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Abstract

Estimating the densities of marine prey observed in animal-borne video loggers when
encountered by foraging predators represents an important challenge for understanding
predator-prey interactions in the marine environment. We used video images collected dur-
ing the foraging trip of one chinstrap penguin (Pygoscelis antarcticus) from Cape Shirreff,
Livingston Island, Antarctica to develop a novel approach for estimating the density of Ant-
arctic krill (Euphausia superba) encountered during foraging activities. Using the open-
source Video and Image Analytics for a Marine Environment (VIAME), we trained a neural
network model to identify video frames containing krill. Our image classifier has an overall
accuracy of 73%, with a positive predictive value of 83% for prediction of frames containing
krill. We then developed a method to estimate the volume of water imaged, thus the density
(N-m™®) of krill, in the 2-dimensional images. The method is based on the maximum range
from the camera where krill remain visibly resolvable and assumes that mean krill length is
known, and that the distribution of orientation angles of krill is uniform. From 1,932 images
identified as containing krill, we manually identified a subset of 124 images from across the
video record that contained resolvable and unresolvable krill necessary to estimate the
resolvable range and imaged volume for the video sensor. Krill swarm density encountered
by the penguins ranged from 2 to 307 krill-m™ and mean density of krill was 48 krill-m™ (sd =
61 krill-m™). Mean krill biomass density was 25 g-m™. Our frame-level image classifier
model and krill density estimation method provide a new approach to efficiently process
video-logger data and estimate krill density from 2D imagery, providing key information on
prey aggregations that may affect predator foraging performance. The approach should be
directly applicable to other marine predators feeding on aggregations of prey.
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Introduction

The use of animal-borne instrumentation has expanded studies on the physiology [1] and ecol-
ogy [2] of free-ranging marine predators. A variety of telemetry devices have enabled the
detailed characterization of diving energetics and behaviors [3, 4], movement and migration
patterns [5, 6], habitat partitioning [7, 8], and identification of essential marine habitats [9,
10]. Accelerometers mounted on the head or jaw [11-13], ingested stomach temperature
probes [14], and movement data [15], (but see [16]) have been used to estimate feeding rates.
Direct observation of predation events, prey, and foraging habitats have been done for large
animals such as seals [17-20] and whales [21-25], but assessing predator responses to changes
in prey availability remains difficult in the marine environment, particularly for smaller ani-
mals such as penguins [26-30]. While there are studies that have observed penguins striking at
prey [12, 31, 32], in this work we quantify the prey field and prey availability, which may influ-
ence feeding behaviors and success.

Miniaturization of digital cameras has allowed first-person views of underwater behaviors in a
suite of marine species [33-35], including penguins [23, 27, 36-39]. Importantly, these image-
based methods offer direct observations of the interactions between predator and prey and pro-
vide the potential for novel inference on key ecological interactions. Images and data derived
from animal-borne video loggers may provide a useful step toward understanding predator
responses to variation in prey density. For example, video data allow assessments of the frequency
of encounters with prey and estimates of predator foraging rate within prey patches [40, 41]. How-
ever, estimating the density of prey from two-dimensional (2D) images obtained from animal-
borne cameras represents a significant challenge for two main reasons. First, visual analysis and
manual annotation of video imagery to identify prey encounters is slow and inefficient, requires
subjective interpretation, and may be affected by observer error and bias. Second, when prey are
visible in imagery, counts of individuals within the image can provide a relative index of prey
abundance, but estimating the concentration of prey (volumetric density) additionally requires
estimating the imaged volume. To overcome these challenges, we trained an automated detection
algorithm to classify video content at the frame-level and developed a method to estimate the vol-
umetric density observed in 2D imagery of prey encountered by a foraging predator.

Machine learning algorithms are increasingly used in the ecological studies to automate
detection of features of interest in imagery [42, 43]. Frame-level classifier models can be
trained to identify images that contain characteristics indicative of behavior, locations, or the
environment. For example, in animal-borne video data from an air-breathing marine preda-
tor, the characteristics of images obtained at the surface are distinct from those obtained
underwater, and images obtained during open-water diving are different from those obtained
during encounters with prey aggregations. Classifier models can be trained to differentiate
such characteristics [44, 45] and identify frames with prey encounters for further analysis. We
leverage automated image processing to alleviate the burden of time spent manually processing
hours of video imagery. The open-source computer vision platform VIAME (Video and
Image Analytics for the Marine Environment [46]; available from https://www.viametoolkit.
org/) provides a flexible and powerful tool for image annotation, detector training, and image
analysis. We used VIAME to develop a classifier model to automate identification of images
containing krill based on full frame-level content.

Several approaches can be used to estimate three-dimensional (3D) scene structure from
single camera 2D imagery. An approach developed to remove haze from images, to estimate
light transmission, and enhance underwater imagery using the dark channel prior [47, 48] pro-
duces a depth map of the scene that is useful for characterizing topography and relative dis-
tances among scene elements. Most methods for 3D estimation from single images produce
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Fig 1. Two-panel view of the resolvable range of the camera. a) side view and b) camera view of targets with
simulated depth of field effects.

https://doi.org/10.1371/journal.pone.0303633.g001

depth maps [49] with relative distances to objects that must be scaled based on known sizes of
scene elements at known ranges to estimate actual coordinates or sizes.

