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ARTICLE INFO ABSTRACT

Handling editor: Lixiao Zhang Marine protected areas (MPAs) are a commonly used management tool to safeguard marine life from anthro-

pogenic impacts, yet their efficacy often remains untested. Evaluating how highly dynamic marine species use
static MPAs is challenging but becoming more feasible with the advancement of telemetry data. Here, we focus
on southern right whales (Eubalaena australis, SRWs) in the waters off Aotearoa/New Zealand, which declined
from 30,000 whales to fewer than 40 mature females due to whaling. Now numbering in the low thousands, the
key socializing and nursery areas for this population in the remote subantarctic islands are under the protection
of different types of MPAs. However, the effectiveness of these MPAs in encompassing important whale habitat
and protecting the whales from vessel traffic has not been investigated. To address this, we analyzed telemetry
data from 29 SRWs tagged at the Auckland Islands between 2009 and 2022. We identified two previously un-
known and currently unprotected areas that were used by the whales for important behaviors such as foraging,
socializing, or resting. Additionally, by combining whale locations and vessel tracking data (2020-2022) during
peak breeding period (June to October), we found high spatiotemporal overlap between whales and vessels
within several MPAs, suggesting the whales could still be vulnerable to multiple anthropogenic stressors even
when within areas designated for protection. Our results identify areas to be prioritized for future monitoring and
investigation to support the ongoing recovery of this SRW population, as well as highlight the overarching
importance of assessing MPA effectiveness post-implementation, especially in a changing climate.
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1. Introduction

Anthropogenic activities are increasingly affecting marine mega-
fauna through a variety of mechanisms, including entanglement in
fishing gear, direct collision with ships, plastic and noise pollution, and
climate change (O'Hara et al., 2021; McCauley, 2023). In the face of
these growing threats, marine protected areas (MPAs) are one widely

* Corresponding author.
E-mail address: Irie003@aucklanduni.ac.nz (L. Riekkola).

https://doi.org/10.1016/j.jenvman.2024.122116

used biodiversity conservation tool intended to reduce anthropogenic
pressures, particularly fishing activities, on marine ecosystems (Gror-
ud-Colvert et al., 2021). There is currently a worldwide initiative to
protect 30% of the global ocean in a network of well-managed MPAs by
2030 (the ‘30 by 30’ initiative; Convention of Biological Diversity,
2022). It follows on from a 10-fold increase in global MPAs since 2005
(United Nations Environment Programme & International Union for

Received 30 January 2024; Received in revised form 6 June 2024; Accepted 3 August 2024

Available online 7 August 2024

0301-4797/© 2024 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

nc-nd/4.0/).


mailto:lrie003@aucklanduni.ac.nz
www.sciencedirect.com/science/journal/03014797
https://www.elsevier.com/locate/jenvman
https://doi.org/10.1016/j.jenvman.2024.122116
https://doi.org/10.1016/j.jenvman.2024.122116
https://doi.org/10.1016/j.jenvman.2024.122116
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

X. Zhang et al.

Conservation of Nature, 2021), including over one million square kilo-
meters of ocean sanctuaries and marine parks declared in large open
ocean areas, such as the Cook Islands’ Marae Moana, Hawaiian Islands
Papahanaumokuakea Marine National Monument, and the Ross Sea
Region MPA (Maestro et al., 2019).

While protecting large sections of remote ocean regions may be
beneficial to many marine animals, the effectiveness of MPAs in
achieving their intended conservation goals are rarely evaluated, or they
are found to provide insufficient or only partial protection from threats
such as fisheries interactions (Pomeroy et al., 2005; Rodriguez-Ro-
driguez et al., 2016; Turnbull et al., 2021). Furthermore, MPA bound-
aries are sometimes defined by socio-economic or political constraints,
rather than the ecological needs of the species being protected (De
Santo, 2020; Allan et al., 2021). A key challenge faced by static
area-based management approaches is that most marine megafauna are
highly dynamic and regularly move hundreds to thousands of kilometers
beyond stationary MPA boundaries (Gilmour et al., 2022; Pereira et al.,
2023). Therefore, a common first step in the efforts to design an effective
MPA is to identify areas that are important to marine megafauna, such as
areas used seasonally for feeding and breeding (Maxwell et al., 2011;
Schofield et al., 2013; Hindell et al., 2020). Yet, even after significant
efforts have been made to identify ecologically important habitats, over
weeks to seasons or years, these areas can be displaced from static MPAs
due to climate change or changing population dynamics in species

