

1 Changes in the macrobenthic infaunal community of the Southern California continental margin
2 over five decades in relation to oceanographic factors

3

4 David J. Gillett^{1*}, Stephen B. Weisberg¹, Simone R. Alin², Donald Cadien³, Ronald Velarde⁴,
5 Kelvin Barwick⁵, Cody Larsen⁶, Ami Latker⁷

6 1 - Southern California Coastal Water Research Project, Costa Mesa, CA. 92865

7 2 - Pacific Marine Environmental Laboratory, National Oceanic and Atmospheric
8 Administration, Seattle, Washington 98115

9 3 - Los Angeles County Sanitation District, Whittier, CA

10 4 - Retired, San Diego, CA

11 5 - Retired, Fountain Valley, CA

12 6 - City of Los Angeles Environmental Monitoring Division, Los Angeles, CA

13 7 - City of San Diego Public Utilities Ocean Monitoring Program, San Diego, CA

14 *Corresponding Author - davidg@sccwrp.org

15 Abstract

16 Climate change has altered the physiochemical conditions of the coastal ocean, but effects on
17 infaunal communities have not been well-assessed. Here we used multivariate ordination to
18 examine temporal patterns in benthic community composition from four southern California
19 continental shelf monitoring programs that range in duration from 30 to 50 years. Temporal
20 changes were compared to variations in temperature, oxygen and acidification using single-taxon
21 random forest models. Species richness increased over time, coupled with a decline in overall
22 abundance. Continental shelf macrobenthic communities from the 2010s were comprised of a
23 broader array of feeding guilds and life history strategies than in the 1970s. Changing water
24 temperature was associated with northward shifts in geographic distribution and increases in
25 species abundance, while acidification was associated with southward shifts and declines in
26 abundance of other species. Acidification was also associated with changes in depth distribution
27 of benthic fauna, with shelled molluscs declining in abundance at depths most associated with
28 increasing exposure to acidification. This broad-scale community-level analysis establishes
29 causal hypotheses that set the stage for more targeted studies investigating shifts in abundance or
30 distribution for taxa that appear to be responding to climate change-related disturbances.

31 **Keywords**

32 Ocean Acidification, ENSO, PDO, Range Shifts, Continental Shelf, Continental Slope

33

34

1. INTRODUCTION

35 Climate change has led to marked effects on the coastal ocean, with increasing water temperature
36 (Thomson & Krassovski 2010, Sutton & Bowen 2019, Johnson & Lyman 2020, Muff et al.
37 2022) and enhanced intensity of El Niño and Pacific Decadal Oscillation events (Wang et al.
38 2017, Freund et al. 2019, Cai et al. 2021). This has led to altered circulation patterns (Thomson
39 & Krassovski 2010, Bograd et al. 2019) and shoaling of deep basin low dissolved oxygen and
40 low pH waters (Bograd et al. 2008, Gilly et al. 2013). The carbonate chemistry of coastal waters
41 has been further altered by acidification of surface waters due to increases in atmospheric CO₂
42 (Doney et al. 2009, Hauri et al. 2013, Feely et al. 2016).

43 Changes in oceanographic conditions and water quality/water chemistry have been linked to
44 changes among planktonic, pelagic, and intertidal communities (Poloczanska et al. 2016, Stiasny
45 et al. 2016, Algueró-Muñiz et al. 2017, Lemasson et al. 2017, Espinel-Velasco et al. 2018, Leis
46 2018, Wang et al. 2018, Barclay et al. 2019, Pinsky et al. 2020). These changes have led to the
47 alterations to food webs and to reduced fisheries productivity (Harley et al. 2006, Stiasny et al.
48 2016, Jin et al. 2020, Wilson et al. 2020). Climate-related changes in ocean waters have also
49 been linked to the habitat compression or geographic shifts of epibenthic organisms (Sato et al.
50 2017).

