

1 An evaluation of high-resolution ocean reanalyses in the
2 California Current System
3

4

5 Dillon J. Amaya¹, Michael A. Alexander¹, James D. Scott^{1,3}, and Michael G. Jacox^{1,2}

6

7 **¹Physical Science Laboratory, Earth System Research Laboratory, National Oceanic and**
8 **Atmospheric Administration**

9 **²Environmental Research Division, Southwest Fisheries Science Center, National Oceanic**
10 **and Atmospheric Administration**

11 **³Cooperative Institute for Research in Environmental Sciences, University of Colorado**
12 **Boulder**

13

14

15

16

17

18

19

20

21

22 Corresponding author: Dillon J. Amaya, dillon.amaya@noaa.gov, 816-916-8348

23

24

25 **Abstract**

26 Sparse and inconsistent coverage of ocean observations makes analysis of climate impacts on
27 ocean physics and marine ecosystems challenging. As a result, ocean reanalyses (i.e., ocean
28 models constrained by observations through data assimilation) were developed to provide
29 historical ocean state estimates that are spatially and temporally uniform. Recent advances in high
30 performance computing and the number and quality of observations have led to the development
31 of high-resolution ocean reanalyses, which offer an opportunity to investigate coastal ocean
32 variability with enhanced fidelity. In this study, we evaluate the ability of three high-resolution
33 ocean reanalyses, including the Global Ocean Reanalysis and Simulations (GLORYS), the Ocean
34 Reanalysis System version 5 (ORAS5), and the California Current System Reanalysis (CCSRA),
35 to accurately represent ocean temperature and salinity (from the surface to the bottom), sea surface
36 height, and mesoscale activity in the California Current Large Marine Ecosystem (CCLME).
37 Specifically, we compare these reanalyses to a variety of assimilated and independent *in situ* and
38 satellite derived observations along the U.S. west coast. We find that the reanalyses generally
39 reproduce large-scale variability in temperature and sea surface height within the CCLME,
40 including effects of major ENSO events and recent marine heatwaves. We also show that
41 GLORYS and CCSRA, with their finer horizontal resolution, have enhanced fidelity in simulating
42 nearshore ocean parameters such as coastal sea level and bottom temperature along the continental
43 shelf. Our results suggest that these tools can be used to study the fine-scale features of the
44 California Current System over the past several decades.

45

46 **1. Introduction**

47 The spatial inhomogeneity of global ocean observations in the historical record makes
48 rigorous analyses of long-term ocean climate variability and change challenging. Ocean model
49 simulations generate continuous data in both time and space, ideal for ocean climate studies, but
50 are also affected by biases and errors that can lead to an unrealistic representation of key physical
51 processes. To overcome the respective limitations of observations and model simulations, while
52 harnessing the strengths of each, modelling centers blend dynamical models with atmospheric and
53 oceanic observations through data assimilation techniques. These efforts have resulted in
54 observationally constrained estimates of the climate state that: (1) Combine the full spatiotemporal
55 coverage of models with the accuracy of observations, and (2) Are easily accessible for scientific
56 and industrial applications (Balmaseda et al., 2015; Storto et al., 2019).

57 Despite these advantages, there can still be large uncertainties in ocean reanalysis products.
58 In particular, some parts of the global open ocean are historically under-observed (e.g., the
59 Southern Ocean), the ocean subsurface is much less constrained than the satellite-observable
60 surface, and coastal regions are often dominated by mesoscale ocean features that may not be
61 properly resolved by the relatively coarse resolution of many global ocean reanalyses (Balmaseda
62 et al., 2015; de Souza et al., 2021; Lee et al., 2009). As a result, reanalysis estimates in these
63 regions may be increasingly dependent on the underlying ocean model configuration and its
64 parameterization of subgrid scale processes, leading to large differences between ocean reanalyses
65 from different modeling centers. (Balmaseda et al., 2015; Masina et al., 2011; Storto et al., 2019;
66 Xue et al., 2017, 2012; Zhu et al., 2012).

67 Recent advances in ocean model physics (Breivik et al., 2015), the number and quality of
68 observations (Legeais et al., 2018), and data assimilation techniques (Sakov et al., 2012; Storto et

69 al., 2018) have led to the development of several high-resolution global and regional ocean
70 reanalyses. With horizontal resolution as fine as 8 km, these new tools offer a unique opportunity
71 to study ocean variability and change, as well as their impacts on marine species distributions and
72 populations, with enhanced fidelity. Given the expanding use of ocean reanalyses for regional
73 studies of oceanography and ecology, it is important to verify the accuracy of these high-resolution
74 state estimates against independent (i.e., unassimilated) *in situ* ocean observations where available
75 (de Souza et al., 2021; Xie et al., 2008). Indeed, increasing model resolution presents its own set
76 of challenges, including (among others) potential errors in simulating mesoscale eddies and sharp
77 gradients in ocean properties, coupling tides and waves, downscaling of atmospheric forcing, and
78 the accuracy of bathymetry (e.g., (Storto et al., 2019). For example, (de Souza et al., 2021)
79 compared several high-resolution ocean reanalyses to a variety of observations in New Zealand
80 coastal waters and showed that some of the datasets inaccurately represented important coastal
81 boundary currents.

82 Another region that would also benefit from a thorough intercomparison of high-resolution
83 ocean reanalyses is the California Current Large Marine Ecosystem (CCLME; Figure 1). The
84 CCLME is home to a highly productive marine ecosystem with primary productivity and fish catch
85 disproportionately high for its spatial extent (Chavez and Messié, 2009). This elevated productivity
86 can be attributed to upwelling of nutrient rich waters along the U.S. west coast, which is driven by
87 the seasonal intensification of northerly winds in the spring and summer. These seasonal wind
88 changes and the associated impact on ocean properties are sensitive to climate variability on time
89 scales of weeks to decades (Checkley and Barth, 2009). In particular, upwelling in the CCLME is
90 strongly modulated by large-scale climate modes such as the El Niño-Southern Oscillation
91 (ENSO), the Pacific Decadal Oscillation, and the North Pacific Gyre Oscillation (Di Lorenzo et

92 al., 2008; Jacox et al., 2015, 2014). In recent years, there has been rapid growth in the use of ocean
93 reanalyses for oceanographic and ecological research in the CCLME, with reanalyses providing
94 the environmental information used to develop oceanographic indices (Jacox et al., 2018; Santora
95 et al., 2020), and to model species distribution shifts (e.g., (Abrahms et al., 2019; Brodie et al.,
96 2018) and population fluctuations (e.g., (Schroeder et al., 2014; Tolimieri et al., 2018)).

97 There have been some previous comparisons between high-resolution reanalyses and
98 observations in the CCLME. For example, (Schroeder et al., 2014) showed that the high-resolution
99 ($1/10^\circ$) data assimilative implementation of the Regional Ocean Model System (ROMS) from the
100 University of California Santa Cruz (hereafter referred to as the California Current System
101 reanalysis or CCSRA) compares well to *in situ* hydrographic measurements of ocean temperature,
102 salinity, and upper ocean stratification during boreal winter and spring in the coastal ocean between
103 Monterey Bay and Pt. Arenas. Additionally, (Neveu et al., 2016) showed that the CCSRA can
104 credibly capture the spatial distribution of Eddy Kinetic Energy (EKE) off California's coast.
105 While these studies indicate that high-resolution ocean reanalyses may provide an accurate and
106 spatiotemporally consistent depiction of ocean properties in the CCLME over the last several
107 decades, they are primarily focused on a single regional ocean model. A careful analysis of the
108 strengths and weaknesses of several different high-resolution ocean reanalyses in this region would
109 benefit marine scientists interested in leveraging these tools for research into ocean climate
110 variability and its impact on marine ecosystems in the CCLME.

111 In this study, we independently verify the mean and variability of key ocean parameters in
112 the CCLME from three high-resolution ocean reanalyses—the Global Ocean Reanalysis and
113 Simulations (GLORYS), the Ocean Reanalysis System version 5 (ORAS5), and CCSRA. In
114 particular, we focus on the historical representation of temperature and salinity at the ocean

115 surface, within the water column, and at the ocean bottom along the continental shelf, as well as
116 SSH along the U.S. west coast. These variables were chosen due to their importance as leading
117 indicators of marine resource response to climate variability (Ottersen et al., 2010; Pinsky et al.,
118 2013) and due to the availability of *in situ* and satellite observations suitable for model reanalysis
119 evaluation.

120

121 **2. Data and Methods**

122 *2.1 The high-resolution ocean reanalyses*

123 Below are descriptions of the high-resolution ocean reanalyses evaluated in this study. The
124 spatiotemporal availability of each is further summarized in Figure 1 and Table 1.

125 *a) GLORYS*

126 We evaluate data from the Global Ocean Reanalysis and Simulations (GLORYS) version
127 1 global ocean reanalysis (Lellouche et al., 2021). Available through the Copernicus Marine
128 Environmental Monitoring Service (CMEMS), GLORYS offers daily mean and monthly mean
129 ocean variables at 1/12° (~8 km) horizontal resolution with 50 vertical levels. The reanalysis is
130 generated using the Nucleus for European Modelling of the Ocean (NEMO) ocean model, forced
131 at the surface by the European Center for Medium-Range Weather Forecasts (ECMWF) ERA-
132 Interim atmospheric reanalysis. Output is available for 1993-2019, during which the model
133 assimilates along-track satellite altimetry, satellite sea surface temperature (SST), sea ice
134 concentrations, and *in situ* profiles of temperature and salinity from the Coriolis Ocean database
135 ReAnalysis (CORA) dataset (Szekely et al., 2019).

136 *b) ORAS5*

137 The global Ocean Reanalysis System version 5 (ORAS5; (Zuo et al., 2019, 2017), which
138 includes a dynamic-thermodynamic sea ice model and surface wave model, was developed at
139 ECMWF. Like GLORYS, it uses the NEMO ocean model (version 3.4.1) and surface forcing from
140 the ERA-Interim reanalysis. The ORAS5 assimilates in-situ profiles of temperature and salinity
141 from the “EN4” dataset (Good et al., 2013), merged *in situ* and satellite SST from HadISST2, and
142 along track satellite altimeter-derived sea-level anomalies from AVISO (Archiving, Validation
143 and Interpretation of Satellite Oceanographic data). Monthly and daily mean fields are available
144 from 1979 to present, at a horizontal resolution of 0.25° (~25 km). There are 75 vertical depth
145 levels, with layer thickness increasing from 1 m near the surface to 200 m in the deep ocean.
146 ORAS5 consists of five ensemble members obtained using perturbing forcing fields and slight
147 sampling differences in the observations that were assimilated. Here we used the ensemble mean
148 of the five members.

149 c) CCSRA

150 A series of California Current System (CCS) ocean reanalyses have been developed by the
151 Ocean Modeling group at UC Santa Cruz (<https://oceandmodeling.ucsc.edu>). Here, we evaluate a
152 historical reanalysis covering 1980-2010 (Neveu et al., 2016), and an extension covering 2011-
153 2018. In both cases, the CCSRA employ the Regional Ocean Modeling System with 4-dimensional
154 variational data assimilation (ROMS 4D-Var; (Moore et al., 2011). The domain covers nearly the
155 entire the U.S. west coast (30-48°N) and offshore to 134°W with a horizontal resolution of 0.1°
156 (~10 km) and 42 terrain-following vertical levels (Figure 1). Surface forcing for the 1980-2010
157 reanalysis is derived from a combination of ECMWF atmospheric reanalyses (ERA-40 and ERA-
158 Interim) and cross-calibrated multiplatform (CCMP) winds, while the extension uses higher-
159 resolution forcing from the Naval Research Laboratory’s Coupled Ocean Atmosphere Mesoscale

160 Prediction System (COAMPS). Ocean boundary conditions are provided by the Simple Ocean
161 Data Assimilation (SODA) product for 1980-2010, and from the GLORYS product after 2010.
162 Assimilated data include satellite SST from AVHRR, AMSR-E, and MODIS, satellite SSH from
163 AVISO/CMEMS, and *in situ* temperature and salinity profiles from the EN3 database (Ingleby
164 and Huddleston, 2007) for 1980-2010 and from the EN4 database (Good et al., 2013) post-2010.

165 Due to changes in the surface forcing and ocean boundary conditions between the historical
166 CCSRA and its extension, care must be taken when combining the two into a continuous record.
167 In general, agreement is good for quantities that are well constrained by observations, including
168 temperature. For SSH, the switch in ocean boundary conditions introduces a small offset (Section
169 3.6) that could be misinterpreted as a trend or low frequency variability. Past studies have found
170 that some variables (e.g., surface properties, upper ocean stratification) are suitable for
171 concatenation (Brodie et al., 2018) while others (e.g., subsurface currents) are not (Tolimieri et al.,
172 2018). Thus, the prudent approach for any user would be to examine the reanalyses for any obvious
173 inconsistencies that might preclude stitching them together for a specific application.

174

175 *2.2 Observations used for model evaluation*

176 Below are descriptions of the observations used to validate the three reanalyses described
177 above. The spatiotemporal availability of all observations is further summarized in Figure 1 and
178 Table 2.

179 *a) Sea surface temperature and sea surface salinity*

180 We first compare SST from the three reanalyses to those from the NOAA Optimum
181 Interpolation Sea Surface Temperature version 2.1 (OISSTv2.1; (Huang et al., 2021; Reynolds et
182 al., 2007) dataset, available for 1981 to present. The OISST blends satellite measurements with *in*

183 *situ* data from ship, buoys and Argo floats, using a number of steps to reduce biases and provide
184 the data on a 0.25° grid. However, the processes inherent in creating the OISST smooths the SST
185 field and thus the true or feature resolving resolution is less than 0.25° (Reynolds et al., 2013); the
186 smoothing varies in time and space but can be more pronounced in coastal regions (Reynolds and
187 Chelton, 2010). Therefore, in order to further validate the coastal environment in the reanalyses,
188 we compare with SST measurements from six nearshore stations that span most of the U.S. west
189 coast (see Figure 1 yellow diamonds and Table 2). These *in situ* observations were not assimilated
190 into any of the reanalyses, and thus, provide an independent estimate of SST variability.

191 Sea surface salinity (SSS) from the reanalyses is compared to the Level-4 SSS data from
192 the Multi-Mission Optimally Interpolated Sea Surface Salinity (OISSS) Global Dataset V1.0
193 (Melnichenko et al., 2016). This dataset optimally interpolates Level-2 swath measurements of
194 SSS from the Aquarius, Soil Moisture Active Passive (SMAP), and Soil Moisture and Ocean
195 Salinity (SMOS) satellite missions to produce monthly mean SSS estimates from August 2011 to
196 present on a global 0.25° grid. We limit our SSS comparisons to 2012-2018, which is the longest
197 overlapping period between the satellite observations and the reanalyses.

198 *b) Water column temperature and salinity*

199 Water column temperature and salinity was obtained from two sources. First, temperature
200 profiles between the surface and 500m (or the bottom if shallower) were obtained from the
201 California Underwater Glider Network (CUGN, (Rudnick et al., 2017). The gliders follow three
202 paths originating from the California coast (at Monterey, Pt. Conception and Dana Pt.) extending
203 southwestward \sim 500 km offshore, with each out-and-back section taking 2-3 weeks to complete
204 (Figure 1; purple lines). Gliders dive between the surface and 500 m with each dive taking
205 approximately three hours and covering three km horizontally. Several statistical methods are

206 applied to the original data, including a least squares fit and objective mapping, to obtain anomalies
207 and a mean seasonal cycle on a rectangular grid as a function of depth, distance offshore, and time
208 (Rudnick et al. 2017). We compare the reanalyses to this gridded data, which has a vertical
209 resolution of 10 m, a horizontal resolution of 5 km, and a temporal resolution of 10 days. Our
210 comparisons are for the period 2007 to 2018, the longest overlapping time period for the glider
211 data and the reanalyses. The CUGN data is not assimilated into ORAS5 or GLORYS, but it is
212 assimilated into the historical CCSRA reanalysis from 1980-2010. The CCSRA extension from
213 2011-2018 does not assimilate CUGN data.

214 Each reanalysis is further compared with Argo profile measurements of water column
215 temperature and salinity in the CCLME. Argo is a global network of autonomous profiling floats
216 that measure the temperature and salinity of the ocean's upper 2000 m. Since 1999, the Argo
217 program has collected more than 2 million hydrographic profiles worldwide (Jayne et al., 2017).
218 Here, we evaluate 18,971 quality-controlled Argo profiles in the CCLME covering 2002-2018
219 (Figure 1a; shading). For our comparisons, we average profiles in three sub-regions within the
220 CCLME: (1) 40°N-50°N (referred to as North LME or NLME), (2) 30°N-40°N (referred to as
221 Central LME or CLME), and (3) 20°N-30°N (referred to as South LME or SLME). See Figure S1
222 for sub-region boundaries.

223 Prior to analysis, individual Argo profiles were categorized into one of the three CCLME
224 sub-regions based on their latitude and longitude. Profile measurements were then aggregated in
225 the vertical into 20m bins in order to acquire uniformly spaced temperature profiles in each sub-
226 region as a function of time. Finally, we averaged all profiles within a given month to produce
227 monthly mean water column temperature measurements as a function of depth. See Figure S1 and
228 Figure S2 for the density of Argo measurements in depth and time. While Argo measurements are

229 assimilated into each of the ocean reanalyses discussed in this study, an intercomparison between
230 Argo and the reanalyses may shed light on any potential deficiencies in the individual data
231 assimilation schemes. In particular, differences in model physics, resolution, and the incorporation
232 of other *in situ* datasets may impact the overall assimilation of Argo measurements. When
233 compared to Argo data, all temperature and salinity anomalies are relative to the period 2002-
234 2018.

