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Abstract

Estimating the densities of marine prey observed in animal-borne video loggers when

encountered by foraging predators represents an important challenge for understanding

predator-prey interactions in the marine environment. We used video images collected dur-

ing the foraging trip of one chinstrap penguin (Pygoscelis antarcticus) from Cape Shirreff,

Livingston Island, Antarctica to develop a novel approach for estimating the density of Ant-

arctic krill (Euphausia superba) encountered during foraging activities. Using the open-

source Video and Image Analytics for a Marine Environment (VIAME), we trained a neural

network model to identify video frames containing krill. Our image classifier has an overall

accuracy of 73%, with a positive predictive value of 83% for prediction of frames containing

krill. We then developed a method to estimate the volume of water imaged, thus the density

(N�m-3) of krill, in the 2-dimensional images. The method is based on the maximum range

from the camera where krill remain visibly resolvable and assumes that mean krill length is

known, and that the distribution of orientation angles of krill is uniform. From 1,932 images

identified as containing krill, we manually identified a subset of 124 images from across the

video record that contained resolvable and unresolvable krill necessary to estimate the

resolvable range and imaged volume for the video sensor. Krill swarm density encountered

by the penguins ranged from 2 to 307 krill�m-3 and mean density of krill was 48 krill�m-3 (sd =

61 krill�m-3). Mean krill biomass density was 25 g�m-3. Our frame-level image classifier

model and krill density estimation method provide a new approach to efficiently process

video-logger data and estimate krill density from 2D imagery, providing key information on

prey aggregations that may affect predator foraging performance. The approach should be

directly applicable to other marine predators feeding on aggregations of prey.
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Introduction

The use of animal-borne instrumentation has expanded studies on the physiology [1] and ecol-

ogy [2] of free-ranging marine predators. A variety of telemetry devices have enabled the

detailed characterization of diving energetics and behaviors [3, 4], movement and migration

patterns [5, 6], habitat partitioning [7, 8], and identification of essential marine habitats [9,

10]. Accelerometers mounted on the head or jaw [11–13], ingested stomach temperature

probes [14], and movement data [15], (but see [16]) have been used to estimate feeding rates.

Direct observation of predation events, prey, and foraging habitats have been done for large

animals such as seals [17–20] and whales [21–25], but assessing predator responses to changes

in prey availability remains difficult in the marine environment, particularly for smaller ani-

mals such as penguins [26–30]. While there are studies that have observed penguins striking at

prey [12, 31, 32], in this work we quantify the prey field and prey availability, which may influ-

ence feeding behaviors and success.

Miniaturization of digital cameras has allowed first-person views of underwater behaviors in a

suite of marine species [33–35], including penguins [23, 27, 36–39]. Importantly, these image-

based methods offer direct observations of the interactions between predator and prey and pro-

vide the potential for novel inference on key ecological interactions. Images and data derived

from animal-borne video loggers may provide a useful step toward understanding predator

responses to variation in prey density. For example, video data allow assessments of the frequency

of encounters with prey and estimates of predator foraging rate within prey patches [40, 41]. How-

ever, estimating the density of prey from two-dimensional (2D) images obtained from animal-

borne cameras represents a significant challenge for two main reasons. First, visual analysis and

manual annotation of video imagery to identify prey encounters is slow and inefficient, requires

subjective interpretation, and may be affected by observer error and bias. Second, when prey are

visible in imagery, counts of individuals within the image can provide a relative index of prey

abundance, but estimating the concentration of prey (volumetric density) additionally requires

estimating the imaged volume. To overcome these challenges, we trained an automated detection

algorithm to classify video content at the frame-level and developed a method to estimate the vol-

umetric density observed in 2D imagery of prey encountered by a foraging predator.

Machine learning algorithms are increasingly used in the ecological studies to automate

detection of features of interest in imagery [42, 43]. Frame-level classifier models can be

trained to identify images that contain characteristics indicative of behavior, locations, or the

environment. For example, in animal-borne video data from an air-breathing marine preda-

tor, the characteristics of images obtained at the surface are distinct from those obtained

underwater, and images obtained during open-water diving are different from those obtained

during encounters with prey aggregations. Classifier models can be trained to differentiate

such characteristics [44, 45] and identify frames with prey encounters for further analysis. We

leverage automated image processing to alleviate the burden of time spent manually processing

hours of video imagery. The open-source computer vision platform VIAME (Video and

Image Analytics for the Marine Environment [46]; available from https://www.viametoolkit.

org/) provides a flexible and powerful tool for image annotation, detector training, and image

analysis. We used VIAME to develop a classifier model to automate identification of images

containing krill based on full frame-level content.

Several approaches can be used to estimate three-dimensional (3D) scene structure from

single camera 2D imagery. An approach developed to remove haze from images, to estimate

light transmission, and enhance underwater imagery using the dark channel prior [47, 48] pro-

duces a depth map of the scene that is useful for characterizing topography and relative dis-

tances among scene elements. Most methods for 3D estimation from single images produce
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depth maps [49] with relative distances to objects that must be scaled based on known sizes of

scene elements at known ranges to estimate actual coordinates or sizes.

Other single-camera, single image approaches for estimating distance to imaged targets use

object focus methods, also known as the depth from defocus [50], to reconstruct 3D scenes

from individual 2D images without the assistance of additional sensors or multiple cameras

[51–54]. Depth-from-defocus methods assume that imaged targets within a 2D scene can be

unresolved due to large ranges from the imaging system, limits of resolution, or because of rel-

ative motion of the object and camera. Assuming that targets have a known length, combined

with a distinction between resolvable (containing discernible visible features) and unresolvable

targets (lacking distinctive features or out of focus because of range and not as a result of

motion blur) in the image can enable the estimation of the imaged range, therefore recon-

structing a 3D scene (Fig 1).

