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Abstract
We develop hierarchical models and methods in a fully parametric approach
to generalized linear mixed models for any patterned covariance matrix. The
Laplace approximation is used to marginally estimate covariance parameters by
integrating over all fixed and latent random effects. The Laplace approximation
relies on Newton–Raphson updates, which also leads to predictions for the latent
random effects. We develop methodology for complete marginal inference, from
estimating covariance parameters and fixed effects to making predictions for
unobserved data. The marginal likelihood is developed for six distributions that
are often used for binary, count, and positive continuous data, and our frame-
work is easily extended to other distributions. We compare our methods to fully
Bayesian methods, automatic differentiation, and integrated nested Laplace
approximations (INLA) for bias, mean-squared (prediction) error, and interval
coverage, and all methods yield very similar results. However, our methods are
much faster than Bayesian methods, and more general than INLA. Examples
with binary and proportional data, count data, and positive-continuous data are
used to illustrate all six distributions with a variety of patterned covariance struc-
tures that include spatial models (both geostatistical and areal models), time
series models, and mixtures with typical random intercepts based on grouping.
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1 INTRODUCTION

The classical linear model relies on a normal distribution that has continuous support on the real line, but many data are
binary, counts, or positive continuous. Such data can be transformed to stabilize variances and create empirical distri-
butions that are “near normal,” allowing the use of classical linear models (e.g., Snedecor & Cochran, 1980, p. 288). For
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example, a square root transformation can be used for count data. However, Nelder and Wedderburn (1972) introduced the
generalized linear model (GLM, McCullagh & Nelder, 1989) as a natural extension to linear models, such as the Poisson
distribution for counts, the Bernoulli distribution for binary data, etc., which have become very popular and generally pre-
ferred to data transformations (e.g., Warton & Hui, 2011). GLMs can be extended by introducing latent random effects via
a linear mixed model to create a class of generalized linear mixed models (GLMMs, Breslow & Clayton, 1993). These latent
random effects are usually assumed to be independent and identically distributed normal variables (Zeger & Karim, 1991),
however it is also possible for the latent random effects to be temporally autocorrelated (e.g., Stiratelli et al., 1984; Zeger
et al., 1988), spatially autocorrelated (e.g, Clayton & Kaldor, 1987; Diggle et al., 1998; Gotway & Stroup, 1997), or both
(Cressie & Wikle, 2011, p. 380). A unifying framework for this literature is available through a hierarchical generalized
linear mixed model (HGLMM, Lee & Nelder, 1996).

1.1 Hierarchical generalized linear mixed models

Most GLMs are motivated by the exponential family of distributions (e.g., Fisher, 1934; Lehmann & Casella, 2006). How-
ever, most common software packages use iteratively-reweighted least-squares (Wedderburn, 1974) to fit GLMs through
their first two moments (mean and variance functions). This procedure allows a flexible class of models that can be fit
though a single inferential procedure (quasi-likelihood), which is desirable because some GLMs like the quasi-Poisson
have no true likelihood.

By contrast, we will take a fully parametric approach to create covariance dependence for GLMMs through a hier-
archical construction. We will use the notation [y|𝝁] to denote any joint probability density/mass function of the vector
of random variables y conditional on a vector of parameters, or other fixed variables, 𝝁. In some cases, we may want to
model multiple vectors of responses (as with time series applications) or to condition on more than one set of parame-
ters, in which case an expression might look more like [y1, y2, … , yk|𝝁1,𝝁2, … ,𝝁𝓁 ,𝝓]. As a simple example, consider a
joint probability mass function that consists of the product of independent negative binomial distributions, which can be
parameterized with a mean vector and a common extra parameter that allows for overdispersion. We could write this as
[y|𝝁, 𝜙], where the 𝝁 represents the mean vector and 𝜙 is the overdispersion parameter.

For the hierarchical construction of the generalized linear mixed models that we consider in this article, we allow
the mean to vary by other random variables w, and we condition on these random variables, [y|g−1(w),𝝓], through the
multivariate mean function E(y) = g−1(w). For the Poisson distribution, each element of g(⋅) is often the log function,
and in general g(⋅) is called the (multivariate) link function (McCullagh & Nelder, 1989). Link functions are monotonic
so that each element of g−1(⋅) is one-to-one with each element of g(⋅). Recall that the mean of a Poisson distribution must
be positive, and if g(⋅) has each element as the log function, then g−1(⋅) has each element as the exponential function so
𝝁 = g−1(w) always has positive elements, which allows each element of w to be unconstrained.

We will only consider models where w is n × 1 and has a multivariate normal distribution that is constructed through
the linear mixed model,

w = X𝜷 +
q∑

k=1
Zkrk + 𝝐, (1)

where X is an n × p full rank design matrix of explanatory variables, 𝜷 is a p × 1 parameter vector of fixed effects, Zk is
a design matrix for the kth random effect vector rk, and 𝝐 represents independent and identically-distributed Gaussian
error. We assume that E(rk) = 0 for all k, E(𝝐) = 0, var(rk) = Vk, cov(rj, rk) = 0 when j ≠ k, and var(𝝐) = 𝜎2

0 I. We use the
notation [w|X, 𝜷, {Zk}, {Vk},𝜽], or, more simply, [w|X, 𝜷,𝚺𝜽], to indicate the probability density function w ∼ N(X𝜷,𝚺𝜽)
where

𝚺𝜽 =
∑

k
ZkVkZ′

k + 𝜎
2
0 I.

The covariance matrices {Vk} for k = 1, … , q can have additional covariance parameters beyond 𝜎2
0 , all of which are

contained in the vector 𝜽. We will give more specific details on 𝚺𝜽 later.
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For the fully parametric, hierarchical models, a very general model can be constructed hierarchically as,

[y,w|𝝓,X, 𝜷,𝚺𝜽] = [y|g−1(w),𝝓][w|X, 𝜷,𝚺𝜽], (2)

where Berliner (1996) called [y|g−1(w),𝝓] the data model and [w|X, 𝜷,𝚺𝜽] the process model. As a concrete example,
suppose that [y| exp(w)] is Poisson, and [w|X, 𝜷,𝚺𝜽] is multivariate normal, then the joint likelihood is

[y,w|X, 𝜷,𝚺𝜽] =

( n∏
i=1

exp (wi)yi exp(− exp(wi))
yi!

)
exp

(
−0.5(w − X𝜷)′𝚺−1

𝜽
(w − X𝜷)

)
(2𝜋)n∕2|𝚺𝜽|1∕2 ,

and note the use of exp(wi) for E(yi|g−1(wi)).

1.2 Patterned covariance matrices

To construct a likelihood for (2) we will need parametric models for 𝚺𝜽 in (1). There are few constraints here, and
any valid covariance model for 𝚺𝜽 is possible. For example, 𝚺𝜽 may be constructed from typical mixed models where
Zk contains indicator variables for random intercepts, or explanatory variables for random slopes, and where Vk = 𝜎2

kI,
and then 𝚺𝜽 =

∑
k 𝜎

2
kZkZ′

k + 𝜎
2
0 I. We can also consider time series models (e.g., Hamilton, 1994). For example, for a

first-order autoregressive (AR1) model with i and j being integers, let q = 1 and Z1 = I, then V1 has as its i, jth entry
𝜎2

1𝜌
|i−j|∕(1 − 𝜌2), where 0 < 𝜎2

1 and −1 ≤ 𝜌 < 1. Similarly, we can have geostatistical models (e.g., Chiles & Delfiner, 1999),
such as the exponential autocovariance model, where q = 1, Z1 = I, and the i, jth element of V1 is 𝜎2

1 exp(−𝛿i,j∕𝜌)where 𝛿i,j
is Euclidean distance between the ith and jth locations, 0 < 𝜎2

1 , and 𝜌 > 0. Other spatial covariance types include the con-
ditional autoregressive (CAR, Besag, 1974; Cressie, 1993) and simultaneous autoregressive models (SAR, Whittle, 1954;
Ver Hoef et al., 2018), moving average models in time series (e.g., Hamilton, 1994) and spatial statistics (Haining, 1978),
spatio-temporal models (Cressie & Wikle, 2011, p. 380), and models on non-Euclidean topologies such as a sphere (e.g.,
the earth, Huang et al., 2011; Gneiting, 2013), and networks such as roads (Ver Hoef, 2018) and streams (Ver Hoef & Peter-
son, 2010). Because a covariance matrix can be constructed by summing covariance matrices as variance components,
mixtures of all models mentioned above can create a rich set of patterned covariance matrices for modeling dependent
structures. In what follows, we develop inference based on any valid covariance matrix.

1.3 Inference for HGLMMs

The combination of the data model, [y|g−1(w),𝝓], where any distribution could be used that matches the type of data, and
the process model, [w|X, 𝜷,𝚺𝜽], that can allow for any patterned covariance matrix, provides a hierarchical construction
(2) that is a very rich and flexible class of models. This class of models is not new.

There are two broad methods of analysis. The most obvious method is Bayesian and computes the posterior distri-
bution of all latent variables and parameters. Due to intractable integrals, this is usually achieved with Markov chain
Monte Carlo (MCMC) methods (Gelfand & Smith, 1990; Gilks et al., 1996), of which there are now many varieties.
Bayesian hierarchical models in our context have been extremely popular, beginning with spatial statistics (e.g., Clay-
ton & Kaldor, 1987), clustered data (e.g., Zeger & Karim, 1991), time series (e.g., Berliner, 1996), and longitudinal data
(Kleinman & Ibrahim, 1998) among others, and have been aided by the introduction of the WinBUGS software (Lunn
et al., 2000), and, for R, the spBayes package (Finley et al., 2007).