Other single-camera, single image approaches for estimating distance to imaged targets use
object focus methods, also known as the depth from defocus [50], to reconstruct 3D scenes
from individual 2D images without the assistance of additional sensors or multiple cameras
[51-54]. Depth-from-defocus methods assume that imaged targets within a 2D scene can be
unresolved due to large ranges from the imaging system, limits of resolution, or because of rel-
ative motion of the object and camera. Assuming that targets have a known length, combined
with a distinction between resolvable (containing discernible visible features) and unresolvable
targets (lacking distinctive features or out of focus because of range and not as a result of
motion blur) in the image can enable the estimation of the imaged range, therefore recon-
structing a 3D scene (Fig 1).

Here, we used animal-borne video imagery to first train a frame-level image classifier with a
convolutional neural network model to identify images that represent basic penguin behaviors
including surfacing/diving, surface resting, underwater transit/swimming, and prey encounters.
Based on a subset of images containing krill, we then implement a method conceptually similar to
the approaches for estimating single-image depth of field and depth from defocus [53-55] to esti-
mate the volumetric density (N-m™) of krill swarms encountered by foraging chinstrap penguins.

Materials and methods

Instrumentation

We collected video imagery of the interactions between chinstrap penguins and their principal
prey, Antarctic krill, from Cape Shirreft, Livingston Island (60.79°W, 62.46°S) in the northern
Antarctic Peninsula region. Videos were collected in February 2018 and December 2019 using
Little Leonardo DVL400MO028 (52 mm x 20 mm x 11mm, 15 g) and DVL400MO065 (61

mm x 21 mm x 15 mm, 29 g) digital video loggers (DVLs). The DVLs recorded color imagery
using ambient light at 30 frames per second (fps). Field-of-view angles were 31 © horizontal by
24 o vertical and the image frame size was 1280 by 960 pixels (pix). Videos were recorded con-
tinuously for 5 to 8 hours (separated by 30-minute intervals when exported) until memory
capacity was full or the battery was exhausted. Each penguin was also instrumented with a
time depth recorder (TDR; Lotek LAT1800FP, 36x13x11 mm, 9 g) to record dive depth.
Instrument attachment and recovery methods were described previously [40].

Ethical approval

All animal handling procedures and research protocols are approved by the Southwest Fisher-
ies Science Center/Pacific Islands Fisheries Science Institutional Animal Care and Use Com-
mittee (# SWPI 2020-01). All field research activities are permitted under the U.S. Antarctic
Conservation Act (Permit #2017-012).
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Table 1. Number of training and test images for each class. Each class is representing the principle visual content
associated with penguin behaviors and observed conditions while foraging. Training and test images were taken from
video collected in February 2018 and December 2019.

Training label Training Images Test Images
Open water 815 320

Krill presence 147 262

Surface 553 324
Penguin presence 2 21

Bright or dark 121 73

https://doi.org/10.1371/journal.pone.0303633.t001

Automated image analysis

We used the imagery from both 2018 and 2019 to train a frame-level image classifier model.
We used VIAME (version 0.19.4) to train an EfficientNet convolutional neural network [56]
to classify the principal frame-level content of video images. The model was trained on a 1,638
image subset using a five-class scheme (Table 1). Each of the classes represent the frame-level
visual content associated with behaviors or observed conditions recorded during foraging
dives that represent: 1) open water, indicative of underwater swimming; 2) surface, indicative
of surface activities such as breathing and resting during intervals between dives; 3) bright or
dark, very bright or dark conditions indicative of passing through the air-water interface dur-
ing diving or surfacing events; 4) penguin presence (while swimming underwater) indicative
of group association; 5) krill presence, indicative of prey encounters (Fig 2). The number of
images per class in the training set ranged from 2 to 815 (Table 1).

2018/02/01 16:11:45

Fig 2. Example images of the frame-level classes used for model training. The five classes represent images from 1) open water representing underwater
transit/swimming, 2) surface, representing resting on the surface, 3) bright, during surfacing or diving, 4) dark, during surfacing or diving, 5) penguin

presence, 6) krill presence.

https://doi.org/10.1371/journal.pone.0303633.g002
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prevalence =

Model performance evaluation

Model performance was evaluated with a confusion matrix using the R (R Core Team 2020)
package ‘caret’ [57]. The trained model was tested on a subset of 1,000 new images. In conjunc-
tion, manual annotations (a truth set) were completed on the test subset to use for the confu-
sion matrix evaluation.

Confusion matrix metrics relating true classes to model-predicted classes were represented
using counts of true positives, false positives, true negatives, and false negatives from model
predictions. True Positives (TP) represent correct model predicted class matching the known,
analyst-designated (“truth”) class of an image. True Negatives (TN) are all images that the
model correctly identifies as not containing the class; False Positives (FP) are cases where the
predicted class does not represent the true class. False Negatives (FN) are images predicted as
negative for a class when they should represent the true class. For each class we calculated:

TP + TN
accuracy : A = ———————,
TP 4 FP + FN
ision (positi dicted value) : P = P
precision (positive predicted value) : P = TP 4 FP’
TP
1 jtivity) : R = ———
recall (sensitivity) TP EN’

iy IN
specificity = TN + FP’

negtive predictive value : NPV
= (specificityx(1 — prevalence))/(((1 — sensitivity)xprevalence) + ((specificityx(1 — prevalence)),

sensitivity + specificity
2 )

balanced accuracy =

—== where N,,,,, is the count by class and N, ,, is the total number of images in the truth set, and the

2x(PxR)

F1 score: F1 = ——=.
P+R

[58-60]

These metrics were calculated to evaluate the performance of the classifier model. After
model performance was evaluated, our classifier model was used to detect frames containing
from a new image set (1.5 hours of video sampled at 5 fps collected in February 2018) to be
used for prey density estimation.