235 *c) Bottom temperature*

236 Bottom temperature data were obtained from three sources. First, the deepest portion of the
237 glider profiles described above were used as near-bottom temperature measurements. Some
238 comparisons were not practical as: (1) the shelf was too narrow for comparing reanalyses to gliders
239 west of Dana Pt.; (2) the CCSRA grid points were too far away for a reasonable comparison with
240 the CUGN location at 410 m in Monterey Bay as a result of using smoothed bathymetry, and (3)
241 the ORASS5 reanalysis was too coarse for comparisons with the CUGN data to be
242 meaningful. Second, we used temperature observations from conductivity, temperature, depth
243 sensor (CTD) casts at three locations (See Table 2) along the Newport Hydrographic Line (Huyer
244 et al., 2007), which extends west from the Oregon coast at 44.65°N (Figure 1; green line), to
245 estimate the variability of bottom temperature during 2008 to 2018. Third, we use bottom
246 temperature data that are collected as part of the U.S. West Coast Groundfish Bottom Trawl Survey
247 (WCGBTS; (Keller et al., 2017), conducted between May and October of each year by NOAA's
248 Northwest Fisheries Science Center. Since 2003, the WCGBTS has covered the shelf/slope region
249 of the entire U.S. west coast, sampling bottom depths of 55-1280m using a random stratified
250 sampling design, with ~500-700 total stations per year (Figure 1; red dots). Each tow is ~15
251 minutes in duration, covering ~0.55 km horizontally. The Newport Line and bottom trawl survey

252 data are not assimilated in any of the reanalyses. As mentioned previously, the CUGN data is only
253 assimilated in the first segment of the CCSRA data (1980-2010). Therefore, many of these
254 observations offer an independent metric by which to make our comparisons

255 While the stratified random sampling pattern of the trawl data precludes the generation of
256 climatologies and thus an evaluation of bottom temperature variability, it does provide much more
257 thorough spatial coverage from which we can assess the ability of reanalyses to reproduce mean
258 patterns of bottom temperature. Bottom temperature variability will instead be assessed using the
259 measurements from the CUGN and Newport Line, which are more consistent in time and space
260 than the trawl data. Comparing bottom temperature between observations and reanalyses is made
261 further complicated by the relatively narrow shelf and steep bathymetry off the U.S. west coast.
262 Even with ~10 km reanalysis resolution, the true bottom depth can be very different from the
263 reanalysis bottom depth at the nearest grid point, which in turn can produce large differences in
264 the observed and reanalysis bottom temperature. One can account for this discrepancy by matching
265 the bottom temperature measurements with reanalysis output at the same depth (not necessarily at
266 the reanalysis bottom). Specifically, for each bottom temperature observation we first find the
267 closest reanalysis grid cell where the model bottom is deeper than the observed depth, and then
268 linearly interpolate the reanalysis water temperature profile to the depth of the observation (Figure
269 2). To illustrate the influence of using the reanalysis bottom temperature rather than a depth-
270 matched temperature, we compare the two methods for the bottom trawl data (Section 3.5).

271 *d) Coastal sea surface height*

272 To verify sea level variability along the U.S. west in the ocean reanalyses we compare them
273 to data from nine tide gauges (Figure 1; black dots) maintained by the Joint Archive for Sea Level
274 (JASL), which is a partnership between the University of Hawaii Sea Level Center (UHSLC) and

275 the National Centers for Environmental Information (NCEI). Here, we utilize the Research Quality
276 Data Set (RQDS). These observations are not assimilated in any of the reanalyses discussed here,
277 and therefore offer an independent metric by which to verify sea level changes. For this
278 comparison, monthly SSH anomalies are relative to a long-term climatology of 1993-2018, which
279 is the longest overlapping period between the tide gauges and the reanalyses.

280 *e) Eddy Kinetic Energy*

281 Finally, ocean mesoscale variability is ubiquitous along the U.S. west coast and plays a key
282 role in modulating regional ocean dynamics such as coastal upwelling in the CCLME, which can
283 impact primary productivity through the vertical transport of key nutrients in and out of the
284 euphotic zone (Gruber et al., 2011; Renault et al., 2016). We assess the representation of mesoscale
285 variability in the ocean reanalyses using geostrophic Eddy Kinetic Energy (EKE), calculated as:

286
$$EKE = \frac{1}{2} (U'_g^2 + V'_g^2) \quad (1)$$

287 Where U'_g and V'_g , respectively, are the zonal and meridional components of the daily mean
288 geostrophic surface current anomalies estimated from daily mean SSH anomalies. The EKE in the
289 ocean reanalyses is compared to the EKE calculated from AVISO satellite altimetry measurements
290 (Ducet et al., 2000), which provides daily mean SSH anomalies from 1993-2012 on a 0.25° grid.
291 For consistency with the AVISO data, SSH anomalies from each reanalysis are computed relative
292 to the long-term mean of a 1993-2012 base period. The EKE in each reanalysis was first calculated
293 on the native model grid and then interpolated to the AVISO 0.25° grid in order to compare them
294 to the coarser AVISO data.

295

296 *2.3 Analysis approach*

297 *a) Statistical methods*

298 The purpose of this study is to inform potential users of these high-resolution reanalyses
299 whether (and in what context) these different data assimilative models may act as a reliable
300 substitute for the comparably noisy, discontinuous and sporadic raw ocean measurements. To
301 support this goal, we evaluate each ocean parameter using a set of common statistical comparisons
302 that are broadly applicable to a range of potential research applications. These comparisons include
303 assessments of the reanalyses' mean state and variability as measured by the mean bias, root-mean-
304 square error (RMSE), and correlation coefficient relative to observations. Where appropriate
305 statistical significance is evaluated using a Student's t-test with a 95% confidence interval after
306 correcting the degrees of freedom for lag-1 autocorrelation.

307 *b) Observation limitations*

308 Due to the different spatiotemporal coverage and sampling schemes of different
309 observational platforms, each is well suited to some types of analyses but not others. For instance,
310 to assess the degree to which reanalysis data represents the observed variability of an ocean
311 parameter at any given location (as measured by RMSE and/or the correlation coefficient),
312 consistent measurements are required at that location for many years to derive a representative
313 climatology and anomalies. Some observational platforms do provide long records at one location
314 (such as the coastal station data analyzed in Section 3.1b), but these measurements are not useful
315 for assessing the variability of an ocean parameter over large areas. As a result, to validate
316 variability in reanalyses on a broader scale, we either: (1) aggregate sporadic point measurements
317 in time and space to produce a consistent record suitable for calculating anomalies for comparison
318 to the models (e.g., our approach with Argo profiles in Sections 3.3b and 3.4b) or (2) rely on
319 observational products that have been infilled or interpolated onto a grid, such as AVISO, OISST,
320 and OISSS. Gridded observations may feature statistical artifacts or biases introduced during

321 interpolation (Reynolds et al., 2013; Reynolds & Chelton, 2010). However, by also comparing the
322 reanalyses to raw and *in situ* point measurements, such as the Newport line data, shore stations,
323 tide gauges, bottom trawl measurements, and Argo profiles, we hope to assess any sensitivities our
324 results may have to our choice of observations. We return to these topics in more detail in the
325 Discussion section.

326

327 **3. Results**

328 *3.1 Sea surface temperature*

329 *a) Comparisons with OISST*

330 The annual mean SST pattern in OISST features a tongue of cool SSTs along the U.S. west
331 coast, which is associated with the southward advection of cold water from high-latitudes by the
332 California Current, as well as broadscale upwelling driven by the climatological northerly winds
333 (Figure 3a). Overall, the reanalyses show modest SST biases relative to the annual mean OISST
334 data (Figure 3b-d). Additionally, each reanalysis exhibits a similar bias pattern: cool along the U.S.
335 west coast and warm offshore. Among the three reanalyses, GLORYS shows the largest warm
336 SST biases ($\sim 0.5^{\circ}\text{C}$) from 32°N - 42°N , while the U.S. west coast SST biases in ORAS5 and
337 CCSRA are generally insignificant.

338 The greatest SST variability, as indicated by the standard deviation of the monthly means
339 in OISST, is adjacent to the coast with regions of somewhat enhanced variability extending farther
340 offshore of the California coast (Figure 3e). Additionally, there are areas of higher variability along
341 the southern half of Oregon and portions of California, including between Pt. Arena and Pt. Reyes
342 ($\sim 38^{\circ}\text{N}$) and in the vicinity of Pt. Conception and the Channel Islands ($\sim 34^{\circ}\text{N}$). While the
343 nearshore peak in the SST standard deviation is likely associated with upwelling driven SST

344 changes, the offshore extension of elevated variability may be associated with enhanced eddy
345 activity in this region (see also Section 3.7). The monthly mean SST anomalies in each reanalysis
346 are highly correlated with the corresponding SST anomalies from OISST (Figure 3f-h), indicating
347 that the reanalyses credibly reproduce the regional structure of the observed variability. This is
348 further supported by the high pattern correlations between the OISST monthly standard deviation
349 pattern and those from the reanalyses (Figure S3e-h). Among the reanalyses, CCSRA most closely
350 resembles OISST, featuring the highest point-by-point correlations with the observed monthly
351 mean SST anomalies and the highest pattern correlation with the observed monthly standard
352 deviation pattern. In comparison, ORAS5 exhibits less variability than OISST over most of the
353 domain and GLORYS SST variability is generally greater than that in OISST, particularly in the
354 southwest portion of the domain (Figure S3f-g). These differences contribute to the overall lower
355 (yet still significant) point-by-point correlations between ORAS5/GLORYS and the OISST
356 monthly mean SST anomalies (Figure 3f-g).

357 *b) Comparisons with nearshore stations*

358 The reanalyses also generally compare well with SST data from six nearshore stations
359 spanning the U.S. west coast (Figures 4 and S4). At the northernmost stations (Stonewall; 44.7°N
360 and Charleston; 43.3°N), CCSRA and GLORYS exhibit insignificant annual mean biases, while
361 ORAS5 has a significant warm bias at Charleston. However, all three reanalyses show high
362 monthly mean correlations and relatively small RMSE of ~0.25-0.4°C when compared to station
363 data at these latitudes. At Trinidad Beach (41.1°N), GLORYS and ORAS5 exhibit significant cold
364 biases. While CCSRA does not have a significant mean bias at this station, all three reanalyses
365 show lower (yet still significant) monthly correlations, which also correspond to elevated RMSE
366 values of ~0.5-0.6°C. The reanalyses compare most favorably at the Farallon Islands (37.7°N),

367 where they have the smallest biases, highest correlations, and lowest RMSE values of any of the
368 stations compared here. The southern stations (Newport Beach; 33.6°N and Scripps Pier; 32.9°N)
369 show the largest differences among the reanalyses. For example, at Newport Beach, GLORYS
370 exhibits a significant cold bias of about 1°C, while ORAS5 and CCSRA show warm biases of
371 ~0.8°C and 1°C, respectively. At the Scripps Pier, both ORAS5 and GLORYS show significant
372 cold biases, while CCSRA does not have a significant bias. These potential reanalysis errors are
373 further highlighted by overall lower monthly correlations and higher RMSE values at these
374 southern stations, especially for GLORYS at Newport Beach. The cold biases in GLORYS at these
375 southern latitudes may be due to enhanced upwelling rates. We will explore this possibility in more
376 detail in Section 3.3a.

377

378 *3.2 Sea surface salinity*

379 *a) Comparisons with OISSS*

380 The annual mean SSS pattern in OISSS features salinity values that decrease with latitude,
381 reaching a minimum in the coastal regions of the Pacific Northwest, which is likely associated
382 with increased freshwater fluxes from the Columbia River outflow at ~46°N (Figure 5a). Despite
383 the high pattern correlations between the annual mean SSS in the reanalyses and the OISSS data
384 (Figure S5b-d), each of the reanalyses have significant mean SSS biases, particularly off the
385 Oregon and Washington coast (Figure 5b-d). The bias patterns in GLORYS and ORAS5 are
386 similar, with mainly salty biases offshore north 45°N and mainly fresh biases in a horseshoe pattern
387 along the coast and extending offshore from 40°N-50°N. South of 40°N, both GLORYS and
388 ORAS5 have mostly insignificant biases. In contrast, CCSRA has significant salty biases from
389 40°N-50°N and significant negative biases offshore south of 40°N. The large biases in each of the

390 reanalyses near the Columbia River outflow suggests unrealistic freshwater forcing in this region.
391 GLORYS and ORAS5 have potentially too much freshwater input, while the salty nearshore biases
392 in CCSRA are consistent with its omission of freshwater sources (Neveu et al., 2016).

393 Monthly SSS variability is relatively weak throughout the CCS, except near the Columbia
394 River outflow where monthly standard deviations reach as high as 0.35 PSU (Figure 5e). The
395 monthly mean SSS anomalies in GLORYS are highly correlated with the OISSS anomalies
396 offshore and south of about 40°N, but are not significantly correlated with the observations off the
397 coast of Oregon and Washington (Figure 5f). In comparison, ORAS5 has the highest overall
398 correlations with the satellite data; however, it is less correlated along the coast from 30°N-50°N
399 (Figure 5g). The SSS anomalies in CCSRA are significantly correlated with OISSS south of 38°N,
400 but the correlations are insignificant nearly everywhere north of 38°N (Figure 5h). Overall, ORAS5
401 has the highest pattern correlation with the observed monthly mean standard deviation pattern (r
402 = 0.84), while GLORYS and CCSRA have weaker pattern correlations of 0.77 and 0.60,
403 respectively (Figure S5e-h).

404

405 *3.3 Water column temperature*

406 a) *Comparisons with glider lines*

407 When compared to annual mean temperature data from the CUGN, each of the three ocean
408 reanalyses displays a different annual mean temperature bias pattern that is broadly consistent
409 across the three different glider lines (Figures 6 and S6). For example, GLORYS shows a nearshore
410 significant warm bias centered at ~30m depth, as well as a cold bias along the continental shelf at
411 ~60-180m depth at Monterey and Pt. Conception at the surface at Dana Pt. (Figure 6d-f). The
412 warm bias may be due to GLORYS having a slightly deeper nearshore mean thermocline than

413 observed (Figure S6a-f). Due to the strong vertical temperature gradients found within the
414 thermocline, even subtle shifts in its mean position can result in large model biases. The coastal
415 cold biases are most significant at Pt. Conception and may be related to differences in nearshore
416 vertical transport rates, as indicated by the shallower isotherm slopes below ~90m and within
417 ~40km of the coast in GLORYS compared to CUGN (Figure S6b,e). The cold biases near the
418 surface at Dana Pt. may be due to enhanced upwelling in GLORYS, as indicated by the more
419 vertically tilted annual mean isotherms above 90m within 20km of the coast. Enhanced upwelling
420 at these latitudes may also explain the significant cold SST biases seen at Newport Beach and the
421 Scripps Pier (Figure 4a). At each glider line, ORAS5 shows significant warm temperature biases
422 at all vertical levels within ~150-200km of the coastline (Figure 6g-i). These warm biases are likely
423 the result of weaker overall upwelling rates in ORAS5, as indicated by the generally flatter
424 nearshore mean isotherms when compared to observations (Figure S6g-i). Weaker upwelling in
425 ORAS5 may be due to the coarser resolution of its ocean model. Finally, CCSRA features
426 significant warm biases at each glider line that extend offshore and slope upwards towards to the
427 coast (Figure 6j-l). These biases are related to a systematically deeper mean thermocline in CCSRA
428 when compared to CUGN (Figure S6j-l). Overall, the annual mean temperature in GLORYS has
429 the lowest pattern root mean square error (RMSE) when compared to the CUGN data at each
430 location (ranging from 0.17°C to 0.21°C), while ORAS5 tends to have the highest (ranging from
431 0.30°C to 0.36°C).

432 All three reanalyses show high monthly mean correlations with the CUGN data above
433 ~30m at Monterey, above ~50m at Pt. Conception, and above ~90 m at Dana Pt (Figure 7). The
434 correlations in each reanalysis are lower below these depths, with the exception of GLORYS at
435 Monterey and Pt. Conception where there are high correlations offshore at all depths. Overall,

436 GLORYS has the highest correlations with observations across each CUGN domain, while
437 ORAS5 has the weakest. The different correlation patterns among reanalyses may be related to
438 their different monthly mean standard deviation patterns when compared to observations (Figure
439 S6, shading). Overall, GLORYS and ORAS5 have similar pattern RMSE values with the observed
440 temperature variability maps (ranging from 0.08°C to 0.13°C), while CCSRA has slightly higher
441 RMSE values (ranging from 0.13°C to 0.16°C).

442 *b) Comparisons with Argo profiles*

443 All three reanalyses generally reproduce the timing and relative magnitude of CCLME
444 subsurface temperature anomalies observed by Argo floats (Figure 8), including major interannual
445 warming events in 2004-2006 and 2014-2016 related to El Niño and Northeast Pacific marine
446 heatwaves (Amaya et al. 2016; Li et al. 2020) and cooling events in 2007-2009 related to La Niña
447 (Okumura and Deser, 2010). The multi-year warming from 2014-2016 seen in observations and
448 the reanalyses is most pronounced and consistent in the CLME and SLME, likely due to the
449 southward shift in large-scale anomalous atmospheric forcing associated with major marine
450 heatwaves in the Northeast Pacific in late 2014 and early 2015 (Amaya et al., 2016). Argo
451 measurements in the SLME also show resurgent warming in 2017-2018, which is generally
452 reproduced by GLORYS and ORAS5 (SLME is outside the CCSRA domain). Finally, there is
453 evidence in the Argo record of downward propagating warm waters from the surface in 2014-2015
454 to 100-150 m in 2015-2016 (particularly in the CLME and SLME). These downward propagating
455 anomalies are evident in each reanalysis, although the magnitude of the CLME anomalies during
456 this period are overall weaker in CCSRA.