A second approach attempts to estimate covariance parameters and fixed effects marginally while integrating out over
all latent random effects. This can also be done using MCMC methods as a numerical integrator (e.g., Christensen, 2004;
Zhang, 2002), but it can be quite slow, so a more popular and deterministic method uses a Laplace approximation
(Tierney & Kadane, 1986). In particular, Rue et al. (2009) proposed integrated nested Laplace approximation (INLA) as
approximate Bayesian inference when using Gaussian Markov random fields. They exploit the marginal specification of
conditional autoregressive models for computational gains and use several first-order Laplace approximations to estimate
fixed effects. Wood (2020) provided further computational gains with dense covariance matrices. Automatic differentia-
tion is used in software glmmTMB (Brooks et al., 2017) as a general computational approach to fitting these models. Our
development builds primarily on Evangelou et al. (2011) and Bonat and Ribeiro Jr (2016), who use a second-order Laplace
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approximation with geostatistical covariance structures for binary and count data. The more general formulation is given
by Bonat and Ribeiro Jr (2016), and we will point out differences from our development and that of Bonat and Ribeiro
Jr (2016) in our Methods section.

Our general goal is to provide complete marginal inference, from estimating covariance parameters and fixed effects,
to making predictions for unobserved data, for any patterned covariance matrix in the HGLMM framework. In particular,
our goals are to: (1) find marginal maximum likelihood and restricted maximum likelihood estimates for covariance
parameters 𝜽 and 𝝓, (2) predict the latent values of w, (3) estimate fixed effects 𝜷, and (4) make predictions of new values
of the process that generated w at unsampled times or locations.

The rest of this paper is organized as follows. In Section 2, we use the Laplace approximation to develop marginal
maximum likelihood estimates for 𝜽 and 𝝓 using Newton–Raphson updates, which also leads to predictions of w. From
the predictions of w we develop estimators of 𝜷 with proper confidence intervals and prediction of new values of the
process generating w with proper prediction intervals. In Section 3, we conduct simulations to illustrate all methods and
validate the earlier development, and we compare our methods to Bayesian methods using MCMC (through R package
spBayes), to a Laplace approximation using automatic differentiation (through R package glmmTMB), and to an inte-
grated nested Laplace approximation (through R package INLA). Section 4 provides three separate examples using real
data sets to further illustrate the methods. We conclude with some discussion in Section 5.

2 METHODS

When considering the hierarchical model formulation of the HGLMMs, we would like to marginalize the distribution
[w, y|𝝓,X, 𝜷,𝚺𝜽] = [y|g−1(w),𝝓][w|X, 𝜷,𝚺𝜽] over w and be free of 𝜷 as well to obtain a distribution of only the data and
variance/covariance parameters. The Laplace method helps achieve that.

2.1 Laplace approximation to likelihoods of HGLMMs

First, consider integrating over 𝜷 as well as w,

[y|𝝓,X,𝚺𝜽] = ∫w∈Rn ∫𝜷∈Rp
[w, y|𝝓,X, 𝜷,𝚺𝜽]d𝜷dw = ∫w

[y|g−1(w),𝝓]∫𝜷

[w|X, 𝜷,𝚺𝜽]d𝜷dw.

When [w|X, 𝜷,𝚺𝜽] is Gaussian, ∫
𝜷
[w|X, 𝜷,𝚺𝜽]d𝜷 is the likelihood for restricted (also known as residual) maximum like-

lihood estimation (REML, see Appendix). Note that REML was originally derived as the likelihood of a set of n − p
independent linear combinations of the observations known as error contrasts (Patterson & Thompson, 1971, 1974), and
there is little literature on its derivation from integration, except Harville (1974), who integrates a linear contrast of the
data that results in an extra det(X′X) in the likelihood. Alternatively, consider [w|X, 𝜷,𝚺𝜽] where 𝜷 has been replaced by
its conditional (on w) maximum likelihood (ML) estimator, 𝜷̂ = (X′𝚺−1

𝜽 X)−1X′𝚺−1
𝜽 w. Then, both cases are free of 𝜷,

[w|X,𝚺𝜽] =
1

Cn
exp[−(1∕2)(w − X𝜷̂)′𝚺−1

𝜽 (w − X𝜷̂)],

where for ML estimation Cn =
√

2𝜋n∕2|𝚺𝜽| and for REML estimation Cn =
√

2𝜋(n−p)∕2|𝚺𝜽||X′𝚺−1
𝜽

X|. Note that Bonat and
Ribeiro Jr (2016) only considered the marginal likelihood integrated over w, and did not consider the likelihood where 𝜷
was also integrated out (as in REML estimation) or back-substituted (as in ML estimation).

Next, to obtain the marginal distribution of the data and covariance parameters, we need the integral,

[y|𝝓,X,𝚺𝜽] = ∫w
[y|g−1(w),𝝓][w|X,𝚺𝜽]dw.

Let us denote𝓁(w, ⋅) = log([y|g−1(w),𝝓][w|X,𝚺𝜽]), and consider ∫ e𝓁(w,⋅)dw. Let v be the gradient vector with ith element

vi(𝝓,𝜽) =
𝜕𝓁(w, ⋅)
𝜕wi

,
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and let H be the Hessian matrix with i, jth element,

Hi,j(𝝓,𝜽) =
𝜕2𝓁(w, ⋅)
𝜕wi𝜕wj

,

where in both vi(𝝓,𝜽) and Hi,j(𝝓,𝜽) we show dependence on parameters 𝝓 and 𝜽. Henceforth, we assume that the
log-likelihood is sufficiently well-behaved so that H is negative definite. Using the multivariate Taylor series expansion
of 𝓁(w, ⋅) around some point a,

∫w
e𝓁(w,⋅)dw ≈ ∫w

e𝓁(a,⋅)+v′(w−a)+1∕2(w−a)′H(w−a)dw.

Now if a is a value at which v = 0, then

∫w
e𝓁(w,⋅)dw ≈ e𝓁(a,⋅) ∫w

e−1∕2(w−a)′(−H)(w−a)dw = e𝓁(a,⋅)(2𝜋)n∕2| − Ha(𝝓,𝜽)|−1∕2,

where Ha(𝝓,𝜽) indicates H evaluated at a and we again show its dependence on𝝓 and𝜽. The result on the most right-hand
side is familiar from the normalizing constant of a multivariate Gaussian distribution. Hence,

[y|𝝓,X,𝚺𝜽] = ∫w
e𝓁(w,⋅)dw ≈ [y|g−1(a),𝝓][a|X,𝚺𝜽](2𝜋)n∕2| − Ha(𝝓,𝜽)|−1∕2. (3)

2.2 Marginal maximum likelihood for covariance parameters

From (3) an approximate marginal maximum likelihood estimator for 𝝓 and 𝜽 depending on finding a is

{𝝓̂, 𝜽̂} = arg max
𝝓,𝜽

(
log[y|g−1(a),𝝓] + log[a|X,𝚺𝜽] −

1
2

log(| − Ha(𝝓,𝜽)|)), (4)

where we drop terms that do not contain 𝝓 or 𝜽. Note that log[a|X,𝚺𝜽] has the same form of the log-likelihood for ML or
REML as in standard Gaussian models, but here it is evaluated at a, where for ML

log[a|X,𝚺𝜽] = −n
2

log(2𝜋) − 1
2

log |𝚺𝜽| − 1
2
(a − X𝜷̂a)′𝚺−1

𝜽 (a − X𝜷̂a), (5)

and for REML

log[a|X,𝚺𝜽] = −
n − p

2
log(2𝜋) − 1

2
log |𝚺𝜽| − 1

2
log |X′𝚺−1

𝜽 X| − 1
2
(a − X𝜷̂a)′𝚺−1

𝜽 (a − X𝜷̂a), (6)

where in both cases 𝜷̂a = (X′𝚺−1
𝜽 X)−1X′𝚺−1

𝜽 a. The result (4) depends on finding a such that v = 0. To achieve this, we use
Newton–Raphson, conditional on 𝝓 and 𝜽, which we describe next.

Assuming the conditional independence of the elements of y given g−1(w), we have

log([y|g−1(w),𝝓][w|X,𝚺𝜽]) =
n∑

i=1
log[yi|g−1

i (wi),𝝓] −
1
2
(w − X𝜷̂)′𝚺−1

𝜽 (w − X𝜷̂) + C, (7)

where C comprises terms that do not contain w. Let d𝝓 be the vector with ith component,

di ≡ 𝜕 log[yi|g−1
i (wi),𝝓]
𝜕wi

,

and note that

𝜕[− 1
2
(w − X𝜷̂)′𝚺−1

𝜽 (w − X𝜷̂)]
𝜕w

= −𝚺−1
𝜽

w + 𝚺−1
𝜽

X𝜷̂,
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6 of 26 VER HOEF et al.

so the gradient of (7) is

v = d𝝓 − 𝚺−1
𝜽 w + 𝚺−1

𝜽 X𝜷̂ = d𝝓 − P𝜽w, (8)

where P𝜽 = 𝚺−1
𝜽

− 𝚺−1
𝜽

X(X′𝚺−1
𝜽

X)−1X′𝚺−1
𝜽

. For the Hessian, let D𝝓 be a diagonal matrix with ith diagonal element,

Di,i ≡ 𝜕2 log[yi|g−1
i (wi),𝝓]

𝜕w2
i

, (9)

where all off-diagonal elements are zero because all second-order partial derivatives are 0 when i ≠ j due to conditional
independence. Then the Hessian of (7) is

H = D𝝓 − P𝜽. (10)

Note that (8) and (10) differ from the gradient and Hessian in Bonat and Ribeiro Jr (2016) because we used 𝜷̂ in (7), which
contains w, whereas they used 𝜷. In fact, the gradient and Hessian in Bonat and Ribeiro Jr (2016) may be obtained from
(8) and (10) by replacing P𝜽 with 𝚺−1

𝜽 . This is an important difference, as it allows us to optimize for just the covariance
parameters without having to do so for 𝜷 simultaneously.