Here, we used animal-borne video imagery to first train a frame-level image classifier with a

convolutional neural network model to identify images that represent basic penguin behaviors

including surfacing/diving, surface resting, underwater transit/swimming, and prey encounters.

Based on a subset of images containing krill, we then implement a method conceptually similar to

the approaches for estimating single-image depth of field and depth from defocus [53–55] to esti-

mate the volumetric density (N�m-3) of krill swarms encountered by foraging chinstrap penguins.

Materials and methods

Instrumentation

We collected video imagery of the interactions between chinstrap penguins and their principal

prey, Antarctic krill, from Cape Shirreff, Livingston Island (60.79˚W, 62.46˚S) in the northern

Antarctic Peninsula region. Videos were collected in February 2018 and December 2019 using

Little Leonardo DVL400M028 (52 mm × 20 mm × 11mm, 15 g) and DVL400M065 (61

mm × 21 mm × 15 mm, 29 g) digital video loggers (DVLs). The DVLs recorded color imagery

using ambient light at 30 frames per second (fps). Field-of-view angles were 31ᐤ horizontal by

24ᐤ vertical and the image frame size was 1280 by 960 pixels (pix). Videos were recorded con-

tinuously for 5 to 8 hours (separated by 30-minute intervals when exported) until memory

capacity was full or the battery was exhausted. Each penguin was also instrumented with a

time depth recorder (TDR; Lotek LAT1800FP, 36x13x11 mm, 9 g) to record dive depth.

Instrument attachment and recovery methods were described previously [40].

Ethical approval

All animal handling procedures and research protocols are approved by the Southwest Fisher-

ies Science Center/Pacific Islands Fisheries Science Institutional Animal Care and Use Com-

mittee (# SWPI 2020–01). All field research activities are permitted under the U.S. Antarctic

Conservation Act (Permit #2017–012).

Fig 1. Two-panel view of the resolvable range of the camera. a) side view and b) camera view of targets with

simulated depth of field effects.

https://doi.org/10.1371/journal.pone.0303633.g001

PLOS ONE Estimating prey density from single-camera images

PLOS ONE | https://doi.org/10.1371/journal.pone.0303633 July 9, 2024 3 / 23

https://doi.org/10.1371/journal.pone.0303633.g001
https://doi.org/10.1371/journal.pone.0303633


Automated image analysis

We used the imagery from both 2018 and 2019 to train a frame-level image classifier model.

We used VIAME (version 0.19.4) to train an EfficientNet convolutional neural network [56]

to classify the principal frame-level content of video images. The model was trained on a 1,638

image subset using a five-class scheme (Table 1). Each of the classes represent the frame-level

visual content associated with behaviors or observed conditions recorded during foraging

dives that represent: 1) open water, indicative of underwater swimming; 2) surface, indicative

of surface activities such as breathing and resting during intervals between dives; 3) bright or

dark, very bright or dark conditions indicative of passing through the air-water interface dur-

ing diving or surfacing events; 4) penguin presence (while swimming underwater) indicative

of group association; 5) krill presence, indicative of prey encounters (Fig 2). The number of

images per class in the training set ranged from 2 to 815 (Table 1).

Table 1. Number of training and test images for each class. Each class is representing the principle visual content

associated with penguin behaviors and observed conditions while foraging. Training and test images were taken from

video collected in February 2018 and December 2019.

Training label Training Images Test Images

Open water 815 320

Krill presence 147 262

Surface 553 324

Penguin presence 2 21

Bright or dark 121 73

https://doi.org/10.1371/journal.pone.0303633.t001

Fig 2. Example images of the frame-level classes used for model training. The five classes represent images from 1) open water representing underwater

transit/swimming, 2) surface, representing resting on the surface, 3) bright, during surfacing or diving, 4) dark, during surfacing or diving, 5) penguin

presence, 6) krill presence.

https://doi.org/10.1371/journal.pone.0303633.g002
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Model performance evaluation

Model performance was evaluated with a confusion matrix using the R (R Core Team 2020)

package ‘caret’ [57]. The trained model was tested on a subset of 1,000 new images. In conjunc-

tion, manual annotations (a truth set) were completed on the test subset to use for the confu-

sion matrix evaluation.

Confusion matrix metrics relating true classes to model-predicted classes were represented

using counts of true positives, false positives, true negatives, and false negatives from model

predictions. True Positives (TP) represent correct model predicted class matching the known,

analyst-designated (“truth”) class of an image. True Negatives (TN) are all images that the

model correctly identifies as not containing the class; False Positives (FP) are cases where the

predicted class does not represent the true class. False Negatives (FN) are images predicted as

negative for a class when they should represent the true class. For each class we calculated:

accuracy : A ¼
TP þ TN

TP þ FPþ FN
;

precision positive predicted valueð Þ : P ¼
TP

TP þ FP
;

recall sensitivityð Þ : R ¼
TP

TPþ FN
;

specificity ¼
TN

TN þ FP
;

negtive predictive value : NPV
¼ ðspecificity∗ð1 � prevalenceÞÞ=ððð1 � sensitivityÞ∗prevalenceÞ þ ððspecificity∗ð1 � prevalenceÞÞ;

balanced accuracy ¼
sensitivityþ specificity

2
;

prevalence ¼
Nclass

Ntotal
; where Ntotal is the count by class and Ntotal is the total number of images in the truth set; and the

F1 score : F1 ¼
2∗ðP∗RÞ
P þ R

:

[58–60]

These metrics were calculated to evaluate the performance of the classifier model. After

model performance was evaluated, our classifier model was used to detect frames containing

from a new image set (1.5 hours of video sampled at 5 fps collected in February 2018) to be

used for prey density estimation.

