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Sea spray aerosol makes up a small fraction of marine cloud condensation nuclei 

P.K. Quinn1,2, D.J. Coffman1, J.E. Johnson2,1, L.M. Upchurch2,1, and T.S. Bates2,1 

1NOAA Pacific Marine Environmental Laboratory, Seattle, WA 

2University of Washington, Joint Institute for the Study of the Atmosphere and Ocean, Seattle, 

WA 

Sea spray aerosols impact Earth’s radiation balance by directly scattering solar radiation. 

They also act as cloud condensation nuclei, thereby altering cloud properties including 

reflectivity, lifetime, and extent. The influence of sea spray aerosol on cloud properties is 

thought to be particularly strong over remote ocean regions devoid of continental particles. 

Yet the contribution of sea spray aerosol to the population of cloud condensation nuclei in 

the marine boundary layer remains poorly understood. Here, using a lognormal mode fitting 

procedure, we isolate sea spray aerosols from measurements of particle size and abundance 

over the Pacific, Southern, Arctic, and Atlantic oceans to determine the contribution of sea 

spray aerosol to the population of cloud condensation nuclei in the marine boundary layer. 

On a global basis, with the exception of the high southern latitudes, sea spray aerosol makes 

a contribution of less than 30% to the cloud condensation nuclei population for air that is 

supersaturated at 0.1 to 1.0%--the supersaturation range typical of marine boundary layer 

clouds. Instead, the cloud condensation nuclei population between 70°S and 80°N is 

composed primarily of non-sea salt sulfate aerosols, due to large scale meteorological 

features that result in entrainment of particles from the free troposphere. 
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The wind-driven production of SSA is one of the largest global sources of primary atmospheric 

aerosol particles on a mass concentration basis 26. Measurements in the MBL reveal that the 

primary inorganic sea salt component of SSA dominates the marine aerosol mass size 

distribution, especially for diameters larger than about 500 nm (geometric mean diameter, Dg, 

at 80% RH) 27, 28. As a result, SSA is known to be the dominant contributor to aerosol light 

scattering in the MBL 29, 30, 31. Model estimates of the cooling at Earth’s surface due to 

scattering by SSA range from 0.08 to 6 W m-2 32. The wide range of these estimates results, in 

large part, from uncertainty in the SSA source function 33. The contribution of SSA to the MBL 

CCN population and its relative importance in indirect effects over ocean regions is even more 

uncertain 34. 

The MBL number size distribution consists of a varying and complex mixture of primary SSA 

(including organics and inorganic sea salt), secondary non-sea salt (nss) SO4= resulting from the 

oxidation of ocean-derived dimethyl sulfide (DMS), secondary ocean-derived organics, and 

aerosols and precursor gases emitted from continental sources (fossil fuel combustion, biomass 

burning, dust, and biogenic emissions). Recent studies have focused on the organic component 

of SSA as a potentially major source of MBL particle number 35, 36, 37, 38, 39. Isolating and 

quantifying the SSA fraction of the total MBL CCN population is challenging. The few reported 

direct chemical measurements of SSA number concentrations have employed either detection 

of emissions from thermally excited sodium atoms 40, 41 or Transmission Electron Microscopy 

2 



 

     

         

  

      

        

         

      

        

         

      

     

     

    

        

  

       

    

         

     

      

      

      

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

(TEM) with energy-dispersive X-ray analysis 42, 43. Indirect methods, based on aerosol volatility, 

have also been used 44, 45. The use of all of these methods has been limited, however. 

Another approach for determining the SSA fraction of the total MBL number population using a 

lognormal-mode-fitting procedure that isolates the SSA mode from the total aerosol number 

size distribution has recently been reported46. The resulting mode is similar in shape to a 

canonical SSA size distribution constructed from number size distributions measured in the MBL 

over the period from 1951 to 2001 47 and generated from simulated breaking waves in a wave 

channel 48. The broad nature of the mode, with a Dg between 0.16 and 0.3 µm (dry RH) and a 

geometric standard deviation (σg) of 3, indicates that it encompasses a broad range of 

diameters that may result from different wind-driven production mechanisms 49, 50. To date, 

this approach has been applied to data collected during a cruise off the coast of California in 

2011 46. It was found that SSA typically made up less than 15% of the MBL particle number 

concentration and 5 to 63% of the CCN at supersaturations less than 0.3%. 