A table of di and Di,i for a few common distributions and link functions is given in Table 1. In Table 1, we use alternative
parameterizations for the negative binomial, gamma, and beta distributions so that E(y) = 𝜇. We also reparameterize the
inverse Gaussian distribution. Details for all distributions are given in the Appendix.

Conditional on 𝝓 and 𝜽, a Newton–Raphson update is,

w[k+1] = w[k] − H−1v,

and upon convergence we set a = w in (4) for any evaluation of the likelihood for given𝝓 and 𝜽. Notice that this makes the
marginal maximum likelihood doubly iterative, as we solve for a while optimizing for 𝝓 and 𝜽. It is possible to use other
maximization routines, such as the EM algorithm, but generally the Newton–Raphson algorithm converges rapidly (often
around 10 iterations in our experience), and this was favored by Bonat and Ribeiro Jr (2016) also. However, on occasion,
the stepsize needs to be adjusted so that v does not diverge. For example, it is easy and fast to check v[k+1] = d𝝓 − P𝜽w[k+1],
and if v[k+1] is “larger” than v by some criterion (e.g., largest or average element of v), then take

w[k+1] = w[k] − 𝛼H−1v,

where 0 < 𝛼 < 1. In the simulations below, we check v[k+1] in the manner described above, and set 𝛼 = 0.1 if the largest
element of v[k+1] is larger than the largest element of v. The advantage of using Newton–Raphson is that it provides H,

T A B L E 1 Flexibility of the HGLMM, showing how different distributions can be matched with different patterned covariance matrices.
We also show distributions, inverse link functions, and first and second partial derivatives with respect to wi for various parts of the
log-likelihood. Any of the covariance models in the last column can be matched to any of the distributions in the first column.

log[y|g−1(w), 𝝓] −(1∕2) log |− Ha(𝝓, 𝜽)| + log[a|X,𝚺𝜽]

Distribution 𝝁 = g−1(w) di Di,i 𝚺𝜽-types

Binomial 𝝁 = exp(w)
1+exp(w)

yi −
ni exp(wi)
1+exp(wi)

− ni exp(wi)
(1+exp(wi))2

Random effects

Poisson 𝝁 = exp(w) yi − exp(wi) − exp(wi) Geostatistical

Neg. Binomial 𝝁 = exp(w) 𝜙(yi−ewi )
𝜙+ewi

− 𝜙ewi (𝜙+yi)
(𝜙+ewi )2

Spatial areal

Gamma 𝝁 = exp(w) −𝜙 + yi𝜙e−wi −yi𝜙e−wi Time series

Inv. Gaussian 𝝁 = exp(w) 𝜙
(

y
2ewi

− ewi

2y

)
+ 1

2
− 𝜙(e2wi +y2

i )
2yewi

Spatio-temporal

Beta 𝝁 = exp(w)
1+exp(w)

−𝜙ewi k0(wi|𝜙,yi)
(ewi +1)2

−𝜙e2wi k1(wi|𝜙,yi)
(ewi +1)4

Note: k0(wi|𝜙, yi) = 𝜓 (0)
(

𝜙ewi

1+ewi

)
− 𝜓 (0)

(
𝜙

1+ewi

)
+ log

(
1
yi
− 1

)
. k1(wi|𝜙, yi) = 𝜙

(
𝜓 (1)

(
𝜙ewi

1+ewi

)
+ 𝜓 (1)

(
𝜙

1+ewi

))
− 2 sinh(wi)

(
k0(wi|𝜙, yi) + 2tanh−1(1 − 2yi)

)
. 𝜓 (n)(⋅) is

the nth derivative of the digamma function. sinh and tanh are the hyperbolic sine and tangent functions, respectively.

 1099095x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/env.2872, W

iley O
nline L

ibrary on [29/07/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



VER HOEF et al. 7 of 26

which is useful for making adjustments to variances when estimating fixed effects and making predictions, which we
describe in the next section.

In summary, estimation of covariance parameters and w can be written in the following steps,

1. Get initial values for covariance parameters 𝝓 and 𝜽. For example, for variance components, such as 𝜎2
0 and 𝜎2

1 , appor-
tion var(g(y)) equally among each variance component so that 𝜎2

0 + 𝜎2
1 = var(g(y)). If there are many explanatory

variables, a linear model can be fit to g(y)) and residual variance could be used. For geostatistical models, the range
parameter can be set such that the effective range (the value at which autocorrelation is 0.05) is 0.9 (or some other
fraction) of the maximum distance encountered in the data set. For areal data with row-standardized neighborhood
matrices, the dependence parameter is often bounded between 0 and 1, so 0.5 is a good starting value. In general,
a coarse grid search is best, where that grid search is not too computationally demanding. For example, one could
try all combinations of a small, medium, and large values for each parameter, where small, medium, and large are
determined from the model and data.

2. Pick initial values for w. For example, set w = g(y), or as the residuals from an ordinary least squares model fit to g(y),
or as deviance residuals from a generalized linear model fit (using iteratively reweighted least squares) to y.

3. Use Newton–Raphson to estimate w = a for given 𝝓 and 𝜽 in (4).
4. Evaluate the log-likelihood in (4) for a, 𝝓 and 𝜽.
5. Loop through steps 3 and 4 for different values of 𝝓 and 𝜽 while optimizing for the log-likelihood in step 4 until

convergence.

2.3 Inference for fixed effects

In order to estimate 𝝓 and 𝜽 it was necessary to optimize the likelihood for w, which we called a, using Newton–Raphson,
for each evaluation of the likelihood. Upon convergence in estimating 𝝓 and 𝜽, we also have optimized w. Let us denote
the optimizing value as ŵ = a.

Bonat and Ribeiro Jr (2016) proposed profile likelihood for estimating 𝜷 and obtaining confidence intervals, but their
proposal is computationally demanding and does not extend well to cases with many coefficients in 𝜷. An alternative
estimator of 𝜷 may be obtained by replacing the unobserved w with its predicted value ŵ = a, obtained as described in
the previous subsection, in the expression for what would be the generalized least squares estimator of 𝜷 if in fact w
was observed. This yields the estimator 𝜷̂ = Bŵ, where B = (X′𝚺−1

𝜽 X)−1X′𝚺−1
𝜽 . In order to estimate the variance of 𝜷̂, it is

convenient to condition on w as if it were observed, often called the law of total variance,

var(ŵ) = Ew[var(ŵ|w)] + varw[E(ŵ|w)]. (11)

Due to the optimization of ŵ from the likelihood, we will assume that ŵ|w is approximately distributed as N(w,F−1
w ),

where Fw is the observed Fisher information, or, less strictly, that E(ŵ|w) = w and var(ŵ|w) = F−1
w , approximately. Thus,

for the second term in (11), varw[E(ŵ|w)] = 𝚺𝜽, which we approximate by𝚺𝜽̂ after substituting estimated parameters 𝜽̂ for
𝜽. For the first term in (11), the observed Fisher information is equivalent to−Hw(𝝓,𝜽)−1, where we show the dependence
on parameters 𝝓 and 𝜽, and on w that comes from D𝝓 in (10) (see the examples of Di,i in Table 1). To obtain the Fisher
information would require taking the expectation, Ew[var(ŵ|w)], but this is complicated, and Efron and Hinkley (1978)
argue for using the observed Fisher information instead, so we simply replace w in −Hw(𝝓,𝜽)−1 with ŵ = a, and we also
replace 𝝓 and 𝜽 by their estimates 𝝓̂ and 𝜽̂, and denote this as −Hŵ(𝝓̂, 𝜽̂)−1. Then an estimator of the covariance matrix
of estimated fixed effects is

v̂ar(𝜷̂) = B[var(ŵ)]B′ = B[−Hŵ(𝝓̂, 𝜽̂)−1]B′ + C𝜷̂ , (12)

where C𝜷̂ = B𝚺𝜽̂B′, which simplifies to C𝜷̂ = (X′𝚺−1
𝜽̂

X)−1, the usual estimated variance-covariance matrix of fixed effects
when using generalized least squares if w were observed.

2.4 Inference for prediction

So far, we have estimated 𝜽, 𝝓, and 𝜷, predicted w, and obtained estimated covariance matrices for 𝜷̂ and ŵ. Now let
us consider the task of prediction for unsampled data, which may be in space, or time, or by design. We will denote the
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8 of 26 VER HOEF et al.

unsampled {wi} by the vector u. We can extend the linear model (1) as(
w
u

)
∼ N

((
X𝜷

Xu𝜷

)
,

(
𝚺𝜽 𝚺wu

𝚺′
wu 𝚺uu

))
. (13)

Our goal is the prediction of u. If w was observed, the best linear unbiased predictor (BLUP) of u would be 𝚲w, where
𝚲 = XuB + 𝚺′

wu𝚺−1
𝜽

− 𝚺′
wu𝚺−1

𝜽
XB (Goldberger, 1962). Since, however, w is unobserved, the empirical BLUP (eBLUP) of

u may be obtained by substituting ŵ for w in this expression, yielding û = 𝚲ŵ.
To determine the sampling properties of û, we again we need to make some adjustments that account for the substi-

tution of ŵ for w in the BLUP. Assuming again that ŵ is unbiased for w, it is easily seen that this alternative predictor is
unbiased, i.e., E(𝚲ŵ) = E(u). Now we want an estimator of the prediction error variance associated with this predictor,
which is var(û − u) = var(𝚲ŵ − u). Note that the prediction error variance of the BLUP is

var(𝚲w − u) = 𝚺uu − 𝚺′
wu𝚺−1

𝜽 𝚺wu + KC𝜷K′, (14)

where K = Xu − 𝚺′
wu𝚺−1

𝜽 X (Goldberger, 1962). To obtain the prediction error variance of our alternative predictor, it is
convenient to condition on w and u as we did in (11), that is,

var(𝚲ŵ − u) = Ew,u[var(𝚲ŵ − u|w,u)] + varw,u[E(𝚲ŵ − u|w,u)].
Owing to the assumed unbiasedness of ŵ for w, we have E(𝚲ŵ − u|w,u) = 𝚲w − u, and the variance of this is given by
(14). Conditionally, varŵ(𝚲ŵ − u) does not depend on u, so Ew,u[var(𝚲ŵ − u|w,u)] = Ew(𝚲[−Hw(𝝓,𝜽)−1]𝚲′), and, as
we did in the previous section, rather than take expectation, we simply use the observed Fisher information by replacing
w in H with its estimator ŵ = a and replacing 𝝓 and 𝜽 with 𝝓̂ and 𝜽̂. Putting them together, we obtain

v̂ar(𝚲ŵ − u) = 𝚲[−Hŵ(𝝓̂, 𝜽̂)−1]𝚲′ + 𝚺uu − 𝚺′
wu𝚺−1

𝜽̂
𝚺wu + KC𝜷̂K′. (15)

All covariance matrices depend on 𝜽, although the notation makes this explicit only for the covariance matrix of w. We
replace 𝜽 in these matrices by its estimator 𝜽̂, where the fitted covariance function that is used to estimate 𝚺𝜽 is also used
to estimate 𝚺wu and 𝚺uu.