457 While the ocean reanalyses generally have weaker temperature anomalies than those
458 computed from Argo, the discrepancy is likely due to the relatively small number of Argo profile

459 measurements in both depth and time that go into area averages (Figures S1 and S2). Indeed, if we
460 resample daily mean GLORYS vertical temperature data to the same time and depth locations as
461 the Argo data, we find that agreement between the two is greatly improved (Figure S7). This result
462 highlights an advantage of ocean reanalyses, which provide a uniform dataset in time and space,
463 over *in situ* observations that can give a biased view of the ocean state due to under sampling (see
464 Section 5 for a more detailed discussion).

465

466 *3.4 Water column salinity*

467 *a) Comparisons with glider lines*

468 The reanalyses each exhibit salinity bias patterns that are broadly consistent across the
469 different glider lines (Figure 9). For example, GLORYS has significant fresh biases near the coast,
470 which peak at the surface at Monterey and at ~60m-90m at Pt. Conception and Dana Pt. (Figure
471 9d-f). In contrast, ORAS5 has significant salty biases mainly below 120m along each glider line,
472 with significant fresh biases near the surface at Monterey and Pt. Conception (Figure 9g-i). Many
473 of the fresh biases seen in GLORYS and ORAS5 may be associated with differences in vertical
474 transport near the coast. For example, the CUGN data at Monterey shows annual mean isohalines
475 of 33.1-33.5 PSU outcropping within ~200km of the coastline, however, neither GLORYS nor
476 ORAS5 show outcropping isohalines beyond 33.2 PSU, resulting in fresh biases nearshore (Figure
477 S8). On the other hand, CCSRA has isohalines at Monterey that have a similar slope to
478 observations, resulting in weaker biases nearshore. At Dana Pt., there is a layer of saltier water
479 seen in the annual mean CUGN data from the surface to ~60m within ~100km of the coast (Figure
480 9c). This shallow, salty water is not reproduced in any of the reanalyses, contributing to the fresh
481 biases seen here in GLORYS and ORAS5 (Figure S8, bottom row). Additionally, CCSRA has a

482 systematically weaker and shallower halocline at all three glider lines than in the CUGN, resulting
483 in positive significant salty biases that slope upwards from offshore to onshore and which overlie
484 significant fresh biases at deeper depths (Figures 9j-l and S8).

485 In general, the monthly mean correlations between CUGN and reanalysis water column
486 salinity are overall lower than the corresponding temperature correlations (comparing Figures 7
487 and 10). The lower overall salinity correlations are consistent with the large differences seen in the
488 monthly mean standard deviation patterns between the CUGN and reanalysis data (Figure S8).
489 Despite these clear deficiencies, the reanalyses do have regions of significant salinity anomaly
490 correlations along each glider line, with the highest correlations for all three reanalyses found at
491 Dana Pt (Figure 10, bottom row). In this region, each reanalysis shows significant correlations
492 throughout the water column, with the highest values near the surface for GLORYS and ORAS5
493 and from 90-120m for CCSRA. Further, both GLORYS and CCSRA show significant (albeit
494 weaker) correlations with CUGN salinity data throughout the water column at Monterey and Pt.
495 Conception, with the highest correlations in GLORYS found near the surface west of 120°W and
496 the highest correlations in CCSRA found below ~50m along each line (Figure 10, top and middle
497 rows). In contrast, ORAS5 has noticeably weaker correlations at Monterey and Pt. Conception,
498 with insignificant values throughout much of the water column (Figure 10g-h). However, ORAS5
499 does have significant correlations near the surface along the glider lines and at depth within ~40km
500 of the coast.

501 *b) Comparisons with Argo profiles*

502 The reanalyses broadly reproduce the timing of major interannual salinity anomalies
503 observed by Argo profiles (Figure 11). For example, in the NMLE and CLME there was a period
504 of fresher than normal conditions from the surface to ~150m from 2003-2006, which is seen in

505 GLORYS and ORAS5, but less so in CCSRA. This period of fresh anomalies also encompasses
506 the SLME in GLORYS and ORAS5, but there are very few Argo profiles during this time with
507 which to validate the reanalyses (Figure S2c). Additionally, Argo profiles show a period of salty
508 anomalies beginning in ~2016 in each sub-region that is broadly captured by the reanalyses.
509 Despite these similarities, there are some important differences between the Argo salinity data and
510 the reanalyses. For example, Argo shows fresh anomalies in 2009-2010 and 2013-2015 in the
511 NLME, which are mostly absent in the reanalyses. There are also larger and more persistent salty
512 anomalies in GLORYS and ORAS5 in the SLME from 2014-2016 than seen in Argo. While
513 GLORYS and ORAS5 show larger anomalies during this time period, the Argo profiles tend to
514 have larger salinity anomalies overall, which as discussed previously is likely related to the limited
515 number of individual Argo profiles in these regions (Figures S1-S2, S7).

516

517 *3.5 Bottom Temperature*

518 *a) Comparisons with the CUGN and Newport Line*

519 Both GLORYS and CCSRA produce monthly mean bottom temperature data that are
520 significantly correlated with nearby CUGN values at the Monterey Bay (Line 66) and Pt.
521 Conception (Line 80) locations as well as data taken from CTD casts along the Newport Line
522 (Figure 12; note ORAS5 is omitted from this comparison due to its inability to resolve the shelf).
523 For the CUGN lines, both the GLORYS and CCSRA bottom depth correlations decrease with
524 depth, while the reanalyses have peak correlations with the Newport Line data at 55m depth. At
525 CUGN Line 66, GLORYS and CCSRA have similar correlations with observations. However, at
526 CUGN Line 80 and along the Newport Line, GLORYS has noticeably higher correlations.

527 *b) Comparisons with bottom trawl data*

528 While the stratified random sampling pattern of the trawl data precludes the generation of
529 climatologies, it does provide much more thorough spatial coverage from which we can assess the
530 ability of reanalyses to reproduce mean patterns of bottom temperature. As described in the
531 methods (Section 2.2c), there are discrepancies between reanalysis bottom depth and true bottom
532 depth, and consequently there is considerable scatter when comparing the observed and reanalysis
533 bottom temperature at the same location. Despite these discrepancies, there is good agreement
534 between the reanalyses (especially GLORYS) and the observations (Pearson correlation
535 coefficients $r = 0.76$ and 0.92 for CCSRA and GLORYS, respectively; Figure 13). This effect is
536 less pronounced in GLORYS than in CCSRA, as the terrain-following coordinate system used in
537 the latter requires additional bathymetric smoothing that introduces greater differences between
538 modeled and true bottom depth. However, when bottom depth differences are accounted for (i.e.,
539 reanalysis temperature is taken from the depth of the trawl measurement), both GLORYS and
540 CCSRA exhibit strong fidelity to observed bottom temperatures ($r = 0.97$ and 0.96 , respectively).
541 Patterns of mean bias differ between the two reanalyses, with CCSRA tending to be too warm at
542 the coldest temperatures and too cold at the warmest temperatures, while GLORYS is slightly
543 warm at high temperatures (Figure 13).

544

545 *3.6 Sea surface height*

546 Coastal sea level measurements from tide gauges and reanalyses exhibit large monthly and
547 interannual fluctuations that are likely associated with local wind forcing and propagating coastally
548 trapped waves (Amaya et al., 2022) that may be stochastically forced or driven by major ENSO
549 events, including the 1997-1998 and 2015-2016 El Niño events (Figures S9-S11). The SSH
550 anomalies in each reanalysis are significantly correlated with the tide gauge measurements at every

551 location (Figure 14a). However, GLORYS produces the highest correlation values at every station
552 except the Humboldt Bay tide gauge at $\sim 40^{\circ}\text{N}$. Latitudinal patterns in RMSE roughly mirror those
553 in the correlation, with the lowest RMSEs in the south of the domain and larger values in the north
554 (Figure 14b). GLORYS tends to have the lowest RMSE values, while ORAS5 has the highest
555 values north of 36°N .

556

557 *3.7 Eddy Kinetic Energy*

558 The annual mean EKE pattern from AVISO data shows a band of elevated values that
559 roughly follow the North American coastline from 20°N - 45°N , with peak values centered offshore
560 in the CCLME around 37°N (Figures 15 and S12). In comparison, GLORYS has a significant
561 positive bias throughout much of the CCLME from 30°N - 40°N , while ORAS5 has a significant
562 negative bias throughout the entire domain. The EKE bias pattern in CCSRA exhibits significant
563 positive biases near the edges of the regional model domain, likely associated with the lateral
564 boundary conditions used to force the regional model, however, CCSRA tends to have the smallest
565 biases in the main EKE region (Figure 15b-d). When considering monthly EKE variability, we see
566 that both GLORYS and CCSRA are significantly correlated with the observations throughout their
567 respective domains, while ORAS5 generally has insignificant correlations (Figure 15e-h).

568 The strong negative EKE biases and low correlations seen in ORAS5 may be due, in part,
569 to the model's coarse resolution (0.25°), which is not eddy resolving. Additionally, although
570 ORAS5 does assimilate satellite altimetry data, these observations are rejected from the
571 assimilation scheme in the nearshore environment (i.e., when the ocean bottom depth is shallower
572 than 500m) and are strongly down weighted within $\sim 800\text{km}$ of the coastline (Zuo et al. 2019). As
573 a result, the mean structure and variability of the mesoscale features are generally not captured in

574 ORAS5. It is also important to note that our comparisons are somewhat hampered by the resolution
575 of the gridded AVISO data. The higher EKE values in both GLORYS and CCSRA are due to their
576 higher horizontal resolutions, which allow their respective ocean models to simulate finer scale
577 circulation features, thus increasing the level of eddy activity relative to AVISO. Therefore, in
578 reality (where ocean currents are not limited by horizontal grid resolution), it is likely that the
579 magnitude of EKE in the CCS is actually closer to that seen in the high-resolution reanalyses.

580

581 **4. Summary**

582 In this study, we compared the output from three high-resolution ocean reanalysis
583 products—the 1/4° ORAS5, the 1/12° GLORYS, and the 1/10° CCSRA—to a variety of *in situ* and
584 satellite-derived observations in the CCLME. For surface temperature, we found that all three
585 analyses were generally able to capture the observed mean state and monthly variability as
586 measured by satellite observations and coastal station data over the last several decades. In
587 particular, when comparing to unassimilated SST data from six stations along the U.S. west coast,
588 we showed that the nearest grid cells in each reanalysis were highly correlated with the
589 observations, with typical correlation values exceeding 0.80 and even reaching as high as 0.97 at
590 some stations (Figure 4). Comparing across the reanalyses, we found that CCSRA has the most
591 accurate depiction of monthly SST throughout the CCLME, while GLORYS and ORAS5,
592 respectively, slightly overestimated and underestimated the larger-scale SST variability (Figures
593 3 and S3). For sea surface salinity, we found significant biases in all three reanalyses near the
594 outflow of the Columbia River at 46°N (Figures 5 and S5), suggesting an influence of unrealistic
595 (or missing) freshwater forcing in the models at this location.

596 Comparisons to different measures of water column temperature throughout the CCS saw
597 large differences among the ocean reanalyses. For example, each reanalysis depicted significant
598 warm mean temperature biases relative to CUGN data (Figure 6). These biases were the result of
599 differences in the mean position of the thermocline (as in GLORYS and CCSRA) or differences
600 in vertical transport rates (as in ORAS5). Despite these mean biases, monthly mean temperature
601 data from each reanalysis were significantly correlated with the CUGN data above ~50m.
602 However, GLORYS showed a clear advantage over ORAS5 and CCSRA with the highest
603 correlations throughout the water column (Figure 7). Comparisons to CUGN salinity data were
604 less favorable among the reanalyses (Figures 9 and 10), with each reanalysis showing large biases
605 related to differences in vertical transport rates (as in GLORYS and ORAS5) and differences in
606 the mean position of the halocline (as in CCSRA), as well as weaker overall point-by-point
607 correlations than with the corresponding temperature observations. All three reanalyses credibly
608 reproduce the large-scale subsurface temperature and salinity anomalies measured by Argo
609 profiles, including the downward propagation of recent warm anomalies associated with the 2015-
610 2016 marine heatwave and the recent salty conditions throughout the CCS after 2016 (Figures 8
611 and 11).

612 When comparing bottom temperature measurements from the reanalyses to observations,
613 GLORYS was the best performer. In particular, GLORYS consistently had the highest correlations
614 with monthly mean bottom temperature estimates from the CUGN and the Newport Line (Figure
615 12). Additionally, due to GLORYS having more realistic bathymetry than CCSRA, it also had
616 bottom temperatures that were much more highly correlated with bottom temperature
617 measurements from nearby trawls (Figure 13). However, accounting for differences in bottom
618 depth between the trawl measurements and the reanalysis led to marked improvements for

619 CCSRA. Overall, the favorable comparisons between the reanalyses and various bottom
620 temperature observations are impressive given the difficulty of comparing pointwise
621 measurements on the steep bathymetry along the west coast.

622 The reanalyses also showed impressive correlations with monthly mean SSH
623 measurements from nine coastal tide gauges, producing significant correlation values ranging from
624 0.67 to 0.91 and accurately depicted major El Niño-driven sea level changes along the U.S. west
625 coast (Figures 14 and S9-S11). However, CCSRA and GLORYS continued to stand out, producing
626 lower overall RMSE values at each tide gauge location when compared to ORAS5. Finally, both
627 GLORYS and CCSRA produced patterns of ocean mesoscale activity (i.e., EKE) that compared
628 well to AVISO satellite measurements, while ORAS5 underestimated the intensity of EKE
629 throughout the CCS due to its coarser resolution and the decision to down weight satellite altimetry
630 data near coastlines during the assimilation process (Figure 15).

631

632 **5. Discussion**

633 *5.1 Choosing a reanalysis for California Current ecosystem science*

634 As is often the case when evaluating reanalyses (Balmaseda et al., 2015; Storto et al., 2019),
635 the “best” product to use depends on the application. However, based on the results above, we can
636 offer some general guidelines as well as some more targeted examples.

637

638 *5.1.1 General considerations*

639 Model resolution is an obvious consideration when choosing a reanalysis. For research into
640 coastal ocean processes along the U.S. west coast, the higher resolution of GLORYS or CCSRA
641 clearly provides enhanced fidelity of the nearshore environment including surface and bottom

642 temperature, sea level variability, mean coastal upwelling, and the representation of coastally
643 trapped waves (Amaya et al., 2022). However, given the small scale of many of the eddies off the
644 U.S. west coast, Neveu et al. (2016) concluded that the CCSRA horizontal resolution was
645 insufficient to fully represent the observed EKE variability. Throughout the broader CCLME,
646 ORAS5 is generally comparable to GLORYS and CCSRA (with the exception of its poorer
647 representation of EKE), so studies interested in larger-scale ocean variability may prefer ORAS5
648 with its coarser resolution and smaller overall storage requirements.

649 Another clear consideration is the spatiotemporal coverage of a particular analysis. For
650 example, GLORYS only provides data starting in 1993, so studies requiring output prior to 1993
651 would be limited to either CCSRA or ORAS5. Similarly, the CCSRA domain limits analysis to
652 the CCS region, whereas the global ocean models used by GLORYS and ORAS5 do not have such
653 geographical restrictions. As a result, studies utilizing GLORYS and ORAS5 are able to
654 investigate the relationship between the CCS and remote regions (e.g., tropical Pacific) within the
655 same reanalysis dataset. In general, the resolution and performance of GLORYS and CCSRA will
656 make them preferable to ORAS5 unless the application requires both global coverage and a
657 historical record extending earlier than 1993, or if the additional computing/storage burden
658 incurred by using a higher resolution reanalysis is prohibitive.

659 Finally, potential users of these products should note that they may all be quite limited in
660 certain respects. In our analysis, a chief example is the relatively large salinity errors in each
661 reanalyses when compared to observations. In particular, the large mean salinity biases and weaker
662 overall monthly mean correlations may limit the utility of the reanalysis salinity data in the CCS,
663 especially in the nearshore environment and at higher latitudes near the Oregon and Washington
664 border. Indeed, to the best of our knowledge, none of the reanalyses considered here explicitly

665 represent freshwater inputs (i.e., rivers) to the California Current System at all. Thus, they are not
666 well tailored to applications that are very sensitive to that aspect of the oceanography, though the
667 effects of freshwater inputs will be captured indirectly by assimilation of temperature and salinity
668 observations in the coastal ocean. We do note, however, that our salinity comparisons were limited
669 to relatively short periods (2012-2018 for OISSS, 2007-2018 for CUGN, and 2002-2018 for Argo)
670 and that satellite salinity data have known biases and errors (particularly at higher latitudes), which
671 may influence our comparisons (e.g., Melnichenko et al., 2014). Therefore, it is possible that the
672 apparent deficiencies seen in the reanalysis salinity data will improve as satellite salinity
673 measurements increase in number and accuracy.