Journal of Environmental Management 368 (2024) 122116

recovering from exploitation (Bruno et al., 2018; Maxwell et al., 2020;
Weir and Stanworth, 2020). If regular assessments of MPA effectiveness
are not made, this mismatch might go unnoticed by marine managers.
Migratory baleen whales are an interesting case study for the
assessment of MPAs as many species need distinct habitats at different
parts of their migratory and life cycles (Bannister, 2009; Tyack, 2022).
In addition, thanks to various conservation measures, many populations
of baleen whales are now increasing (Bejder et al., 2016; Tulloch et al.,
2019), or have even recovered (Magera et al., 2013) from past whaling
exploitation. Today, the greatest threats to whales are from entangle-
ment in fishing gear, noise pollution and ship-strike (Erbe et al., 2019;
Moore, 2019; Schoeman et al., 2020), as well as climate change and prey
driven fluctuation in population sizes (e.g., gray whales (Eschrichtius
robustus), Stewart et al., 2023) and habitat use patterns (e.g., North
Atlantic right whales (Eubalaena glacialis), Meyer-Gutbrod et al., 2023).
Evaluating the effectiveness of MPAs on baleen whales can be chal-
lenging as many of these animals have large home ranges, sometime
spanning entire ocean basins (Bailey et al., 2009; Riekkola et al., 2018;
Lydersen et al., 2020), therefore obtaining direct observations is all but
impossible. However, we can now use new approaches and technologies
to overcome this challenge. Satellite tracking can provide information
on the important, high-use areas (or hotspots) across wide regions (e.g.,
Hoover et al., 2019), and when combined with modern statistical
methods (e.g., Jonsen et al., 2023), behavioral states of animals can be
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inferred. Such information on animal habitat use patterns could ulti-
mately help inform MPA design and their effectiveness (Hays et al.,
2019; Hindell et al., 2020; Gilmour et al., 2022).

Here we consider the case of the Aotearoa/New Zealand (NZ)
southern right whale/tohora (SRW, Eubalaena australis), a genetically
distinct SRW population which was once broadly distributed around NZ
waters (Richards, 2009). Commercial whaling in the early 19th century
decimated the population from approximately 30,000 whales to an
estimated 30-40 mature females around 1920 (Jackson et al., 2016). In
2009, this population of SRWs was estimated at ~2000 individuals,
<10% of their pre-whaling abundance (Carroll et al., 2013; Jackson
et al., 2016). One of the further consequences of whaling was that this
population has now retreated to the high-latitude NZ subantarctic region
for breeding during the austral winter. Habitat modeling and visual
surveys have indicated that SRWs from all age groups, in particular
cow-calf pairs, strongly favor the subantarctic Maungahuka/Auckland
Islands (Fig. 1a) for calving and socializing (Patenaude et al., 1998;
Rayment et al., 2014; Carroll et al., 2022). Sub-adult and solitary SRWs
frequent Motu Thupuku/Campbell Island (Fig. 1a), an important so-
cializing habitat (Stewart and Todd, 2001; Torres et al., 2017). Occa-
sional sightings are also reported around Rakiura/Stewart Island and
mainland NZ (Fig. 1a) as the population slowly recolonizes its former
wintering habitats (Carroll et al., 2014; Cranswick et al., 2022). How-
ever, Auckland Islands remain the most important wintering habitats for
the NZ population since it is the only known consistent contemporary
calving ground where whales from all age groups regularly visit.

Currently, there are four types of MPAs in southern NZ waters (i.e.,
south of 45° S; Fig. 1a): (i) type 1 no-take marine reserves, prohibiting
any resource extracting activities up to 12 nm offshore, (ii) type 2 MPAs
prohibiting some fishing methods, such as bottom trawling, Danish
seining, and dredging (Davies et al., 2018), (iii) Marine Mammal Sanc-
tuaries (MMS) restricting or prohibiting activities such as seismic sur-
veys, seabed mining, commercial fishing, recreational fishing and whale
and dolphin tourism (up to 12 nm), and (iv) Important Marine Mammal
Areas (IMMAs; Hoyt and di Sciara, 2021). The first three types of MPAs
are legally binding in NZ and managed by Te Papa Atawhai/Department
of Conservation (DOC). In contrast, an IMMA is advised by the Inter-
national Union for Conservation of Nature (IUCN) because of a region’s
ecological importance to marine mammals and has no national legal
standing (Tetley et al., 2022). For migratory SRWs, the effectiveness of
these static boundary protected areas still requires thorough examina-
tion due to the limited spatial information available on whale distribu-
tion in relation to the MPAs in this region.

In this study, we assessed the effectiveness of current MPAs within
southern NZ in providing protection to the local SRW population. To do
this, we first used satellite telemetry data to (i) identify SRW core use
areas based on temporal and behavioral habitat use indices, and (ii)
quantify how well existing MPAs captured SRW core use areas. We then
overlaid core whale habitat during their peak breeding period (June-
—October) with marine traffic data to investigate the level of spatio-
temporal overlap between SRWs and vessels within NZ’s Exclusive
Economic Zone (EEZ) and within current MPAs. Through this compre-
hensive spatial analysis, we aim to support future management efforts to
mitigate anthropogenic disturbances on marine megafauna, on both
local and global scales, by highlighting the importance of evaluating
MPA designs.