Estimating prey density from 2D imagery

The images used to estimate krill density were manually selected from a set of images that the
EfficientNet classifier model predicted to be krill from 1.5 hours of video sampled at 5 fps col-
lected in February 2018. From these we selected a subset of 124 images where motion blur was
minimal and the image included targets distributed from near to far, thus allowing classifica-
tion of resolvable and unresolvable krill (Fig 1).
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Unresolvable
targets

esolvable
targets

Fig 3. Conceptual image for estimating the resolvable range of the camera and the imaged volume. Only resolvable targets are included
within the resolvable range. Imaged volume was estimated from the resolvable range (r,s) and the field-of-view of the camera lens.

https://doi.org/10.1371/journal.pone.0303633.g003

The density of krill in an image was estimated by assuming the imaged volume of a photo-
graph to be represented by a triangular pyramid (Fig 3). We define the “resolvable range” (r,.;)
as the maximum range within which imaged targets (krill) are clearly identifiable. By relating
the imaged length of targets at the limit of the resolvable range to known krill lengths, and
using information on the dimensions of the image, we estimated the physical range to these
targets to solve for the imaged volume. Counts of resolvable krill within the imaged volume
were then converted to density estimates. Camera and lens calibrations were not done, but dis-
tortions were negligible based on visual inspection of images. For example, objects like other
penguins had consistent appearances in various locations (e.g. center vs. corner) and the hori-
zon appeared as a straight line in images from surface intervals.

Resolvable range and imaged volume

To estimate the densities of krill encountered during a penguin’s foraging event, we first esti-
mate the volume of water sampled by the images by estimating the resolvable range (Fig 3).
Estimating resolvable range minimally requires an estimate of the length of krill (in pixels) at
the distance representing the limit of the imaged volume and an estimate of the true length (in
mm) of the imaged targets.

Krill imaged length at the resolvable range limit was estimated by manually classifying all
imaged targets as either resolvable or unresolvable (Fig 4). For resolvable krill, we also anno-
tated whether they presented as axial (when a krill is perpendicular to the camera), partial
(when part of the animal was out of the frame), bent, or motion-blurred. Resolvable krill were
identified based on distinguishing features such as segmentation of the thoracic region, eyes,
carapace, telson, or uropods. In some instances, krill body parts are not visible, but the body
shape is distinguishable, and in general this was the strongest indicator that an object was a
krill. Unresolvable objects are visually indistinguishable and lack any landmark features or
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Fig 4. Example of resolvable annotations in an image. Determining the resolvability of krill is dependent upon the contents within each
individual frame. Krill within the resolvable range of the camera are apparent; however, smaller targets presumed to be krill are classified as an
unresolvable swarm because the distinguishing features of krill (eyes, appendages, body shape) are not visibly distinct.

https://doi.org/10.1371/journal.pone.0303633.9004

shape attributes that might reliably indicate krill even in the context of a monospecific swarm
aggregation.

Note that body orientation will affect measured length in the images. We observed krill in
any orientation without apparent tendency for a particular direction relative to the penguin or
camera, where krill orientations range from full normal incidence (side, dorsal, or ventral)
with projected imaged size as complete length, to axial (head or tail) with projected size repre-
senting width. We accounted for this variation in body orientation relative to the camera by
assuming that krill present in a uniform distribution of orientation angles from -180 to 180
(Fig 1). As such, the median of imaged lengths projected through a uniform distribution of
angles, accounting for non-zero axial length, was 0.707 times the full normal incidence length.
This is equivalent to a length projected at +-45 or +-135 degrees from normal incidence. The
inverse of this value, 1.414, was used to compensate mean and median imaged lengths (not
individual lengths) for the orientation distribution.

Because the images are acquired using a single camera, we do not have a direct measure-
ment of range to imaged objects, therefore we estimate the resolvable range based on the size
at the transition from resolvable to unresolvable objects. We assume that resolvable and unre-
solvable objects generally correspond to objects within and beyond the imaged volume,
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respectively. Also, because we expect that krill have a narrow size distribution, the size distri-
butions of resolvable and unresolvable objects would be differentiable because of the effect of
distance on imaged size (resolvable being closer/large and unresolvable being farther/smaller,
in general). The measured image size distributions of unresolvable and resolvable targets are
overlapping (Fig 5) and do not indicate a sharp transition or bound on the imaged volume,
but they do allow us to estimate the resolvable range.

To estimate resolvable range, we fit a logistic regression model (binary classifier) to imaged
sizes of objects assigned to the resolvable (krill) and unresolvable object classes. Size data were
excluded for partial krill (along edges), and tightly packed aggregations not individually
labeled. The resolvable range was then estimated based on the class division boundary esti-
mated by solving a logistic regression model at p = 0.5 where Lyoundary = 34.4 pixels. The
median unresolvable object size, 39.6 pixels, was not much larger than this, and could perhaps
be a suitable alternative and more simple to calculate.

To characterize the error and extent of the resolvable range we assumed that all objects with
sizes smaller than the logistic regression class size boundary value were unresolvable and that this
set of size values represented half the size distribution of objects close to an indistinct boundary
marking the limit of the imaged volume. Therefore, we mirrored and duplicated this set of object
sizes to produce a symmetrical distribution of size values representing the boundary region and
near-boundary objects. This process began by shifting the size boundary set to have a maximum
of zero, then we combined that set of values with the absolute value, where we finally shifted back
to the boundary value. We did this instead of using the full unresolvable object size distribution
(Fig 5) because the unresolvable class included many objects with larger-than-expected sizes that
were believed to be krill located within the imaged volume but affected by motion blur strong
enough not to allow identification. By strict adherence to the class definitions, these were assigned
as unresolvable, and this appeared to have biased the distribution. We fit a normal distribution to
the mirrored near-boundary size data and estimated mean and standard deviation.