To extend these results to the world’s oceans, we have applied a similar lognormal-mode-fitting 

procedure to MBL aerosol number size distributions measured during seven research cruises in 

the Pacific, Southern, Arctic, and North Atlantic Oceans between 1993 and 2015 (Figure 1; Table 

S1). Cruises conducted during this period that were strongly influenced by continental aerosols 

(aerosol light absorption coefficient > 0.80 Mm-1 and Radon concentration > 540 mBq m-3) were 

omitted. As a result, this analysis provides an upper bound on the contribution of SSA to the 

MBL CCN population. Measured mass concentrations of Na+, a proxy for sea salt, were used to 
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confirm the ocean source of the lognormally fit SSA mode (Methods). Presented here are 

observed contributions of SSA to the MBL particle number and CCN populations for four 

different oceans over latitudes ranging from 70°S to 80°N. These results do not include 

potentially significant impacts of giant CCN (Dg > 10 µm) on cloud optical properties and 

precipitation 51 due to the size range of particles considered. 

Number Fraction of Sea Spray Aerosol Particles 

Three modes resulted from lognormal fitting of the measured number size distributions 

including Aitken and accumulation modes with values of Dg ranging from 0.02 to 0.08 µm and 

0.10 to 0.23 µm, respectively, and a SSA mode with values of Dg ranging from 0.17 to 0.45 µm 

(σg = 2.2 to 2.8) (Figure 2a; Table S2). Differences in sampling humidities and size distribution 

instrumentation contributed to the variability between cruises (Methods). In addition, volume 

modes were derived from the number modes (Figure 2b). 

For an independent check on the existence of a SSA mode within the measured number size 

distributions, mass concentrations of sub-10 µm Na+ from IC analysis of impactor samples were 

compared to the number of particles within the corresponding averaged size distribution with 

diameters greater than 0.5 µm, N(Dg > 0.5 µm). Restricting the summed number concentration to 

this size range omits all of the Aitken mode and most of the accumulation mode, thereby 

isolating the SSA mode (Figure 2a).  A linear regression between sub-10 µm Na+ and N(Dg >0.5 µm) 

concentrations resulted in coefficients of determination, r2, ranging from 0.51 to 0.89 for the 
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seven experiments (Figure S1), indicating that particles in the Dg > 0.5 µm size range were 

composed primarily of sea salt, confirming the existence of a SSA mode. 

To confirm that the fitting procedure successfully isolated the SSA mode, sub-10 µm Na+ mass 

concentrations were compared to total number and volume concentrations within the 

lognormally fit SSA mode. The resulting r2 values ranged from 0.21 to 0.89 and 0.48 to 0.94 for 

the number and volume modes, respectively, for the seven cruises (Figure S2; Table S3), 

indicating that the fitting procedure was able to isolate the SSA mode. To identify the 

composition of the Aitken and accumulation modes, the number and volume concentration in 

each were compared to mass concentrations of sub-0.18 µm and sub-1 µm nss SO4= from IC 

analysis and OC from thermal-optical analysis of impactor samples. Accumulation mode 

number and volume concentrations were moderately to strongly correlated with nss SO4= (r2 = 

0.20 to 0.92) for all cruises, while weak to moderate correlations were found for OC (r2 of 0.03 

to 0.54) (Figure S2; Table S3). Based on these results, nss SO4= dominated the accumulation 

mode size range although OC also contributed. Few significant correlations were found 

between Aitken mode number or volume concentrations and sub-0.18 µm Na+, nss SO4=, or OC 

mass concentrations (Table S3, S4), likely due to the low mass concentrations in this size range 

leading to larger sampling and fitting uncertainties (Methods; Figure S3). Measured average 

mass concentrations of Na+, nss SO4=, and OC are given in Table S4. 

The number fraction of SSA was calculated from the total number concentration in the 

lognormally fit SSA mode divided by the sum of the number concentration in the Aitken, 

5 

https://sub-0.18
https://sub-0.18


 

      

      

     

          

    

        

  

     

    

     

     

       

      

      

       

       

        

    

    

    

     

      

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

accumulation, and SSA fitted modes (Figure 3a). Values from the seven experiments were then 

combined into 10° latitude bins (Figure 3b). Table S5 lists the binned modal number fractions 

and the seasonal coverage for each bin. Across all latitude bins, from 70°S to 80°N, the SSA 

mode made up 15% or less of the total particle number concentration. Averaging all data into 2 

m s-1 wind speed bins indicates that SSA number concentration and fraction increase with wind 

speed (Figure 3c), with the number fraction being less than 25% for wind speeds up to 20 m s-1. 

