., 2007; Banzon et al., 2016; Huang et al., 2020). Further, reanalysis data at any given grid cell 

represents the characteristics of a volume of water, while in situ measurements are often from 

single points and may therefore benefit from similar bias corrections for comparisons with model 

output (Chang et al., 2021). 

Additionally, the raw Argo profile measurements showed stronger temperature changes 

than those observed in any of the reanalyses, which may be surprising considering each reanalysis 

assimilates Argo. However, resampling GLORYS to match the Argo data produced much more 

consistent results (Figure S7), indicating that apparent discrepancies are in fact largely due to 

sampling differences. Similarly, EKE values derived on the native GLORYS grid were much 

higher than the coarser AVISO gridded observations (Figures 15 and S12), and it is possible that 

the real-world intensity of EKE may be closer to the values seen in GLORYS than in pure 

observations. For benthic conditions over the continental shelf and slope, an important 

consideration is that the depth of the real ocean bottom can be significantly different than the depth 

of the nearest reanalysis grid cell. This depth difference leads to discrepancies between the 

observed and reanalysis bottom temperature, which are worse when the bathymetry is less realistic 

(i.e., compare CCSRA and GLORYS in Figure 13). A more accurate representation of the bottom 

conditions can be obtained by using the reanalysis temperature at the depth of the real ocean 

bottom, even if it is not the bottom in the reanalysis. However, this extra analytical step is not 

trivial and requires obtaining the full water column temperature data from the reanalysis, rather 

than a single level. In general, differences between observations and reanalyses are greatly reduced 

by controlling for the sampling limitations presented by the observations. Indeed, if there were 

substantially more Argo profiles in the CCS or if the spatial footprint of satellite altimetry 

measurements was more similar to GLORYS or CCSRA, then the observations may begin to look 
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more like the reanalyses. This suggests that even our best estimates of the “truth” can sometimes 

be limited by sampling frequency in time and space, and therefore, that the high-resolution 

reanalyses may provide a more realistic and more uniform representation of undersampled ocean 

variables in the CCLME. 
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1004 Table  1  Attributes  of the  three  reanalyses  used in this  study. The  acronyms  in the  table  are:  First  

Guess  at  the  Appropriate  Time  (FGAT);  Copernicus  Marine  Environment  Monitoring Service  

(CMEMS);  eXpendable  BathyThermograph (XBT);  Mechanical  Bathythermograph (MBT);  

Advanced Very High-Resolution Radiometer (AVHRR); Coriolis  Ocean database  ReAnalysis  

(CORA); Operational Sea Surface Temperature  and Ice Analysis (OSTIA).  

1005 

1006 

1007 

1008 

1009 

1010 

 Reanalysis  GLORYS  ORAS5 CCSRA  

Institute  

Mercator Ocean 

International 

(consortium)  

 ECMWF University of California Santa Cruz  

 Ocean Model  NEMO  OCEAN5  ROMS 

 Domain  global  global California Current System  

Horizontal 

 resolution 
 1/12°  1/4°  1/10° 

Levels   50  75  42 

Vertical 

 Coordinate 
 Depth (z)  Depth (z)  Terrain following (𝜌) 

 First level  0.5 m  0.5 m variable  

 Atmospheric 

 Forcing 
ERA-Interim  

ERA-Interim (1979-

 2015), ECMWF-NWP 

 (2015-present) 

ERA40 (1982-87),  

 ERA40+CCMP winds (1987-2001), 

ERA Interim+CCMP winds (2001-

 present) 

Assimilation 

 Scheme 
 3D-Var Kalman Filter 

3D-Var FGAT with 5 

day window  
 4D-Var 

Assimilated 

 Observations 

 AVHRR: SST, 

  CMEMS: SLA, 

CORA: In-situ 

 T/S profiles  

HadISST2 + OSTIA: 

SST, AVISO: SLA,  

 EN4: In situ  

 T/S profiles with XBT  

and MBT correction  

AVHRR, AMSR-E, and MODIS: SST, 

 AVISO/CMEMS: SSH, 

 EN3: In situ T/S profiles for 1980-2010  

 EN4: In situ T/S profiles for post-2010  

 Archive period daily/monthly   daily  6 hourly 

 Period  1993-2019  1979-2018  1980-2019 

 References 

 

  Lellouche et al. 2021 
Zuo et al. 2017, 2019    Neveu et al. 2016 



 

    

 
  

 
 

 

 

 
 

 
  

 

 

 

 

 

  

 
 

 

  

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

  

 

 

 

 
  

 

 

 

  

 

  

 
 

 
  

  

1011 Table 2  Description of observations used for comparison with reanalyses.  

Data Set Description Period References 

OISST v2.1 
Merged satellite and in situ 

SST data mapped to a 1/4° grid 
1982-present 

Reynolds et al. 2007; Huang et al. 