Resolvable range in imaged units .. (pixels) is estimated as the distance from the camera
based on known image dimensions (width: 1,280 pixels, height: 960 pixels) and the camera lens
angles (31 by 24°). We assumed that the imaged krill were similar in size to krill obtained from
penguin diet samples that were collected [61] and measured [62] during the 2018 field season.
Stomach samples were obtained from 20 chick-provisioning penguins in January and February
of 2018. The lengths of up to 55 (47 +/- 10, mean +/- 1 sd) intact krill per sample were retrieved
and measured for total length to the nearest mm. Resolvable range, width, and height (pixels)
are then converted to r,.s (m) physical units using an imaged-to-physical length conversion fac-
tor (mm/pixels) based on the median length (mm) of krill from diet samples divided by the
near-boundary imaged length of krill. Imaged volume is calculated as V = (wxhxr, ) /3m?®.

Sensitivity and error

To characterize the sensitivity of our method to uncertainty in identification of a range bound-
ary defining a transition from resolvable to unresolvable targets, we estimated resolvable range
(m), imaged volume (m’), and krill density (N-m”) at a discrete set of imaged sizes represent-
ing the near boundary distribution statistics: the mean size at Lyoundary +- 1 and 2 standard
deviations. To characterize the far limit of the volume, we also estimated range, volume, and
density using the minimum imaged size of resolvable krill (14.9 pixels) and unresolvable
objects (9.9 pixels). To characterize error, we generated a random sample (n = 1000) from a
normal distribution with parameters fit to observed near-boundary sizes ~N(34.4, 10.5 pixels),
excluding zero and negative values, and estimated the corresponding distributions of resolv-
able range, imaged volume, and krill density.
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Fig 5. Length frequency distributions (pixel length) for resolvable and unresolvable Antarctic krill (Euphausia superba). There is overlap between the
lower values of the resolvable krill imaged lengths and the upper values of the unresolvable krill imaged lengths indicating the range of where our resolvable
range limit would occur.

https://doi.org/10.1371/journal.pone.0303633.9005

Krill density and biomass

All krill that were classified as resolvable were used to calculate krill numerical density
(krill-m™) for the number of resolvable krill per image, divided by our aforementioned esti-
mated imaged volume. A length-weight relationship for krill in the Antarctic Peninsula region
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[62]: w = aL® (with L as total length in mm), a = 2.236x10°%, and b = 3.314, was used to estimate
mean krill weight w = 0.54 g, and allowed conversion between estimated krill densities
(krill-m™) to biomass density (g'm'3).

Comparison of model predictions to manual annotations

A separate data set with manual annotations of the timing of krill strikes, diving, and surfacing
based on previously reported methods [40] was compared to model predictions of frame-level
image content. From this, we report summaries of foraging behaviors, including dive and feed-
ing durations, and estimates of swarm thickness (i.e. vertical distance in meters) based on the
depth range between the start and end of strikes at krill.

Results
Frame-level content classifier

The classifier model was overall 73% accurate in being able to correctly identify frame-level
image content. For the krill class performance, metrics indicated an accuracy of 55%, precision
of 83% and recall of 63% (Table 2). Performance metrics per class varied. The surface class had
particularly high values of 92% accuracy and 99% recall, whereas the penguin presence class
had a low value of 15% accuracy and precision. On the other hand, the open water class
resulted in 46% accuracy and 67% precision (Table 2).

Krill length and weight

The length of krill measured from diet samples ranged from 31 to 60 mm with a mean length
of 43 mm (SD = 4.3 mm) and a median of 42 mm. We assume that these lengths are represen-
tative of the physical length distributions of krill observed in images collected in the 2017/2018
field season. Mean weight was estimated as 0.54 g (std. dev=10.2 g).

Resolvable range and imaged volume

The classification model predicted that 1,932 of the 27,006 frames (7.2%) contained krill. From
these predictions, we selected 124 images (all from December 2018) with minimal motion blur
for analysis. Manual classification of resolvability yielded 5,055 krill assigned to resolvability
classes, 3,079 resolvable, 154 bent, 193 partial, 12 axial, 125 motion-blurred, and 1,474 unre-
solvable objects. Imaged lengths ranged from 15 to 766 pixels for resolvable krill, and 10 to 177
pixels for unresolvable objects (Fig 5). The median imaged length of resolvable krill was 72 pix-
els and the mean imaged length was 85 pixels (sd = 55 pixels), with less than 1% of resolvable
krill exceeding 400 pixels. The mean imaged length of unresolvable objects was 45 pixels

(sd = 25 pixels, median = 40 pixels).

Table 2. Class-specific performance evaluation metrics for a full-frame classification model.

Statistic Bright-dark Krill Surface Open water Penguin presence
Accuracy 0.49 0.55 0.92 0.46 0.15
Recall 0.49 0.63 0.99 0.59 0.95
Specificity 0.99 0.95 0.96 0.86 0.89
Precision 0.84 0.83 0.93 0.67 0.15
Negative predicted value 0.96 0.88 1.00 0.82 1.00
Prevalence 0.07 0.26 0.32 0.32 0.02
Balanced Accuracy 0.74 0.79 0.98 0.73 0.92
F-1 score 0.62 0.72 0.96 0.63 0.26

https://doi.org/10.1371/journal.pone.0303633.t002
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Table 3. Summary statistics for each of the boundary regions. As defined, including the size in pixels at the boundary, the resolvable range from the pixel value, imaged
width, imaged height, imaged volume, krill density mean, and krill biomass based off of the density mean.