The Aitken mode dominated the particle number concentration between 70°S and 20°S with 

average number fractions ranging from 48 to 72% (Figure 3b; Table S5). Data within this 

latitude band were obtained from cruises that took place in the Pacific and Southern Oceans 

during Austral fall, summer, and spring. Similar large scale meteorological features were 

present during all of these cruises. At latitudes south of ∼40°S, low pressure systems moved 

through the sampling region every few days 1, 2, 3. Air mass back trajectories indicated that 

entrainment of air from above the MBL height of about 1000 m was associated with the frontal 

passages 3, 2. During one cruise, ACE-1 Leg 1, aircraft observations revealed layers of high 

concentrations (2000 to 4000 cm-3) of ultra-fine particles (Dg of 0.012 µm) associated with 

cloud outflows 4. Modeling studies 5 and observations 6, 7 have shown that conditions in cloud 

outflow regions in the free troposphere (FT) are favorable for new particle production via 

homogeneous nucleation of precursor gases 5, 6, 8, 9. Hence, air entrained from the FT often 

contains Aitken mode particles. Once in the MBL, Aitken mode particles grow to the 

accumulation mode size range through vapor condensation and accumulation of mass during 

cloud processing in stratus and stratocumulus clouds 10, 11. The calculated trajectories also 
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showed that the frequent frontal passages limited the residence time of MBL Aitken mode 

particles to one to three days, which prevented growth to the accumulation mode size range 

before removal through wet deposition 1, 3. As a result, the average number fraction of Aitken 

mode particles was larger than that of accumulation mode particles. This pattern persisted in 

the southern mid-latitudes (∼40°S to 20°S) due to the occurrence of strong high pressure 

systems and associated subsidence of air from the FT. 

Aitken and accumulation mode number fractions were comparable in the tropics of the 

western and central Pacific (Figure 3a,b; Table S5). Stable air masses and persistent trade wind 

flow resulted in longer aerosol residence times (5 days or more based on calculated back 

trajectories), which allowed for growth of the Aitken mode to accumulation mode sizes3, 2. Data 

from the 20°N to 60°N latitude band were obtained from cruises that took place in the Pacific 

and Atlantic Oceans in spring and fall. Meteorological features for all cruises in this latitude 

band included periods of stable cloud-topped MBLs disrupted by frontal passages with 

associated entrainment, resulting in variable Aitken and accumulation mode number fractions 

(29 to 51% and 35 to 57%, respectively). Continental sources may also have contributed to 

variability in the calculated number fractions. 

The accumulation mode dominated the particle number concentration in the 60°N to 80°N 

latitude band with number fractions of 65% (60°N to 70°N) and 75% (70°N to 80°N) (Figure 3b; 

Table S5). These data were collected in the spring, which is Arctic Haze season. Radiosonde data 

showed the presence of strong temperature inversions that minimized vertical mixing between 
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the FT and the boundary layer while calculated back trajectories indicated the transport of air 

masses from Europe into the sampling region and MBL aerosol residence times longer than 5 

days 12. The stable, stratified atmosphere with little wet deposition coupled with the transport 

of air masses from southern source regions led to a large accumulation mode number 

concentration. The same latitude bands in the summer are likely to have a relatively larger 

Aitken mode number concentration due to less efficient transport, increased wet removal, and 

local biogenic secondary aerosol production 13, 14. 

Sea Spray Aerosol Cloud Condensation Nuclei 

Modal number size distributions and measured chemical composition were used to calculate 

modal CCN number concentrations. Two extremes of chemical composition were used to 

calculate the range of CCN number concentrations for each mode. In the first case, each mode 

was assumed to be completely water soluble with the Aitken and accumulation modes 

composed of nss SO4= (as NH4HSO4) and the SSA mode composed of inorganic sea salt. With 

completely soluble Aitken and accumulation modes, this case provides a lower bound of the 

SSA CCN number fraction. In the second case, an insoluble organic component was added to 

each mode to provide an upper bound for the SSA CCN number fraction. Figure S7 shows the 

sensitivity of the CCN modal number fraction for the range of observed POM mass fractions. 

The critical diameter, Dc, where a particle is large enough and contains sufficient soluble 

material to become a CCN, was calculated using Köhler theory 15 over supersaturations ranging 

from 0.1 to 1.0% for the two cases (Methods). This range encompasses previously reported 

measured effective supersaturations of MBL clouds 16, 17, 18, 19, 20. Modal CCN concentrations 
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were derived by summing the number of all particles in the fitted mode with diameters greater 

than Dc. 