3 SIMULATIONS

To test our methods, and compare to other methods, we perform some simulations so that we know the true values of
all parameters and w. First, we simulate a single data set to more carefully compare results with other methods, and
then we conduct some simulation experiments to examine frequentist properties for mean-squared (prediction) error and
confidence/prediction interval coverage. All code and results are available as an R package mentioned at the end of this
article.

3.1 A single simulated spatial poisson regression

We first illustrate our methods with a simulated spatial data set. We also compare our methods to a fully Bayesian approach
by using the R package spBayes (Finley et al., 2007), and we compare our methods to an approach that uses the Laplace
approximation, but with automatic differentiation rather than the analytical results that we developed throughout this
article, by using the R package glmmTMB (Brooks et al., 2017). We created a square grid of 16 × 16 data locations on a
(0, 1) × (0, 1) (unit square) domain. On this grid, we generated a single w from a multivariate normal distribution with
zero mean and covariance matrix determined by evaluating an exponential autocovariance model, cov(w(si),w(sj)) =
𝜎2

1 exp(−𝛿i,j∕𝜌) + 𝜎2
0(𝛿i,j = 0), where si (i = 1, … , 256) is the vector of spatial coordinates at location i, 𝛿i,j is Euclidean

distance between the ith and jth locations, and (⋅) is the indicator function, equal to one if its argument is true and equal
to 0 otherwise. We set 𝜎2

1 = 1, 𝜌 = 1, and 𝜎2
0 = 0.0001. A single realization of this process is given in Figure 1a. To the
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F I G U R E 1 Simulated Poisson count data. (a) The true simulated w values. (b) The effects of explanatory variables added, X𝜷 + w. (c)
Simulated data from a Poisson distribution Y ∼ Poi(exp(X𝜷 + w) (d) 100 response values removed at random, providing the final data set.

spatial random effects w, we added fixed effects as a linear model

E(wi) = 𝛽0 + 𝛽1xi + 𝛽2𝜏i + 𝛽3(x ∶ 𝜏)i,

where xi was randomly and independently simulated from N(0, 1), 𝜏i was randomly and independently simulated as
a Bernoulli variable with probability p = 0.5, and (x ∶ 𝜏)i was the interaction between the normally-distributed and
Bernoulli-distributed explanatory variables (i.e., the product of xi and 𝜏i). We set 𝜷 = (0.5, 0.5,−0.5, 0.5)′. Then a single
realization of the fixed effects was added to the realized spatial random effects, X𝜷 + w (Figure 1b). Next, we created Pois-
son random variables under a HGLMM model by simulating Y ∼ Poi(exp(X𝜷 + w)) (Figure 1c). Finally, we created 100
missing values at random from the grid (Figure 1d), where we set aside the true simulated values, leaving 156 observations
for model fitting and 100 missing values for prediction.

The methods developed in this manuscript have been implemented in the R package spmodel (Dumelle et al., 2023).
We fit models to the simulated data set using spmodel, spBayes, and glmmTMB, using a spatial exponential model for
the covariance model for all three packages. All three packages assume the same HGLMM with a Poisson distribution.
For spBayes we used a burn-in of 10,000 MCMC samples, and then used another 10,000 MCMC samples to summarize
results. We used default priors as given in the spBayes examples. glmmTMB uses automatic differentiation rather than
the analytical results that we develop in equations (4) through (10), and in Table 1. glmmTMB and spmodel require no
extra input other than the response distribution and the form of the covariance matrix.

The estimated covariance parameters were somewhat different for all packages, and the partial sill, 𝜎2
1 , and range 𝜌

parameters for all three packages are shown on the HGLMM likelihood surface (for fixed nugget effect as estimated by
spmodel) in Figure 2. Note that although the estimated covariance parameters among the three packages differ, they
all lie along the ridge of high likelihood in Figure 2 (which actually shows −2 times the marginal loglikelihood), so that
the ratio 𝜎2

1∕𝜌 is very similar for all three packages, and it is this ratio that is important for estimation and prediction
(Zhang, 2004).
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F I G U R E 2 The marginal likelihood surface of two covariance parameters for the simulated data. The white circle shows the estimated
values using the analytical method proposed here and implemented in spmodel, the plus symbol indicates the estimated values for
spBayes, and the open diamond symbol indicates the estimated values using glmmTMB.

T A B L E 2 Estimated fixed effects table for simulated data.

Estimates Standard error

Effect True spmodel spBayes glmmTMB spmodel spBayes glmmTMB

𝛽1 0.5 0.546 0.545 0.547 0.050 0.053 0.050

𝛽2 −0.5 −0.609 −0.615 −0.609 0.090 0.094 0.090

𝛽3 0.5 0.558 0.564 0.557 0.072 0.077 0.072

In fact, all three R packages gave very similar estimated fixed effects and standard errors (Table 2). Turning to
prediction, Figure 3a shows the true simulated w-values (Figure 1a) and the predictions using spmodel, where the pre-
dictions are quite close to the true values. The predictions of spmodel, spBayes, and glmmTMBwere virtually identical
(Figure 3b,c). The prediction standard errors were slightly different, with those of glmmTMB about equal to spmodel on
average, while those of spBayes were slightly higher (Figure 3d). The analysis of this simulated data set shows that all
three methods yield very similar results.

3.2 A simulation experiment for spatial poisson regression

The single data set provided insights on comparing estimates of three methods represented by spmodel, spBayes, and
glmmTMB. In order to evaluate the bias of the estimators and predictors, mean-squared errors (MSE) of fixed effects,
mean-squared prediction errors (MSPE), the coverage of confidence intervals and prediction intervals, and to compare
computing time, we conducted a larger simulation experiment. We simulated the data exactly as in Figure 1 except the spa-
tial locations were randomized within the unit square, rather than on a regular grid, and we used sample sizes of 125 and
525, in each case with 100 prediction locations. We simulated 2000 data sets to assess bias, MS(P)E, confidence/prediction
interval coverage, and average computing times.

To estimate bias, we took the average of 𝜷̂ − 𝜷 (element-wise) over all 2000 simulated data sets, and to estimate
mean-squared error (MSE) we took the average of (𝜷̂ − 𝜷)2 (element-wise) over all 2000 simulated data sets. We also
formed nominal 90% confidence intervals as 𝛽 j ± 1.645ŝe(𝛽 j), where, for spmodel, ŝe(𝛽 j) was the square root of the
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F I G U R E 3 Comparisons among the three methods. (a) Predicted w-values using spmodel versus true w-values. (b) Predicted
w-values using spmodel versus predicted w-values using spBayes. (c) Predicted w-values using spmodel versus predicted w-values using
glmmTMB. (d) Prediction standard errors for spBayes and glmmTMB compared to spmodel.

(j + 1)th diagonal element of (12) (j = 0, 1, 2, 3). We computed the proportion of times, over the 2000 simulations, that the
confidence intervals contained the true values. If we are estimating the variances of 𝛽 j well, the coverage should be close
to 90%.

We also used the estimated covariance parameters in 𝚺𝜽̂ and the predicted ŵ to make predictions, using û = 𝚲ŵ
(recall that these are on the log scale), at all 100 prediction locations for each simulated data set. To estimate prediction
bias, we used the average of the elements of û − u for each simulated data set, where u contains the simulated values at
the 100 prediction locations, and then averaged those across the 2000 simulated data sets. We also formed 90% prediction
intervals as ûk ± 1.645ŝe(ûk) (k = 1, … , 100), where, for spmodel, ŝe(ûk) was the square root of the kth diagonal element
of (15). We computed the proportion of times, over the 100 predictions and 2000 simulations, that the prediction intervals
contained the true values, which should be about 90%.

The results are shown in Table 3. There was very little estimation or prediction bias in any of the three methods, so
those results are not shown. For small sample sizes, MSE, CI90, MSPE, and PI90 were very similar for all three methods,
with a very small advantage to spmodel, with appropriate coverage for both confidence and prediction intervals. How-
ever, estimation and prediction times for spBayes were considerably higher. In fact, computation times for spBayes
for sample size of 525 were prohibitive and were not included in the rest of the simulation study. For sample sizes of 525,
again spmodel and glmmTMB provided similar results for MSE, CI90, MSPE, and PI90, however spmodel was much
faster – several orders of magnitude faster for prediction. None of these results are surprising, as all three methods are
fitting the same underlying model, but where spBayes uses MCMC to marginalize over all effects, which is quite slow,
glmmTMB uses numerical differentiation for the Laplace approximation, which is slow for larger sample sizes, while we
use analytical derivatives for the Laplace approximation, implemented in spmodel, which is the fastest method.
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T A B L E 3 MS(P)E and coverage for estimation of fixed effect 𝛽1 and for prediction of u at unobserved locations.