2021 

OISSS v1.0 
Merged satellite SSS data mapped to a 

1/4˚ grid 
2012-2018 Melnichenko et al. 2016 

Nearshore 

stations 

SST from Stonewall Bank (44.7°N, 

124.5°W), Charleston (43.3°N, 124.3°W), 

Trinidad Beach (41.1°N, 124.1°W), 

Farallons: (37.7°N, 123.0°W, Newport 

Beach (33.6°N, 117.9°W), Scripps Pier 

(32.9°N, 117.3°W). 

1993-present 

(with gaps) 

https://shorestations.ucsd.edu/shore-

stations-data/ 

Gliders 

California Underwater Glider Network 

(CUGN), 3 sections that extend ~500 km 

offshore. Surface to 500 m (or near 

bottom) 

2008-2018 Rudnick et al. 2017 

Newport 

line 

CTD casts at three locations along the 

Newport Hydrographic Line extends 

offshore from Oregon coast at 44.7°N for 

locations: 

T1: 124.1°W (25 m) 

T3: 124.1°W (55 m) 

T4: 124.3°W (75 m) 

Bottom depth in parentheses 

2008-2018 Huyer et al. 2007 

Argo 

Profiling floats drift at a depth of 1000 

meters over 10 days, then dive to 2000 

meters and return to the surface. ~4000 

currently deployed over the global ocean 

with 18,97 profiles in the CCLME during 

2002-18. 

2002-2018 Jayne et al. 2017 

Tide 

Gauges 

Sea level from 9 tide gauges spanning the 

west coast 
Varies 

Bottom 

Trawls 

Bottom temperature measurements from 

U.S. West Coast Groundfish Bottom 

Trawl Survey (WCGBTS) 

Varies Keller et al., 2017 

AVISO 
Satellite altimetry measurements on a 

0.25˚ grid 
1993-2012 Ducett et al. 2000 

1012 



  

            

      

          

           

  

   

1013

1014

1015

1016

1017

1018

1019

Figure 1 (a) Spatial distribution and (b) temporal availability of all data sets used in this study. 

Shading in (a) denotes total number of Argo profiles since 2002, binned in 1˚ x 1˚ grid cells. Black 

line outlines in the CCLME. Dashed gray line denotes the CCSRA regional domain. Black lines 

for each dataset in (b) indicates that the data was available for the given time step somewhere 

within the CCLME. 
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Figure 2 Bottom temperature locations used for comparing the CUGN and Newport Line (black 

X’s) to nearby GLORYS (red dots) and CCSRA (blue dots) grid points in Figure 12. The 

comparisons are conducted as follows: the nearest reanalysis grid point where the bottom is deeper 

than at the observed location is selected (dashed line connect the observed and reanalysis data 

locations), then the temperatures are interpolated from the reanalyses bottom depth to the observed 

bottom depth. Comparisons are made at depths of 30m, 70m and 410m in Monterey Bay and at 

70m, 130m and 300m off Pt. Conception, and at 25m, 55m, 75m on the Newport line. Comparisons 

between CCSRA and CUGN at 410m in Monterey Bay were omitted since the nearest deeper 

CCSRA grid points were too far away for a reasonable comparison. The ORAS5 reanalysis was 

omitted since it is too coarse for this comparison to be meaningful. 
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Figure 3 (a) Annual mean SST (˚C) pattern from OISST. (b)-(d) Annual mean SST bias patterns 

from the GLORYS, ORAS5 and CCSRA reanalyses, respectively. (e) Monthly mean standard 

deviation pattern (˚C) from OISST. (f)-(h) Anomaly correlation coefficients between monthly 

mean SST anomalies from OISST and each reanalyses. Significant biases at 95% confidence in 

the top row are denoted by green hatching. All monthly correlations reported in the bottom row 

are significant at 95% confidence. 
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Figure 4 (a) Annual mean SST bias values (˚C) from GLORYS (red), CCSRA (blue), and ORAS5 