The accuracy of modeled CCN concentrations was assessed by comparing the sum of CCN 

calculated to be in the three modes with CCN concentrations measured during ICEALOT, which 

had the most complete CCN data set (Methods). Including insoluble POM improved the 

agreement between measured and modeled values so that the difference was less than 5% for 

supersaturations ranging from 0.3 to 0.5% (Figure S8). At 0.2% supersaturation, the model 

underestimated the total CCN concentration by 20 ± 10%. This degree of agreement between 

modeled and measured CCN concentrations lends confidence in the calculated modal CCN 

concentrations. CCN modal number fractions for both cases of chemical composition are shown 

in Figure 4 with underlying data in Tables S6 – S11. The discussion below focuses on the 

composition case that includes insoluble POM. 

The largest SSA CCN number fractions, up to 65%, were observed in the high southern latitudes 

(40°S to 70°S) at low supersaturation (0.1%) (Figure 4a). A second region of enhanced SSA CCN 

number fractions (up to 35% at 0.1% supersaturation) occurred between 40°N and 60°N. The 

large diameter and high hygroscopicity of SSA compared to the Aitken mode, which either 

dominated or made significant contributions to the particle number concentration in these 

latitude bands (Figure 3a), led to the enhanced SSA CCN number fractions. For all other regions 

and supersaturations, the SSA mode made up less than 30% of the total CCN, with even lower 
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number fractions (<20%) for the majority of latitude bins and supersaturations considered 

(Figure 4a; Table S7). 

The largest Aitken mode CCN number fractions occurred in the southern hemisphere and the 

tropics at supersaturations greater than 0.5% (Figure 4b; Table S9). The Aitken mode 

dominated the number concentration in these regions due to entrainment of newly formed 

particles from the upper troposphere. Due to the small diameter of the Aitken mode relative to 

the accumulation and SSA modes, Aitken mode CCN number fractions were only significant at 

higher supersaturations with values ranging from 3% to 24% at 0.5% supersaturation and from 

22 to 58% at 1.0% supersaturation. The large Aitken mode organic content in the NH4HSO4 + 

POM case in the North Atlantic (Figure S4) also led to lower CCN number fractions, even at 

higher supersaturations. 

Apart from the high southern latitudes at 0.1% supersaturation and the southern mid-latitudes 

at high supersaturations (<0.5%), the accumulation mode dominated the MBL CCN number 

population (Figure 4c; Table S11). This result is due to its larger number concentration relative 

to the SSA mode and its larger diameter and lower POM mass fraction compared to the Aitken 

mode. The highest accumulation mode CCN number fractions occurred in regions with the 

longest MBL residence times (tropics and Arctic), which allowed for the growth of Aitken mode 

particles into the accumulation mode size range before removal through deposition. The results 

for the Arctic from this analysis are skewed toward the Arctic Haze season. Summertime 
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measurements would likely reveal higher Aitken mode CCN number fractions at high 

supersaturations due to biogenic secondary aerosol production 13, 14. 

Marine Boundary Layer Cloud Condensation Nuclei Budget 

These results indicate that persistent, large scale meteorological features, which result in 

entrainment of particles from the FT into the MBL and regionally varying MBL aerosol residence 

times, drive the MBL CCN budget. Aitken mode particles make up a large fraction of the CCN in 

the southern hemisphere at high supersaturations (> 0.5%) due to entrainment from the FT and 

short residence times that limit the growth of these particles into the accumulation mode size 

range. Being larger in diameter and more hygroscopic than Aitken mode particles, SSA, 

including both the inorganic and organic fractions, dominates the CCN population in the high 

latitudes of the southern hemisphere region at low supersaturations. For all other regions and 

supersaturations, accumulation mode nss SO4= dominates the MBL CCN population. Open 

questions remain, however, on the source of MBL nss SO4= with possibilities including DMS 

oxidation to SO2 in the MBL which leads to particle growth21, DMS oxidation in the FT followed 

by entrainment to the MBL which leads to increased particle number concentration5, and 

transport of anthropogenic emissions in either the MBL or FT. Models equipped with accurate 

parameterizations of multi-phase DMS chemistry 22 and validated with empirical constraints, 

such as those presented here, will provide some answers. Measurements that provide 

additional seasonal and geographical coverage of MBL particle number size distributions and 

chemical composition as well as measurements able to differentiate between anthropogenic 

and biogenic sulfate, such as isotopic analysis 23, 24, will provide additional information. Finally, 
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SSA as ice nuclei25 and giant CCN51 may have significant impacts on MBL cloud properties. 