51 However, the links between climate change or ocean acidification and infaunal benthic
52 communities are less well understood. Warming waters may increase the ranges of tropical and
53 sub-tropical fauna, while squeezing out colder water taxa (Wesławski et al. 2011, Pinsky et al.
54 2013, Hiddink et al. 2015, McClatchie et al. 2016, Goransson 2017). However, the
55 microenvironments infauna create in their sediment burrows and the naturally reduced conditions

56 of anerobic sediments may serve to de-couple infaunal adults from water column dynamics and
57 insulate them from short-term water temperature shifts (Furukawa et al. 2001, Widdicombe &
58 Spicer 2008, Silburn et al. 2017, Michaud et al. 2021). In contrast, there are clear effects of
59 ocean acidification on the larvae of many benthic species, with decreases in aragonite saturation
60 levels being particularly harmful to mollusc and echinoderm larvae (Waldbusser et al. 2015,
61 Espinel-Velasco et al. 2018, Bednaršek et al. 2021). Furthermore there is growing evidence that
62 overlying water with elevated temperatures and lower pH can negatively impact the functioning
63 and productivity of adult and juvenile infauna established in the sediments – especially filter
64 feeders (Green et al. 2009, Nixon et al. 2009, Widdicombe et al. 2009, Clements & Hunt 2017,
65 Vlaminck et al. 2023).

66 Macrobenthic infauna are an ideal lens through which to view the influence of climate change on
67 the resident biota of a location. Most species are relatively sessile and many live for multiple
68 years, so patterns in abundance, biomass, and composition are an integrator of local
69 environmental conditions (Gray & Elliott 2009). Furthermore, most marine benthic communities
70 have relatively high taxonomic diversity, with a single sample containing dozens of species
71 across multiple phyla (Ellingsen 2002, Villnäs & Norkko 2011, Gillett et al. 2021). This species
72 diversity increases the likelihood of capturing differential responses to differing types of stress
73 and therefore the ability to characterize stressor-specific assemblage responses (Lenihan et al.
74 2003, Thrush et al. 2008, Rodil et al. 2013).

75 The coastal ocean of the Southern California Bight provides a unique setting to track temporal
76 changes in biotic and abiotic conditions in the benthos. It is an ecologically and
77 oceanographically complex region situated in a biogeographic transition zone, with colder water
78 Oregonian fauna north of Point Conception, CA and warmer water Californian fauna to the

79 south, which leads to high biodiversity of benthic and pelagic fauna (e.g., Wares et al. 2001,
80 Briggs & Bowen 2013, Claisse et al. 2018) (<https://scb.marinebon.org/>).

81 At broad scales, the region is oceanographically influenced at shallower depths by the cold-water
82 California Current flowing to the south mixing with the warm-water Davidson Countercurrent
83 flowing to the north (Bray et al. 1999), as well as seasonal upwelling of nutrient-rich water
84 (Chhak & Di Lorenzo 2007). At depths below 300 to 400 m, the region is influenced by the
85 northward flowing California Bottom Current, which transports relatively warmer, low oxygen
86 Pacific Equatorial subsurface water along the continental slope (e.g., Thomson & Krassovski
87 2010). The relative interplay of the bottom and surface water masses is influenced by El Niño /
88 Southern Oscillation cycling from year-to-year, with La Niña events bringing greater amounts of
89 subsurface water to the surface along the coastal zone and El Niño events having the opposite
90 effect (e.g., Bograd et al. 2019).

91 The bottom topography of the continental slope and shelf, as well as the presence of the Channel
92 Islands, create eddies in the northern most parts of the Southern California Bight (Oey 1996,
93 Harms & Winant 1998, Kessouri et al. 2022). These meso-scale features contribute to the
94 oceanographic heterogeneity of the region. There are distinct north – to – south gradients in
95 water temperature of the shallow mixed layer that become more muted with increasing depth
96 (Gelpi & Norris 2008). Similarly, northern waters of the region are exposed to acidic conditions
97 more frequently and at shallower depths than the southern portions of the region (McLaughlin et
98 al. 2018).

99 The Southern California Bight is also a region experiencing oceanographic change, with
100 documented temporal alterations in oxygen (Booth et al. 2014) and acidification (McLaughlin et
101 al 2018) dynamics. Coincidentally, the Southern California Bight is home to four well-curated

102 benthic invertebrate monitoring programs that span 30-50 years (City of Los Angeles
103 Environmental Monitoring Division 2019, City of San Diego Ocean Monitoring Program 2020,
104 Los Angeles County Sanitation Districts 2020, Orange County Sanitation District 2021). Here
105 we used these four data sets to determine if there have been changes in the infaunal benthic
106 community and to characterize the nature of those changes in the Southern California Bight. We
107 also investigated relationships between changes in community composition and changes in
108 oceanographic patterns and water characteristics like the El Niño-Southern Oscillation (ENSO),
109 the Pacific Decadal Oscillation (PDO), dissolved oxygen, water temperature, and proxy-based
110 estimates of ocean acidification.