Estimating prey density from 2D imagery

The images used to estimate krill density were manually selected from a set of images that the

EfficientNet classifier model predicted to be krill from 1.5 hours of video sampled at 5 fps col-

lected in February 2018. From these we selected a subset of 124 images where motion blur was

minimal and the image included targets distributed from near to far, thus allowing classifica-

tion of resolvable and unresolvable krill (Fig 1).
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The density of krill in an image was estimated by assuming the imaged volume of a photo-

graph to be represented by a triangular pyramid (Fig 3). We define the “resolvable range” (rres)

as the maximum range within which imaged targets (krill) are clearly identifiable. By relating

the imaged length of targets at the limit of the resolvable range to known krill lengths, and

using information on the dimensions of the image, we estimated the physical range to these

targets to solve for the imaged volume. Counts of resolvable krill within the imaged volume

were then converted to density estimates. Camera and lens calibrations were not done, but dis-

tortions were negligible based on visual inspection of images. For example, objects like other

penguins had consistent appearances in various locations (e.g. center vs. corner) and the hori-

zon appeared as a straight line in images from surface intervals.

Resolvable range and imaged volume

To estimate the densities of krill encountered during a penguin’s foraging event, we first esti-

mate the volume of water sampled by the images by estimating the resolvable range (Fig 3).

Estimating resolvable range minimally requires an estimate of the length of krill (in pixels) at

the distance representing the limit of the imaged volume and an estimate of the true length (in

mm) of the imaged targets.

Krill imaged length at the resolvable range limit was estimated by manually classifying all

imaged targets as either resolvable or unresolvable (Fig 4). For resolvable krill, we also anno-

tated whether they presented as axial (when a krill is perpendicular to the camera), partial

(when part of the animal was out of the frame), bent, or motion-blurred. Resolvable krill were

identified based on distinguishing features such as segmentation of the thoracic region, eyes,

carapace, telson, or uropods. In some instances, krill body parts are not visible, but the body

shape is distinguishable, and in general this was the strongest indicator that an object was a

krill. Unresolvable objects are visually indistinguishable and lack any landmark features or

Fig 3. Conceptual image for estimating the resolvable range of the camera and the imaged volume. Only resolvable targets are included

within the resolvable range. Imaged volume was estimated from the resolvable range (rres) and the field-of-view of the camera lens.

https://doi.org/10.1371/journal.pone.0303633.g003
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shape attributes that might reliably indicate krill even in the context of a monospecific swarm

aggregation.

Note that body orientation will affect measured length in the images. We observed krill in

any orientation without apparent tendency for a particular direction relative to the penguin or

camera, where krill orientations range from full normal incidence (side, dorsal, or ventral)

with projected imaged size as complete length, to axial (head or tail) with projected size repre-

senting width. We accounted for this variation in body orientation relative to the camera by

assuming that krill present in a uniform distribution of orientation angles from -180 to 180

(Fig 1). As such, the median of imaged lengths projected through a uniform distribution of

angles, accounting for non-zero axial length, was 0.707 times the full normal incidence length.

This is equivalent to a length projected at +-45 or +-135 degrees from normal incidence. The

inverse of this value, 1.414, was used to compensate mean and median imaged lengths (not

individual lengths) for the orientation distribution.

Because the images are acquired using a single camera, we do not have a direct measure-

ment of range to imaged objects, therefore we estimate the resolvable range based on the size

at the transition from resolvable to unresolvable objects. We assume that resolvable and unre-

solvable objects generally correspond to objects within and beyond the imaged volume,

Fig 4. Example of resolvable annotations in an image. Determining the resolvability of krill is dependent upon the contents within each

individual frame. Krill within the resolvable range of the camera are apparent; however, smaller targets presumed to be krill are classified as an

unresolvable swarm because the distinguishing features of krill (eyes, appendages, body shape) are not visibly distinct.

https://doi.org/10.1371/journal.pone.0303633.g004
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respectively. Also, because we expect that krill have a narrow size distribution, the size distri-

butions of resolvable and unresolvable objects would be differentiable because of the effect of

distance on imaged size (resolvable being closer/large and unresolvable being farther/smaller,

in general). The measured image size distributions of unresolvable and resolvable targets are

overlapping (Fig 5) and do not indicate a sharp transition or bound on the imaged volume,

but they do allow us to estimate the resolvable range.

To estimate resolvable range, we fit a logistic regression model (binary classifier) to imaged

sizes of objects assigned to the resolvable (krill) and unresolvable object classes. Size data were

excluded for partial krill (along edges), and tightly packed aggregations not individually

labeled. The resolvable range was then estimated based on the class division boundary esti-

mated by solving a logistic regression model at p = 0.5 where Lboundary = 34.4 pixels. The

median unresolvable object size, 39.6 pixels, was not much larger than this, and could perhaps

be a suitable alternative and more simple to calculate.

To characterize the error and extent of the resolvable range we assumed that all objects with

sizes smaller than the logistic regression class size boundary value were unresolvable and that this

set of size values represented half the size distribution of objects close to an indistinct boundary

marking the limit of the imaged volume. Therefore, we mirrored and duplicated this set of object

sizes to produce a symmetrical distribution of size values representing the boundary region and

near-boundary objects. This process began by shifting the size boundary set to have a maximum

of zero, then we combined that set of values with the absolute value, where we finally shifted back

to the boundary value. We did this instead of using the full unresolvable object size distribution

(Fig 5) because the unresolvable class included many objects with larger-than-expected sizes that

were believed to be krill located within the imaged volume but affected by motion blur strong

enough not to allow identification. By strict adherence to the class definitions, these were assigned

as unresolvable, and this appeared to have biased the distribution. We fit a normal distribution to

the mirrored near-boundary size data and estimated mean and standard deviation.