Studies able to assess these impacts will help to further elucidate the climate impacts of SSA. 
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381 Figure  1. Cruise tracks  and dates  of the seven  experiments included in  this analysis.  These 

cruises were included in  the analysis  to  obtain a broad representation  of the world’s oceans  

while minimizing continental influence.  Data from  all  cruises  can be found at 

http://saga.pmel.noaa.gov/data/.   
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394 Figure 2.  Fitted lognormal modes  based on  number size distributions measured during ICEALOT.  

Size  distributions were averaged  over a 10-hour period (the length of an impactor sample)  and  

fit for a) number and b) volume.  The size distributions were  measured  on April 4, 2008  while  

the ship was  near  68.45°N  and  9.0°W, northeast of  Iceland.  The average wind  speed  over the 

period was  12.4 ±  1.8 m s-1.   
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403 Figure 3. Number fraction of the lognormally  fit Aitken, accumulation, and SSA modes. Data are   

shown as a)  all  number size  distributions used in the analysis averaged over the corresponding  

impactor samples, b) average and standard deviation  (1σ)  of the  latitudinally-binned data, and  

c)  average and standard  deviation (1σ) of the SSA number concentration and number fraction   

binned by 2 m s-1  wind speeds.  
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411 Figure  4. Calculated CCN  modal number fraction as a function of supersaturation and latitude. 

Data are  based on combined, latitudinally-binned data from RITS-93, RITS-94, ACE-1 Legs 1 and  

2, ICEALOT, WACS-2, and NAAMES-1  for  the  a) SSA mode  with a  composition of sea salt and 

POM, b)  Aitken mode  for a composition  of  nss SO =   4 (as NH4HSO4) and POM,  c) accumulation 

mode for  a  composition of nss  SO =  (as NH HSO )  4 4 4 and POM, d) SSA mode  as pure SSA, e)  Aitken 

mode as  pure  nss SO =  4 (as NH4HSO4),  and f)  accumulation mode as  pure  nss SO =  4 (as NH4HSO4).  
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Methods 

Experiments. RITS-93 sailed from Punta Arenas, Chile on March 20, 1993 and arrived in Seattle, 

WA on May 7, 1993. RITS-94 sailed from Seattle, WA on November 20, 1993 and arrived in 

Punta Arenas, Chile on January 7, 1994. ACE-1 Leg 1 sailed from Seattle, WA on October 12, 

1995 and arrived in Hobart, Australia on November 9, 1995. ACE-1 Leg 2 sailed from Hobart, 

Australia on November 15, 1995 and returned to Hobart on December 13, 1995. ICEALOT sailed 

from Woods Hole, MA on March 19, 2008 and arrived in Reykjavik, Iceland on April 24, 2008. 

WACS-2 sailed from Woods Hole, MA on May 20, 2014 and returned to Woods Hole on June 5, 

2014. NAAMES-1 sailed from Woods Hole, MA on November 6, 2015 and returned to Woods 

Hole on December 1, 2015. 

Aerosol inlet. Aerosol particles were sampled 18 m above the sea surface through a 5 m mast. 

The inlet on top of the mast was automatically rotated into the relative wind to maintain 

nominally isokinetic flow and minimize the loss of supermicrometer particles. Air entered the 

inlet through a 5 cm diameter hole, passed through a 7° expansion cone, and then into the 20 

cm inner diameter sampling mast. The flow through the mast was 1 m3 min-1. The transmission 

efficiency of the inlet for particles with aerodynamic diameters less than 6.5 µm (the largest 

size tested) is greater than 95% 17. The RH varied between cruises based on ambient 

temperature and temperature control capabilities. The RH for RITS-93 and RITS-94 was 46 ± 

10% and 32 ± 6.8%, respectively, with no active temperature control in place 16. The RH for 

ACE-1 was 35 ± 6% with ambient air used to set the mast temperature 15. During ICEALOT, 

WACS-2, and NAAMES-1, the bottom 1.5 m of the mast were heated to establish a stable 
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reference sampling RH. The reference RH for ICEALOT was 22 ± 4% with an average heated 

temperature of 15 ± 3.6°C above the ambient temperature 14. The reference RH for WACS-2 

was 53 ± 2% with an average heated temperature of 5.6 ± 1.0°C above the ambient 

temperature 13. The reference RHs for NAAMES-1 were 24 ± 8.2% and 46 ± 11% for the 

northern, colder regions and southern, warmer regions of the cruise track, respectively. 