2. Methods
2.1. SRW habitat use in NZ’s EEZ

2.1.1. Satellite telemetry data collection

We compiled a satellite tracking dataset for 31 SRWs tagged in Port
Ross, Auckland Islands, NZ (Fig. 1a), in the austral winters of 2009
(Childerhouse et al., 2010; Mackay et al., 2020) and 2020-2022. In 2009
(n = 6 used here), SPOT 5 location-only Argos satellite transmitters
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(Wildlife Computers Ltd, Redmond, Washington, USA) were deployed in
strict accordance with the approvals and conditions set by the Australian
Antarctic Division (The Environment Protection and Biodiversity Con-
servation Permit, 2007-007; AgResearch Animal Ethics Committee
approval 2941-09/10), and programmed with a duty cycle of 6 h on and
18 h off (see Childerhouse et al., 2010; Mackay et al., 2020 for further
details). In 2020-2022 the deployment of 22 location-only SPOT-372A
tags and three location and dive profile SPLASH-10 Argos satellite tags
was conducted under University of Auckland Animal Ethics approved
protocol 002,072. All tags used in this study were Type-C (consolidated)
tags which are non-retrievable (Andrews et al., 2019). Instead, the tags
transmit messages to Argos satellites and the tags’ location is calculated
using the Doppler Effect on transmission frequency (Collecte Local-
isation Satellites, 2016). Tag duty cycling was optimized to balance
battery life and Argos satellite transmission opportunities across the
Indo-Pacific region. Specifically, the tags were programmed to transmit
every 45 s between 00:00-03:00, 06:00-09:00 and 14:00-21:00 UTC,
with up to 17 uplinks per hour. We used a custom-modified pneumatic
line thrower (Air Rocket Transmitter System; Heide-Jgrgensen et al.,
2001) set at a pressure of 14 bars to deploy tags from the bow of a
rigid-hulled inflatable boat at distances ranging from 1 to 5 m. All tags
were deployed on mature individuals judged to have excellent body
condition (Pettis et al., 2004). Tags stop transmitting data when they run
out of battery, are naturally shed, damaged or experience sensor fouling.

2.1.2. Quantifying whale movement and core use areas

Raw Argos location data were quality controlled using several steps.
First, we filtered positions using the Speed-Distance-Angle function (SDA)
from the R package argosfilter (Freitas et al., 2008; R Core Team, 2022)
to remove implausible locations based on swimming speeds. Second, we
removed all duplicate whale locations (i.e., with the same timestamp),
retaining the higher quality Argos location class where applicable. To
avoid over-interpolating, we split individual tracks into track segments,
with new segments added if a transmission gap exceeded 24 h. Track
segments with fewer than 10 observations, and therefore insufficient
data for modeling, were removed from further analyses (n = 2 from the
2009 tagging data). Finally, we applied a continuous-time correlated
random walk state-space model (SSM) to the track segments using the
fit ssm function from the R package aniMotum (Jonsen et al., 2023). The
model accounts for the location error associated with Argos satellite data
and estimates new locations at regular intervals based on the step
lengths and turning angles in the raw location data (Jonsen et al., 2023).
Different time steps (i.e., the duration between successive locations
generated by the SSM) were applied to the 2009 tracks and one indi-
vidual tagged in 2021 (Appendix S1) based on the programmed duty
cycle and the average time differences between consecutive locations in
the raw data (Thums et al., 2022).

A move persistence model (fit mpm function from the package ani-
Motum; Jonsen et al., 2023) was then fitted to generate behavioral state
estimates for each state-space filtered location. The move persistence
index (Gamma, y) captures autocorrelation between speed and direc-
tionality. It is represented by a continuous value between 0 and 1, with
smaller y values indicating decreasing speed and directionality, and vice
versa. For instance, low move persistence generally means slower,
tortuous movements referred to as area-restricted search (ARS) behavior
that could indicate foraging, socializing, or breeding. In contrast, high
move persistence is associated with high-speed direct travel, such as
migration and direct travel (Jonsen et al., 2023).

To identify ocean areas that formed core use area for SRWs, we
followed a similar methodology to Thums et al. (2022), creating a 0.35
x 0.35° (approximately 39 km x 39 km) time spent grid using all
SSM-filtered locations between 160° E and 170° W and between 45° and
55° S (hereafter referred to as the study area) with the functions Grid-
Topology and TripGrid from the R package trip (Sumner et al., 2020). We
used a relatively large grid size for this analysis to avoid grid cells with
very few whale locations. We initially identified areas of highest use by
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SRWs by calculating a measure of occupancy, equal to the total time
spent for all tagged whales across all years in each grid cell (in days;
TripGrid function). Following this, we ranked grid cells from highest to
lowest time spent and calculated the top 50% of cumulative frequency
distribution, following Soanes et al. (2013) and Thums et al. (2022).
Hereafter referred to as ‘core use areas,’ this is similar to the 50% uti-
lization distribution which represents the minimum area where the
tagged whale had a 50% probability of being found. By using a larger
gridded area than just the EEZ, and including location points outside of
the EEZ in the core use area calculation we prevented the overestimation
of time spent along the edge of the EEZ. This also accounted for whales
that traveled outside the EEZ but then returned to the EEZ during the
peak breeding period (Appendix S2).

To identify areas used by SRWs for ARS behaviors, we calculated the
average move persistence (y) value for all grid cells inside the EEZ. We
differentiated between ARS and transit behaviors by using a cutoff
value, which was the average y for all locations inside the EEZ. Grid cells
with an average y < the average overall y value were classified as areas
with ARS behaviors, whereas y > the average overall y value was clas-
sified as transit areas.

2.2. Whale-vessel overlap during peak breeding period

2.2.1. Peak breeding period core use areas

We focused our analysis of whale-vessel overlap to the peak breeding
period for SRWs in NZ in the austral winter, between June and October,
when the whales gather in high numbers in the NZ EEZ, specifically
around Auckland Islands (Carroll et al., 2022). We applied a 20 x 20 km
grid, and calculated the time spent (in days) for whales in each grid cell
between June and October following the methods described above. We
used a smaller grid size for this analysis to gain a more fine-scale, ac-
curate measure of whale-vessel overlap. As above, the gridded area
extended beyond the boundary of the EEZ to prevent the overestimation
of time spent along the edge of the EEZ and we employed the top 50% of
cumulative time spent frequency distribution to identify core use areas
during the peak breeding season.