Boundary Size at boundary
(pix)
size_unres_min 9.9

size_res_min 14.9

sizeatclassdivision_mean 34.4

sizeatclassdivision_mean- 23.9
1sd

sizeatclassdivision_mean 44.9
+1sd

sizeatclassdivision_mean- 13.4
2sd

sizeatclassdivision_mean 55.5
+2sd

https://doi.org/10.1371/journal.pone.0303633.1003

Resrange | Imaged width | Imaged height | Imaged volume | Krill density (krillm™) | Krill biomass

(mm) (mm) (mm) (m>) (mean) (gAm'3)
6774 3839 3839 24.96 1.15 3.86
4511 2557 2557 7.37 3.90 13.09
1947 1104 1104 0.59 48.47 162.70
2802 1588 1588 1.77 16.26 54.59
1492 846 846 0.27 107.75 361.71
4996 2832 2832 10.02 2.87 9.63
1209 685 685 0.14 202.36 679.34

Using the resolvable-unresolvable class boundary size value resulting from the logistic
regression (34.4 pixels), the estimated resolvable range was 1.95 m (Table 3). The quotient of
Lboundary after compensating for the orientation distribution (Lyoundary/0.707 = 48.7 pixels) and
the median of the measured krill (42 mm) from diet samples resulted in a conversion value of
1.16 pixels/mm at the primary boundary. The resolvable range, defined by the object size at the
class division boundary, was r,; = 1.947 m and the corresponding imaged volume was 0.59 m”.

The object size at the resolvable-unresolvable class boundary estimated by the logistic
regression models is Lyoundary = 34.4 pixels and also represents the mean of the normal distri-
bution fit to near-boundary sizes with sd(Lyoundary) = 10.5 pixels. Upper and lower 67% and
95% size intervals (mean +- 1 and 2 sd) from this fit were [23.9, 44.9] and [13.4, 55.5] pixels.

Krill density and biomass

Krill density in a given image ranged from 2 to 307 krill-m™ over 26 dives (Fig 6). Mean den-
sity was 48 krill-m™ (sd = 61 krill-m) and median krill density was 23.6 krill-m™ (Fig 7). Esti-
mated mean biomass density was 162.7 g-m™.

Sensitivity and error

Based on the primary size-at-boundary value, Lyoundary = 34.4 pixels (Table 3; Fig 8) -/+ 1¥sd
from the mean, 23.9 and 44.9 pixels, the estimated resolvable range and imaged volumes ran-
ged from 2.8 m to 1.5 m and 1.77 m” to 0.27 m’, respectively, and mean krill density estimates
ranged from 16 to 108 krill-m™. Based on a size-at-bound values -/+ 2*sd from the mean, 13.4
and 55.5 pixels, estimated resolvable range and imaged volumes ranged from 5.0 mto 1.2 m
and 10.0 m3 to 0.14 m?, respectively, and mean krill density estimates ranged from 3 to 202
krill-m~. The minimum size of resolvable objects was 14.9 pixels and resulted in a resolvable
range of 4.51 m, an imaged volume of 7.4 m>, and mean mean krill density of 3.9 krill-m™. The
minimum size of unresolvable objects was 9.9 pixels and resulted in a resolvable range of 6.77
m and imaged volume of 25.0 m’, and mean krill density of 1.2 krill-m~.

Distributions of resolvable range, imaged volume, and krill density resulting from a simu-
lated sample near-object sizes (n = 1000, ~N(34.4, 10.5) pixels), had median values of 1.9 m,
0.58 m>, and 49.7 krill-m™ (Fig 8G-8I). Mean values of each sample-estimated distribution
were 2.2 m (sd = 0.8 m), 1.2 m> (sd = 2.2 m?), 61.1 (sd = 47.9 krill- m™), higher than the medi-
ans and suggesting asymmetric distributions (Fig 8D-8F). The 25th and 75th quantile values
of these estimates were 1.6 and 2.4 m, 0.34 and 1.15 m>, and 25 and 83 krill-m~ (Fig 8G-8I).
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Fig 6. Antarctic krill (Euphausia superba) densities per image within the chinstrap penguin’s (Pygoscelis antarcticus) dive profile
for a 90-minute timespan.

https://doi.org/10.1371/journal.pone.0303633.g006

Comparison of model predictions to manual annotations

Model predictions of frame-level content match human annotations of penguin behavior such
as surfacing events, underwater activity, transit periods, and prey encounters for a set of three
consecutive dive events while foraging (Fig 9). For example, predictions of surface events
occurred between the time of dive start and end in manual annotations while predictions for
underwater events routinely occurred during dives. In between these surface events, our classi-
fier accurately predicted imagery corresponding with the penguin head being close to the
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Fig 7. Histogram of estimated Antarctic krill (Euphausia superba) densities (n-m) from 124 krill images predicted by the image classifier. The y-axis
represents individual krill counts and the x-axis represents the density values observed from our imagery. Mean krill density was 48 krill-m™ and the standard
deviation was estimated as 61 krill-m™.
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Fig 8. (a) Resolvable range (m), (b) imaged volume (m?), and (¢), krill density (krill-m™>) estimated for the discrete set
of boundary values reported in Table 3. (d, e, f) Distributions and (g, h, i) boxplots of resolvable range, imaged volume,
and krill density estimated by a simulated sample (n = 1000) of near-boundary object sizes.