111 **2. METHODS**

112 **2.1 Benthic Data**

113 Infaunal abundance and taxonomic data, as well as sediment grain size were obtained from the
114 annual and semi-annual benthic monitoring programs of (northernmost to southernmost) the City
115 of Los Angeles Environmental Monitoring Division (CLAEMD), the Los Angeles County
116 Sanitation District (LACSD), the Orange County Sanitation District (OCSan) and the City of San
117 Diego Ocean Monitoring Program (CSD). (Figure 1, Supplement 1 – Table S1). From these four
118 programs, minimally disturbed sites used as reference condition benchmarks within these
119 programs were selected at three different depths: mid-continental shelf (~60m), outer continental
120 shelf (98-156m), and upper continental slope (~300m). Note that only the LACSD and OCSan
121 locations had sites located at the continental slope depths. Summer (July – September) data were
122 used for analysis.

123 The majority of the samples were collected with a 0.1m² modified Van Veen grab. Samples from
124 the Los Angeles County Sanitation Districts collected before 1980 (i.e., eight sampling events)
125 were collected as four replicate 0.04m² Shipek grabs. Given the smaller sample area of these
126 older samples, benthic data from the first three replicate samples were summed together to
127 approximate the samples collected with the Van Veen grab post-1980 – an approach developed
128 by the Los Angeles County Sanitation Districts (S. Walther, pers. comm.).

129 Sediment from the grabs was sieved on a 1-mm screen, with the retained material fixed in
130 buffered formalin before transfer to ethanol for preservation. All fauna were enumerated and
131 identified to lowest possible taxonomic level, typically species. The names of all fauna from the
132 different years were harmonized and updated to meet Southern California Association of Marine
133 Invertebrate Taxonomists (SCAMIT) edition 12 (The Southern California Association of Marine
134 Invertebrate Taxonomists 2018) conventions, with ambiguous taxa aggregated to higher
135 taxonomic levels on a sample-wise basis to help ensure comparability of fauna across the
136 temporal span of the dataset.

137 Sediment grain size data were available from LACSD, CLAEMD, and CSD data sets. Grain size
138 composition by dry weight were measured as % sand (Phi -0.5 – 4.0), % silt (Phi 4.5 – 8.0), and
139 % clay (Phi >8.5). The % sand was measured as material retained on a series of nested sieves
140 between 2-mm and 63-µm. Percentages of silt and clay were measured by the pipette method
141 (e.g., Plumb 1981) prior to 1990 and via a laser sediment analyzer thereafter (e.g., Beuselinck et
142 al. 1998). Grain size data from CSD were only reported as % sand and % mud, where % mud is
143 the sum of silts and clays.

144 2.2. Oceanographic Data

145 Patterns in ENSO and PDO were characterized using the National Oceanographic and
146 Atmospheric Administration National Centers for Environmental Information (NOAA NCEI)
147 SOI and PDO indices (Mantua & Hare 2002). Data were obtained from 1/1/1970 – 5/1/2020
148 from <https://www.cpc.ncep.noaa.gov/data/indices/soi> (SOI) and
149 <https://www.ncdc.noaa.gov/teleconnections/pdo/> (PDO). Monthly values for each index were
150 averaged into quarterly seasonal values.

151 Sea surface and bottom water temperatures, dissolved oxygen, and salinity were obtained from
152 the California Oceanic Fisheries Investigations (CalCOFI) hydrographic bottle dataset
153 (<https://calcofi.org/ccdata.html>), which were collected quarterly using either Niskin/Wally
154 bottles deployed on a vertical wire until 1993 or by a CTD+ bottle rosette frame after 1993.
155 Detailed methods for collection and quality control are available at <https://calcofi.org/about-calcofi/methods.html>. Hydrographic data were matched to benthic sampling locations by first
156 determining the closest CalCOFI monitoring station to each benthic station with the most
157 available data (Figure 1). Horizontal proximity to the benthic stations was determined by
158 calculating the geodesic distance between bottle sampling station and benthic fauna station using
159 latitude and longitude via the distGeo function in the geosphere package (v1.5-10 [Hijmans
160 2019]) in R (v3.6.1). CalCOFI stations were between 16.1 (LACSD Upper-Slope) and 24.6 km
161 (OCSan Mid-Shelf) away from their respective benthic data stations, distances that – while not
162 directly overlying each other – represented the most reasonable approximations of the ocean
163 water masses the benthic sites were exposed to (e.g., Dong et al. 2009, Watson et al. 2011,
164 Bograd et al. 2015, Kekuewa et al. 2022). Data from all bottles within +/- 20m of the benthic

166 station depth were selected and averaged to represent the bottom values for that benthic station.