674

675 *5.1.2 Targeted applications*

676 The general guidelines offered above can be further tailored in the context of specific
677 applications, which we demonstrate here by drawing on a range of CCS case studies. For example,
678 in recent years ocean reanalyses have been increasingly relied upon to generate ecologically-
679 relevant oceanographic indices. The Temperature Observations to Avoid Loggerheads (TOTAL;
680 Welch et al., 2019)) tool tracks the risk of Loggerhead Turtle bycatch in California's drift gillnet
681 fishery based on SST anomalies in the Southern California Bight. In summers following persistent
682 warm SST anomalies, temporary closures can be enacted. In this case, CCSRA is likely the most
683 attractive reanalysis due its ability to capture the mean and variability of SST anomalies in the
684 region, and its long record that provides a more robust assessment of historical variability,
685 especially related to ENSO events. The Habitat Compression Index (HCI; Schroeder et al., 2022),
686 which tracks the presence of cool-water habitat nearshore, has been related to regional ecosystem
687 shifts and whale entanglement risk. Again, the fidelity of CCSRA for fine-scale nearshore SST

688 variability, as well the relatively high resolution of its wind forcing and associated representation
689 of coastal upwelling, make it well suited to this application.

690 Moving to more complex ecological models, additional considerations will drive the choice
691 of reanalysis. As described above, CCSRA is a good choice for surface-oriented analyses, and has
692 been successfully applied in species distribution models focused on the near-surface environment
693 (e.g., Becker et al., 2016). In contrast, GLORYS more realistically captures the bathymetry of the
694 relatively narrow shelf off the US west coast and generally does a better job reproducing observed
695 bottom temperature variability; therefore, it is likely a better choice for species distribution models
696 of benthic organisms such as groundfish (e.g., Ward et al., 2022), provided the shorter historical
697 record is adequate. Issues of internal consistency of reanalyses can also have different impacts
698 depending on the nature of ecological model employed. Changes in the configuration of CCSRA,
699 between its 1980-2010 historical run and an extension starting in 2011, introduce inconsistencies
700 in some fields. For aspects of the ocean circulation that are well constrained by observations or
701 surface forcing (e.g., SST, SSH, upwelling), these inconsistencies are of less concern. But some
702 ecological models rely on hydrographic properties that are not well constrained by observations
703 and are more sensitive to changes in model configuration. For example, life-stage specific
704 recruitment models have been developed for several groundfish species in the CCS (Haltuch et al.,
705 2020; Tolimieri et al., 2018) based on mixed layer depth, ocean temperature, and alongshore and
706 cross-shore currents in different vertical and horizontal sectors of the water column. For the
707 subsurface alongshore and cross-shore currents in particular, the 1980-2010 and post-2010
708 versions of CCSRA cannot be combined as a consistent reanalysis. In this case GLORYS would
709 offer a self-consistent alternative, and while data limitations preclude direct assessment of

710 subsurface currents, the subsurface structure (temperature and salinity) in GLORYS is generally
711 very good relative to the other reanalyses.

712

713 *5.2 Sources of differences between reanalyses*

714 It is important to consider what factors may lead to one reanalysis comparing more
715 favorably to observations than another reanalysis, particularly if those observations are assimilated
716 by each of the reanalyses (e.g., Argo data is assimilated in all three reanalyses analyzed here). As
717 discussed previously, differences in model resolution likely plays a key role in producing different
718 reanalysis solutions, especially in the nearshore coastal region. Additionally, the resolution and
719 fidelity of the atmospheric forcing for each of the ocean models may play a role. Different data
720 assimilation schemes (e.g., 3D-Var versus 4D-Var) and different subgrid parametrizations may
721 also impact how reanalyses compare to observations. For example, the underestimation of sea level
722 variance in ORAS5 is partly due to suboptimal parameter specifications for observation errors and
723 data sampling (Zuo et al. 2019). However, it is difficult to assess the sensitivity of reanalysis errors
724 to these model design choices without delving deeper into the raw model forcing files or (in some
725 cases) the actual model code, neither of which are readily available to the average user of these
726 reanalyses. Therefore, deciding which ocean reanalysis is most appropriate for a given application
727 should be based on which physical processes are of interest and what computational resources are
728 available to the user.

729

730 *5.3 Considerations for comparing reanalyses and observations*

731 In addition to the CCS-specific results, our analysis further highlights several important
732 considerations that are generally applicable when comparing raw and/or post-processed

733 observations to reanalysis products. A critical factor for why reanalyses may differ from each other
734 and from nature is the change in the number and types of data that are assimilated over time.
735 Inclusion of new sources of data can lead to discontinuities, while the lack of data, especially early
736 in the record, enhance the contribution of model bias to reanalysis errors. For example, Lellouche
737 et al. (2021) noted that salinity coverage by ARGO was insufficient to constrain model error prior
738 to 2014 in GLORYS. Temporal changes in atmospheric reanalyses used as boundary conditions
739 also can influence ocean reanalyses. The horizontal resolution of the SSTs used as boundary
740 conditions in ERA-interim increased in 2002. This increased small-scale variability in the
741 atmospheric reanalysis winds, which were transmitted to the ocean reanalyses that used ERA-
742 interim, including the three reanalyses examined here; ORAS5 and CCSRA also used other
743 atmospheric reanalyses during portions of their record, which likely contributed to discontinuities.
744 Another change in the reanalyses occurred in 2004, with the inclusion of a large number of ARGO
745 profiles. To accommodate the increase in the vertical profiles the time window in which the bias
746 correction was performed was reduced by a third in GLORYS (Lellouche et al., 2021). This led to
747 a rapid increase of EKE in GLORYS, which may have contributed to its excessive SST variability.

748 In addition to temporal changes in the type and number of observations, some mean biases
749 may depend on the particular observational data used for comparisons, particularly if one is
750 comparing to raw measurements that have been post-processed or smoothed onto a uniform grid
751 (such as OISST, OISSS, and AVISO data analyzed here) since the interpolation process may
752 introduce statistical artifacts or biases (Reynolds et al., 2013; Reynolds & Chelton, 2010).
753 Although, the weaknesses of interpolating raw observations onto a grid may be partially
754 outweighed by the benefits of post-processing bias adjustments to satellite and ship observations
755 to compensate for platform differences and sensor biases over time (e.g., Reynolds 1993; Reynolds

756 et al., 2007; Banzon et al., 2016; Huang et al., 2020). Further, reanalysis data at any given grid cell
757 represents the characteristics of a volume of water, while *in situ* measurements are often from
758 single points and may therefore benefit from similar bias corrections for comparisons with model
759 output (Chang et al., 2021).

760 Additionally, the raw Argo profile measurements showed stronger temperature changes
761 than those observed in any of the reanalyses, which may be surprising considering each reanalysis
762 assimilates Argo. However, resampling GLORYS to match the Argo data produced much more
763 consistent results (Figure S7), indicating that apparent discrepancies are in fact largely due to
764 sampling differences. Similarly, EKE values derived on the native GLORYS grid were much
765 higher than the coarser AVISO gridded observations (Figures 15 and S12), and it is possible that
766 the real-world intensity of EKE may be closer to the values seen in GLORYS than in pure
767 observations. For benthic conditions over the continental shelf and slope, an important
768 consideration is that the depth of the real ocean bottom can be significantly different than the depth
769 of the nearest reanalysis grid cell. This depth difference leads to discrepancies between the
770 observed and reanalysis bottom temperature, which are worse when the bathymetry is less realistic
771 (i.e., compare CCSRA and GLORYS in Figure 13). A more accurate representation of the bottom
772 conditions can be obtained by using the reanalysis temperature at the depth of the real ocean
773 bottom, even if it is not the bottom in the reanalysis. However, this extra analytical step is not
774 trivial and requires obtaining the full water column temperature data from the reanalysis, rather
775 than a single level. In general, differences between observations and reanalyses are greatly reduced
776 by controlling for the sampling limitations presented by the observations. Indeed, if there were
777 substantially more Argo profiles in the CCS or if the spatial footprint of satellite altimetry
778 measurements was more similar to GLORYS or CCSRA, then the observations may begin to look

779 more like the reanalyses. This suggests that even our best estimates of the “truth” can sometimes
780 be limited by sampling frequency in time and space, and therefore, that the high-resolution
781 reanalyses may provide a more realistic and more uniform representation of undersampled ocean
782 variables in the CCLME.

783

784 **Acknowledgements**

785 We thank two anonymous reviewers for helpful comments that improved the quality of our
786 analysis. We also thank Andrew Moore and Chris Edwards for their helpful insight on this work.
787 This work was supported in part by the NOAA Cooperative Agreement with CIRES,
788 NA17OAR4320101. GLORYS output is available at:
789 <https://resources.marine.copernicus.eu/products>. CCSRA output is available at:
790 <https://oceandata.ucsc.edu>. ORAS5 output is available at: <http://icdc.cen.uni-hamburg.de/thredds/catalog/ftpthredds/EASYInit/oras5/catalog.html>. Newport line data were
791 provided by Dr. Kym Jacobson (NOAA-NWFSC) and Jennifer Fisher and Samantha Zeman
792 (OSU-CIMRS). Individual Argo float profiles are available at: <http://www.coriolis.eu.org/Products/Data-Delivery>. CUGN data can be found at: <https://spraydata.ucsd.edu/projects/CUGN/>.
793 California shore station data can be found at: <https://shorestations.ucsd.edu/shore-stations-data/download-all-data/>. Stonewall Bank station data is at:
794 https://www.ndbc.noaa.gov/station_history.php?station=46050. Charleston station data is at:
795 https://data.nanoos.org/erddap/tabledap/NOS_9432780_Met.html. Tide gauge data can be found
796 at: <http://ilikai.soest.hawaii.edu/UHSLC/jasl.html>. OISSTv2.1 data can be found at:
797 <https://psl.noaa.gov/data/gridded/data.noaa.oisst.v2.highres.html>. Bottom trawl data can be found
798 at: <https://psl.noaa.gov/data/gridded/data.noaa.oisst.v2.highres.html>. Bottom trawl data can be found
799 at: <https://psl.noaa.gov/data/gridded/data.noaa.oisst.v2.highres.html>. Bottom trawl data can be found
800 at: <https://psl.noaa.gov/data/gridded/data.noaa.oisst.v2.highres.html>. Bottom trawl data can be found

801 at: <https://www.webapps.nwfsc.noaa.gov/data/map>. CUGN is available at:
802 <https://spraydata.ucsd.edu/climCUGN/>.

803 **References**

804 Abrahms, B., Welch, H., Brodie, S., Jacox, M.G., Becker, E.A., Bograd, S.J., Irvine, L.M.,
805 Palacios, D.M., Mate, B.R., Hazen, E.L., 2019. Dynamic ensemble models to predict
806 distributions and anthropogenic risk exposure for highly mobile species. *Diversity and
807 Distributions* 25, 1182–1193. <https://doi.org/10.1111/ddi.12940>

808 Amaya, D.J., Bond, N.E., Miller, A.J., Deflorio, M.J., 2016. The evolution and known
809 atmospheric forcing mechanisms behind the 2013-2015 North Pacific warm anomalies.
810 US CLIVAR Variations 14, 1–6.

811 Amaya, D.J., Jacox, M.G., Dias, J., Alexander, M.A., Karnauskas, K.B., Scott, J.D., Gehne, M.,
812 2022. Subseasonal-to-Seasonal Forecast Skill in the California Current System and Its
813 Connection to Coastal Kelvin Waves. *Journal of Geophysical Research: Oceans* 127,
814 e2021JC017892. <https://doi.org/10.1029/2021JC017892>

815 Balmaseda, M.A., Hernandez, F., Storto, A., Palmer, M.D., Alves, O., Shi, L., Smith, G.C.,
816 Toyoda, T., Valdivieso, M., Barnier, B., Behringer, D., Boyer, T., Chang, Y.S., Chepurin,
817 G.A., Ferry, N., Forget, G., Fujii, Y., Good, S., Guinehut, S., Haines, K., Ishikawa, Y.,
818 Keeley, S., Köhl, A., Lee, T., Martin, M.J., Masina, S., Masuda, S., Meyssignac, B.,
819 Mogensen, K., Parent, L., Peterson, K.A., Tang, Y.M., Yin, Y., Vernieres, G., Wang, X.,
820 Waters, J., Wedd, R., Wang, O., Xue, Y., Chevallier, M., Lemieux, J.F., Dupont, F.,
821 Kuragano, T., Kamachi, M., Awaji, T., Caltabiano, A., Wilmer-Becker, K., Gaillard, F.,
822 2015. The ocean reanalyses intercomparison project (ORA-IP). *Journal of Operational
823 Oceanography* 8, s80–s97. <https://doi.org/10.1080/1755876X.2015.1022329>

824 Becker, E.A., Forney, K.A., Fiedler, P.C., Barlow, J., Chivers, S.J., Edwards, C.A., Moore,
825 A.M., Redfern, J.V., 2016. Moving Towards Dynamic Ocean Management: How Well
826 Do Modeled Ocean Products Predict Species Distributions? *Remote Sensing* 8, 149.
827 <https://doi.org/10.3390/rs8020149>

828 Breivik, Ø., Mogensen, K., Bidlot, J.R., Balmaseda, M.A., Janssen, P.A.E.M., 2015. Surface
829 wave effects in the NEMO ocean model: Forced and coupled experiments. *Journal of*
830 *Geophysical Research: Oceans* 120, 2973–2992. <https://doi.org/10.1002/2014JC010565>

831 Brodie, S., Jacox, M.G., Bograd, S.J., Welch, H., Dewar, H., Scales, K.L., Maxwell, S.M.,
832 Briscoe, D.M., Edwards, C.A., Crowder, L.B., Lewison, R.L., Hazen, E.L., 2018.
833 Integrating dynamic subsurface habitat metrics into species distribution models. *Frontiers*
834 in *Marine Science* 5. <https://doi.org/10.3389/fmars.2018.00219>

835 Chang, J.H., Hart, D.R., Munroe, D.M., Curchitser, E.N., 2021. Bias Correction of Ocean
836 Bottom Temperature and Salinity Simulations From a Regional Circulation Model Using
837 Regression Kriging. *Journal of Geophysical Research: Oceans* 126.
838 <https://doi.org/10.1029/2020JC017140>

839 Chavez, F.P., Messié, M., 2009. A comparison of Eastern Boundary Upwelling Ecosystems.
840 *Progress in Oceanography* 83, 80–96. <https://doi.org/10.1016/j.pocean.2009.07.032>

841 Checkley, D.M., Barth, J.A., 2009. Patterns and processes in the California Current System.
842 *Progress in Oceanography* 83, 49–64. <https://doi.org/10.1016/j.pocean.2009.07.028>

843 de Souza, J.M.A.C., Couto, P., Soutelino, R., Roughan, M., 2021. Evaluation of four global
844 ocean reanalysis products for New Zealand waters—A guide for regional ocean modelling.
845 *New Zealand Journal of Marine and Freshwater Research* 55, 132–155.
846 <https://doi.org/10.1080/00288330.2020.1713179>

847 Di Lorenzo, E., Schneider, N., Cobb, K.M., Franks, P.J.S., Chhak, K., Miller, A.J., McWilliams,
848 J.C., Bograd, S.J., Arango, H., Curchitser, E., Powell, T.M., Rivière, P., 2008. North
849 Pacific Gyre Oscillation links ocean climate and ecosystem change. *Geophysical
850 Research Letters* 35. <https://doi.org/10.1029/2007GL032838>

851 Duce, N., Le Traon, P.Y., Reverdin, G., 2000. Global high-resolution mapping of ocean
852 circulation from TOPEX/Poseidon and ERS-1 and -2. *Journal of Geophysical Research: Oceans* 105, 19477–19498. <https://doi.org/10.1029/2000jc900063>

853 Good, S.A., Martin, M.J., Rayner, N.A., 2013. EN4: Quality controlled ocean temperature and
854 salinity profiles and monthly objective analyses with uncertainty estimates. *Journal of Geophysical Research: Oceans* 118, 6704–6716. <https://doi.org/10.1002/2013JC009067>

855 Gruber, N., Lachkar, Z., Frenzel, H., Marchesiello, P., Münnich, M., McWilliams, J.C., Nagai,
856 T., Plattner, G.K., 2011. Eddy-induced reduction of biological production in eastern
857 boundary upwelling systems. *Nature Geoscience* 4, 787–792.
858 <https://doi.org/10.1038/ngeo1273>

859 Haltuch, M.A., Tolimieri, N., Lee, Q., Jacox, M.G., 2020. Oceanographic drivers of petrale sole
860 recruitment in the California Current Ecosystem. *Fisheries Oceanography* 29, 122–136.
861 <https://doi.org/10.1111/fog.12459>

862 Huang, B., Liu, C., Banzon, V., Freeman, E., Graham, G., Hankins, B., Smith, T., Zhang, H.M.,
863 2021. Improvements of the Daily Optimum Interpolation Sea Surface Temperature
864 (DOISST) Version 2.1. *Journal of Climate* 34, 2923–2939. <https://doi.org/10.1175/JCLI-D-20-0166.1>

868 Huyer, A., Wheeler, P.A., Strub, P.T., Smith, R.L., Letelier, R., Kosro, P.M., 2007. The Newport
869 line off Oregon - Studies in the North East Pacific. *Progress in Oceanography* 75, 126–
870 160. <https://doi.org/10.1016/j.pocean.2007.08.003>

871 Ingleby, B., Huddleston, M., 2007. Quality control of ocean temperature and salinity profiles -
872 Historical and real-time data. *Journal of Marine Systems* 65, 158–175.
873 <https://doi.org/10.1016/j.jmarsys.2005.11.019>

874 Jacox, M.G., Edwards, C.A., Hazen, E.L., Bograd, S.J., 2018. Coastal Upwelling Revisited:
875 Ekman, Bakun, and Improved Upwelling Indices for the U.S. West Coast. *Journal of
876 Geophysical Research: Oceans* 123, 7332–7350. <https://doi.org/10.1029/2018JC014187>

877 Jacox, M.G., Fiechter, J., Moore, A.M., Edwards, C.A., 2015. ENSO and the California current
878 coastal upwelling response. *Journal of Geophysical Research: Oceans* 120, 1691–1702.
879 <https://doi.org/10.1002/2014JC010650>

880 Jacox, M.G., Moore, A.M., Edwards, C.A., Fiechter, J., 2014. Spatially resolved upwelling in the
881 California Current System and its connections to climate variability. *Geophysical
882 Research Letters* 41, 3189–3196. <https://doi.org/10.1002/2014GL059589>

883 Jayne, S.R., Roemmich, D., Zilberman, N., Riser, S.C., Johnson, K.S., Johnson, G.C.,
884 Piotrowicz, S.R., 2017. The argo program: Present and future. *Oceanography* 30, 18–28.
885 <https://doi.org/10.5670/OCEANOOG.2017.213>

886 Keller, A.A., Wallace, J.R., Methot, R.D., 2017. The Northwest Fisheries Science Center's West
887 Coast Groundfish Bottom Trawl Survey: History, Design, and Description. NOAA
888 Technical Memorandum 47.