https://doi.org/10.1371/journal.pone.0303633.g008
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Fig 9. Comparison of the manual annotations and VIAME predictions for a subset of dives. A) Predictions of surface (yellow circles)
and underwater (blue circles) frames relative to manual observations of the start (green inverted triangle) and stop (red triangle) of

individual dives. B) Predictions of krill frames (orange circles) relative to manual observations of attempted strikes at individual krill
(purple triangle).

https://doi.org/10.1371/journal.pone.0303633.g009

surface of the water, indicating regular breaks to breathe, or resting in place at the surface of
the ocean. Our classifier also accurately predicted the transition between immediate descent or
ascent (represented by the bright/dark class in our classifier) by flanking surfacing events prior
to and after dives. In Fig 9, we illustrate these overlapping characteristics from our classifier
model predictions and manual annotations from the video imagery.
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Discussion

We used an image classifier model to automate the identification of frame-level content in ani-
mal-borne video imagery and developed a method to estimate prey (Antarctic krill) density as
observed in 2D imagery. The results demonstrate that estimating volumetric prey density is pos-
sible from 2D video imagery. We note that the classifier model predicted frame-level content
consistent with manual observations, highlighting the potential for automated image analysis to
quantify a broad suite of penguin foraging behaviors and prey encounter events in video data.
Below, we discuss our approach to automating frame-level analysis of video imagery and the
several assumptions required for harnessing 2D imaging methods for 3D data collection.

Automated image analysis

We automated analysis of bio-logging video imagery collected by a chinstrap penguin foraging
in the Southern Ocean. Tools such as the video loggers provide researchers with large amounts
of data, which have usually been processed manually [40, 63, 64]. As methods for observing
marine systems shift to automated systems [65-67] that deploy cameras, the volume of image
data collected will increase to levels that exceed the ability and time of analysts to process and
analyze manually. In the past, analysts relied on manual annotation [68]. Visually analyzing and
manually annotating videos to identify features or events of interest is cumbersome or subject
to observer bias, whereas a classifier model improves efficiency and objectivity. Resources like
VIAME, that integrate annotation tools with functionality for model training, testing, and appli-
cation to novel data provide convenient workflows to reduce processing bottlenecks.

Here, our model for frame-level content performed well (Table 2) despite generally low
numbers of training images, highlighting the power of the EfficientNet deep learning model to
detect gross differences in image content specific to our purpose. We trained the model to
characterize video frames based on the environments, behaviors of penguins, and predator-
prey interactions. In particular, we were interested primarily in the ability of the model to
identify frames that contained krill swarms. The performance evaluation showed reasonably
high precision in correctly identifying krill frames (83%). This means that 17% of incorrectly
predicted krill imagery (34 out of 198 images) was likely due to a lack in clarity of images
affected by motion-blur or faint swarms in the distance. Recall for krill was 63%, which is a key
indicator in determining the model’s sensitivity competence. Meanwhile, accuracy for the krill
class was only 55%, and is determined by dividing the total number of correct predictions (i.e.,
TP and TN) divided by the total predictions. The largest discrepancy appeared to be from the
krill and open water classes and may have two simple explanations. First, open water com-
prises most of the image content for these classes. Based on the results of these evaluation met-
rics, it is fair to assume the model could not differentiate between krill and open water at
times. This is reasonable because some of the imagery we used contained large swarms of
unresolvable krill in the distance, making it difficult to discern at times. Second, if krill images
are affected by motion blur, or if krill targets are at large ranges or have low contrast given
ambient lighting they present as small, poorly-resolved targets in the distance and difficult to
identify even by human analysts. The model was sufficiently accurate for our purpose to iden-
tify the timing of krill encounters and conditions associated with basic diving behavior (Fig 9).
Our results highlight the potential for future development of similar models to assess diving
and foraging behaviors from video imagery.

Estimating density from 2D imagery

The process of estimating prey density from 2D animal-borne video imagery requires several
assumptions about the size distribution and orientation of targets relative to the camera. With
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a single lens, we cannot directly measure distance between the camera and individual krill tar-
gets. To extrapolate from imaged lengths to real-world lengths, we assumed that all krill
observed are equivalent to the median length of krill found in the stomach contents of other
penguins. This assumption is reasonable given the narrow size range of krill typically con-
sumed by chinstrap penguins [61] and the consistent tracking of variation in krill sizes by dif-
ferent penguin species over time [69]. Additionally, variation in the orientation of krill relative
to the camera can affect the estimates of target lengths in the image. For example, if all krill
were observed axially (i.e., only head or tail face the camera), then estimating body length
would be impractical. Based on the subset of imagery we used, these extreme orientations were
rare. However, most individuals were observed in variable orientations, likely due to escape
behaviors and scattering in multiple directions as a predator approached. It was difficult to dis-
cern if krill were directly perpendicular to the camera as well, therefore, the variation in orien-
tations necessitated a mechanism to adjust imaged lengths for potential angular shifts. We
therefore assumed that krill orientation angles were distributed randomly with a uniform dis-
tribution. These assumptions provide the basis to estimate the distance of targets from the lens
and construction of 3D information from the video image.

Environmental factors may also affect the estimate of imaged volume, including water col-
umn conditions (e.g., visibility, lighting, or turbidity). Water column conditions like visibility,
lighting, or turbidity can vary, particularly when imagery is captured at different depths or at
different times of the day when solar incidence differs. For example, if krill foraging occurred
at greater depths or was recorded near sunset, it is likely that our ability to resolve targets
would weaken as light levels fall, effectively reducing the volume of the image. Here, our meth-
odology is limited in that we worked to minimize such effects by focusing on well-lit surface
waters <30m in depth (Fig 6) within a short span of foraging activities during midday. Water
clarity within these was also similar across the short time span for which video data were avail-
able. Our estimate of imaged volume may not be applicable across a broad spectrum of condi-
tions due to the relatively small size of the dataset. This is not a large enough sample size of
imagery containing observations from near to far; nor is there enough variation in water col-
umn conditions. This method can, nonetheless, address density estimates through assessment
of the resolvability of targets in such images.