Associated heating of the sample air was 15 ± 4.1°C and 10 ± 3.4°C, respectively. 

Stainless steel tubes extending into the heated portion of the mast were connected to 

downstream aerosol instrumentation. Conductive silicon tubing was used for making the 

connection to all samplers and instrumentation except for those that involved analysis of 

organic carbon, where stainless steel tubing was used. 

Aerosol chemical composition. Multi-jet cascade impactors 12, with 50% aerodynamic cut-off 

diameters of 0.18, 1.0, and 10 µm, were used to collect size segregated aerosol particles for 

quantification of inorganic ions and organic and elemental carbon. The time period of impactor 

sampling ranged from a few hours up to 48 hours. To prevent contamination of the impactor 

substrates from the ship’s stack, air flow to the impactors was controlled so that sampling only 

took place when the relative wind speed was greater than 3 m s-1, the relative wind direction 

was forward of the beam, and particle number concentrations indicated that the sample air 

was free of ship emissions. Concentrations of Na+ and SO4= were determined with ion 

chromatography 15. Sea salt concentrations were calculated from: 
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Sea salt (µg m-3) = Cl- (µg m-3) + Na+ (µg m-3) x 1.47 (1) 

where 1.47 is the seawater ratio of (Na+ + K+ + Mg+2 + Ca+2 + SO4 -2 + HCO3-)/Na+ 11. Sea salt 

SO4= concentrations were calculated from measured Na+ concentrations and the mass ratio of 

sulfate to sodium in seawater of 0.252 11.  Concentrations of non-sea salt (nss) SO4= were 

calculated from the difference between the total and sea salt sulfate components. 

Pre-combusted quartz fiber filters were used to collect samples for the quantification of organic 

carbon (OC) concentrations. Charcoal diffusion denuders were deployed upstream of the 

impactors to remove gas phase organic species. OC concentrations were determined with a 

Sunset Laboratory thermal/optical analyzer. Three temperature steps were used to evolve OC 

under O2 – free conditions. The first step heated the filter to 230°. The filter was then 

sequentially heated to 600°C and then 870°C. After cooling the sample down to 550°C, a He/O2 

mixture was introduced and the sample was heated in four temperature steps to 910°C to drive 

off elemental carbon (EC). The transmission of light through the filter was measured to correct 

the observed EC for any OC that charred during the initial stages of heating. All aerosol OC 

concentrations are reported as µg C. To account for the molecular weight of the non-carbon 

fraction of organic compounds, OC mass concentrations were converted to total particulate 

organic matter (POM) using a factor of 1.6 10. For cruises where OC mass concentration data 

were not available (RITS-93, RITS-94, and ACE-1 Legs 1 and 2), POM mass fractions were based 

on average values from ICEALOT, WACS-2, and NAAMES-1 for each mode (Figures S4 – S6). 
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Particle number size distributions. During RITS-93, RITS-94, and ACE-1 Legs 1 and 2, the number 

size distribution between 0.02 and 0.6 µm was measured every 10 min with a single differential 

mobility particle size (DMPS)16. During ICEALOT, WACS-2, and NAAMES-1, the number size 

distribution between 0.02 and 0.8 µm was measured with two parallel DMPSs (University of 

Vienna 9) at the sampling humidity detailed above. Each DMPS was coupled to a condensation 

particle counter (CPC model 3760A, TSI). The ICEALOT, WACS-2, and NAAMES-1 size 

distributions consisted of 95 size bins due to the use of two DMPSs. The RITS and ACE size 

distributions consisted of 34 and 50 size bins, respectively. Mobility distributions were inverted 

to a number distribution assuming that a Fuchs-Boltzman charge distribution resulted from the 

charge neutralizer used for each cruise (Kr85 for RITS-93, RITS-94, ACE-1 and Po210 for WACS-2 

and NAAMES-1).  Further details of the mobility distribution measurements and inversion 

methods are given in Bates et al. 8 and Stratmann and Wiedensohler 7. The number distribution 

between 0.9 to 10 µm was measured with an aerodynamic particle sizer (APS model 3321, TSI) 

at the sampling humidity detailed above. Aerodynamic diameters were converted to geometric 

diameters by dividing by the square root of the particle density. Densities were calculated from 

the measured chemical composition 6. The DMPS and APS size distributions were then merged. 

The data were corrected for diffusional losses and size dependent counting efficiencies.  The 

estimated uncertainty in the number concentration in each size bin is ± 10%. 