889 Lee, T., Awaji, T., Balmaseda, M.A., Greiner, E., Stammer, D., 2009. Ocean state estimation for
890 climate research. *Oceanography* 22, 160–167. <https://doi.org/10.5670/oceanog.2009.74>

891 Legeais, J.F., Ablain, M., Zawadzki, L., Zuo, H., Johannessen, J.A., Scharffenberg, M.G.,

892 Fenoglio-Marc, L., Joana Fernandes, M., Baltazar Andersen, O., Rudenko, S., Cipollini,

893 P., Quartly, G.D., Passaro, M., Cazenave, A., Benveniste, J., 2018. An improved and

894 homogeneous altimeter sea level record from the ESA Climate Change Initiative. *Earth*

895 *System Science Data* 10, 281–301. <https://doi.org/10.5194/essd-10-281-2018>

896 Lellouche, J.-M., Greiner, E., Bourdallé Badie, R., Garric, G., Melet, A., Drévillon, M., Bricaud,

897 C., Hamon, M., Le Galloudec, O., Regnier, C., Candela, T., Testut, C.-E., Gasparin, F.,

898 Ruggiero, G., Benkiran, M., Drillet, Y., Le Traon, P.-Y., 2021. The Copernicus Global

899 1/12° Oceanic and Sea Ice GLORYS12 Reanalysis. *Frontiers in Earth Science* 9.

900 <https://doi.org/10.3389/feart.2021.698876>

901 Masina, S., Di Pietro, P., Storto, A., Navarra, A., 2011. Global ocean re-analyses for climate

902 applications. *Dynamics of Atmospheres and Oceans* 52, 341–366.

903 <https://doi.org/10.1016/j.dynatmoce.2011.03.006>

904 Melnichenko, O., Hacker, P., Maximenko, N., Lagerloef, G., Potemra, J., 2016. Optimum

905 interpolation analysis of Aquarius sea surface salinity. *Journal of Geophysical Research:*

906 *Oceans* 121, 602–616. <https://doi.org/10.1002/2015JC011343>

907 Melnichenko, O., Hacker, P., Maximenko, N., Lagerloef, G., Potemra, J., 2014. Spatial Optimal

908 Interpolation of Aquarius Sea Surface Salinity: Algorithms and Implementation in the

909 North Atlantic. *Journal of Atmospheric and Oceanic Technology* 31, 1583–1600.

910 <https://doi.org/10.1175/JTECH-D-13-00241.1>

911 Moore, A.M., Arango, H.G., Broquet, G., Powell, B.S., Weaver, A.T., Zavala-Garay, J., 2011.

912 The Regional Ocean Modeling System (ROMS) 4-dimensional variational data

913 assimilation systems. Part I - System overview and formulation. *Progress in*
914 *Oceanography* 91, 34–49. <https://doi.org/10.1016/j.pocean.2011.05.004>

915 Neveu, E., Moore, A.M., Edwards, C.A., Fiechter, J., Drake, P., Crawford, W.J., Jacox, M.G.,
916 Nuss, E., 2016. An historical analysis of the California Current circulation using ROMS
917 4D-Var: System configuration and diagnostics. *Ocean Modelling* 99, 133–151.
918 <https://doi.org/10.1016/j.ocemod.2015.11.012>

919 Ottersen, G., Kim, S., Huse, G., Polovina, J.J., Stenseth, N.C., 2010. Major pathways by which
920 climate may force marine fish populations. *Journal of Marine Systems* 79, 343–360.
921 <https://doi.org/10.1016/j.jmarsys.2008.12.013>

922 Pinsky, M.L., Worm, B., Fogarty, M.J., Sarmiento, J.L., Levin, S.A., 2013. Marine taxa track
923 local climate velocities. *Science* 341, 1239–1242.
924 <https://doi.org/10.1126/science.1239352>

925 Renault, L., Molemaker, M.J., Mcwilliams, J.C., Shchepetkin, A.F., Lemarié, F., Chelton, D.,
926 Illig, S., Hall, A., 2016. Modulation of wind work by oceanic current interaction with the
927 atmosphere. *Journal of Physical Oceanography* 46, 1685–1704.
928 <https://doi.org/10.1175/JPO-D-15-0232.1>

929 Reynolds, R.W., Chelton, D.B., 2010. Comparisons of daily Sea surface temperature analyses for
930 2007-08. *Journal of Climate* 23, 3545–3562. <https://doi.org/10.1175/2010JCLI3294.1>

931 Reynolds, R.W., Chelton, D.B., Roberts-Jones, J., Martin, M.J., Menemenlis, D., Merchant, C.J.,
932 2013. Objective determination of feature resolution in two sea surface temperature
933 analyses. *Journal of Climate* 26, 2514–2533. <https://doi.org/10.1175/JCLI-D-12-00787.1>

934 Reynolds, R.W., Smith, T.M., Liu, C., Chelton, D.B., Casey, K.S., Schlax, M.G., 2007. Daily
935 high-resolution-blended analyses for sea surface temperature. *Journal of Climate*.
936 <https://doi.org/10.1175/2007JCLI1824.1>

937 Rudnick, D.L., Zaba, K.D., Todd, R.E., Davis, R.E., 2017. A climatology of the California
938 Current System from a network of underwater gliders. *Progress in Oceanography* 154,
939 64–106. <https://doi.org/10.1016/j.pocean.2017.03.002>

940 Sakov, P., Counillon, F., Bertino, L., Lister, K.A., Oke, P.R., Koralev, A., 2012. TOPAZ4: An
941 ocean-sea ice data assimilation system for the North Atlantic and Arctic. *Ocean Science*
942 8, 633–656. <https://doi.org/10.5194/os-8-633-2012>

943 Santora, J.A., Mantua, N.J., Schroeder, I.D., Field, J.C., Hazen, E.L., Bograd, S.J., Sydeman,
944 W.J., Wells, B.K., Calambokidis, J., Saez, L., Lawson, D., Forney, K.A., 2020. Habitat
945 compression and ecosystem shifts as potential links between marine heatwave and record
946 whale entanglements. *Nature Communications* 11. [https://doi.org/10.1038/s41467-019-14215-w](https://doi.org/10.1038/s41467-019-
947 14215-w)

948 Schroeder, I.D., Santora, J.A., Mantua, N., Field, J.C., Wells, B.K., Hazen, E.L., Jacox, M.,
949 Bograd, S.J., 2022. Habitat compression indices for monitoring ocean conditions and
950 ecosystem impacts within coastal upwelling systems. *Ecological Indicators* 144, 109520.
951 <https://doi.org/10.1016/j.ecolind.2022.109520>

952 Schroeder, I.D., Santora, J.A., Moore, A.M., Edwards, C.A., Fiechter, J., Hazen, E.L., Bograd,
953 S.J., Field, J.C., Wells, B.K., 2014. Application of a data-assimilative regional ocean
954 modeling system for assessing California Current System ocean conditions, krill, and
955 juvenile rockfish interannual variability. *Geophysical Research Letters* 41, 5942–5950.
956 <https://doi.org/10.1002/2014GL061045>

957 Storto, A., Alvera-Azcárate, A., Balmaseda, M.A., Barth, A., Chevallier, M., Counillon, F.,

958 Domingues, C.M., Drévillon, M., Drillet, Y., Forget, G., Garric, G., Haines, K.,

959 Hernandez, F., Iovino, D., Jackson, L.C., Lellouche, J.M., Masina, S., Mayer, M., Oke,

960 P.R., Penny, S.G., Peterson, A.K., Yang, C., Zuo, H., 2019. Ocean reanalyses: Recent

961 advances and unsolved challenges. *Frontiers in Marine Science*.

962 <https://doi.org/10.3389/fmars.2019.00418>

963 Storto, A., Oddo, P., Cipollone, A., Mirouze, I., Lemieux-Dudon, B., 2018. Extending an

964 oceanographic variational scheme to allow for affordable hybrid and four-dimensional

965 data assimilation. *Ocean Modelling* 128, 67–86.

966 <https://doi.org/10.1016/j.ocemod.2018.06.005>

967 Szekely, T., Gourrion, J., Pouliquen, S., Reverdin, G., 2019. The CORA 5.2 dataset: global in-

968 situ Temperature and Salinity measurements dataset. Data description and validation. The

969 CORA 5.2 dataset: global in-situ Temperature and Salinity measurements dataset. Data

970 description and validation 1–20. <https://doi.org/10.5194/os-2018-144>

971 Tolimieri, N., Haltuch, M.A., Lee, Q., Jacox, M.G., Bograd, S.J., 2018. Oceanographic drivers of

972 sablefish recruitment in the California Current. *Fisheries Oceanography* 27, 458–474.

973 <https://doi.org/10.1111/fog.12266>

974 Ward, E.J., Barnett, L.A.K., Anderson, S.C., Commander, C.J.C., Essington, T.E., 2022.

975 Incorporating non-stationary spatial variability into dynamic species distribution models.

976 ICES Journal of Marine Science 79, 2422–2429. <https://doi.org/10.1093/icesjms/fsac179>

977 Welch, H., Hazen, E.L., Briscoe, D.K., Bograd, S.J., Jacox, M.G., Eguchi, T., Benson, S.R.,

978 Fahy, C.C., Garfield, T., Robinson, D., Seminoff, J.A., Bailey, H., 2019. Environmental

979 indicators to reduce loggerhead turtle bycatch offshore of Southern California. *Ecological*
980 *Indicators* 98, 657–664. <https://doi.org/10.1016/j.ecolind.2018.11.001>

981 Xie, J., Zhu, J., Li, Y., 2008. Assessment and inter-comparison of five high-resolution sea
982 surface temperature products in the shelf and coastal seas around China. *Continental*
983 *Shelf Research* 28, 1286–1293. <https://doi.org/10.1016/j.csr.2008.02.020>

984 Xue, Y., Balmaseda, M.A., Boyer, T., Ferry, N., Good, S., Ishikawa, I., Kumar, A., Rienecker,
985 M., Rosati, A.J., Yin, Y., 2012. A comparative analysis of upper-ocean heat content
986 variability from an ensemble of operational ocean reanalyses. *Journal of Climate* 25,
987 6905–6929. <https://doi.org/10.1175/JCLI-D-11-00542.1>

988 Xue, Y., Wen, C., Kumar, A., Balmaseda, M., Fujii, Y., Alves, O., Martin, M., Yang, X.,
989 Vernieres, G., Desportes, C., Lee, T., Ascione, I., Gudgel, R., Ishikawa, I., 2017. A real-
990 time ocean reanalyses intercomparison project in the context of tropical pacific observing
991 system and ENSO monitoring. *Climate Dynamics* 49, 3647–3672.
992 <https://doi.org/10.1007/s00382-017-3535-y>

993 Zhu, J., Huang, B., Balmaseda, M.A., 2012. An ensemble estimation of the variability of upper-
994 ocean heat content over the tropical Atlantic Ocean with multi-ocean reanalysis products.
995 *Climate Dynamics* 39, 1001–1020. <https://doi.org/10.1007/s00382-011-1189-8>

996 Zuo, H., Balmaseda, M.A., Mogensen, K., 2017. The new eddy-permitting ORAP5 ocean
997 reanalysis: description, evaluation and uncertainties in climate signals. *Climate Dynamics*
998 49, 791–811. <https://doi.org/10.1007/s00382-015-2675-1>

999 Zuo, H., Balmaseda, M.A., Tietsche, S., Mogensen, K., Mayer, M., 2019. The ECMWF
1000 operational ensemble reanalysis-analysis system for ocean and sea ice: A description of

1001 the system and assessment. *Ocean Science* 15, 779–808. <https://doi.org/10.5194/os-15-779-2019>

1002

1003

1004 **Table 1** Attributes of the three reanalyses used in this study. The acronyms in the table are: First
 1005 Guess at the Appropriate Time (FGAT); Copernicus Marine Environment Monitoring Service
 1006 (CMEMS); eXpendable BathyThermograph (XBT); Mechanical Bathythermograph (MBT);
 1007 Advanced Very High-Resolution Radiometer (AVHRR); Coriolis Ocean database ReAnalysis
 1008 (CORA); Operational Sea Surface Temperature and Ice Analysis (OSTIA).

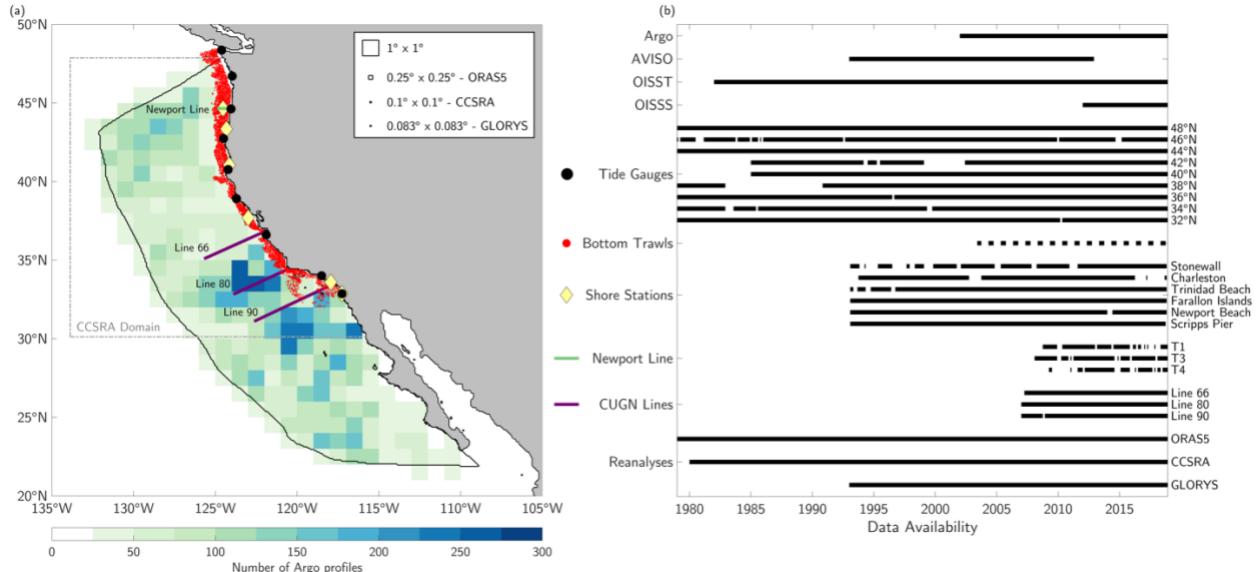
Reanalysis	GLORYS	ORAS5	CCSRA
Institute	Mercator Ocean International (consortium)	ECMWF	University of California Santa Cruz
Ocean Model	NEMO	OCEAN5	ROMS
Domain	global	global	California Current System
Horizontal resolution	1/12°	1/4°	1/10°
Levels	50	75	42
Vertical Coordinate	Depth (z)	Depth (z)	Terrain following (ρ)
First level	0.5 m	0.5 m	variable
Atmospheric Forcing	ERA-Interim	ERA-Interim (1979-2015), ECMWF-NWP (2015-present)	ERA40 (1982-87), ERA40+CCMP winds (1987-2001), ERA Interim+CCMP winds (2001-present)
Assimilation Scheme	3D-Var Kalman Filter	3D-Var FGAT with 5 day window	4D-Var
Assimilated Observations	AVHRR: SST, CMEMS: SLA, CORA: In-situ T/S profiles	HadISST2 + OSTIA: SST, AVISO: SLA, EN4: <i>In situ</i> T/S profiles with XBT and MBT correction	AVHRR, AMSR-E, and MODIS: SST, AVISO/CMEMS: SSH, EN3: <i>In situ</i> T/S profiles for 1980-2010 EN4: <i>In situ</i> T/S profiles for post-2010
Archive period	daily/monthly	daily	6 hourly
Period	1993-2019	1979-2018	1980-2019
References	Lellouche et al. 2021	Zuo et al. 2017, 2019	Neveu et al. 2016

1009

1010

1011 **Table 2** Description of observations used for comparison with reanalyses.