Another key assumption in our method is how to identify the appropriate cut-off for the
size of resolvable krill that represent the limit of the resolvable range. The concept of resolvable
range considers that resolvability (or focus) of targets is limited primarily by distance from the
camera. In an ideal case without image blur or distortion, resolvable targets would be located
near the camera and appear larger while unresolvable targets would be farther away and
smaller, assuming that the target size distribution did not vary with range. The resolvable
range could then be estimated based on the upper size limit of the unresolvable targets or the
lower size limit of resolvable targets. However, in our data there was considerable overlap of
the smallest resolvable and unresolvable targets (Fig 5). We assume that many targets are unre-
solvable for reasons other than distance from the camera, including motion blur. Therefore,
we focused our method on the estimated mean from a binary classifier based on a logistic
regression fit to sizes of all unresolvable and resolvable objects at defined boundaries between
these classes. This normal model fit to near boundary size distributions also provided a proba-
bility density function that could be applied to any estimated value of resolvable range, volume,
and density.

We estimated density using an imaged volume estimated by resolvable range (essentially
depth of field). We use the “resolvability” class data in conjunction with size distribution of
objects to estimate the range. While we have an estimate of the range that defines the transition
from resolvable to unresolvable objects, we acknowledge the potential for errors of assignment
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(subjectivity) by one or more analysts. The data and results of the process of assigning targets
to a binary scheme demonstrate that there is no clear and strict planar boundary that defines
the far edge of the imaged volume. Targets do not transition from being resolvable to unresolv-
able suddenly over a small change of range. The data reinforce that there is a marginal region,
not a plane, where visual characteristics change from sharp and detailed to unidentifiable. We
provide estimates of resolvable range, imaged volume, and density for the full range of target
sizes that we consider relevant to the process as supported by the data. Our results suggest that
the resolvable range is 2m, imaged volume is 0.6 m?, and krill density is 50 krill-m~, approxi-
mately. The 25th and 75th quantile values of these estimates were within a factor of two times
the median values, at 1.6 and 2.4 m, 0.34 and 1.15 m>, and 25 and 83 krill-m>, respectively (Fig
8G-8I). Within this transitional region, maybe we could classify targets as marginally resolv-
able and use their size distribution to estimate the range. Indeed, our initial efforts at target
classification included a marginal class, but we determined that it was not feasible to reliably
identify objects as marginal. Therefore, we chose the binary scheme, which ultimately allowed
us to estimate the resolvable range and imaged volume using the logistic regression classifier,
and to characterize the extent of the nebulous boundary.

Similarly, the size distribution of the unresolvable class alone may be enough to estimate
the boundary. The sizes of unresolvable objects had a mode of 25, median of 40, mean of 45,
and standard deviation of 25 pixels (Fig 5). Given the asymmetry, perhaps the mode or median
could serve as alternative estimates of near-boundary object size. The mode of unresolvable
object sizes is 9 pixels smaller than the size at boundary estimated from logistic regression. As
such, the estimates for range, volume, and density are, respectively, 1.4, 3.4, and 0.4 times the
values produced using Lyoundary = 34.4 pixels (Fig 8 and Table 3). Similarly, the median unre-
solvable object size is 5 pixels larger and relates to estimates that are 0.9, 1.9, and 1.5 times the
same. Unresolvable objects had a wider distribution of sizes than what we used based on
assuming that all objects with sizes smaller than the class boundary size from logistic regres-
sion were technically unresolvable (and mirroring those to characterize the full marginal
region). Therefore, using only the distribution of unresolvable targets is not recommended,
not only for this reason, but also because many unresolvable targets are strongly blurred krill
at close range within the imaged volume. This also suggests that we adhered to assignment of
objects to resolvable-unresolvable classes based on visual characteristics of targets and not con-
text, which is more difficult than it may seem. The size distribution of the resolvable targets
overlapped with that of the unresolvable objects, suggesting that some of the resolvable targets
were probably truly unresolvable, and also perhaps some smaller detail or context led to similar
misassignment in the other direction.

We allowed the classified object size data to determine the boundary despite the likelihood
that the data probably contained some errors (e.g. large unresolvable targets that existed in the
volume). We did not arbitrarily filter the data because we believed that some errors like this
existed. Therefore, the boundary size value based on logistic regression is larger and the esti-
mated resolvable range is smaller than a boundary defined on the smallest resolvable targets,
which would ideally be located at the limit of the imaged volume. The steep curves in Fig 5
demonstrate the sensitivity of resolvable range and imaged volume estimates to the changes of
the smallest, presumably distant, object sizes. For example, the minimum unresolvable object
size (9.9 pixels in length) represents the smallest visually distinguishable objects (presumed to
be krill and not bubbles) at the largest range that would be considered to represent an imaged
volume encompassing all objects. The resolvable range estimated based on the smallest unre-
solvable objects was 6.7 m and imaged volume was 25.0 m>. The minimum resolvable object
size (14.9 pixels in length) represents the smallest identifiable krill. The values of resolvable
range and volume associated with this size were 4.5 m and 7.4 m. However, several key points
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support it is not justified to define a boundary based on the extremes from either class: the
probability distribution of near-boundary and unresolvable object sizes; the difficulty for an
analyst to distinguish and mark such targets for measurement; and that such small and indis-
tinct objects are not identifiable.