Geostatistical model, sample size = 125

Package MSE CI90 MSPE PI90 timef timep

spmodel 0.0145 0.908 0.178 0.895 1.095 0.140

spBayes 0.0151 0.901 0.179 0.907 66.230 7.819

glmmTMBa 0.0149 0.906 0.184 0.891 0.926 2.335

Geostatistical model, sample size = 525

spmodel 0.00273 0.905 0.0921 0.909 6.458 0.322

glmmTMB 0.00276 0.900 0.0930 0.901 44.096 65.538

CAR model, sample size = 125

spmodel 0.0221 0.894 0.499 0.879 1.785 0.154

INLA 0.0245 0.879 0.522 0.829 1.058

CAR model, sample size = 525

spmodel 0.00427 0.873 0.390 0.890 11.292 0.726

INLAb 0.00430 0.882 0.384 0.895 1.515

Note: MSE is mean-squared error for 𝛽1, CI90 is coverage for 90% confidence intervals for 𝛽1, MSPE is mean-squared prediction error for 100 prediction
locations, PI90 is coverage of 90% prediction intervals for 100 prediction locations. Values in bold are outside of the 99% confidence interval for 2000
independent Bernoulli trials with true value 0.9. The columns timef and timep are computing times (in seconds) for estimation and prediction, respectively.
a17/2000 failed to converge.
b13/2000 failed to converge.

The methods described in this manuscript are valid for any patterned covariance matrix, so we also simulated data
from a conditional autoregressive (CAR) model (Besag, 1974; Ver Hoef et al., 2018). A popular R package for analyzing
these data using a nested first-order Laplace approximation (Rue et al., 2009) is INLA (Rue et al., 2017). INLA uses models
with sparse precision matrices such as CAR and first-order autoregressive (AR1) models for fast marginal computations
such as those presented in this article. We simulated data on a 15 × 15 grid, and on a 25 × 25 grid, using a CAR model
with first-order neighborhood weights (rook move), row-standardization, and a spatial dependence parameter of 0.999,
resulting a covariance matrix V = (diag(W1) − 0.999W)−1, where W is a binary matrix where a one indicates a neighbor
and 1 is a vector of all ones. Note that while 0.999 may seem like very strong autocorrelation, it results in nearest neighbors
having a correlation of approximately 0.85 (for the 15 × 15 grid), while those farthest apart in the grid have a correlation
of approximately 0.40 (correlations are not stationary in CAR models). The same fixed effects were added as for the
geostatistical simulations. For both sample sizes, the simulated values for 100 spatial locations were removed at random
for prediction.

The results of spmodel and INLA are similar (Table 3). For smaller sample sizes, spmodel has lower MSE and
MSPE, and better confidence and prediction interval coverage than INLA. However, for sample size 525, results are very
similar, and INLA is very fast. Note that the methods in this article make no special use of the sparse precision matrix and
certain fast computations used by INLA, so our methods can be adopted for simultaneous autoregressive models, spatial
and temporal moving average models, and others not considered by INLA.

3.3 A simulation experiment for other distributions

In addition to the Poisson distribution, we did similar simulations for all five of the other distributions in Table 1, and we
make no further comparisons to other software. No 𝜙 was needed for the binomial (Bernoulli) distribution, but for the
beta distribution we set 𝜙 = 10, and for the negative binomial, gamma, and inverse Gaussian distributions we set 𝜙 = 1
(parameterizations of the distributions are given in the Appendix). Estimation and prediction appeared to be unbiased
in all five cases, so we only show the corrected 90% confidence interval coverage in Table 4. In all but one case, the
intervals have close to 90% confidence and prediction interval coverage, the exception being the beta distribution, which
undercovers slightly, especially for prediction. Note that we included a nugget effect when fitting all of these models. The
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VER HOEF et al. 13 of 26

T A B L E 4 Interval coverage for estimation of fixed effects 𝜷 and for prediction of u at unobserved locations for the five distributions in
Table 1 that were not included in Table 3; binomial (bino), beta, negative binomial (nbin), gamma (gamm) and inverse Gaussian (iGau).

Effect bino beta nbin gamm iGau

𝛽0 0.718 0.894 0.750 0.726 0.645

𝛽1 0.906 0.831 0.911 0.897 0.895

𝛽2 0.915 0.843 0.899 0.892 0.910

𝛽3 0.912 0.829 0.907 0.891 0.897

û 0.891 0.773 0.905 0.909 0.946

Note: Coverage is for 90% confidence and prediction intervals, using the corrected versions in (12) and (15). Values in bold are outside of the 99% confidence
interval for 2000 independent Bernoulli trials with true value 0.9.

prediction interval overcoverage (0.946) when using the inverse Gaussian distribution becomes 0.904 without a nugget
effect. We address the nugget issue more in the Discussion and Conclusions section. More simulations will be necessary
to fully characterize when the intervals corresponding to these distributions have shortcomings.

4 EXAMPLES

We demonstrate the methods with three example data sets that use all of the distributions in Table 1, combined with
covariance matrices developed through spatial autoregressive models, time series models, geostatistical models, and vari-
ance components models that include random effects. All data, code and results are available as an R package mentioned
at the end of this article.

4.1 1980 presidential turnout in Texas

This data set contains the proportion of the population over age 19 that cast votes in the 1980 presidential election in the
United States. The proportions are for each of the 254 counties in Texas. The data for the whole of the United States were
collected and reported in Pace and Barry (1997), and are available in the R package spData (Bivand et al., 2023). We
created a subset of the data for Texas only. The response variable is reported as a proportion, but we also created a binary
variable by assigning a value of 1 to those proportions greater than 0.5 and assigning a value of zero otherwise. Here, we
will fit the binomial distribution (actually a Bernoulli distribution because all sample sizes are one) to the binary response
variable, and the beta distribution to the proportional response variable.

There are three explanatory variables in the data set: (1) proportion of population with college degrees, (2) propor-
tion of home ownership, and (3) per capita income, where for all three variables the values are with respect to the total
population over age 19 that were eligible to vote. A scatterplot of the logit of the proportional response variable for all
three explanatory variables is given in Figure 4. In an attempt to linearize relationships, we cubed the explanatory vari-
able for the proportion of home ownership and took the natural logarithm of per capita income. The linear model that
we consider then is,

w = X𝜷 + r1,

where X contains a column of ones for an overall mean and three columns for the (transformed) explanatory variables.
For the spatial random effects r1, we fit two spatial autoregressive models to the data for the 254 counties, a conditional

autoregressive (CAR) model and a simultaneous autoregressive (SAR) model. These models rely on neighbor definitions,
rather than distance directly. We defined a neighbor of a county as any other county whose centroid was within 150 km of
the originating county’s centroid. Using that definition, some counties had but a single neighbor, while others had many;
the maximum was 38. Let W = (Wi,j) denote a neighbor incidence matrix, where Wi,j = 1 if county j is a neighbor of county
i, and Wi,j = 0 otherwise, where the diagonal is all zeros (a site is not a neighbor of itself). Let Wrs be a “row-standardized”
version of W, where the elements in any row of W are divided by their row sum, Wi,+ =

∑
j Wi,j. Then the covariance
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F I G U R E 4 Scatterplot of the logit of voter-turnout response variable by the three explanatory variables. Note the transformations of
some explanatory variables, where proportion of home ownership was cubed, and natural logs were taken of per capita income.

matrix for a CAR model is

𝚺𝜽 = 𝜎2(I − 𝜌Wrs)−1Mrs,

where Mrs is a diagonal matrix with ith diagonal element 1∕Wi,+. The SAR covariance matrix is

𝚺𝜽 = 𝜎2[(I − 𝜌Wrs)(I − 𝜌W′
rs)]−1.

In both covariance matrices, 𝜌 is a spatial dependence parameter whose maximum value is one (because of
row-standardization), and we considered the parameter space 0 ≤ 𝜌 ≤ 1 and 𝜎2 > 0.

For the model with the binary response variable, the three explanatory variables, and the CAR covariance matrix,
using (4) with REML we estimated 𝜎̂2 = 31.59 and 𝜌̂ = 0.9999. Note that 𝜌̂ is very close to the boundary. When 𝜌 = 1
is fixed at the boundary, then the covariance matrix no longer exists, but it is possible to use an intrinsic conditional
autoregressive model (ICAR, Besag et al., 1991). The results should be very similar. The ICAR model eliminates the need
to estimate 𝜌. At the cost of a parameter, estimating 𝜌 allows the models to remain in our HGLMM framework. Changing
the model to a SAR covariance matrix, we estimated 𝜎̂2 = 0.681 and 𝜌̂ = 0.956. The minimized value of the minus twice
the log-likelihood in (4) was 747.51 for the CAR model, while it was 738.89 for the SAR model, indicating that the SAR
model was a better choice. The number of parameters are the same for both models, and here we use the log-likelihood (4)
to evaluate model performance in the same way as Rue et al. (2017). Model comparisons based on the loglikelihood, such
as likelihood ratio tests, or model selection such as AIC (Akaike, 1973), are possible. Table 5 gives fixed effects estimates.
Note the large difference in standard errors using the naive approach based on C𝜷̂ and the corrected version given by (12).

For the proportion turnout response variable, the beta distribution in Table 1 was used, and for the CAR covariance
matrix we estimated 𝜎̂2 = 0.850, 𝜌̂ = 0.9992, and 𝜙̂ = 72.9, while for the SAR covariance matrix we estimated 𝜎̂2 = 0.0125,
𝜌̂ = 0.942, and 𝜙̂ = 46.6. The minimized value of minus twice the log-likelihood in (4) was −101.04 for the CAR model,
while it was −98.32 for the SAR model, indicating the CAR model was a slightly better choice, in contrast to the binary
data. Table 6 gives fixed effects estimates. As was the case for the binary data, there is a large difference in standard errors
using the naive approach based on C𝜷̂ and the corrected version given by (12). The overall patterns of coefficient estimates
and their standard errors are similar between SAR and CAR models in both Tables 5 and 6. In comparing Table 5 to
Table 6, there appears to be more precision in the estimates in Table 6, especially regarding the significance of the per
capita income variable. This is not surprising because the transformation of the proportional turnout data into binary
data invariably results in a loss of information.