Data Set	Description	Period	References
OISST v2.1	Merged satellite and <i>in situ</i> SST data mapped to a 1/4° grid	1982-present	Reynolds et al. 2007; Huang et al. 2021
OISSS v1.0	Merged satellite SSS data mapped to a 1/4° grid	2012-2018	Melnichenko et al. 2016
Nearshore stations	SST from Stonewall Bank (44.7°N, 124.5°W), Charleston (43.3°N, 124.3°W), Trinidad Beach (41.1°N, 124.1°W), Farallons: (37.7°N, 123.0°W), Newport Beach (33.6°N, 117.9°W), Scripps Pier (32.9°N, 117.3°W).	1993-present (with gaps)	https://shorestations.ucsd.edu/shore-stations-data/
Gliders	California Underwater Glider Network (CUGN), 3 sections that extend ~500 km offshore. Surface to 500 m (or near bottom)	2008-2018	Rudnick et al. 2017
Newport line	CTD casts at three locations along the Newport Hydrographic Line extends offshore from Oregon coast at 44.7°N for locations: T1: 124.1°W (25 m) T3: 124.1°W (55 m) T4: 124.3°W (75 m) Bottom depth in parentheses	2008-2018	Huyer et al. 2007
Argo	Profiling floats drift at a depth of 1000 meters over 10 days, then dive to 2000 meters and return to the surface. ~4000 currently deployed over the global ocean with 18,97 profiles in the CCLME during 2002-18.	2002-2018	Jayne et al. 2017
Tide Gauges	Sea level from 9 tide gauges spanning the west coast	Varies	
Bottom Trawls	Bottom temperature measurements from U.S. West Coast Groundfish Bottom Trawl Survey (WCBTS)	Varies	Keller et al., 2017
AVISO	Satellite altimetry measurements on a 0.25° grid	1993-2012	Ducett et al. 2000

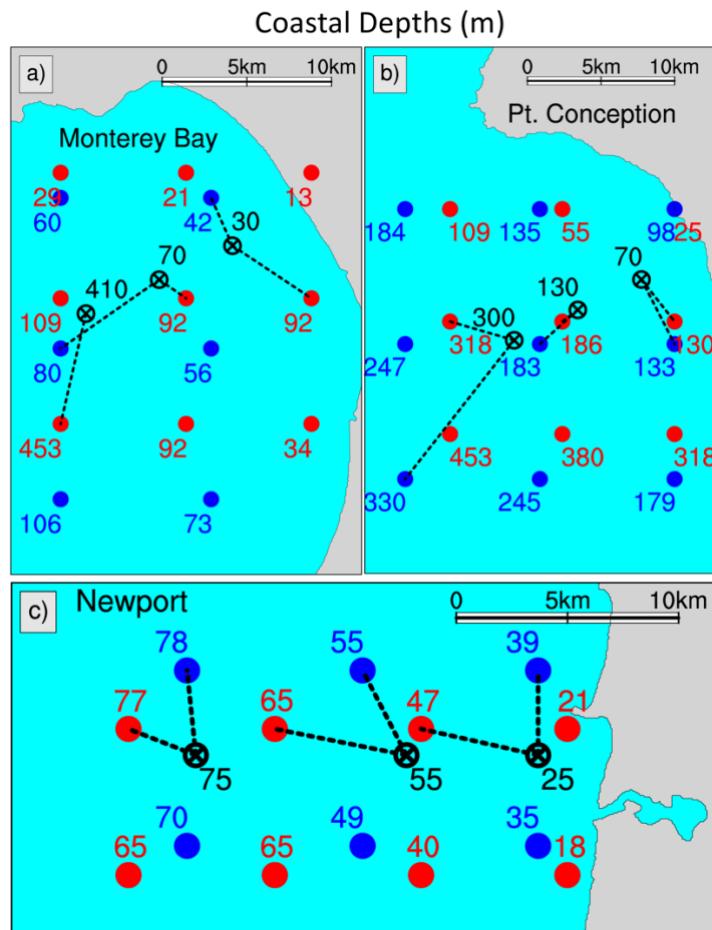


1013

1014 **Figure 1** (a) Spatial distribution and (b) temporal availability of all data sets used in this study.

1015 Shading in (a) denotes total number of Argo profiles since 2002, binned in $1^\circ \times 1^\circ$ grid cells. Black
 1016 line outlines in the CCLME. Dashed gray line denotes the CCSRA regional domain. Black lines
 1017 for each dataset in (b) indicates that the data was available for the given time step somewhere
 1018 within the CCLME.

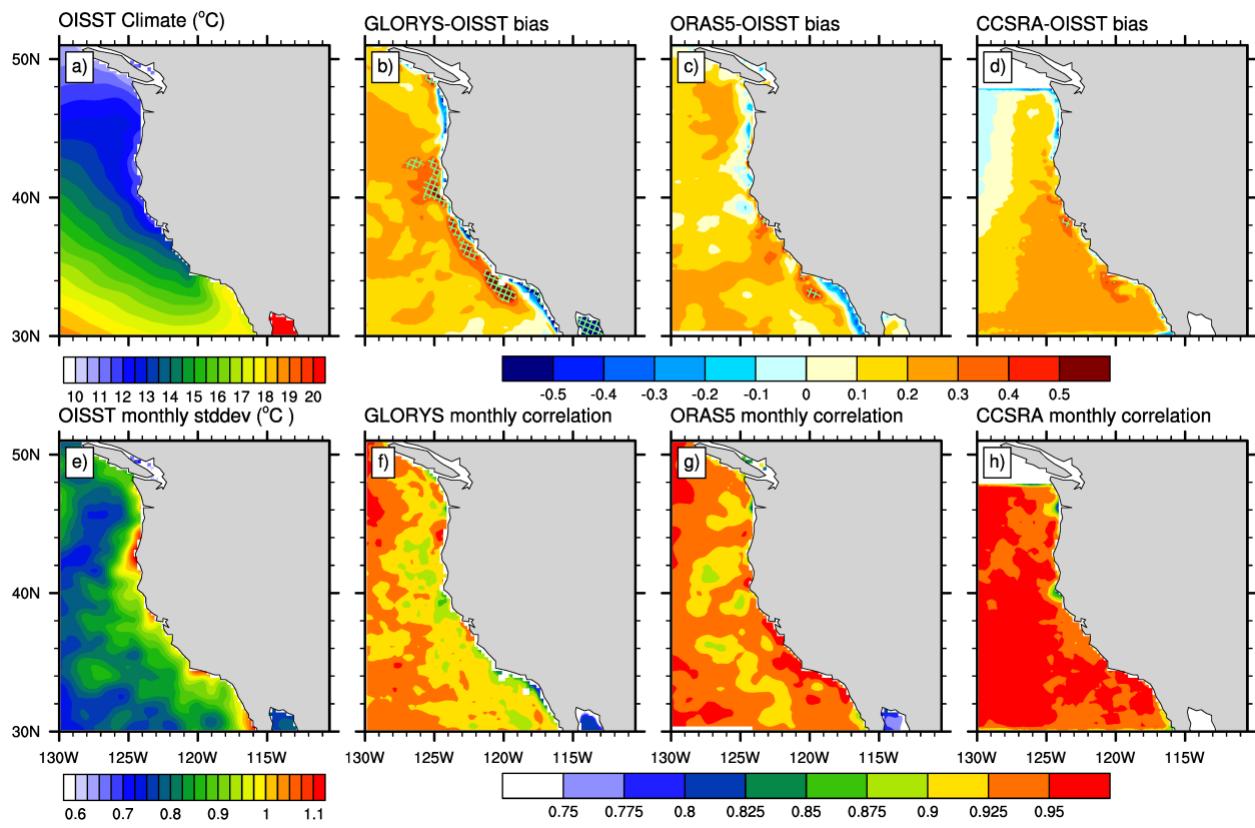
1019



1020

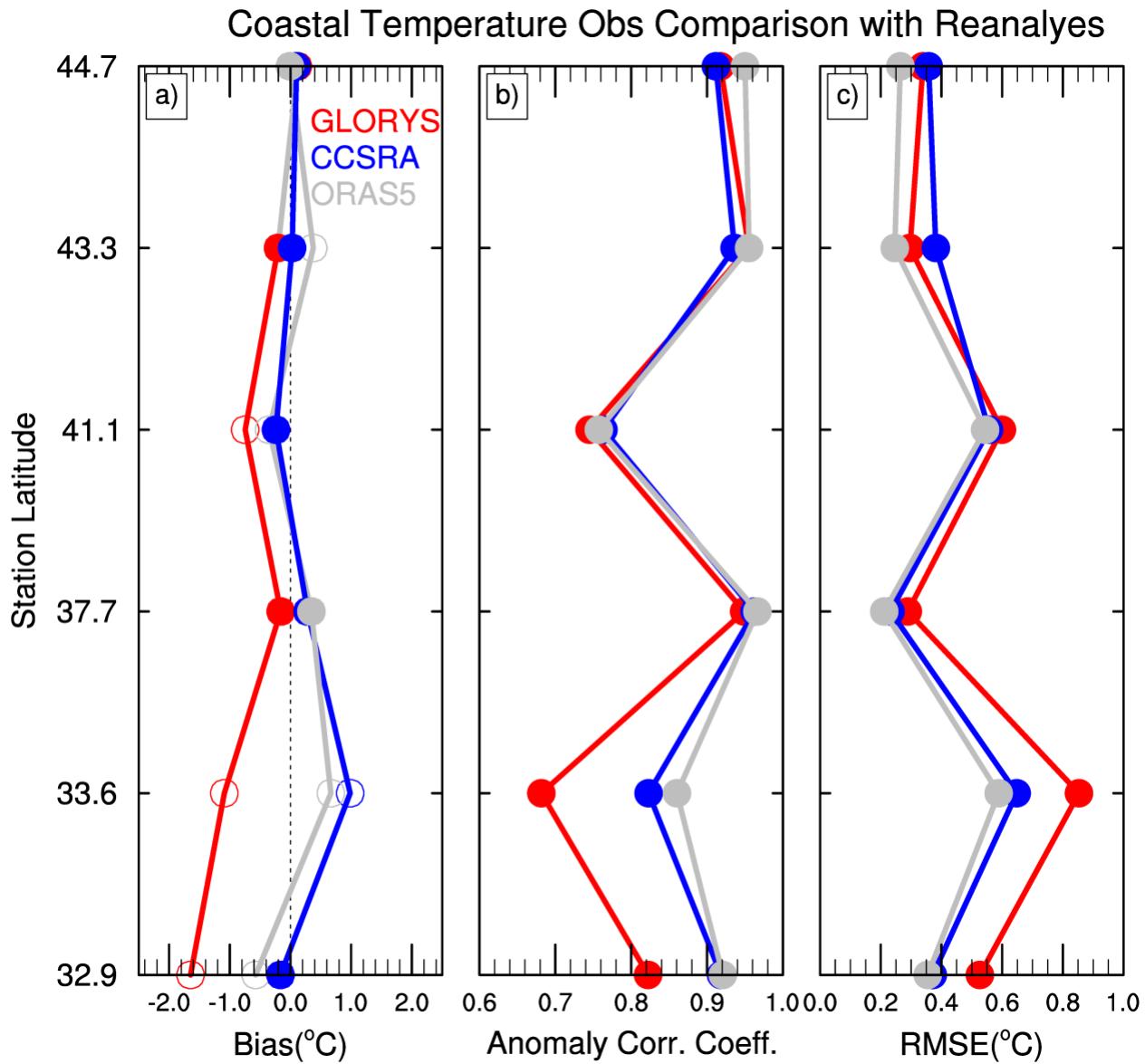
1021 **Figure 2** Bottom temperature locations used for comparing the CUGN and Newport Line (black
 1022 X's) to nearby GLORYS (red dots) and CCSRA (blue dots) grid points in Figure 12. The
 1023 comparisons are conducted as follows: the nearest reanalysis grid point where the bottom is deeper
 1024 than at the observed location is selected (dashed line connect the observed and reanalysis data
 1025 locations), then the temperatures are interpolated from the reanalyses bottom depth to the observed
 1026 bottom depth. Comparisons are made at depths of 30m, 70m and 410m in Monterey Bay and at
 1027 70m, 130m and 300m off Pt. Conception, and at 25m, 55m, 75m on the Newport line. Comparisons
 1028 between CCSRA and CUGN at 410m in Monterey Bay were omitted since the nearest deeper
 1029 CCSRA grid points were too far away for a reasonable comparison. The ORAS5 reanalysis was
 1030 omitted since it is too coarse for this comparison to be meaningful.

OISST - Reanalysis SST comparison 1993-2018



1031 **Figure 3** (a) Annual mean SST ($^{\circ}\text{C}$) pattern from OISST. (b)-(d) Annual mean SST bias patterns
 1032 from the GLORYS, ORAS5 and CCSRA reanalyses, respectively. (e) Monthly mean standard
 1033 deviation pattern ($^{\circ}\text{C}$) from OISST. (f)-(h) Anomaly correlation coefficients between monthly
 1034 mean SST anomalies from OISST and each reanalyses. Significant biases at 95% confidence in
 1035 the top row are denoted by green hatching. All monthly correlations reported in the bottom row
 1036 are significant at 95% confidence.

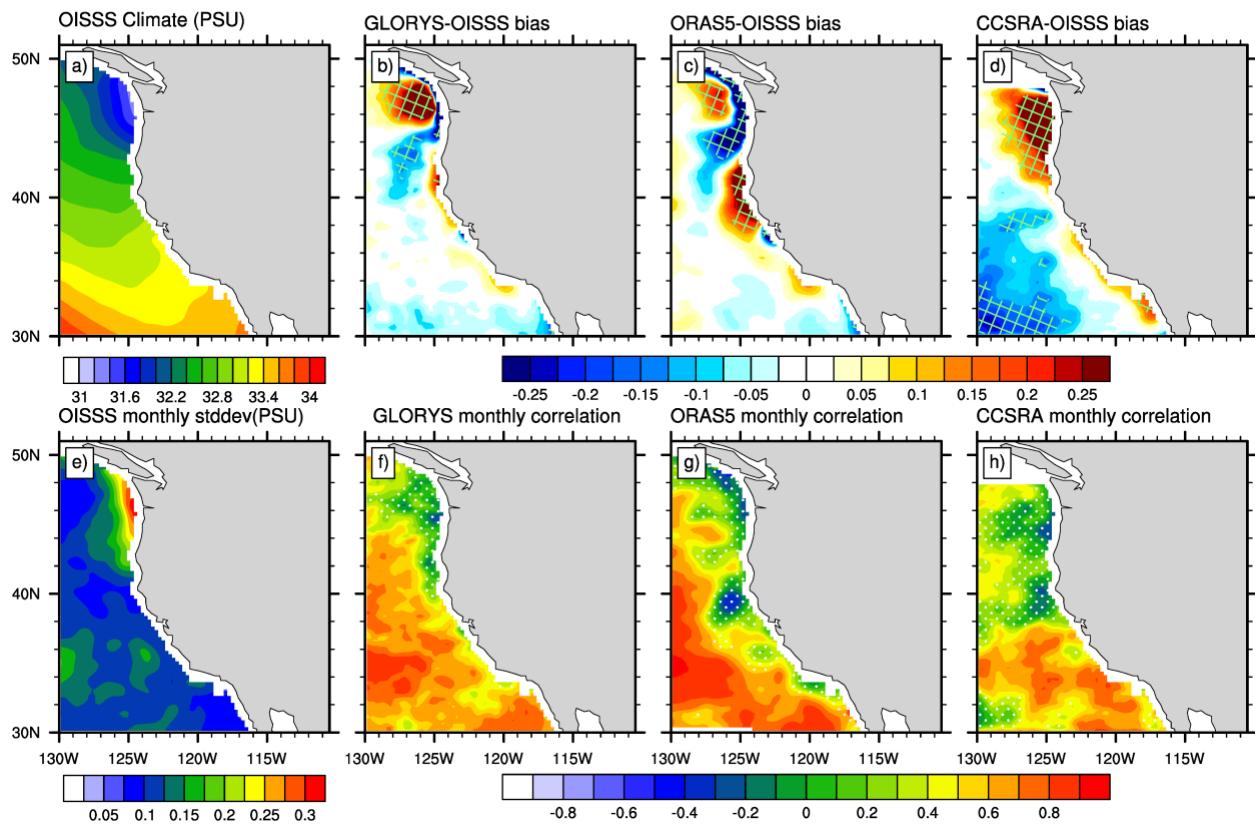
1037



1038

1039 **Figure 4** (a) Annual mean SST bias values ($^{\circ}\text{C}$) from GLORYS (red), CCSRA (blue), and ORAS5
 1040 (grey) relative to the mean SST at each shore station (indicated by latitude). (b) As in (a), but for
 1041 the anomaly correlation coefficient between monthly mean SST anomalies from each reanalyses
 1042 and each shore station. (c) As in (a), but for the monthly root mean square error (RMSE; $^{\circ}\text{C}$). Open
 1043 circles in (a) indicate significant mean biases at 95% confidence. Closed circles in (b) indicate
 1044 significant correlations with 95% confidence.