Resolvable range in imaged units rres (pixels) is estimated as the distance from the camera

based on known image dimensions (width: 1,280 pixels, height: 960 pixels) and the camera lens

angles (31 by 24˚). We assumed that the imaged krill were similar in size to krill obtained from

penguin diet samples that were collected [61] and measured [62] during the 2018 field season.

Stomach samples were obtained from 20 chick-provisioning penguins in January and February

of 2018. The lengths of up to 55 (47 +/- 10, mean +/- 1 sd) intact krill per sample were retrieved

and measured for total length to the nearest mm. Resolvable range, width, and height (pixels)

are then converted to rres (m) physical units using an imaged-to-physical length conversion fac-

tor (mm/pixels) based on the median length (mm) of krill from diet samples divided by the

near-boundary imaged length of krill. Imaged volume is calculated as V ¼ ðw∗h∗rresÞ=3m3.

Sensitivity and error

To characterize the sensitivity of our method to uncertainty in identification of a range bound-

ary defining a transition from resolvable to unresolvable targets, we estimated resolvable range

(m), imaged volume (m3), and krill density (N�m3) at a discrete set of imaged sizes represent-

ing the near boundary distribution statistics: the mean size at Lboundary +- 1 and 2 standard

deviations. To characterize the far limit of the volume, we also estimated range, volume, and

density using the minimum imaged size of resolvable krill (14.9 pixels) and unresolvable

objects (9.9 pixels). To characterize error, we generated a random sample (n = 1000) from a

normal distribution with parameters fit to observed near-boundary sizes ~N(34.4, 10.5 pixels),

excluding zero and negative values, and estimated the corresponding distributions of resolv-

able range, imaged volume, and krill density.
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Krill density and biomass

All krill that were classified as resolvable were used to calculate krill numerical density

(krill�m-3) for the number of resolvable krill per image, divided by our aforementioned esti-

mated imaged volume. A length-weight relationship for krill in the Antarctic Peninsula region

Fig 5. Length frequency distributions (pixel length) for resolvable and unresolvable Antarctic krill (Euphausia superba). There is overlap between the

lower values of the resolvable krill imaged lengths and the upper values of the unresolvable krill imaged lengths indicating the range of where our resolvable

range limit would occur.

https://doi.org/10.1371/journal.pone.0303633.g005

PLOS ONE Estimating prey density from single-camera images

PLOS ONE | https://doi.org/10.1371/journal.pone.0303633 July 9, 2024 9 / 23

https://doi.org/10.1371/journal.pone.0303633.g005
https://doi.org/10.1371/journal.pone.0303633


[62]: w = aLb (with L as total length in mm), a = 2.236x10-6, and b = 3.314, was used to estimate

mean krill weight w = 0.54 g, and allowed conversion between estimated krill densities

(krill�m-3) to biomass density (g�m-3).

Comparison of model predictions to manual annotations

A separate data set with manual annotations of the timing of krill strikes, diving, and surfacing

based on previously reported methods [40] was compared to model predictions of frame-level

image content. From this, we report summaries of foraging behaviors, including dive and feed-

ing durations, and estimates of swarm thickness (i.e. vertical distance in meters) based on the

depth range between the start and end of strikes at krill.

Results

Frame-level content classifier

The classifier model was overall 73% accurate in being able to correctly identify frame-level

image content. For the krill class performance, metrics indicated an accuracy of 55%, precision

of 83% and recall of 63% (Table 2). Performance metrics per class varied. The surface class had

particularly high values of 92% accuracy and 99% recall, whereas the penguin presence class

had a low value of 15% accuracy and precision. On the other hand, the open water class

resulted in 46% accuracy and 67% precision (Table 2).

Krill length and weight

The length of krill measured from diet samples ranged from 31 to 60 mm with a mean length

of 43 mm (SD = 4.3 mm) and a median of 42 mm. We assume that these lengths are represen-

tative of the physical length distributions of krill observed in images collected in the 2017/2018

field season. Mean weight was estimated as 0.54 g (std. dev = 0.2 g).

Resolvable range and imaged volume

The classification model predicted that 1,932 of the 27,006 frames (7.2%) contained krill. From

these predictions, we selected 124 images (all from December 2018) with minimal motion blur

for analysis. Manual classification of resolvability yielded 5,055 krill assigned to resolvability

classes, 3,079 resolvable, 154 bent, 193 partial, 12 axial, 125 motion-blurred, and 1,474 unre-

solvable objects. Imaged lengths ranged from 15 to 766 pixels for resolvable krill, and 10 to 177

pixels for unresolvable objects (Fig 5). The median imaged length of resolvable krill was 72 pix-

els and the mean imaged length was 85 pixels (sd = 55 pixels), with less than 1% of resolvable

krill exceeding 400 pixels. The mean imaged length of unresolvable objects was 45 pixels

(sd = 25 pixels, median = 40 pixels).

Table 2. Class-specific performance evaluation metrics for a full-frame classification model.