2.2.2. Vessel traffic data and analysis

The Automatic Identification System (AIS) is an automated vessel
tracking system that provides information on a vessel’s unique identity,
vessel type, location, speed, and bearing (Tetreault, 2005). The Inter-
national Maritime Organization (IMO) requires international sailing
vessels heavier than 300 tons to carry AIS, although many smaller ves-
sels also have AIS for safety concerns (Silber et al., 2012). AIS data used
in this study were sourced through DOC.

The volume and distribution of vessel traffic in southern NZ was
obtained for March 2020 to December 2022 to temporally match the
SRW tagging data (data for 2009 were not available). Vessel data were
filtered to the study area, and only data that included vessel length and
width information were included in the analysis. We recognize that
factors such as vessel speed (e.g., Laist et al., 2014), draft depth (Crum
etal., 2019), time of day (Calambokidis et al., 2019), and the behavioral
responses of individual whales (e.g., McKenna et al., 2015) could sub-
stantially affect the risk of collision. However, considering the
comparatively low density of vessel traffic in the study region (Appendix
S3), and as the goal of this study was to characterize the spatiotemporal
overlap between vessel traffic and whales, vessel data were not removed
based on specific speeds or sizes.

To examine the movement patterns for various vessel types, we made
five vessel categories: Cargo, Tanker, Passenger, Fishing, and Other.
‘Cargo’ included all “Cargo-Hazard A" and “Cargo-Unknown” ships.
‘Passenger’ included commercial cruise ships. ‘Other’ included anti-
pollution vessels, motorized pleasure craft and sailing vessels. Dupli-
cate AIS locations (i.e., with the same timestamp) and vessels with fewer
than 10 location fixes during the entire tracking period were removed
from further analysis.
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The processed AIS data were filtered to SRW peak breeding period
months (June-October) and summarized into the same 20 x 20 km grid
(see above). For each grid cell, the cumulative amount of time (in days)
that each unique vessel spent in that given cell was calculated using the
TripGrid function. We used Jenks Natural Break (Jenks) Classification in
QGIS (QGIS Development Team, 2022) to classify peak SRW breeding
season vessel traffic density into three classes (low, medium, and high).
This classification method creates maximum variations between the
classes while minimizing differences within the same class (Jenks,
1967). The breakpoints differed to reflect unique movement patterns for
each vessel type.

2.2.3. Estimating overlap between whales and vessel traffic

Assessments of the tagged SRWs exposure to vessel traffic during the
peak breeding season were performed by comparing the time-spent
density of each vessel type within grid cells classified as whale core
use area. Subsequently, we counted the number of overlapping cells (i.
e., if a cell was identified as SRW core area and also had any recorded
vessel time spent). This was then divided by the total number of whale
core area grid cells within the study area EEZ to calculate the percentage
of overlap between whale core use areas and vessel traffic in peak
breeding season. To characterize the spatial use patterns of whales and
vessels within different MPAs, we sourced MPA shapefiles from DOC and
the Marine Mammal Protected Areas Task Force (www.marinemamma
lhabitat.org). We applied the Clip tool in QGIS to extract vessels and
whale use grids during whale peak breeding season within protected
areas shapefiles. Next, we used the Identify Features tool in QGIS to
calculate the area (in square kilometers) of the clipped grid cells occu-
pied by whales and each vessel type. Lastly, we compared these areas
with the total area (in square kilometers) of MPAs to determine the
percentage of areas used by whales and vessels. The sizes of the MPAs
were derived from the relevant polygon shapefile under the NZGD 2000
(EPSG: 3851) projection.

3. Results
3.1. Whale movement models

The movements of 29 SRWs in southern NZ were tracked and
modeled (Fig. 1b, Appendix S2). After applying the SDA filter and
removing duplicate locations, an average of 1825 + 1535 (standard
deviation, SD) Argos locations per individual were used to run the state
space and movement models (Appendix S1). Within NZ’s EEZ the whales
were tracked from five to 182 days, averaging 49 + 41 days (Appendix
S2). The SSM locations indicated that tagged whales, on average, trav-
eled 1775 + 1243 km (range: 400 km-5246 km) within the EEZ (Fig. 1c,
Appendix S2).