The predicted ŵ values are shown in Figure 5. A spatial visualization of the binary data shows some apparent clus-
tering of 1’s and 0’s (Figure 5a). The predicted ŵ values for the binary data using a SAR model have the highest values in
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VER HOEF et al. 15 of 26

T A B L E 5 Estimated fixed effects table for Texas turnout data using binary response variable.

SAR model CAR model

Effect Est. s.e.u s.e.c z-val. p-val. Est. s.e.c

Intercept −4.747 0.775 2.302 −2.062 0.0392 −4.402 6.791

College 5.083 1.136 3.717 1.367 0.1715 4.681 3.817

Home-owner 70.243 3.572 12.911 5.440 <0.0001 69.960 13.365

Income −0.688 0.421 1.377 −0.500 0.6173 −0.611 1.443

Note: The estimates are given by Est., while s.e.u is the naive standard error using only C𝜷 from Section 2.3 and s.e.c is the corrected standard error using (12).
The z-val. is the estimate divided by the corrected standard error, and the p-val. is the probability of exceeding the modulus of the z-value if the effect were truly
zero assuming a standard normal distribution for the z-value (infinite sample size).

T A B L E 6 Estimated fixed effects table for Texas turnout data using proportional response variable.

CAR model SAR model

Effect Est. s.e.u s.e.c z-val. p-val. Est. s.e.c

Intercept −1.384 0.457 0.496 −2.789 0.0053 −1.613 0.253

College 0.619 0.283 0.416 1.488 0.1368 0.407 0.407

Home-owner 8.609 0.801 1.272 6.770 <0.0001 8.711 1.301

Income 0.340 0.112 0.157 2.168 0.0302 0.470 0.142

Note: The headings are the same as for Table 5.

the northern Texas “pan-handle” and in central Texas (Figure 5b), and the pattern is similar for the predicted ŵ values
for the binary data when using a CAR model (Figure 5c). A logit transformation of the raw proportional turnout data
are shown in Figure 5d and the predicted ŵ values for the SAR model (Figure 5e) appear to smooth the raw data, with a
similar spatial pattern to the binary data (Figure 5b) and to the predicted ŵ values using a CAR model (Figure 5f).

4.2 Harbor seal counts in Alaska

For over 30 years, aerial surveys of harbor seals throughout Alaska have been flown by the Marine Mammal Laboratory
of the Alaska Fisheries Science Center, part of the US government NOAA Fisheries. These surveys, which are performed
primarily during the late summer months when harbor seals are molting, are the primary method for monitoring and
estimating the abundance of harbor seals (Muto et al., 2022). Based on genetic sampling, all seals in Alaska have been
divided into 12 different “stocks,” or genetic populations. Abundance estimates are created for each stock, and here we will
use the stock known as the Sitka/Chatham Strait population. This data set consists of 716 observations in the years 1998,
2003, 2008–2011, and 2015. To regulate body temperature, seals often haul out of the water, which is how they are counted
more easily than when they are in the water. All known harbor seal haul-out sites for this population were collected into
74 sample polygons. Some sample polygons were counted multiple times per year, while others were skipped in some
years. For each aerial count, explanatory variables included time-from-low-tide and time-of-day.

We use Poisson and negative binomial models in Table 1 to formulate hierarchical GLMMs for the seal count data.
We consider a specific case of the model in (1):

w = X𝜷 + r1 + Z2r2 + 𝝐,

where X contains a column for an overall mean; 73 columns with indicators of a mean effect for each sample poly-
gon (as deviations from the mean for the first polygon, which was absorbed into the overall mean); a column for
time-of-day, which is the elapsed fraction of the day from solar noon (the time when the sun is at the zenith); a column
for time-from-low-tide, which is in hours from low tide (tide cycles last about 12 h in this area); and columns for squared
time-of-day and squared time-from-low-tide. Thus, X has 78 columns. The n × 1 random effect r1 is assumed to have the
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(a) (d)
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(b)
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−0.08
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3.96 (e)

−1.16
−0.60
−0.28
−0.09
0.04
0.20
0.39
0.63
1.11
2.01
2.33

(c)
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F I G U R E 5 Raw data and predicted spatial random effects (w) for the Texas turnout data. (a) Raw binary data, where open circles are
zeros and solid circles are ones, (b) predicted ŵ using SAR model for binary data, (c) predicted ŵ using CAR model for binary data, (d)
logit-transformed proportional turnout data, (e) predicted ŵ using SAR model for proportional turnout data, (f) predicted ŵ using CAR
model for proportional turnout data.

covariance structure of a stationary first-order autoregressive (AR1) time series model, so cov(r1,i, r1,j) = 𝜎2
1𝜌

|ti−tj|∕(1 − 𝜌2),
where ti and tj are the years of the counts for the ith and jth observations. Moreover, we assume that counts from distinct
polygons are independent of each other, so the autocovariance only occurs among years for a given polygon, yielding a
covariance matrix with a block diagonal structure. However, for some polygons there are repeated measures within year,
so Z2 is a design matrix created as an interaction between polygon and year, and 𝜎2

2Z2Z′
2 allows for additional correlation

among repeated samples per year within a polygon. Not all years had repeated measures, and Z2 had 518 columns and
we denote 𝜎2

2 as the variance of r2. When using a model with a Poisson distribution, we allow for further uncorrelated
overdispersion by using 𝝐 as given in (1), where var(𝝐) = 𝜎2

0 , but for the negative binomial distribution, which directly
allows for overdispersion, we set 𝝐 = 0.

For the Poisson model with AR1 covariance structure, using (4) with REML we estimated 𝜎̂2
0 = 0.858, 𝜎̂2

1 = 0.648,
𝜎̂2

2 = 1.48 × 10−6 and 𝜌̂ = 0.938, while for the negative binomial distribution with the AR1 covariance model, we estimated
𝜎̂2

1 = 14.92, 𝜎̂2
2 = 0.0057, 𝜌̂ = 0.9992, and 𝜙̂ = 1.529. The minimized value of minus twice the loglikelihood in (4) was

9607.4 for the Poisson model, while it was 9437.6 for the negative binomial model, with an equal number of parameters,
indicating that the negative binomial was a better choice. Table 7 gives fixed effects estimates for the negative binomial
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VER HOEF et al. 17 of 26

model, except that we include the naive and corrected variances for the Poisson model as well. It is especially interesting
that when 𝝐 was included in the w values for the Poisson model, the diagonal elements of C𝜷 were large and increased
only slightly when adjusted by B(−H−1

a )B′ as given in (12). This is in contrast to the negative binomial model, whose
diagonal elements of C𝜷 , as reflected by s.e.u in Table 7, are very small. Yet, s.e.c is very similar for the negative binomial
and Poisson models, despite their apparently different covariance structures.

The fitted explanatory variables allow insight into seal behavior, indicating that seals prefer to haul out of the water
around midday and at low tides. The model confirms that counts are highest at these times, as the coefficients in Table 7
are plotted in Figure 6. This shows changes on the log scale, where all other explanatory variables are held fixed at zero, so
Figure 6 may be interpreted as the log of the proportional change in expected counts with unit change in the explanatory
variable. Note that we remain in the linear modeling framework on the link scale. It would be possible to extend our
models to generalized additive models on the link scale, for example, Ruppert et al. (2003), but we make no attempt to do
so here.

Our ultimate goal is to predict the abundance of seals at each site, using the results in Section 2.4. Predicted w-values,
after exponentiating, are shown in Figure 7 for 4 of the 74 different sites, which are labeled AC10, AC11, BC01, and BC02.
For each year, we predicted û in (13) with 90% prediction intervals using (15), and then exponentiated both predictions
and prediction intervals. The errors are large, but this is not unreasonable given the relatively few observations per site.
For this model, we borrowed strength across sites for estimating the autocorrelation parameter 𝜌, assuming all sites had
the same amount of autocorrelation among w. In general, the predictions tend to shrink toward the overall mean for the
site, but for site BC02 especially, the predictions are greater than the observed values. This can be explained because the

T A B L E 7 Estimated fixed effects and associated quantities, under the negative binomial and Poisson models, for the harbor seal count
data.

Negative binomial Poisson

Effect Est. s.e.u s.e.c z-val. p-val. s.e.u s.e.c

time-from-low-tide −0.061 0.0019 0.036 −1.705 0.0882 0.039 0.041

(time-from-low-tide)2 −0.057 0.0012 0.020 −2.806 0.0050 0.024 0.024

hour-of-day −0.234 0.0049 0.084 −2.787 0.0053 0.097 0.100

(hour-of-day)2 −0.581 0.0066 0.114 −5.104 0.0000 0.130 0.134

Note: The headings are the same as for Table 5.

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−1
.5

−1
.0

−0
.5

0.
0

Hour of Day (Standardized)

Lo
g 

of
 R

el
at

iv
e 

Pr
ob

ab
ilit

y

(a)

−2 −1 0 1 2

−0
.3

−0
.2

−0
.1

0.
0

Time from Low Tide (Hours)

Lo
g 

of
 R

el
at

iv
e 

Pr
ob

ab
ilit

y

(b)

F I G U R E 6 Fitted effects of (a) hour-of-day and (b) time-from-low-tide on harbor seal counts. The fitted effect shows the log of the
expected proportional change when all other covariates are held at zero.
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F I G U R E 7 Predicted w-values for 4 of the 74 sites. Open circles are raw counts, and solid circles are predicted w-values connected by a
solid line. Note that predictions are made for optimal sighting conditions so can be expected to be, on average, greater than the count values.
The dashed line shows the prediction intervals.

predictions are standardized to optimal conditions for the explanatory variables (time-of-day and time-to-low-tide). Site
BC02 was counted in suboptimal conditions on almost all occasions, which is entirely possible because a high tide may
occur at solar noon. It is impossible to optimize explanatory variables through a sampling design without being willing
to wait and sample only when a low tide occurs at near solar noon.