Statistic Bright-dark Krill Surface Open water Penguin presence

Accuracy 0.49 0.55 0.92 0.46 0.15

Recall 0.49 0.63 0.99 0.59 0.95

Specificity 0.99 0.95 0.96 0.86 0.89

Precision 0.84 0.83 0.93 0.67 0.15

Negative predicted value 0.96 0.88 1.00 0.82 1.00

Prevalence 0.07 0.26 0.32 0.32 0.02

Balanced Accuracy 0.74 0.79 0.98 0.73 0.92

F-1 score 0.62 0.72 0.96 0.63 0.26

https://doi.org/10.1371/journal.pone.0303633.t002
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Using the resolvable-unresolvable class boundary size value resulting from the logistic

regression (34.4 pixels), the estimated resolvable range was 1.95 m (Table 3). The quotient of

Lboundary after compensating for the orientation distribution (Lboundary/0.707 = 48.7 pixels) and

the median of the measured krill (42 mm) from diet samples resulted in a conversion value of

1.16 pixels/mm at the primary boundary. The resolvable range, defined by the object size at the

class division boundary, was rres = 1.947 m and the corresponding imaged volume was 0.59 m3.

The object size at the resolvable-unresolvable class boundary estimated by the logistic

regression models is Lboundary = 34.4 pixels and also represents the mean of the normal distri-

bution fit to near-boundary sizes with sd(Lboundary) = 10.5 pixels. Upper and lower 67% and

95% size intervals (mean +- 1 and 2 sd) from this fit were [23.9, 44.9] and [13.4, 55.5] pixels.

Krill density and biomass

Krill density in a given image ranged from 2 to 307 krill�m-3 over 26 dives (Fig 6). Mean den-

sity was 48 krill�m-3 (sd = 61 krill�m-3) and median krill density was 23.6 krill�m-3 (Fig 7). Esti-

mated mean biomass density was 162.7 g�m-3.

Sensitivity and error

Based on the primary size-at-boundary value, Lboundary = 34.4 pixels (Table 3; Fig 8) -/+ 1*sd

from the mean, 23.9 and 44.9 pixels, the estimated resolvable range and imaged volumes ran-

ged from 2.8 m to 1.5 m and 1.77 m3 to 0.27 m3, respectively, and mean krill density estimates

ranged from 16 to 108 krill�m-3. Based on a size-at-bound values -/+ 2*sd from the mean, 13.4

and 55.5 pixels, estimated resolvable range and imaged volumes ranged from 5.0 m to 1.2 m

and 10.0 m3 to 0.14 m3, respectively, and mean krill density estimates ranged from 3 to 202

krill�m-3. The minimum size of resolvable objects was 14.9 pixels and resulted in a resolvable

range of 4.51 m, an imaged volume of 7.4 m3, and mean mean krill density of 3.9 krill�m-3. The

minimum size of unresolvable objects was 9.9 pixels and resulted in a resolvable range of 6.77

m and imaged volume of 25.0 m3, and mean krill density of 1.2 krill�m-3.

Distributions of resolvable range, imaged volume, and krill density resulting from a simu-

lated sample near-object sizes (n = 1000, ~N(34.4, 10.5) pixels), had median values of 1.9 m,

0.58 m3, and 49.7 krill�m-3 (Fig 8G–8I). Mean values of each sample-estimated distribution

were 2.2 m (sd = 0.8 m), 1.2 m3 (sd = 2.2 m3), 61.1 (sd = 47.9 krill�m-3), higher than the medi-

ans and suggesting asymmetric distributions (Fig 8D–8F). The 25th and 75th quantile values

of these estimates were 1.6 and 2.4 m, 0.34 and 1.15 m3, and 25 and 83 krill�m-3 (Fig 8G–8I).

Table 3. Summary statistics for each of the boundary regions. As defined, including the size in pixels at the boundary, the resolvable range from the pixel value, imaged

width, imaged height, imaged volume, krill density mean, and krill biomass based off of the density mean.

Boundary Size at boundary

(pix)

Res range

(mm)

Imaged width

(mm)

Imaged height

(mm)

Imaged volume

(m3)

Krill density (krill�m-3)

(mean)

Krill biomass

(g�m-3)

size_unres_min 9.9 6774 3839 3839 24.96 1.15 3.86

size_res_min 14.9 4511 2557 2557 7.37 3.90 13.09

sizeatclassdivision_mean 34.4 1947 1104 1104 0.59 48.47 162.70

sizeatclassdivision_mean-

1sd

23.9 2802 1588 1588 1.77 16.26 54.59

sizeatclassdivision_mean

+1sd

44.9 1492 846 846 0.27 107.75 361.71

sizeatclassdivision_mean-

2sd

13.4 4996 2832 2832 10.02 2.87 9.63

sizeatclassdivision_mean

+2sd

55.5 1209 685 685 0.14 202.36 679.34

https://doi.org/10.1371/journal.pone.0303633.t003
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Comparison of model predictions to manual annotations

Model predictions of frame-level content match human annotations of penguin behavior such

as surfacing events, underwater activity, transit periods, and prey encounters for a set of three

consecutive dive events while foraging (Fig 9). For example, predictions of surface events

occurred between the time of dive start and end in manual annotations while predictions for

underwater events routinely occurred during dives. In between these surface events, our classi-

fier accurately predicted imagery corresponding with the penguin head being close to the

Fig 6. Antarctic krill (Euphausia superba) densities per image within the chinstrap penguin’s (Pygoscelis antarcticus) dive profile

for a 90-minute timespan.

https://doi.org/10.1371/journal.pone.0303633.g006
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Fig 7. Histogram of estimated Antarctic krill (Euphausia superba) densities (n�m-3) from 124 krill images predicted by the image classifier. The y-axis

represents individual krill counts and the x-axis represents the density values observed from our imagery. Mean krill density was 48 krill�m-3 and the standard

deviation was estimated as 61 krill�m-3.

https://doi.org/10.1371/journal.pone.0303633.g007

Fig 8. (a) Resolvable range (m), (b) imaged volume (m3), and (c), krill density (krill�m-3) estimated for the discrete set

of boundary values reported in Table 3. (d, e, f) Distributions and (g, h, i) boxplots of resolvable range, imaged volume,

and krill density estimated by a simulated sample (n = 1000) of near-boundary object sizes.

https://doi.org/10.1371/journal.pone.0303633.g008
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surface of the water, indicating regular breaks to breathe, or resting in place at the surface of

the ocean. Our classifier also accurately predicted the transition between immediate descent or

ascent (represented by the bright/dark class in our classifier) by flanking surfacing events prior

to and after dives. In Fig 9, we illustrate these overlapping characteristics from our classifier

model predictions and manual annotations from the video imagery.