3.2. Whale behavior and core use areas within the EEZ

Analysis of the satellite tracking data revealed that across all years,
most SRWs core use areas within NZ’s EEZ were located in the subant-
arctic region, especially around the Auckland and Campbell Islands
(between 47° and 53° S; Fig. 2a). In contrast, only a few grid cells in the
eastern portion of the study area (east of 170° E) were determined as
SRW core use areas (Fig. 2a). Some grid cells adjacent to the coastal
waters of Stewart Island and the NZ South Island were also identified as
core use areas (Fig. 2a), however these were not contiguous, and were
only used by three of the tagged SRWs (~10% of tagged whales, Fig. 1c).
Only 1.9% of SRW core use areas within the EEZ were captured by
Auckland and Campbell Islands MPAs, whereas the IMMAs collectively
captured 26.7% of core use areas (Fig. 2a). Within this core area of SRW
distribution, grid cells with a lower average y than the average overall
move persistence index within the EEZ (y = 0.51) were identified as ARS
areas, which could indicate foraging, resting or breeding behaviors.
These primarily occurred in four locations: (1) Auckland Islands, (2)
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northeast/east of Auckland Islands, (3) southwest of Auckland Islands,

and (4) Campbell Island (Fig. 2b). In contrast, SRWs habitat use outside

of these areas was predominantly relatively fast and directed (i.e., high
move persistence values; Fig. 2b), indicating that the whales were only
transiting through them. Only ~10.3% of ARS areas occurred inside of
current MPAs, while ~56.7% were encompassed by the NZ Subantarctic
IMMA (NZS-IMMA), however ARS area ‘3’ occurred completely outside

of any MPA (Fig. 2b).

3.3. Whale-vessel overlap during peak SRW breeding season

The SRW breeding season (June-October) core areas were distrib-
uted broadly but were concentrated west of 170° E and south of 48° S
(Fig. 3). As vessel traffic was widespread across the study area during
this time, whales’ overlap with overall vessel traffic was common (apart
from Passenger vessels that did not operate in winter and are therefore

not shown, Fig. 3). Nevertheless, the relative degree of overlap with
whales differed spatially depending on vessel type (Fig. 3). Although the
density of vessel traffic was generally consistent between June and
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(d) Other vessel types. The whale breeding season core use area was represented by 50% utilization distribution based on cumulative time spent per grid cell (in
days). Vessel density (in days) was measured by low, medium, and high using the Jenks Classification in QGIS. Passenger vessels were excluded from the figure as
they were operational only between January and March. The solid black line represents New Zealand Exclusive Economic Zone, dashed lines represent two Important
Marine Mammal Areas (IMMA), and the hatched areas around the subantarctic islands represent the four marine protected areas (MPAs).



X. Zhang et al.

October, the potential exposure to vessel traffic differed temporally as a
result of the shifting movements of tagged whales (Fig. 4). The distri-
bution of whale breeding season core use area peaked between July and
September, with an average of 169 grid cells (range: 140-195) identified
as core use areas (Fig. 4a). As a result, the core whale habitat that
overlapped with any vessel activity increased from 30 grid cells (17.4%
of whale core use area) in July to 132 grid cells (67.7%) in September
(Figs. 3 and 4b).

Fishing vessels (which represented the majority of vessel traffic in
the study region, Appendix S3) had the greatest overlap with the tagged
SRWs primarily due to the commercial fishing operations to the east of
Auckland Islands and north of Campbell Island (Fig. 3c). Fishing vessels
were also prevalent west of 165° E and south of 48° S, an important
migration corridor used by SRWs to travel to the southwest for summer
foraging (Fig. 3c). Fishing and Other vessels had the highest percentage
of overlap with whale breeding season core use areas from July to
September, averaging 37.4% and 14.6% of overlap (Fig. 4b). While the
number of grid cells classified as “high density” Fishing was relatively
low (n = 13; Fig. 3c), the majority of these cells (n = 10) were located to
the east of the Auckland Islands where they created a high level of
overlap with the SRW core use area throughout most of the peak
breeding season (Figs. 3c and 4b). Moreover, “high density” Fishing grid
cells had a broad range of time spent per grid cell (range: 91-536 days;
Fig. 3c), suggesting that fishing vessels spend a large number of days in
any given grid cell (compared to e.g., Cargo and Tanker vessels).

Cargo and Tanker vessels had less overlap with the SRW core use
areas in the subantarctic region, as vessel traffic was scarce south of 48°
S (Fig. 3a-b, Fig. 4b). However, the tagged SRWs faced the highest level
of overlap with these vessel types near the east coast of South Island and
around Stewart Island, where Cargo and Tanker vessels were mainly
concentrated (Fig. 3a-b). This occurred between September and October
when three tagged whales traveled northward from the Auckland
Islands toward the South Island (Fig. 1b), thereby increasing the po-
tential for overlap with Cargo and Tanker vessels (Fig. 3a-b, Fig. 4b).
Overall, the overlap between whale core use area and vessel traffic
existed throughout the peak breeding season, with September and
October being the two months when whale and vessel overlap was most
likely to occur (specifically with Fishing vessels, Fig. 4b).
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3.4. Whale-vessel overlap within marine protected areas

During the peak breeding period, the space use of tagged whales and
vessel types across the different MPA types (Table 1) was consistent with
the results from the spatiotemporal analysis (Figs. 3c and 4b). The
breeding season core use area for tagged whales occupied almost the
entire area of the Auckland Islands and Campbell Island Marine Reserves
(Table 1). Fishing and Other vessel types showed high area use in both of
these reserves, overlapping with tagged whales throughout the pro-
tected areas to a high degree (Table 1, Fig. 3c—d). There was no overlap
between whales and Cargo or Tanker vessels within the Auckland and
Campbell Islands Marine Reserves (Table 1), as these vessel types were
absent from the areas from June to October (Fig. 3a-b).