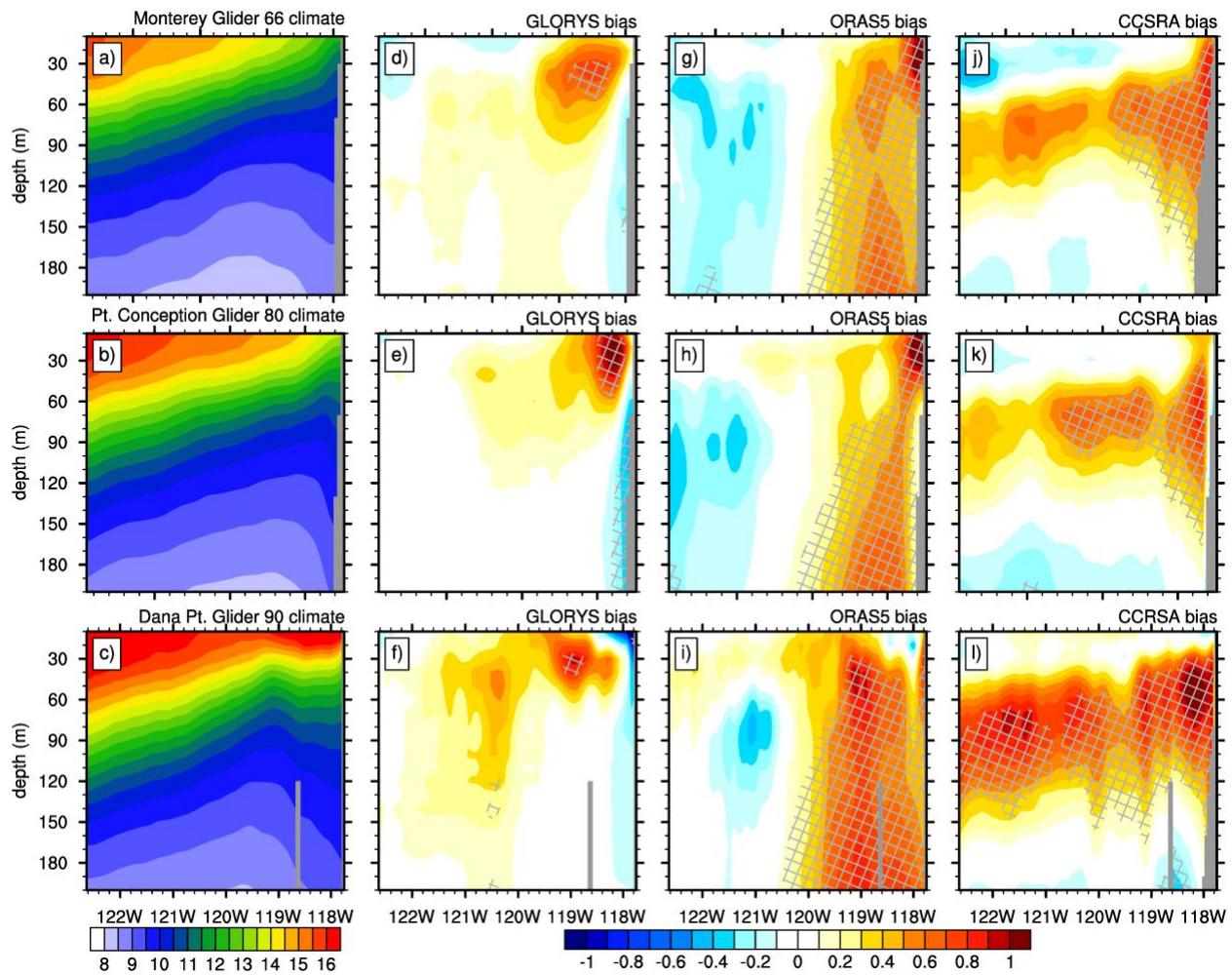
OISSS - Reanalysis SSS comparison 2012-2018



1045

1046 **Figure 5** As in Figure 3, but for OISSS and reanalysis sea surface salinity (PSU).

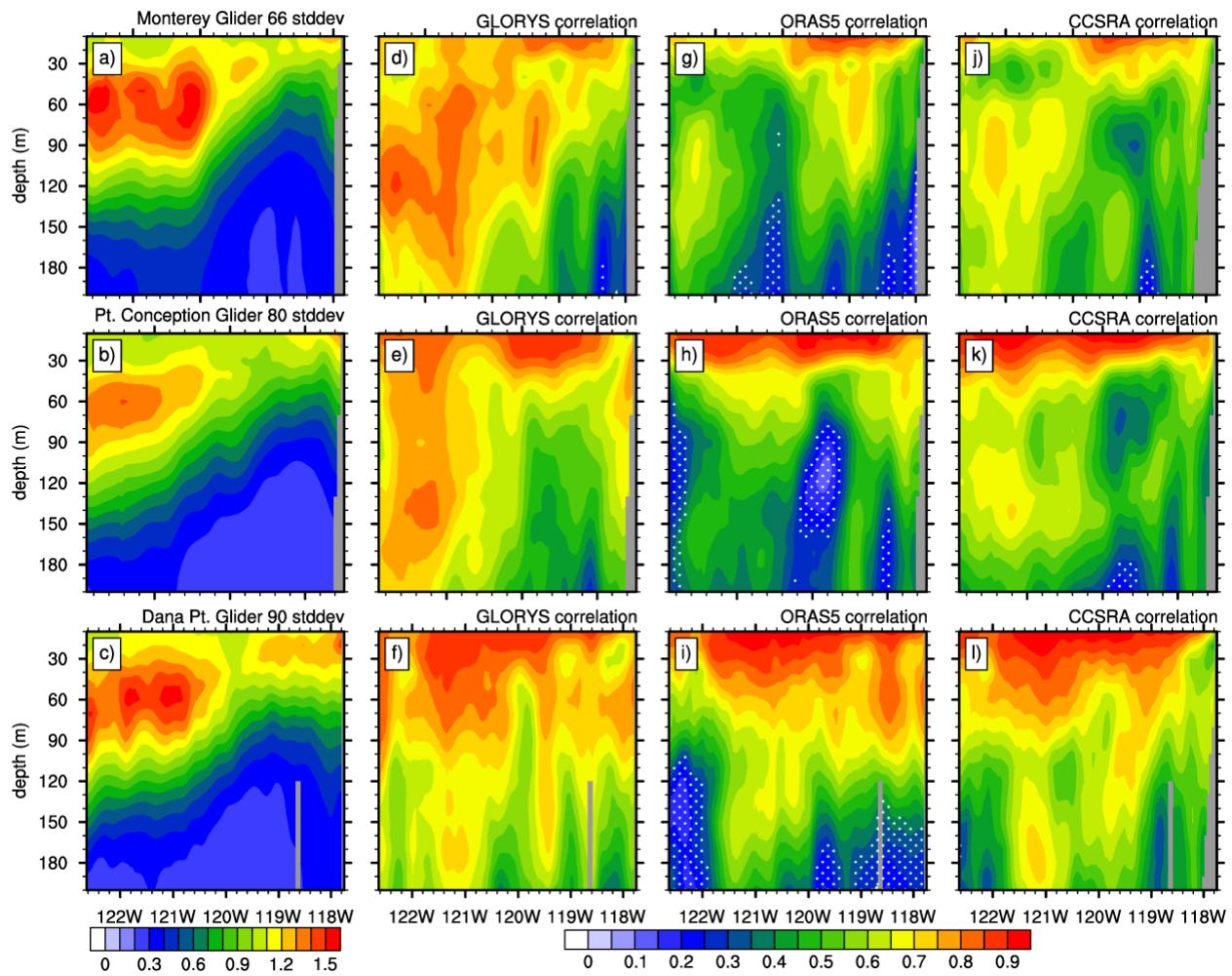
Glider Temperature Comparison 2007-2018



1047

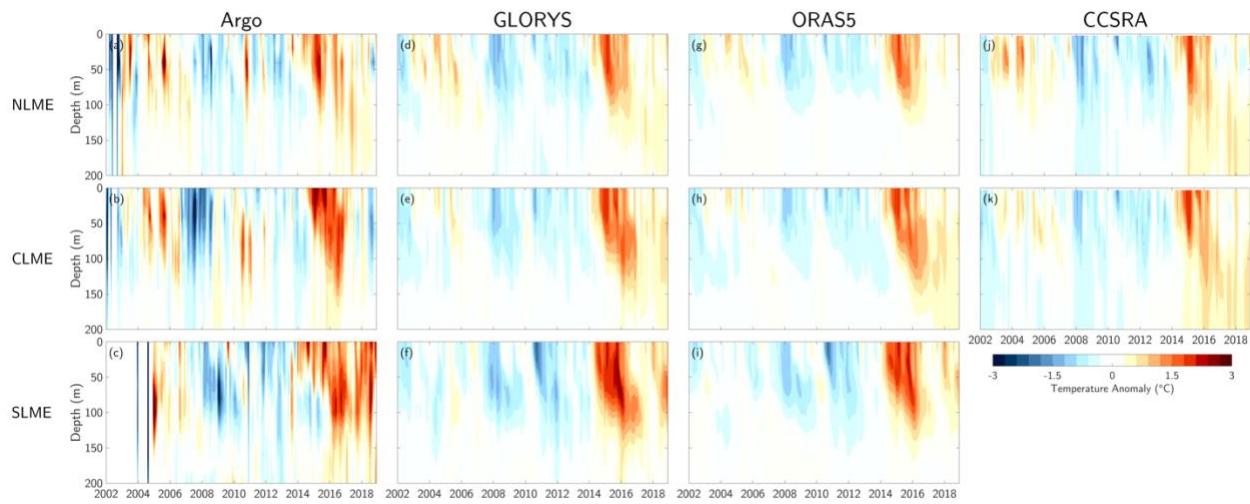
1048 **Figure 6** (a)-(c) Annual mean temperature ($^{\circ}\text{C}$) along CUGN Line 66 (Monterey), Line 80 (Pt.
 1049 Conception), and Line 90 (Dana Pt.), respectively. (d)-(l) Annual mean temperature bias ($^{\circ}\text{C}$) along
 1050 each glider line in (d)-(f) GLORYS, (g)-(i) ORAS5, and (j)-(l) CCSRA. Gray hatching indicates a
 1051 significant mean bias with 95% confidence.

Glider Temperature Comparison 2007-2018



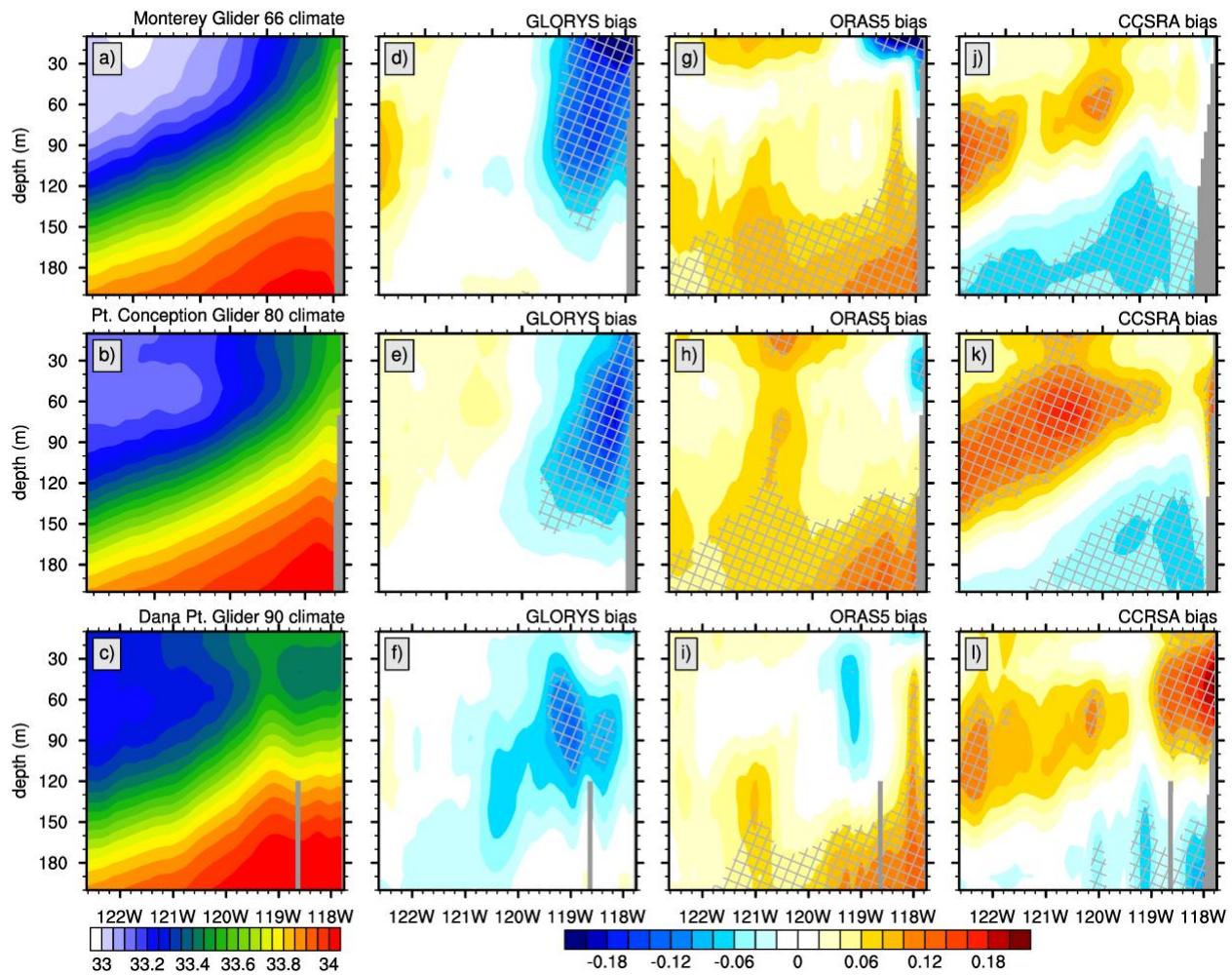
1052

1053 **Figure 7** (a)-(c) Monthly mean temperature standard deviation ($^{\circ}\text{C}$) along CUGN Line 66
 1054 (Monterey), Line 80 (Pt. Conception), and Line 90 (Dana Pt.), respectively. (d)-(l) Anomaly
 1055 correlation coefficients of monthly mean temperature data from CUGN with (d)-(f) GLORYS, (g)-
 1056 (i) ORAS5, and (j)-(l) CCSRA. White stippling indicate an insignificant correlation with 95%
 1057 confidence.

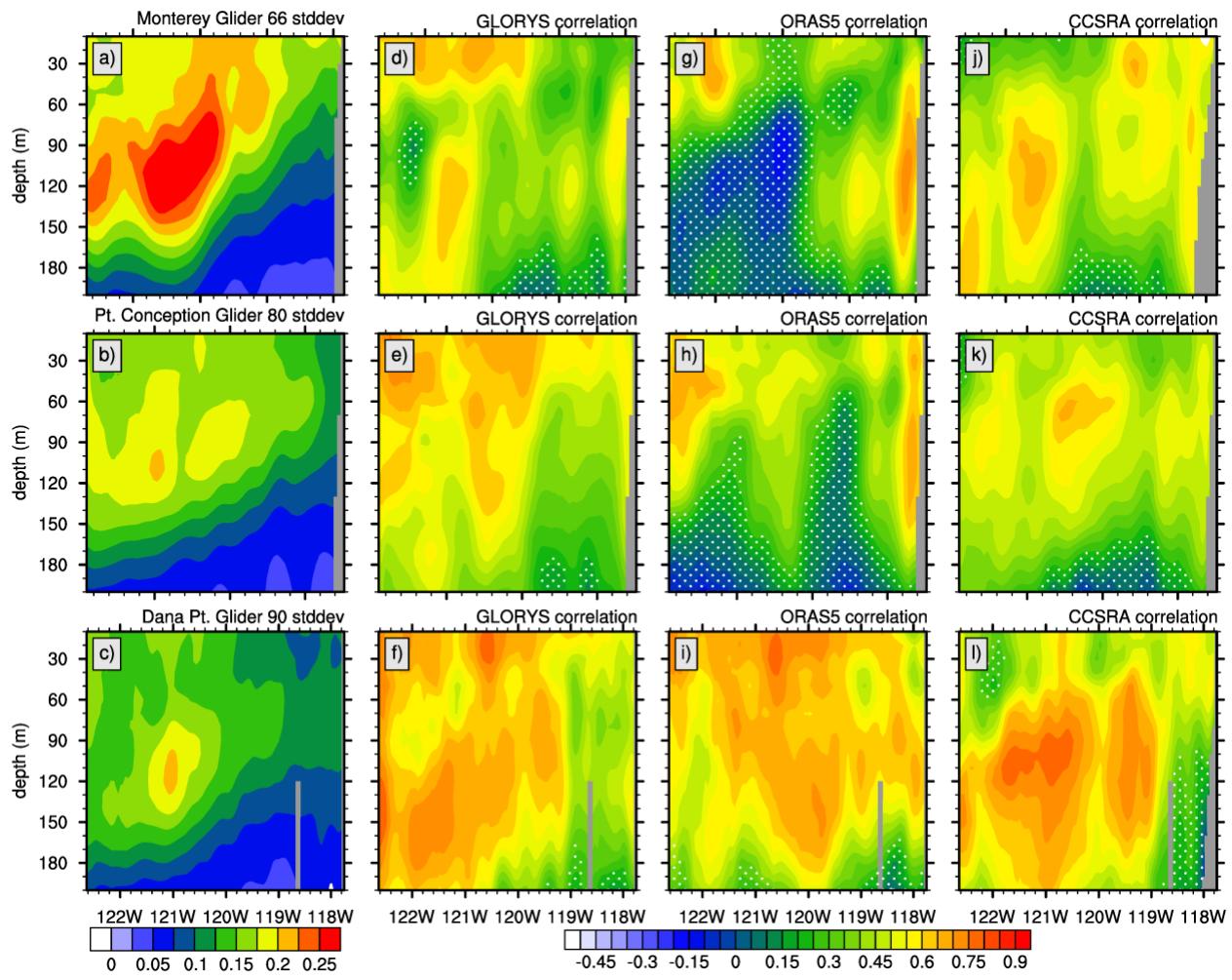


1060 **Figure 8** Depth/time cross-sections of monthly mean water temperature anomalies ($^{\circ}\text{C}$) averaged
 1061 in three CCLME sub-regions—the North LME (NLME; top row), Central LME (CLME; middle
 1062 row), and South LME (SLME; bottom row). Data are from (a)-(c) Argo profiles binned in the
 1063 vertical in 20 m bins, (d)-(f) GLORYS, (g)-(i) ORAS5, and (j)-(k) CCSRA. Note the reanalysis
 1064 data feature their native vertical resolution. See Methods for more details.