4.3 Heavy metal concentrations in Moss

Cape Krusenstern National Park is in northwest Alaska, USA, and nearby is the Red Dog mine, where zinc, lead, cad-
mium and other heavy metals are mined. Trucks haul ore to the coast from the Red Dog Mine on a road that traverses
Cape Krusenstern National Park. There is speculation that dust escapes into the environment from those trucks. Mosses
obtain much of their nutrients from the air, so they are ideal biomonitors for heavy metals attached to airborne dust. In
2001 (Hasselbach et al., 2005) and again in 2006 (Neitlich et al., 2017), mosses were sampled for heavy metals, with the
sampling being more dense near the road. Current annual growth of moss tissue was sampled, ground, homogenized,
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VER HOEF et al. 19 of 26

and then sent for laboratory analysis. Here, we just consider lead concentrations, although many other elements were
analyzed. Potentially important explanatory variables that we include are distance-from-haul-road, side-of-the-road
(north or south), and year of sample. There are 365 records in the data set, with 244 from 2001 and 121 from 2006.

Lead concentrations are inherently positive and are often skewed, which led Hasselbach et al. (2005) and Neitlich
et al. (2017) to transform the response to the log scale. Instead, here we use the gamma and inverse Gaussian models
given in Table 1. For the covariance structure, we consider a special case of the linear model (1),

w = X𝜷 + r1 + Z2r2 + Z3r3 + 𝝐,

where X contains a column for an overall mean, an indicator column for year 2006 (2001 is absorbed into the overall
mean), log of distance to road (in meters), and an indicator for south of the road (north is absorbed into the overall mean).
We also consider an interaction between distance to road and the side of the road.

The random effect r1 is assumed to have a geostatistical autocovariance structure given specifically by the exponential
model, cov(r1(si), r1(sj)) = 𝜎2

1 exp(−𝛿i,j∕𝜌), where si is a vector containing the spatial coordinates of the ith location and 𝛿i,j
is the Euclidean distance between locations si and sj. The parameter 𝜎2

1 is often called the partial sill, and 𝜌 is the range
parameter, which controls the distance-decay rate of the autocovariance with distance. The variance of 𝝐, 𝜎2

0 , is often called
the nugget effect. We assume that responses from different years are independent. Within year and location, at some sites,
duplicate samples were obtained to account for microscale variation; that is, one handful of moss was grabbed and then
another (the distance between grabs was assumed to be zero). Hence, Z2 is a design matrix with indicator variables for
location; this causes increased autocorrelation for any samples from the same location. Some samples were ground into
two replicate samples for laboratory analysis, as there can be some variation in the machines that measure concentration
or the way it is homogenized. Therefore, Z3 is a design matrix that contains indicator variables for a duplicate nested
within location; this causes repeated replicates to have higher autocorrelation due to coming from a common duplicate.

Using the gamma distribution with the exponential covariance model and maximum likelihood (rather than REML),
minus twice the log-likelihood was equal to 2989.128, and, from the fixed effects table, it appeared that the main effect
for side-of-road was not significant. We used ML rather than REML because REML does not provide nested models
for likelihood comparisons when fixed effects are changing (Verbeke & Molenberghs, 2000, p. 75). We refit the model
without that main effect, and minus twice the log-likelihood from (4) was 2990.334. Using either AIC or a likelihood ratio
test, we have evidence to drop the main effect for side-of-road from the model. After doing so, the marginal estimates
of the covariance parameters are 𝜎̂2

1 = 0.1703, 𝜎̂2
2 = 0.0635, 𝜎̂2

3 = 0.0267, 𝜎̂2
0 = 0.000023, 𝜌̂ = 9.075, and 𝜙̂ = 367.9. We fit

an inverse Gaussian model with the same mean and covariance structure, for which minus twice the log-likelihood was
2989.99, which is almost identical to the value for the gamma model. The covariance parameters for the inverse Gaussian
model were estimated to be 𝜎̂2

1 = 0.1704, 𝜎̂2
2 = 0.0633, 𝜎̂2

3 = 0.0267, 𝜎̂2
0 = 0.000561, 𝜌̂ = 9.064, and 𝜙̂ = 446.4, which are

almost identical to their counterparts for the gamma model. Interestingly, if we fit a normal spatial model to the log
concentrations we obtain estimates 𝜎̂2

1 = 0.1702, 𝜎̂2
2 = 0.0634, 𝜎̂2

3 = 0.0267, 𝜎̂2
0 = 0.0028, and 𝜌̂ = 9.057, which are almost

identical to estimates for both the gamma and inverse Gaussian models.
Estimates of the fixed effects are almost identical for all three models, so only those for the gamma model are given

(Table 8). Note that for this example, in contrast to the previous two examples, there is little difference in the standard
errors of the estimated fixed effects based on s.e.u and s.e.c. This can happen when essentially all of the variation is captured
by w and the contribution of log[y|g−1(w),𝝓] is small in comparison. This contribution is controlled in part by 𝜙 for the
gamma and inverse Gaussian distributions, whose estimated values are very large, and the variance of the distribution is
inversely proportional to 𝜙 (see the Appendix).

T A B L E 8 Estimated fixed effects for the moss lead data when using the gamma distribution.

Effect Est. s.e.u s.e.c z-val. p-val.

Intercept 8.062 0.2031 0.2043 39.47 <0.0001

Year −0.441 0.2233 0.2236 −1.97 0.0488

Distance to Road −0.577 0.0184 0.0186 −31.07 <0.0001

Distance-to-road:Southside −0.112 0.0117 0.0117 −9.51 <0.0001

Note: The headings are the same as for Table 5, where here, for the p-val, we used a t-distribution with 365 − 4 = 361 degrees of freedom.
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2001

1.44
1.89
2.31
2.72
3.16
3.62
4.13
4.68
5.18
5.73
6.76
7.82
9.04

Predictions
2006

2001

0.316
0.331
0.339
0.344
0.350
0.356
0.362
0.369
0.376
0.385
0.399
0.454
0.488

Std. Errors
2006

F I G U R E 8 Prediction and their standard errors for 2001 and 2006 at locations near the haul road through Cape Krusenstern National
Park, Alaska. The green × symbols show sample locations.

Predictions of the w-values are similar for both the gamma and inverse Gaussian distribution models, and they are
both very similar to a normal model for the log concentrations. Predictions of w by years 2001 and 2006 under the gamma
model are shown in Figure 8. The prediction locations were divided into three groups, one which was closely spaced near
the haul road, with each successive group having more coarsely spaced locations as they get farther from the road. It is
clear that predicted values are largest near the road (Figure 8), but also that the predicted values generally decreased from
2001 to 2006, likely due to a change from 2001 to 2006 where coverings were used on the trucks hauling ore on the road.
The prevailing winds are from the south, and it is clear that predicted values are higher on the north side of the road.
The prediction standard errors show the typical pattern in geostatistics, i.e., they are smaller near a sample or in dense
concentrations of samples (Figure 8) than farther away.

5 DISCUSSION AND CONCLUSIONS

We have developed a very flexible framework for modeling binary, count, positive continuous, and other data types in
a hierarchical generalized linear mixed model framework. Virtually any data type can be accommodated by the many
distributions that are known in statistics, and these distributions can be matched to virtually any patterned covariance
matrix, where a short list is given in Table 1. Our examples illustrate all of the distributions in Table 1, and, for covariance
matrices, we used CAR and SAR spatial autoregressive models, AR1 time series models, and exponential geostatistical
models. We also showed how complex covariance matrices can be created by mixing random effects with other covariance
structures. Any covariance matrix is possible in the HGLMM framework, including spatio-temporal, covariances for data
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on a sphere, covariances derived for linear networks such as streams and roads, etc. Using the Laplace approximation,
the resulting log-likelihood is composed of the log-likelihood of the data distribution, the ML or REML log-likelihood for
normally-distributed data, and the determinant of a Hessian matrix (4).

We have developed marginal inference for three of the most common objectives in linear models. First, in order to
estimate fixed effects and make predictions, we must estimate all covariance parameters, which is accomplished from (4).
Then, it is necessary to adjust variances for the fact that w is latent in the model, and not observed, which is accomplished
from (12) when estimating fixed effects and from (15) when predicting at unsampled locations.

The models can be computationally demanding, as they require computing the determinant of the Hessian matrix
and, in our implementation, its inverse as well. Optimizing the likelihood is doubly iterative as Newton–Raphson updates
are used during likelihood optimization for covariance parameters, requiring H−1 for each update. While this may limit
the size of data sets for our HGLMM framework, we would like to point out some time-saving features. First, note from
(10) that

H =
[
D𝝓 − 𝚺−1

𝜽

]
+
[
𝚺−1
𝜽 X

] (
X′𝚺−1

𝜽 X
)−1 [X′𝚺−1

𝜽

]
,

where we add brackets to show that this has Sherman-Morrison-Woodbury form A + BCB′ (Sherman & Morrison, 1949;
Woodbury, 1950). If A is n × n but has a fast inverse, and C has small dimension, then the inverse (A + BCB′)−1 can be
made much faster than a full n × n inverse. For example, consider our second example on harbor seals with 716 records
at 74 sample sites. We assumed a time series model within site, but independence between sites, giving the covariance
matrix a block diagonal structure. Thus, 𝚺−1

𝜽 has a block-wise inverse, and D𝝓 is diagonal, so [D𝝓 − 𝚺−1
𝜽 ]−1 can be inverted

block-wise, which is much faster than a single inverse for the whole n × n matrix. Similarly, ZkZ′
k is often block-diagonal,

and multiple variance components can use the Sherman-Morrison-Woodbury theorem recursively (Dumelle et al.,
2021).