The NZS-IMMA is the largest MPA in the study area as it includes the
Auckland Islands Marine Reserve and Marine Mammal Sanctuary, the
Campbell Island Marine Reserve, and the waters that connect them
(Fig. 1a). During the peak breeding period the percent overlap between
SRW core use area and vessel traffic within the NZS-IMMA was generally
speaking lower than in other MPAs (Table 1) as relatively few tagged
whales traveled southeast to Campbell Island and spent little time be-
tween Auckland and Campbell Island (Fig. 3). Only Fishing and Other
vessel types were present within the IMMA during the peak breeding
period (Table 1).

The Rakiura Stewart Island Te Ara a Kiwa IMMA (RS-IMMA) covers
the southern coast of the South Island and the waters around Stewart
Island (Fig. 1a). All vessel types were present within this MPA, and the
area coverage of vessel space use was high (>68%, Table 1, Fig. 3),
except for Tankers (18%, Table 1, Fig. 3b). Although the RS-IMMA had
the smallest relative amount of whale breeding season core use area of
all the MPAs (only 29% of IMMA identified as core use area, Table 1),
this largely overlapped with Fishing, Cargo, and Other vessels (Table 1,
Fig. 3). The high level of overlap was a result of these waters being the
most direct transit route to large ports throughout the region, thereby
increasing vessel activity compared to the subantarctic region.

4. Discussion
With the expansion in global vessel fleets, the spatiotemporal overlap
between vessels and recovering populations of large, slow-swimming

baleen whales is projected to increase (Pirotta et al., 2019; Silber
et al., 2021; Halliday et al., 2022), resulting in an urgent need to
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Table 1
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Summary of southern right whale (SRW) core use area and vessel space use in various marine protected areas (MPAs) in southern New Zealand waters during SRW peak
breeding period (June-October). The whale breeding season core use area was represented by 50% utilization distribution based on cumulative time spent per grid cell
(in days). Whale core use area, vessel space use, and whale-vessel overlap are represented as km? and as a percentage of MPA area. The marine reserves and Important
Marine Mammal Area (IMMA) shapefiles were acquired from the Department of Conservation and from the Marine Mammal Protected Areas Task Force, respectively.

Whale core use area
within MPA (km?/%)

Vessel space use within MPA (km?2/%)

Overlap between whale core use areas and
individual vessel types within MPA (km?/%)

MPA Sea area Cargo Tanker Fishing Other Cargo Tanker Fishing Other
(km?)

Auckland Islands Marine 5167 4991/96.6 NA 3557/ 1773/ NA NA 3382/ 1773/
Reserve 68.8 34.3 65.5 34.3

Campbell Island Marine 1176 1176/100 NA 592/50.3 451/38.4 NA NA 592/50.3 451/38.4
Reserve

New Zealand Subantarctic 68,315 38,343/56.1 NA 46,587/ 23,244/ NA NA 26,936/ 14,038/
Islands IMMA 68.2 34.0 39.4 20.5

Rakiura Stewart Island 17,319 5030/29.0 11,795/ 3120/ 15,439/ 11,785/ 3962/ 1073/ 4761/ 4363/
IMMA 68.1 18.0 89.1 68.0 22.9 6.2 27.5 25.2

mitigate negative vessel impacts. Various types of MPAs, whose funda-
mental goal is to provide a certain level of protection from harmful
anthropogenic interactions to marine animals and their habitat, are a
common tool for doing so (Halpern et al., 2010). However, after
implementation, it is also important to assess whether MPAs fit the
needs of the highly mobile marine animals they have been designed to
protect, especially in a rapidly changing climate. While there are
increasing efforts to designate 30% of the world’s ocean as MPAs by
2030, if poorly designed or managed these efforts may not provide their
intended conservation outcomes. Here, we assessed whether the current
MPAs in southern NZ were effective in safeguarding the migratory
southern right whale. We found that the different types of MPAs
currently in place (both those that are legally binding by NZ law, and
those advised by the IUCN) captured some, but not all the areas that are
important to the whales. Furthermore, when assessing the level of
overlap between whales and vessels during the whales’ peak breeding
period, we identified high levels of overlap within the MPAs as well as a
shifting risk profile based on space, time, and vessel type.

4.1. How well do MPAs in southern NZ protect key SRW habitats?

Similar to previous work (Hays et al., 2019; Hindell et al., 2020;
Gilmour et al., 2022) we showed that satellite tracking data can be an
effective tool for examining how well MPAs protect the habitats of dy-
namic marine species. While the core use area was identified using
satellite tracks from 29 individuals, we are confident that these data
represent the range of movement patterns by the broader population of
~2000 whales in NZ waters (Carroll et al., 2013). The results confirmed
that the Auckland and Campbell Islands are key regions for behaviors
consistent with socializing and breeding (i.e., low move persistence,
Fig. 2b; Stewart and Todd, 2001; Torres et al., 2017; Carroll et al., 2022).
In addition, we identified two previously unknown areas used by SRWs
for important behaviors northeast and southwest of Auckland Islands
(labels ‘2’ and ‘3’ in Fig. 2b). Further work is now required to understand
whether these regions are offshore socializing or foraging grounds for a
specific portion of the population. For example, density-related changes
have altered the distribution of right whales in South Africa, Australia,
and Argentina, with increasing numbers of cow-calf pairs displacing
whales without calves to nearby habitats (Harcourt et al., 2019).
Additionally, long-term monitoring using techniques such as passive
acoustics (e.g., Webster et al., 2019) and satellite imagery (e.g., Fretwell
et al., 2014) could be used to confirm whether these areas represent
long-term key habitats or are only temporary, opportunistic ones. Un-
derstanding the importance of these areas is especially important given
they are not protected by current MPAs.