Fig 9. Comparison of the manual annotations and VIAME predictions for a subset of dives. A) Predictions of surface (yellow circles)

and underwater (blue circles) frames relative to manual observations of the start (green inverted triangle) and stop (red triangle) of

individual dives. B) Predictions of krill frames (orange circles) relative to manual observations of attempted strikes at individual krill

(purple triangle).

https://doi.org/10.1371/journal.pone.0303633.g009
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Discussion

We used an image classifier model to automate the identification of frame-level content in ani-

mal-borne video imagery and developed a method to estimate prey (Antarctic krill) density as

observed in 2D imagery. The results demonstrate that estimating volumetric prey density is pos-

sible from 2D video imagery. We note that the classifier model predicted frame-level content

consistent with manual observations, highlighting the potential for automated image analysis to

quantify a broad suite of penguin foraging behaviors and prey encounter events in video data.

Below, we discuss our approach to automating frame-level analysis of video imagery and the

several assumptions required for harnessing 2D imaging methods for 3D data collection.

Automated image analysis

We automated analysis of bio-logging video imagery collected by a chinstrap penguin foraging

in the Southern Ocean. Tools such as the video loggers provide researchers with large amounts

of data, which have usually been processed manually [40, 63, 64]. As methods for observing

marine systems shift to automated systems [65–67] that deploy cameras, the volume of image

data collected will increase to levels that exceed the ability and time of analysts to process and

analyze manually. In the past, analysts relied on manual annotation [68]. Visually analyzing and

manually annotating videos to identify features or events of interest is cumbersome or subject

to observer bias, whereas a classifier model improves efficiency and objectivity. Resources like

VIAME, that integrate annotation tools with functionality for model training, testing, and appli-

cation to novel data provide convenient workflows to reduce processing bottlenecks.

Here, our model for frame-level content performed well (Table 2) despite generally low

numbers of training images, highlighting the power of the EfficientNet deep learning model to

detect gross differences in image content specific to our purpose. We trained the model to

characterize video frames based on the environments, behaviors of penguins, and predator-

prey interactions. In particular, we were interested primarily in the ability of the model to

identify frames that contained krill swarms. The performance evaluation showed reasonably

high precision in correctly identifying krill frames (83%). This means that 17% of incorrectly

predicted krill imagery (34 out of 198 images) was likely due to a lack in clarity of images

affected by motion-blur or faint swarms in the distance. Recall for krill was 63%, which is a key

indicator in determining the model’s sensitivity competence. Meanwhile, accuracy for the krill

class was only 55%, and is determined by dividing the total number of correct predictions (i.e.,

TP and TN) divided by the total predictions. The largest discrepancy appeared to be from the

krill and open water classes and may have two simple explanations. First, open water com-

prises most of the image content for these classes. Based on the results of these evaluation met-

rics, it is fair to assume the model could not differentiate between krill and open water at

times. This is reasonable because some of the imagery we used contained large swarms of

unresolvable krill in the distance, making it difficult to discern at times. Second, if krill images

are affected by motion blur, or if krill targets are at large ranges or have low contrast given

ambient lighting they present as small, poorly-resolved targets in the distance and difficult to

identify even by human analysts. The model was sufficiently accurate for our purpose to iden-

tify the timing of krill encounters and conditions associated with basic diving behavior (Fig 9).

Our results highlight the potential for future development of similar models to assess diving

and foraging behaviors from video imagery.

Estimating density from 2D imagery

The process of estimating prey density from 2D animal-borne video imagery requires several

assumptions about the size distribution and orientation of targets relative to the camera. With
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a single lens, we cannot directly measure distance between the camera and individual krill tar-

gets. To extrapolate from imaged lengths to real-world lengths, we assumed that all krill

observed are equivalent to the median length of krill found in the stomach contents of other

penguins. This assumption is reasonable given the narrow size range of krill typically con-

sumed by chinstrap penguins [61] and the consistent tracking of variation in krill sizes by dif-

ferent penguin species over time [69]. Additionally, variation in the orientation of krill relative

to the camera can affect the estimates of target lengths in the image. For example, if all krill

were observed axially (i.e., only head or tail face the camera), then estimating body length

would be impractical. Based on the subset of imagery we used, these extreme orientations were

rare. However, most individuals were observed in variable orientations, likely due to escape

behaviors and scattering in multiple directions as a predator approached. It was difficult to dis-

cern if krill were directly perpendicular to the camera as well, therefore, the variation in orien-

tations necessitated a mechanism to adjust imaged lengths for potential angular shifts. We

therefore assumed that krill orientation angles were distributed randomly with a uniform dis-

tribution. These assumptions provide the basis to estimate the distance of targets from the lens

and construction of 3D information from the video image.

Environmental factors may also affect the estimate of imaged volume, including water col-

umn conditions (e.g., visibility, lighting, or turbidity). Water column conditions like visibility,

lighting, or turbidity can vary, particularly when imagery is captured at different depths or at

different times of the day when solar incidence differs. For example, if krill foraging occurred

at greater depths or was recorded near sunset, it is likely that our ability to resolve targets

would weaken as light levels fall, effectively reducing the volume of the image. Here, our meth-

odology is limited in that we worked to minimize such effects by focusing on well-lit surface

waters<30m in depth (Fig 6) within a short span of foraging activities during midday. Water

clarity within these was also similar across the short time span for which video data were avail-

able. Our estimate of imaged volume may not be applicable across a broad spectrum of condi-

tions due to the relatively small size of the dataset. This is not a large enough sample size of

imagery containing observations from near to far; nor is there enough variation in water col-

umn conditions. This method can, nonetheless, address density estimates through assessment

of the resolvability of targets in such images.