(grey) relative to the mean SST at each shore station (indicated by latitude). (b) As in (a), but for 

the anomaly correlation coefficient between monthly mean SST anomalies from each reanalyses 

and each shore station. (c) As in (a), but for the monthly root mean square error (RMSE; ̊ C). Open 

circles in (a) indicate significant mean biases at 95% confidence. Closed circles in (b) indicate 

significant correlations with 95% confidence. 
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1046 Figure  5  As in Figure 3, but for OISSS  and reanalysis  sea surface  salinity (PSU).  
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Figure 6 (a)-(c) Annual mean temperature (˚C) along CUGN Line 66 (Monterey), Line 80 (Pt. 

Conception), and Line 90 (Dana Pt.), respectively. (d)-(l) Annual mean temperature bias (˚C) along 

each glider line in (d)-(f) GLORYS, (g)-(i) ORAS5, and (j)-(l) CCSRA. Gray hatching indicates a 

significant mean bias with 95% confidence. 
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Figure 7 (a)-(c) Monthly mean temperature standard deviation (˚C) along CUGN Line 66 

(Monterey), Line 80 (Pt. Conception), and Line 90 (Dana Pt.), respectively. (d)-(l) Anomaly 

correlation coefficients of monthly mean temperature data from CUGN with (d)-(f) GLORYS, (g)-

(i) ORAS5, and (j)-(l) CCSRA. White stipples indicate an insignificant correlation with 95% 

confidence. 
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Figure 8 Depth/time cross-sections of monthly mean water temperature anomalies (˚C) averaged 

in three CCLME sub-regions–the North LME (NLME; top row), Central LME (CLME; middle 

row), and South LME (SLME; bottom row). Data are from (a)-(c) Argo profiles binned in the 

vertical in 20 m bins, (d)-(f) GLORYS, (g)-(i) ORAS5, and (j)-(k) CCSRA. Note the reanalysis 

data feature their native vertical resolution. See Methods for more details. 
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1067 Figure  9  As in Figure 6, but for CUGN and reanalysis water column salinity (PSU).  
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1070 Figure  10  As in Figure 7, but for CUGN and reanalysis water column salinity (PSU).  
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1072 Figure  11  As in Figure  8, but for Argo  and reanalysis  salinity anomalies  (PSU).  
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Figure 12 Monthly mean bottom temperature anomaly (˚C) timeseries at select locations along 

(a)-(c) CUGN Line 66, (d)-(f) CUGN Line 80, and (g)-(i) the Newport Line. In each panel the 

observational data are in black and data from the nearest GLORYS and CCSRA grid cells are in 

red and blue, respectively. See Figure 2 for precise data locations. Anomaly correlation 

coefficients between the observations and each reanalyses are shown in each panel. Asterisks 

indicate significant correlations with 95% confidence. 
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Figure 13 Comparison of CCSRA and GLORYS with bottom temperature data from the west 

coast groundfish bottom trawl survey. (left) maps indicate differences between trawl depths and 

model bottom depths at the same location. (right) scatter plots of observed bottom temperatures 

compared to reanalysis temperatures extracted two ways: (1) at the model bottom (gray), which 

may be a substantially different depth from the trawl depth, and (2) at the depth of trawl sample 

(blue). See Methods for more detail. 
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 Figure  14  As in Figure 4b and 4c, but for SSH anomaly comparisons between the nine  tide  

 gauges and the nearest grid cells in GLORYS (blue), ORAS5 (red), and CCSRA (green).   
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Figure 15 (a) Annual mean geostrophic Eddy Kinetic Energy (EKE; cm2 s-2) based on SSH 

anomalies from AVISO satellite observations. (b)-(d) Annual mean EKE biases in GLORYS, 

ORAS5, and CCSRA, respectively. (e) Monthly mean EKE standard deviation in AVISO. (f)-(h) 

Anomaly correlation coefficients between monthly mean EKE values from AVISO and each 

reanalyses. Stipples in (b)-(d) indicate a significant mean bias with 95% confidence. Stipples in 

(f)-(h) indicate an insignificant correlation with 95% confidence. 
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