Within the Auckland Islands, SRWs are protected by the Auckland
Islands Marine Reserve and Marine Mammal Sanctuary throughout the
territorial sea region (up to 12 nm from the coast; Fig. 1a). In contrast,

only 39% of the territorial seas around Campbell Island are protected by
the Campbell Island Marine Reserve, with the rest (~1767 km?) being
protected by a type 2 MPA (Fig. 1a) as the region has the potential to be
used for new fisheries (DOC, 2020). Although there are some restrictions
on fishing, the type 2 MPA may not offer sufficient protection for SRWs
given that fishing vessels can still operate within this area. Considering
SRWs showed relatively extensive use of the waters around Campbell
Island and beyond the territorial seas (Fig. 2), the importance of the
broader area may currently be underestimated. To protect a higher
proportion of the ARS areas to the north/northeast of Campbell Island,
the Campbell Island Marine Reserve could be increased to cover its
territorial seas. Alternatively, IMMAs clearly delineate the most impor-
tant habitats for marine mammals (Hoyt and di Sciara, 2021; Tetley
et al., 2022). Compared with the current subantarctic marine reserves,
the NZS-IMMA effectively captured the majority (~56.7%) of the ARS
areas identified in our study (Fig. 2b) by focusing on the ecological needs
of the whales and other marine mammals, rather than being defined by
legal or political constraints.

No large MPA is currently established in the waters surrounding
Stewart Island, with only two small MMS in Te Waewae Bay and the
Catlins on the southern coast of the South Island (Fig. 1a). The MMSs are
designated to protect Hector’s dolphins (Cephalorhynchus hectori), and
they would only provide protection to SRWs if the whales were close
inshore. The southern South Island region is much more industrialized
than the offshore subantarctic islands, with the potential of establishing
additional activities such as oil and gas exploration (e.g., Hollis et al.,
2014), aquaculture (e.g., Camara and Symonds, 2014), and offshore
wind farms (e.g., Beca, 2023). These developments could potentially
increase the frequency of overlap between whales and vessels, leading to
an increased risk of vessel-related injuries and more underwater noise
(e.g., Popper et al., 2020; Redfern et al., 2020). Marine spatial planning
tools, such as the RS-IMMA, could address the current management gap.
Alternatively, measures such as speed regulations (e.g., Constantine
etal., 2015; Leaper, 2019) or temporally defining areas to be avoided (e.
g., Redfern et al., 2019) could be applied individually or in combination
to further reduce negative vessel impacts in this area.

Attempting to increase the size of the MPAs in southern NZ would
likely involve substantial discussions with all stakeholders (e.g., Rees
et al., 2013; Giakoumi et al., 2018). Moreover, as a highly mobile spe-
cies, which may also show individual preferences for establishing
potentially new socializing or nursing grounds (Weir and Stanworth,
2020), small, static marine reserves may not be sufficient to support
SRWs in the future, particularly if their distribution expands with the
growing population or shifts in response to climate change (Bruno et al.,
2018; Maxwell et al., 2020). More complex approaches for managing
anthropogenic impacts, such as time-dependent area closures or dy-
namic MPA networks, have been gaining popularity in recent years
(Lewison et al., 2015; Allan et al., 2021; Zemah-Shamir et al., 2023).
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Here, a dynamic management option could potentially provide a
compromise between human and animal interests as SRWs are mainly
present in NZ waters during winter (Rayment et al., 2014; Carroll et al.,
2022; Cranswick et al., 2022), and MPAs may not need to be in effect
year-round. Therefore, our second analysis focused specifically on un-
derstanding the effectiveness of the current MPAs during the whales’
breeding season.

4.2. How well do MPAs protect SRWs during the breeding season?

During the peak breeding period (June-October), large portions of
the MPAs were identified as SRW core use areas (Table 1). However,
there was also a high level of overlap between whales and vessel traffic,
highlighting the potential for vessel-whale encounters inside the MPAs
(Table 1, Fig. 3). Specifically, our analyses highlighted a shifting risk
profile based on location and timing and identified the following regions
of overlap: (1) waters in between and around the subantarctic Auckland
and Campbell Islands (‘subantarctic region’) from June to October and
(2) waters along the southeast coast of South Island and Foveaux Strait
(‘South Island and Stewart Island region’) from September to October
(Fig. 3).