Measured CCN concentrations. A Droplet Measurement Technologies (DMT) CCN Counter 

(CCNC) was used to determine CCN concentrations of sub-1.0 µm aerosol during ICEALOT at 

supersaturations ranging from 0.2 to 0.5%. A multi-jet cascade impactor with a 50% 
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aerodynamic cut-off diameters of 1.0 µm was upstream of the CCNC at the sampling RH 

detailed above. The sample air was dried prior to reaching the CCNC. The CCNC was calibrated 

before and after the experiments using methods detailed in Lance et al. 5. The uncertainty 

associated with the CCN number concentrations is estimated to be less than 10% and, for the 

conditions used here, less than 10% for the instrumental supersaturation 5, 4. 

Additional measurements. Radon was measured with a dual-flow-loop two-filter Radon 

detector 3. The aerosol absorption coefficient was measured at 550 nm by monitoring the 

change in transmission through a filter with a Particulate Soot Absorption Photometer (PSAP). 

Lognormal mode fitting procedure. The merged DMPS-APS MBL number size distributions were 

averaged over the periods along the cruise track when impactor samples were collected for 

analysis of inorganic ions and organic carbon. These size distributions were fit with multiple 

lognormal modes using the lognormal fit function in IGOR Pro (Wavemetrics, Inc.). 

The first mode to be fit was in the largest diameter region of the size distribution. The mean 

diameter of the mode varied between experiments (0.17 to 0.45 µm), due to different sampling 

humidities that affected water uptake and, therefore, particle size and differences in sizing 

instrumentation (see above). Because of this variability in mean diameter, no constraints were 

placed on the fitted parameters of the SSA mode as was done by Modini et al.2. The geometric 

standard deviation ranged from 2.2 to 2.7 across experiments. Two additional modes were then 

fit – an accumulation mode with a mean diameter ranging from 0.10 to 0.23 µm and an Aitken 

mode with a mean diameter ranging from 0.02 to 0.08 µm. The geometric standard deviation 
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for both modes ranged from 1.3 to 1.75, narrower than that of the first fitted mode. The ability 

of the multi-modal fit to reproduce the measured size distribution was assessed with a Chi-

squared test. Only cases where the Chi-squared value was less than the critical value at a 

significance level of 0.05 were included in the analysis. 

Fitted volume size distributions were derived from the fitted number size distributions. 

Integrated number and volume concentrations in each of the three modes were calculated for 

comparison with measured sub-0.18, sub-1, and sub-10 µm Na+, nss SO4=, and OC mass 

concentrations. Aitken mode number and volume concentrations were compared to sub-0.18 

µm Na+, nss SO4=, and OC. Accumulation mode number and volume concentrations were 

compared to sub-1 minus sub-0.18 µm Na+, nss SO4=, and OC. SSA mode number and volume 

concentrations were compared to sub-10 µm Na+, nss SO4=, and OC. 

Correlation analyses: All of the correlations that are presented are based on linear regressions. 

The goodness of the fit is expressed as the coefficient of determination, r2. Slope values are 

reported at the 95% confidence level. 

Modeled CCN modal concentrations. Modal number size distributions and chemical 

composition were used to calculate modal CCN concentrations at supersaturations ranging 

from 0.1 to 1.0% as follows. Two extremes of chemical composition were used to calculate the 

range of potential CCN number concentrations for each mode. In the first case, each mode was 

assumed to be completely water soluble with the Aitken and accumulation modes composed of 
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nss SO4= (as NH4HSO4) and the SSA mode composed of inorganic sea salt. In the second case, 

the measured chemical composition of Na+, nss SO4=, and OC from the impactor samples was 

used to determine the mass fraction of POM, POMMF in each mode. For cruises where OC mass 

concentration data were not available (RITS-93, RITS-94, and ACE-1 Legs 1 and 2), POM mass 

fractions were based on average values from ICEALOT, WACS-2, and NAAMES-1 for each mode 

(Figures S4 – S6). OC mass concentrations were converted to total particulate organic matter 

(POM) using a factor10 of 1.6 as follows 

POM = OC (µg C m-3) x 1.6 (2) 

POMMF = POM (µg m-3) / (POM (µg m-3) + NH4HSO4 (µg m-3) + sea salt (µg m-3)) (3) 

where the sea salt concentration was determined from (1). 