Another key assumption in our method is how to identify the appropriate cut-off for the

size of resolvable krill that represent the limit of the resolvable range. The concept of resolvable

range considers that resolvability (or focus) of targets is limited primarily by distance from the

camera. In an ideal case without image blur or distortion, resolvable targets would be located

near the camera and appear larger while unresolvable targets would be farther away and

smaller, assuming that the target size distribution did not vary with range. The resolvable

range could then be estimated based on the upper size limit of the unresolvable targets or the

lower size limit of resolvable targets. However, in our data there was considerable overlap of

the smallest resolvable and unresolvable targets (Fig 5). We assume that many targets are unre-

solvable for reasons other than distance from the camera, including motion blur. Therefore,

we focused our method on the estimated mean from a binary classifier based on a logistic

regression fit to sizes of all unresolvable and resolvable objects at defined boundaries between

these classes. This normal model fit to near boundary size distributions also provided a proba-

bility density function that could be applied to any estimated value of resolvable range, volume,

and density.

We estimated density using an imaged volume estimated by resolvable range (essentially

depth of field). We use the “resolvability” class data in conjunction with size distribution of

objects to estimate the range. While we have an estimate of the range that defines the transition

from resolvable to unresolvable objects, we acknowledge the potential for errors of assignment
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(subjectivity) by one or more analysts. The data and results of the process of assigning targets

to a binary scheme demonstrate that there is no clear and strict planar boundary that defines

the far edge of the imaged volume. Targets do not transition from being resolvable to unresolv-

able suddenly over a small change of range. The data reinforce that there is a marginal region,

not a plane, where visual characteristics change from sharp and detailed to unidentifiable. We

provide estimates of resolvable range, imaged volume, and density for the full range of target

sizes that we consider relevant to the process as supported by the data. Our results suggest that

the resolvable range is 2m, imaged volume is 0.6 m3, and krill density is 50 krill�m-3, approxi-

mately. The 25th and 75th quantile values of these estimates were within a factor of two times

the median values, at 1.6 and 2.4 m, 0.34 and 1.15 m3, and 25 and 83 krill�m-3, respectively (Fig

8G–8I). Within this transitional region, maybe we could classify targets as marginally resolv-

able and use their size distribution to estimate the range. Indeed, our initial efforts at target

classification included a marginal class, but we determined that it was not feasible to reliably

identify objects as marginal. Therefore, we chose the binary scheme, which ultimately allowed

us to estimate the resolvable range and imaged volume using the logistic regression classifier,

and to characterize the extent of the nebulous boundary.

Similarly, the size distribution of the unresolvable class alone may be enough to estimate

the boundary. The sizes of unresolvable objects had a mode of 25, median of 40, mean of 45,

and standard deviation of 25 pixels (Fig 5). Given the asymmetry, perhaps the mode or median

could serve as alternative estimates of near-boundary object size. The mode of unresolvable

object sizes is 9 pixels smaller than the size at boundary estimated from logistic regression. As

such, the estimates for range, volume, and density are, respectively, 1.4, 3.4, and 0.4 times the

values produced using Lboundary = 34.4 pixels (Fig 8 and Table 3). Similarly, the median unre-

solvable object size is 5 pixels larger and relates to estimates that are 0.9, 1.9, and 1.5 times the

same. Unresolvable objects had a wider distribution of sizes than what we used based on

assuming that all objects with sizes smaller than the class boundary size from logistic regres-

sion were technically unresolvable (and mirroring those to characterize the full marginal

region). Therefore, using only the distribution of unresolvable targets is not recommended,

not only for this reason, but also because many unresolvable targets are strongly blurred krill

at close range within the imaged volume. This also suggests that we adhered to assignment of

objects to resolvable-unresolvable classes based on visual characteristics of targets and not con-

text, which is more difficult than it may seem. The size distribution of the resolvable targets

overlapped with that of the unresolvable objects, suggesting that some of the resolvable targets

were probably truly unresolvable, and also perhaps some smaller detail or context led to similar

misassignment in the other direction.

We allowed the classified object size data to determine the boundary despite the likelihood

that the data probably contained some errors (e.g. large unresolvable targets that existed in the

volume). We did not arbitrarily filter the data because we believed that some errors like this

existed. Therefore, the boundary size value based on logistic regression is larger and the esti-

mated resolvable range is smaller than a boundary defined on the smallest resolvable targets,

which would ideally be located at the limit of the imaged volume. The steep curves in Fig 5

demonstrate the sensitivity of resolvable range and imaged volume estimates to the changes of

the smallest, presumably distant, object sizes. For example, the minimum unresolvable object

size (9.9 pixels in length) represents the smallest visually distinguishable objects (presumed to

be krill and not bubbles) at the largest range that would be considered to represent an imaged

volume encompassing all objects. The resolvable range estimated based on the smallest unre-

solvable objects was 6.7 m and imaged volume was 25.0 m3. The minimum resolvable object

size (14.9 pixels in length) represents the smallest identifiable krill. The values of resolvable

range and volume associated with this size were 4.5 m and 7.4 m. However, several key points
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support it is not justified to define a boundary based on the extremes from either class: the

probability distribution of near-boundary and unresolvable object sizes; the difficulty for an

analyst to distinguish and mark such targets for measurement; and that such small and indis-

tinct objects are not identifiable.