4.2.1. The subantarctic region

In the subantarctic region, vessel-whale overlap was high during
winter due to the high density of whales in the SRW wintering grounds;
Port Ross, northeast Auckland Island (see Carroll et al., 2022) and
Northwest Bay, Campbell Island (Stewart and Todd, 2001; Torres et al.,
2017). The socializing, breeding and nursing behaviors often mean
whales spend a substantial amount of time near the ocean surface
(Patenaude et al., 1998), and therefore within the depth range of vessels.
Fishing vessels spend high amounts of time around the subantarctic
islands, in waters important for southern arrow squid (Nototodarus
sloanii) and southern blue whiting (Micromesistius australis) trawl fish-
eries (Large et al., 2019), but they sometimes also enter the nearshore
waters to seek shelter in rough weather. The use of the subantarctic
MPAs for emergency sheltering is managed under the Regional Coastal
Plan (DOC, 2017) which is currently under review (Sarah Hucker DOC,
pers. comm.). Fishing vessels typically use Carnley Harbour, at the
southern end of Auckland Islands (Fig. 1a), but some also enter Port
Ross. This poses a risk to SRWs in their key breeding habitat, as
demonstrated by observations of fresh propellor wounds after a fishing
vessel transited Port Ross in the dark (Carroll et al., 2022). Other vessels,
including recreational vessels and yachts used for research purposes,
also visit the Auckland Islands during winter. As stipulated by the
Regional Coastal Plan (DOC, 2017), Passenger vessels and commercial
whale-watch operators are not allowed in the Auckland Islands’ MMS to
protect the whales during the peak breeding season as they have the
potential to cause vessel strikes and entanglements (Fishing vessels) in
the offshore waters, and increase the risk of vessel strikes, noise pollu-
tion, oil spills and exposure to vessel engine exhaust within the sheltered
parts of the MPAs (e.g., Lachmuth et al., 2011; Chilvers et al., 2021;
Carroll et al., 2022).

4.2.2. The South Island and Stewart Island region

All four vessel types were widespread in the waters along the
southeast coast of South Island and in the Foveaux Strait (Fig. 1a), with
larger vessels (Cargo and Tankers) more likely to be found in medium
and high densities (Fig. 3). However, the absolute time-spent values
were noticeably lower than for other vessel types, indicating that Cargo
vessels and Tankers traveled quickly through the region instead of
spending considerable time in one place (Fig. 3). For SRWs, these vessel
movement patterns may pose a high risk as they are generally larger and
faster than small Fishing and Other vessels (Appendix S3), increasing the
probability of lethal ship strikes (Vanderlaan and Taggart, 2007; Wiley
et al.,, 2011; Laist et al., 2014). North Atlantic right whales which have
physical and biological similarities with SRWs have a limited ability to
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perform quick descents, ascents or horizontal movements to avoid vessel
collisions, and they have shown little advantageous behavioral response
to ships (Nowacek et al., 2004; Parks et al., 2011). Given the species’
similarities, it is likely that SRWs would struggle to avoid
fast-approaching ships. With the increasing abundance of SRWs, more
whales are expected to use mainland NZ waters as they slowly recolo-
nize their former wintering habitats (Carroll et al., 2014; Cranswick
et al.,, 2022). Hence, it is reasonable to expect higher levels of
vessel-whale overlap in the South Island and Stewart Island region,
increasing the potential risk of vessel-related injuries and mortality in
this region.

Besides physical injuries, concern about the potential effects of ship
noise is growing, as underwater noise increases the stress level of right
whales and other baleen whales (Pallin et al., 2022; Rolland et al.,
2012). As with most baleen whales, SRWs produce a wide range of
pulsive and tonal vocalizations, primarily in the low-frequency range
(Webster et al., 2019). Anthropogenic noises such as shipping and
seismic sources dominate the low-frequency band, which could mask
SRW vocalizations, leading to acoustic interference and reduced
communication space (Erbe et al., 2019; Duarte et al., 2021). Previous
studies focusing on the effect of noise pollution on other cetaceans have
reported behavioral disturbance (e.g., Sprogis et al., 2020), displace-
ment from areas of high noise (e.g., Morton and Symonds, 2002), and
masking of vocalizations (e.g., Putland et al., 2018). For SRWs, noise
pollution in both regions of whale-vessel overlap identified here could
negatively affect the population.

5. Conclusions and implications for management

An important step in assessing the effectiveness of MPAs is to confirm
whether they encompass and protect key habitats. Here, we provided
new information on the habitat use patterns of SRWs in southern NZ,
adding to the growing literature on the use of satellite tracking as a tool
for informing MPA development and assessing their effectiveness. Our
results confirmed previous findings on the nearshore habitat use pat-
terns and revealed that out of the four areas used by SRWs for important
behaviors, two were partially protected by current MPAs while the other
two were not. Additionally, we found high spatiotemporal overlap be-
tween whales and vessels during the peak breeding season (June to
October) within several MPAs and IMMAs, suggesting the whales could
still be vulnerable to multiple anthropogenic stressors even when within
areas designated for protection. This highlights that marine animals may
still be subject to anthropogenic risks even within the MPAs themselves,
and it is therefore not enough to merely assess whether MPAs sulffi-
ciently capture key habitats. Both the areas important to SRWs not
currently protected by MPAs and the regions with high levels of whale-
vessel overlap should be prioritized for future monitoring and investi-
gation to support the ongoing recovery of this SRW population. In cases
such as here, when whales and vessels cannot be fully separated in space
and time, the appropriate approach may be to combine MPAs with
additional measures, such as speed restrictions or posting watches dur-
ing transit of high-density whale areas (Constantine et al., 2015; Leaper,
2019; Flynn and Calambokidis, 2019). However, similarly to the need to
assess the effectiveness of MPAs post-implementation, measures such as
speed limits or the posting of observers must be monitored and enforced
for them to be effective (e.g., Ebdon et al., 2020).
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