There are many big data approaches to HGLMMs, but in general they require some modification to the full covari-
ance matrix in order to gain computational speed. Hence, they consider only a subset of possible covariance matrices.
For example, Zilber and Katzfuss (2021) only consider geostatistical models (Matérn only in their examples), and note
that they use pseudo-data and require ordering spatial data, which changes the true spatial covariance matrix. Bradley
et al. (2020) use conjugate multivariate priors that are matched to the response distribution, and are not fully general.
Our models make no compromise on the covariance matrix, and hence we make no claim that these models will fit fast
enough for data sets with many thousands of records.

The methods given in this paper compare favorably with existing methods. We emphasize that, in the space provided,
we could not perform extensive simulations with all factors of sample sizes, different covariance structures, different
parameter configurations and so forth, to compare against all other methods and software. We chose a couple of simula-
tions and three popular R packages. The methods in this paper, as implemented in spmodel, were faster than spBayes
and glmmTMB for geostatistical models, and better than INLA for CAR models with small sample sizes. Note, however,
that we do not claim to be experts with spBayes, glmmTMB or INLA, and the developers of these packages, and users
with more extensive experience, might be able to make these packages run faster and produce better results.

An important consideration for these models is the interplay of the independent component 𝝐 in (1) and 𝝓 in
[y|g−1(w),𝝓]. The parameters in 𝝓 often control variance, and can be confounded with 𝝐. As an extreme example, sup-
pose that [y|g−1(w),𝝓] is a normal distribution where g−1(w) has the identity function for each element and𝜙 has but one
element – the variance parameter. Then 𝜙 and 𝜎2

0 will not be identifiable. More often, 𝝓 controls how variance is related
to the mean, but we expect that there still can be some confounding. For any particular data set, this can be investigated
through log-likelihood plots of 𝜎2

0 and 𝜙, similar to Figure 2, or with more experience on how these parameters interact
for particular models. For example, in our harbor seal example, we included an independent component (nugget effect)
for the latent w-values to absorb overdispersion, but for the negative binomial we excluded the nugget effect because we
assumed that the dispersion parameter 𝜙 absorbed overdispersion.

The HGLMM framework in this paper can be contrasted to the mixed model extension of GLMs. The GLM frame-
work is inspired by the regular exponential family of distributions, and these lead to what are called the “canonical”
link functions. For example, the canonical link function for the gamma distribution is −1∕𝜇, but it is often changed
to w = g(𝜇) = 1∕𝜇. However, that implies that 𝜇 = g−1(w) = 1∕w, but because w can be negative, it is possible for 𝜇 to
have negative values. In a moment-based modeling framework using pseudo-likelihood with iteratively reweighted least
squares, this can be tolerated if the values stay fairly close to the parameter space, and it allows for a wide variety of link
functions, which provides a great amount of flexibility. However, in the HGLMM framework, which is fully parametric,
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the evaluation of the log-likelihood for [y|g−1(w),𝝓] is not possible if g−1(w) is outside of the parameter space for the
mean. For HGLMMs, link and mean functions must be chosen to respect the parameter space.

We have given a broad outline of marginal inference under the HGLMM. There are many topics to explore that were
not mentioned. For example, we may want to make inference on predictions where w is back-transformed as g−1(w),
and where the variability of y|w is added. We may also desire inference for further functions of g−1(w) such as block
averages. Likewise, we may want inferences on random effects (best linear unbiased predictions) of ri in (1). Like most
linear models, we can consider linear combinations of 𝜷, or contrasts of 𝜷 parameters, in making inferences on fitted
models, treatment effects, etc. We only covered the basic framework is this paper and there are many further research
topics to develop.
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APPENDIX
A.1 Derivation of REML from integration
Consider a multivariate normal distribution for a general linear model,

[y; 𝜷,𝜽] =
exp

(
− 1

2
(y − X𝜷)′𝚺−1(y − X𝜷)

)
(2𝜋)n∕2|𝚺|1∕2 , (A1)

where y is an n × 1 vector for the response variable, X is a n × p design matrix of explanatory variables, 𝜷 is a p × 1 vector
of fixed effects, 𝜽 contains covariance parameters of the n × n covariance matrix𝚺. It is possible to obtain REML equations
by integrating out the fixed effects 𝜷,

∫
Rp

f (y; 𝜷,𝜽)d𝜷,

to obtain a likelihood that is a function of just the covariance parameters 𝜽 and the data y. In particular

−2 ln
(
∫

Rp
f (y; 𝜷,𝜽)d𝜷

)
= (n − p) ln(2𝜋) + ln |𝚺| + ln |X′𝚺−1X| + (y − X𝜷̂)′𝚺−1(y − X𝜷̂),

where 𝜷̂ = (X′𝚺−1X)−1X′𝚺−1y.

Proof. Write (A1) as

[y; 𝜷,𝜽] =
exp

(
− 1

2
(y − X𝜷̂ + X𝜷̂ − X𝜷)′𝚺−1(y − X𝜷̂ + X𝜷̂ − X𝜷)

)
(2𝜋)n∕2|𝚺|1∕2 ,

=
exp

(
− 1

2
[(y − X𝜷̂)𝚺−1(y − X𝜷̂) + (X𝜷̂ − X𝜷)′𝚺−1(X𝜷̂ − X𝜷) + C

)
(2𝜋)n∕2|𝚺|1∕2 ,
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where C = 2(y − X𝜷̂)′𝚺−1(X𝜷̂ − X𝜷) = 0. Factor out terms that do not contain 𝜷,

∫
Rp
[y; 𝜷,𝜽]d𝜷 = M ∫

Rp
exp

(
−1

2
(X𝜷̂ − X𝜷)′𝚺−1(X𝜷̂ − X𝜷)

)
d𝜷,

where M = exp[− 1
2
(y − X𝜷̂)𝚺−1(y − X𝜷̂)]∕[(2𝜋)n∕2|𝚺|1∕2]. Notice that

∫
Rp

exp
(
−1

2
(X𝜷̂ − X𝜷)′𝚺−1(X𝜷̂ − X𝜷)

)
d𝜷,

=∫
Rp

exp
(
−1

2
(𝜷 − 𝜷̂)′(X′𝚺−1X)(𝜷 − 𝜷̂)

)
d𝜷,

=2𝜋p∕2|(X′𝚺−1X)|−1∕2,

by recalling that, for positive definite Am×m and any conformable x ≠ 0,

∫
Rm

exp(−x′Ax∕2)dx = (2𝜋)m∕2|A|−1∕2.

Hence, we arrive at

[y;𝜽] = ∫
Rp
[y; 𝜷,𝜽]d𝜷 =

exp
(
− 1

2
(y − X𝜷̂)′𝚺−1(y − X𝜷̂)

)
(2𝜋)(n−p)∕2|𝚺|1∕2|X′𝚺−1X|1∕2

,

and taking −2 ln[y;𝜽] we obtain the desired result.
▪

A.2 Distribution parameterizations
A.2.1 Negative binomial distribution
For the negative binomial, yi is a non-negative integer with probability density function (PDF)

[y|𝜇, 𝜙] = Γ(y + 𝜙)
Γ(𝜙)y!

(
𝜇

𝜇 + 𝜙

)y(
𝜙

𝜇 + 𝜙

)𝜙

,

where 0 < 𝜇 < 1, 0 < 𝜙, E(Y ) = 𝜇, var(Y ) = 𝜇 + 𝜇2∕𝜙, and Γ(⋅) is the gamma function.

A.2.2 Gamma distribution
For the gamma distribution, yi is positive with PDF

[y|𝜇, 𝜙] = 1
Γ(𝜙)

(
𝜙

𝜇

)𝜙

y𝜙−1 exp
(
−y𝜙
𝜇

)
,

where 0 < 𝜇, 0 < 𝜙, E(Y ) = 𝜇, and var(Y ) = 𝜇2∕𝜙.

A.2.3 Beta distribution
For the beta distribution, 0 < yi < 1 with PDF

[y|𝜇, 𝜙] = Γ(𝜙)
Γ(𝜇𝜙)Γ((1 − 𝜇)𝜙)

y𝜇𝜙−1(1 − y)(1−𝜇)𝜙−1,

where 0 < 𝜇 < 1, 0 < 𝜙, E(Y ) = 𝜇, and var(Y ) = 𝜇(1 − 𝜇)∕(1 + 𝜙).
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A.2.4 Inverse Gaussian distribution
The inverse Gaussian distribution is usually written as,

[y;𝜇, 𝜆] =
√

𝜆

2𝜋y3 exp
(
−
𝜆(y − 𝜇)2

2𝜇2y

)
,

where y > 0, 𝜇 > 0, and 𝜆 > 0. In this parameterization 𝜆 is a shape parameter, and E(Y ) = 𝜇 and var(Y ) = 𝜇3∕𝜆. In order
to keep 𝜇 positive and w unconstrained in (1), we let 𝝁 = exp(w). However, under this construction, from (9), we obtain

Di,i =
(ewi − 2yi)
𝜙e2wi

,

and some Di,i can be positive whenever ewi > 2yi, which can lead to H in (10) being singular. We propose an alternative
parameterization. For inverse Gaussian models, 𝜆 is often scaled, and here we do so by taking 𝜙 = 𝜆∕𝜇 = 𝜆∕ exp(w),
yielding a 𝜇-scaled-𝜆 inverse Gaussian model,

[y;𝜇, 𝜆] =

√
𝜙 exp(w)

2𝜋y3 exp
(
−
𝜙(y − exp (w))2

2 exp(w)y

)
,

where 𝜙 > 0 and now var(Y ) = 𝜇2∕𝜙. Under this parameterization, we have

Di,i = −
𝜙(e2wi + y2

i )
2yewi

,

which is always negative, and so (10) is always well-behaved. Under this construction, we also have

di = 𝜙

(
y

2ewi
− ewi

2y

)
+ 1

2
.
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