Someone attempting to apply this method to their own imagery should not discount the
difficulty in assigning targets to the resolvable and unresolvable classes. There is subjectivity
involved, and target details and overall appearance can be strongly affected by factors such as
motion blur, irregular illumination, or lighting deficiencies that require the analyst to assign a
target to the unresolvable class if they are adhering strictly to the definition. Quantitative meth-
ods such as intensity gradients of targets may be applied to classify objects as resolvable/unre-
solvable, or in focus/not in focus [70], but those gradients would be diminished for objects that
are affected by strong motion blur, for instance, leading to the same conclusion as the human
visual analyst. Expert annotations are critical to the process, here and in general, for generating
datasets that serve as a basis for training more complicated models. Augmented annotations
based on intensity gradient metrics for example, would also require careful considerations and
perhaps filtering if a trained model is to be trusted. Platforms with moving targets such as this
dataset remain a challenge.

We further tested the validity of our biomass estimate relative to verified acoustic survey
biomass estimates from the same time period [67]. Currently, there are a lack of studies avail-
able to affirm relative thickness of krill swarms actively being foraged by penguins, however,
there are some that have estimated swarm vertical thickness [71, 72]. Swarm types 1 and 2 of
[72] seemed to represent the swarm types similar to what have been observed by acoustic sur-
veys in our study area [67]. Mean thickness of swarms according to [71] and the type 2 swarms
of [72] was 10 m, and mean thickness of the type 1 swarms of [72] was 5 m. Assuming that the
penguins in our study dove past the bottom of the swarms before ascending, mean thickness
according to the penguins was approximately 7 m (Fig 9). These various krill swarm thick-
nesses were considered in order to estimate volumetric biomass densities from areal biomass
estimates.

The average areal biomass density during January in the area (based on glider acoustic sur-
vey [67]) was 52.9 g-m’z. Assuming a swarm thickness of either 5m [71] or 10 m [72], the areal
biomass estimate from [67] converts to volumetric biomass densities of 10.57 g-m'3 and 5.3
g-m”~, respectively. The volumetric biomass density estimated from our imagery (krill counts
and estimated imaged volume) was 26.1 g-m™, which is about 2.5 times larger than acoustic
survey estimates from the previous year [67] assuming a 5-m thick swarm, and about 5 times
the density assuming 10-m thick swarms. If we use the average foraging depths from our study
(Fig 9), and assume that swarms were 7 m thick, then the volumetric biomass estimate of [67]
was 7.6 g-m >, or 3.4 times less than our image based estimate. Biomass density values from
repeated acoustic surveys one month apart in this area differed by a factor of 2 [67]. Given the
limitations in vertical swarm thickness, and large acoustic estimate discrepancies between the
austral months, our mean volumetric biomass is valid. This confirms the ability in which this
methodology can estimate local krill density at a scale that has not yet been observed. Yet, it is
important to emphasize our limited study is not representative of general krill population pat-
terns and future efforts should consider utilizing a larger dataset over a larger timescale to dis-
cuss broader implications.

Conclusion

We estimated krill density from an arbitrarily-chosen subset of single camera images collected
from the perspective of one penguin. Consequently, we stress that the data reported here are
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not representative of the krill population as a whole, nor representative of the full range in size
and density of krill swarms likely to be encountered during a foraging trip. Rather, we high-
light that the method is capable of assessing a wide range of swarm densities that a penguin
may encounter. The results provide insight to foraging patterns of individual penguins and
their prey availability. For example, krill density encountered by a foraging penguin can
change dramatically within and between dives (Fig 6). Such small-scale variation in prey den-
sity on short time and space scales suggests a high degree of patchiness in krill swarms that
likely impacts foraging success and effort by air breathing predators like penguins.

The limitations of single image and absence of depth data has required us to estimate range
and volume based on target object characteristics with possibly much more uncertainty than if
we could measure depth directly. Perhaps there are other options for cameras and lenses that
could achieve a sharper boundary division, a more discrete depth of field, and more impor-
tantly, direct measurement of distance (range) to objects. Range and target size estimates
could be accomplished by using a depth sensor next to the camera (as in RGB-D) or stereo
camera systems. A system that could create an accurate, dense 3D reconstruction of the scene
at high speed and simultaneously track each target to enable identification and measurement
would be valuable. Such a system would facilitate the ability of more detailed quantification of
predator-prey interactions. However, we are not aware of any available systems that are small
enough, with a small enough mass, to be borne by small marine organisms. Motion blur,
caused by simultaneous high-speed motion and rapid changes of direction by the predator and
prey, is a big problem which might be addressed by using a high intensity short duration
strobe, but in shallow, clear water during daytime, the efficacy of such a strobe may be dimin-
ished. Therefore, very high-speed image acquisition rates and very short exposure durations
may be preferable. We would encourage the development of such hardware that could be
borne by small marine animals like penguins. Until then, the method we describe may be used
to estimate imaged volume and prey density from single cameras.

Future work to examine the links between estimates of prey density with consumption
rates, foraging behavior (e.g., decisions to continue foraging locally or transit to new foraging
areas), and the energetic expenses associated with those decisions are likely to yield important
insight in how real-time variation in prey density affects predators. Additionally, prey density
data from predator-borne systems may provide information important to managing krill fish-
eries, such as how well the density estimated from surveys using ships or autonomous vehicles
[70] represents the prey directly available to predators. Furthermore, with a changing climate,
data such as this may provide a first-hand predator perspective on changes in prey availability.
The methods used here to estimate volumetric density from 2D imagery should be generally
applicable to other open-water systems with swarming prey.
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