Glider Salinity Comparison 2007-2018

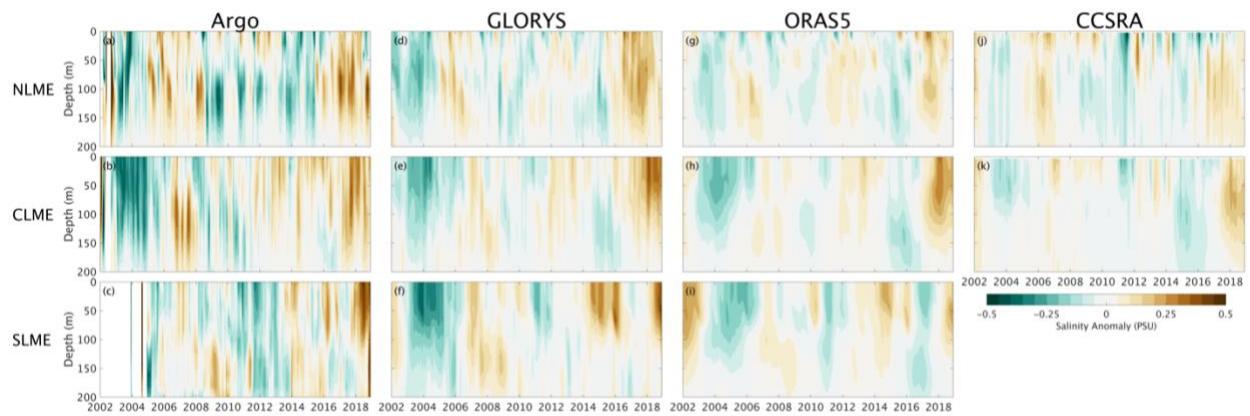


Glider Salinity Comparison 2007-2018



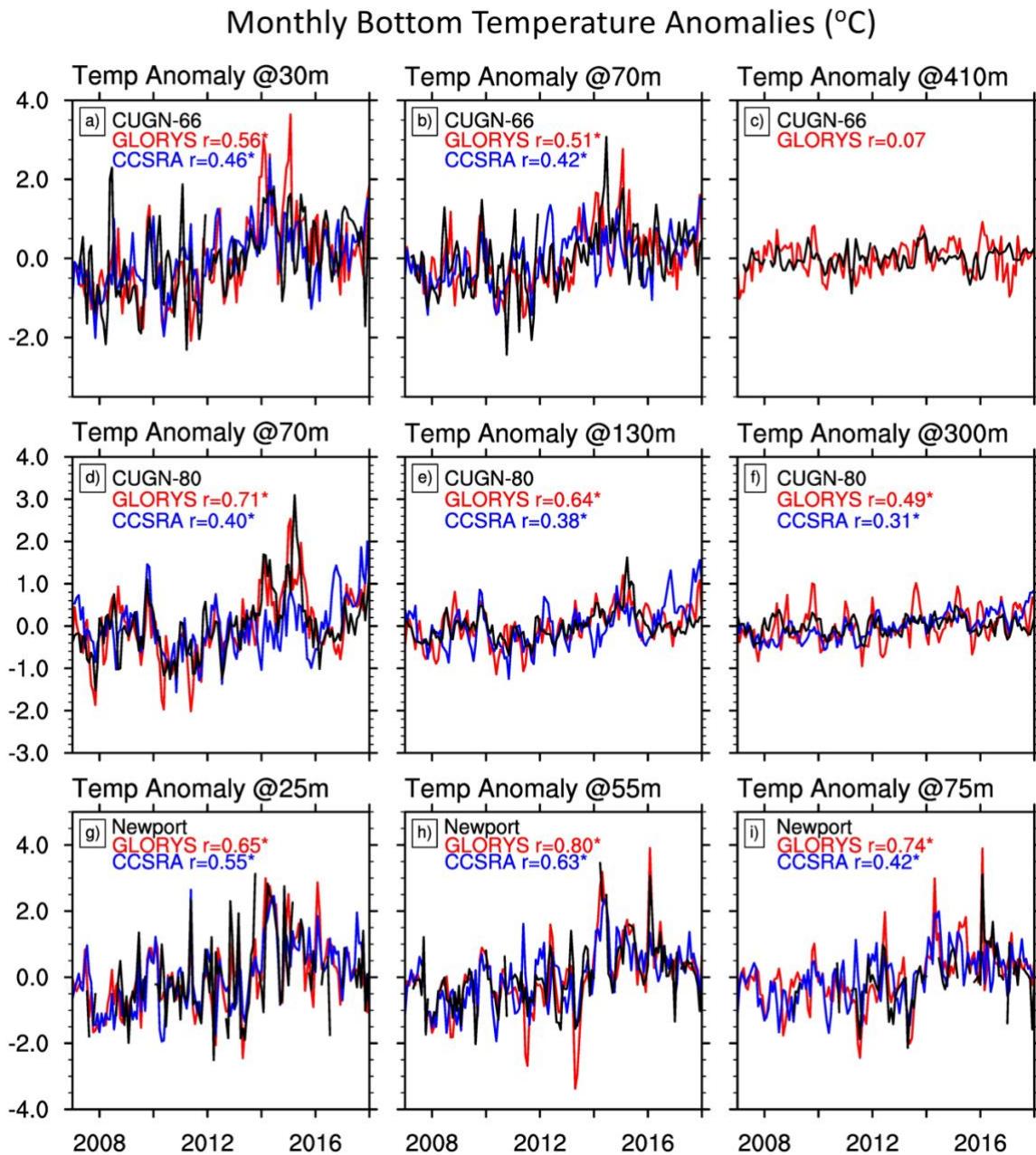
1069

1070 **Figure 10** As in Figure 7, but for CUGN and reanalysis water column salinity (PSU).



1071

1072 **Figure 11** As in Figure 8, but for Argo and reanalysis salinity anomalies (PSU).



1073

1074 **Figure 12** Monthly mean bottom temperature anomaly (°C) timeseries at select locations along

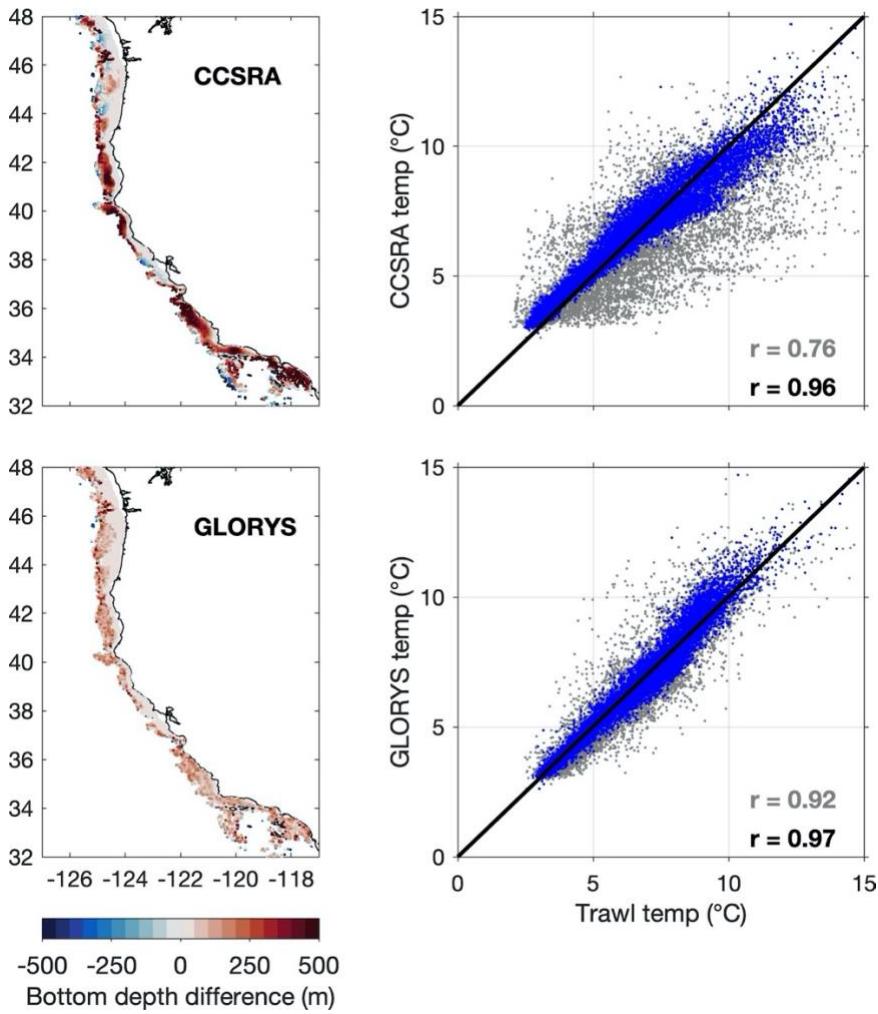
1075 (a)-(c) CUGN Line 66, (d)-(f) CUGN Line 80, and (g)-(i) the Newport Line. In each panel the

1076 observational data are in black and data from the nearest GLORYS and CCSRA grid cells are in

1077 red and blue, respectively. See Figure 2 for precise data locations. Anomaly correlation

1078 coefficients between the observations and each reanalyses are shown in each panel. Asterisks

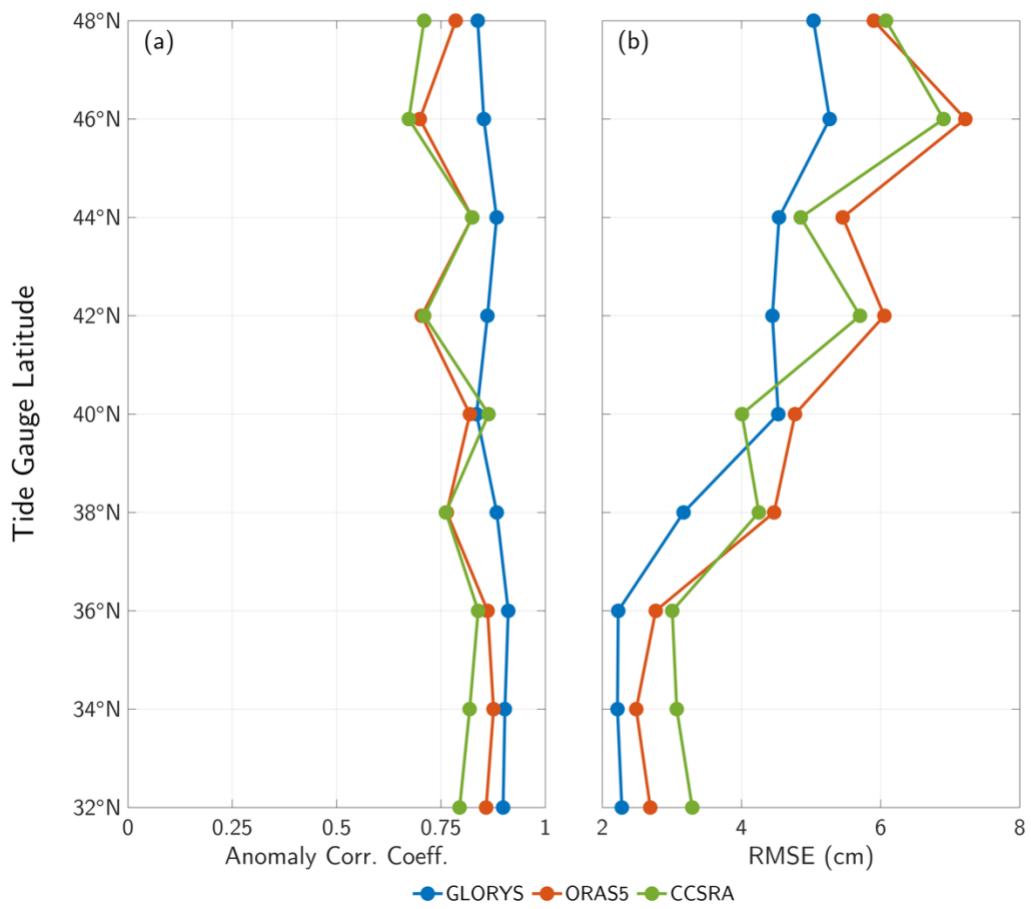
1079 indicate significant correlations with 95% confidence.



1080

1081 **Figure 13** Comparison of CCSRA and GLORYS with bottom temperature data from the west
 1082 coast groundfish bottom trawl survey. (left) maps indicate differences between trawl depths and
 1083 model bottom depths at the same location. (right) scatter plots of observed bottom temperatures
 1084 compared to reanalysis temperatures extracted two ways: (1) at the model bottom (gray), which
 1085 may be a substantially different depth from the trawl depth, and (2) at the depth of trawl sample
 1086 (blue). See Methods for more detail.

1087

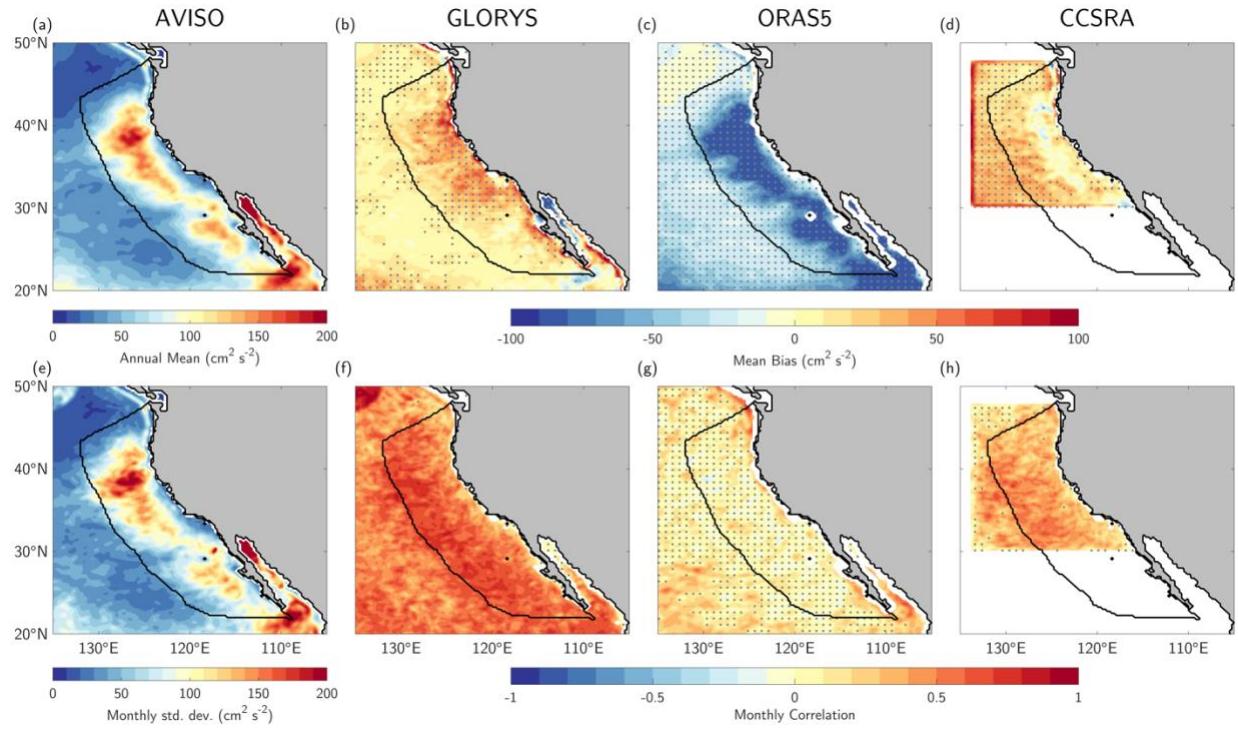


1088

1089 **Figure 14** As in Figure 4b and 4c, but for SSH anomaly comparisons between the nine tide
 1090 gauges and the nearest grid cells in GLORYS (blue), ORAS5 (red), and CCSRA (green).

1091

1092



1093

1094 **Figure 15** (a) Annual mean geostrophic Eddy Kinetic Energy (EKE; $\text{cm}^2 \text{ s}^{-2}$) based on SSH
1095 anomalies from AVISO satellite observations. (b)-(d) Annual mean EKE biases in GLORYS,
1096 ORAS5, and CCSRA, respectively. (e) Monthly mean EKE standard deviation in AVISO. (f)-(h)
1097 Anomaly correlation coefficients between monthly mean EKE values from AVISO and each
1098 reanalyses. Stipples in (b)-(d) indicate a significant mean bias with 95% confidence. Stipples in
1099 (f)-(h) indicate an insignificant correlation with 95% confidence.

1100