Someone attempting to apply this method to their own imagery should not discount the

difficulty in assigning targets to the resolvable and unresolvable classes. There is subjectivity

involved, and target details and overall appearance can be strongly affected by factors such as

motion blur, irregular illumination, or lighting deficiencies that require the analyst to assign a

target to the unresolvable class if they are adhering strictly to the definition. Quantitative meth-

ods such as intensity gradients of targets may be applied to classify objects as resolvable/unre-

solvable, or in focus/not in focus [70], but those gradients would be diminished for objects that

are affected by strong motion blur, for instance, leading to the same conclusion as the human

visual analyst. Expert annotations are critical to the process, here and in general, for generating

datasets that serve as a basis for training more complicated models. Augmented annotations

based on intensity gradient metrics for example, would also require careful considerations and

perhaps filtering if a trained model is to be trusted. Platforms with moving targets such as this

dataset remain a challenge.

We further tested the validity of our biomass estimate relative to verified acoustic survey

biomass estimates from the same time period [67]. Currently, there are a lack of studies avail-

able to affirm relative thickness of krill swarms actively being foraged by penguins, however,

there are some that have estimated swarm vertical thickness [71, 72]. Swarm types 1 and 2 of

[72] seemed to represent the swarm types similar to what have been observed by acoustic sur-

veys in our study area [67]. Mean thickness of swarms according to [71] and the type 2 swarms

of [72] was 10 m, and mean thickness of the type 1 swarms of [72] was 5 m. Assuming that the

penguins in our study dove past the bottom of the swarms before ascending, mean thickness

according to the penguins was approximately 7 m (Fig 9). These various krill swarm thick-

nesses were considered in order to estimate volumetric biomass densities from areal biomass

estimates.

The average areal biomass density during January in the area (based on glider acoustic sur-

vey [67]) was 52.9 g�m-2. Assuming a swarm thickness of either 5 m [71] or 10 m [72], the areal

biomass estimate from [67] converts to volumetric biomass densities of 10.57 g�m-3 and 5.3

g�m-3, respectively. The volumetric biomass density estimated from our imagery (krill counts

and estimated imaged volume) was 26.1 g�m-3, which is about 2.5 times larger than acoustic

survey estimates from the previous year [67] assuming a 5-m thick swarm, and about 5 times

the density assuming 10-m thick swarms. If we use the average foraging depths from our study

(Fig 9), and assume that swarms were 7 m thick, then the volumetric biomass estimate of [67]

was 7.6 g�m-3, or 3.4 times less than our image based estimate. Biomass density values from

repeated acoustic surveys one month apart in this area differed by a factor of 2 [67]. Given the

limitations in vertical swarm thickness, and large acoustic estimate discrepancies between the

austral months, our mean volumetric biomass is valid. This confirms the ability in which this

methodology can estimate local krill density at a scale that has not yet been observed. Yet, it is

important to emphasize our limited study is not representative of general krill population pat-

terns and future efforts should consider utilizing a larger dataset over a larger timescale to dis-

cuss broader implications.

Conclusion

We estimated krill density from an arbitrarily-chosen subset of single camera images collected

from the perspective of one penguin. Consequently, we stress that the data reported here are
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not representative of the krill population as a whole, nor representative of the full range in size

and density of krill swarms likely to be encountered during a foraging trip. Rather, we high-

light that the method is capable of assessing a wide range of swarm densities that a penguin

may encounter. The results provide insight to foraging patterns of individual penguins and

their prey availability. For example, krill density encountered by a foraging penguin can

change dramatically within and between dives (Fig 6). Such small-scale variation in prey den-

sity on short time and space scales suggests a high degree of patchiness in krill swarms that

likely impacts foraging success and effort by air breathing predators like penguins.

The limitations of single image and absence of depth data has required us to estimate range

and volume based on target object characteristics with possibly much more uncertainty than if

we could measure depth directly. Perhaps there are other options for cameras and lenses that

could achieve a sharper boundary division, a more discrete depth of field, and more impor-

tantly, direct measurement of distance (range) to objects. Range and target size estimates

could be accomplished by using a depth sensor next to the camera (as in RGB-D) or stereo

camera systems. A system that could create an accurate, dense 3D reconstruction of the scene

at high speed and simultaneously track each target to enable identification and measurement

would be valuable. Such a system would facilitate the ability of more detailed quantification of

predator-prey interactions. However, we are not aware of any available systems that are small

enough, with a small enough mass, to be borne by small marine organisms. Motion blur,

caused by simultaneous high-speed motion and rapid changes of direction by the predator and

prey, is a big problem which might be addressed by using a high intensity short duration

strobe, but in shallow, clear water during daytime, the efficacy of such a strobe may be dimin-

ished. Therefore, very high-speed image acquisition rates and very short exposure durations

may be preferable. We would encourage the development of such hardware that could be

borne by small marine animals like penguins. Until then, the method we describe may be used

to estimate imaged volume and prey density from single cameras.

Future work to examine the links between estimates of prey density with consumption

rates, foraging behavior (e.g., decisions to continue foraging locally or transit to new foraging

areas), and the energetic expenses associated with those decisions are likely to yield important

insight in how real-time variation in prey density affects predators. Additionally, prey density

data from predator-borne systems may provide information important to managing krill fish-

eries, such as how well the density estimated from surveys using ships or autonomous vehicles

[70] represents the prey directly available to predators. Furthermore, with a changing climate,

data such as this may provide a first-hand predator perspective on changes in prey availability.

The methods used here to estimate volumetric density from 2D imagery should be generally

applicable to other open-water systems with swarming prey.
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