The Aitken mode POMMF was based on sub-0.18 µm impactor stage measurements. The 

accumulation mode POMMF was based on sub-1.0 µm minus sub-0.18 µm concentrations from 

the impactor measurements. The SSA mode POMMF was based on sub-10 µm concentrations 

from the impactor measurements. The sea salt, NH4HSO4, and POM mass fractions used in the 

calculations are shown in Figures S4, S5, and S6 for the Aitken, accumulation, and SSA modes, 

respectively. Absolute concentrations are given in Table S4. The POM fraction was assumed to 

be water insoluble. For a given composition and supersaturation the critical diameter, Dc, for 

each mode was calculated from 
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Dc = (2 x Sc2/3)/(4A3/27B)2/3 (4) 

where Sc is the critical supersaturation, 

A = 2σs/(ρH2ORT) (5) 

where σs is the surface tension of the solution/air interface and set at 72.8 dynes cm-1, ρH2O is 

the density of water, R is the universal gas constant, and T is temperature, and 

B = (ni(1 – FI)ρsMH2O)/(ρH2OMs) (6) 

where ni is the number of ions in the solute, FI is the organic insoluble fraction based on 

equation (3), ρs is the density of the solute, MH2O is the molecular weight of water, and Ms is 

the molecular weight of the solute. Calculations for the Aitken and accumulation mode used ρs 

and Ms for NH4HSO4. Calculations for the SSA mode used ρs and Ms for NaCl. Modal CCN 

concentrations were derived by summing the number of all particles in the fitted mode with 

diameters greater than Dc. 

Mass Closure – Comparison of measured and modeled CCN concentrations. Fitted volumes for 

the Aitken, accumulation, and SSA modes were converted to mass using densities derived from 

measured size-segregated chemical composition15 for the ICEALOT cruise. For the density 
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calculations, the Aitken and accumulation modes were assumed to be composed of nss SO4= (as 

NH4HSO4) and POM based on measured concentrations of the sub-0.18 µm and sub-1 µm 

minus sub-0.18 µm impactor stages, respectively. The SSA mode was assumed to be composed 

of sea salt and POM based on measured concentrations of the sub-10 µm impactor stages. 

Water mass was not included in the modal mass since the sampling RH during ICEALOT was < 

0.22%. The fitted modal masses are plotted on the x-axis as “mass (from lognormal fit)” in 

Figure S3. Measured mass concentrations for comparison to the Aitken and accumulation 

modal masses are the sum of the nss SO4= (as NH4HSO4) and POM measured on the sub-0.18 

µm and sub-1 µm minus sub-0.18 µm impactor stages, respectively. Measured mass 

concentrations for comparison to the SSA modal mass are the sum of the sea salt and POM 

mass concentrations measured on the sum of the sub-10 µm impactor stages. Measured mass 

concentrations are plotted on the y-axis of Figure S3. Coefficients of determination, r2, for the 

comparison of the modeled and measured mass for the accumulation and SSA mode were 0.78 

and 0.82. These high values indicate that the impactor stages used to make assumptions about 

the composition of the accumulation and SSA modes were able to explain 80% of the variance 

in these modes. 

For the Aitken mode, r2 was 0.23, indicating that the sub-0.18 µm impactor stage could only 

explain 20% of the variance in the Aitken mode mass. In addition, the slope from the 

correlation was 18 indicating that the calculated Aitken mode mass was much less than the 

mass on the sub-0.18 µm impactor stage. As shown in Figure 2b, appreciable mass from the 

accumulation and coarse modes can tail into the sub-0.18 um size range, which would account for this 
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difference. The lack of correlation between measured and modeled mass for the Aitken mode 

helps to explain the weak correlation coefficients reported in Table S3 and the difficulty in 

indentifying the composition of the mode. 

CCN Closure -- Comparison of measured and modeled CCN Concentrations. The accuracy of 

modeled CCN concentrations was assessed by comparing the sum of CCN calculated to be in 

the Aitken, accumulation, and SSA modes with CCN concentrations measured with a continuous 

flow CCN counter (DMT) during ICEALOT, which had the most complete CCN data set. Including 

insoluble POM improved the agreement between measured and modeled values so that the 

difference was near zero for supersaturations ranging from 0.3 to 0.5% (Figure S8). At 0.2% 

supersaturation, the model underestimated the total CCN concentration by 20 ± 10%. This 

difference could be due to instrumental uncertainties and/or the sensitivity of the calculated 

CCN concentrations to composition at lower supersaturations 1. 

Data availability. The authors declare that all data supporting the findings of this study are 

available within the article and its supplementary information file. In addition, all underlying 

data are available at https://saga.pmel.noaa.gov/data/. 
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