167 The temperature from the 25m bottle was used as the surface water temperature.

168 Ocean acidification metrics were estimated from CalCOFI temperature, salinity, and oxygen data

169 using the proxy approach developed by Juranek et al. (2009) and Alin et al. (2012), which have

170 been previously applied to CalCOFI time-series data in Alin et al. (2012) and McClatchie et al.

171 (2016). Multiple linear regression equations were developed using the nortest (Gross & Ligges

172 2015) and robust (Wang et al. 2022) packages within R to estimate pH on the total scale (pH_T),

173 $p\text{CO}_2$, aragonite saturation state (Ω_{arag}), and calcite saturation state (Ω_{calc}) from proxy

174 temperature, salinity, and oxygen data using a calibration dataset consisting of inorganic carbon,

175 oxygen, and CTD observations collected on NOAA West Coast Ocean Acidification (WCOA)

176 cruises from 2007 to 2016 (Feely & Sabine 2013, Feely et al. 2015a,b, 2016, Alin et al. 2017).

177 Models were tuned to 25–300 m depth, with separate empirical relationships for the northern

178 (34°N–33.2°N) and southern (33.2°N–32.5°N) portions of the region. Final equations were

179 selected on the basis of having the lowest root mean squared errors (RMSE) and highest adjusted

180 R^2 values for the estimated parameters in the calibration data set (Supplement 1 – Table S2).

181 In comparison with the methods and results in Alin et al. (2012): 1) we did not standardize

182 variables within equations by subtracting mean parameter values, 2) higher standard error (SE)

183 values on coefficients likely reflect the very small numbers of calibration observations for this

184 study ($n = 21$ and 42 samples, in the northern and southern regions, respectively), and 3) RMSE

185 and R^2 values remain excellent, as the calibration data were tightly constrained to bottom depths

186 of 25–300 m within northern and southern regions so that the calibration data would be most

187 appropriate for this nearshore, benthos-focused study. It should be noted that the application of

188 these equations to data collected prior to the calibration dataset cruises (i.e., 2007) will likely

189 underestimate Ω and pH and overestimate $p\text{CO}_2$ values to some degree for the earliest parts of
190 the time-series because we did not account for the increase in anthropogenic CO_2 content across
191 the decades of this study (cf. Feely et al. 2016). As a consequence, the magnitude of change in
192 ocean acidification metrics (Ω , pH, and $p\text{CO}_2$) across the decades are likely underestimated by
193 our results, as similarly noted in McClatchie et al. (2016). Furthermore, there was most likely
194 some degree of inter-relatedness between ENSO and PDO cycles with water temperature,
195 dissolved oxygen and low pH bottom water (via upwelling) at the sampling sites. However,
196 separating the source of changes in carbonate chemistry and temperature (atmospheric vs.
197 upwelled) were beyond the scope of this work, which was focused on their (aggregate) effects on
198 the fauna.

199 For most of the years within the 1970-2020 period of interest, water quality data were collected
200 during four quarterly cruises per year. However, due to changes within the CalCOFI program,
201 there were no measures of temperature, dissolved oxygen, or acidification variables for 1970,
202 '71, '73, '77-'80, and '82-'83. For bottom dissolved oxygen, surface temperature, and bottom
203 water temperature, summer (July – September) values (i.e., concurrent with the benthic sampling
204 period) were selected for comparison to benthic faunal patterns. For the acidification variables,
205 the least acidified estimates (i.e., highest pH, Ω_{arag} , and Ω_{calc} , or lowest $p\text{CO}_2$) across the four
206 quarterly sampling events in a given year were selected to compare to benthic faunal patterns.

207 [2.3. Analytical Approach](#)

208 Changes in benthic faunal community composition were characterized using non-metric
209 Multidimensional Scaling (nMDS) ordination. Bray-Curtis dissimilarity values were calculated
210 based on presence-absence data (equivalent to Sørensen dissimilarity) through time at each
211 sample site. Dissimilarity values were ordinated 2-d nMDS across a minimum of 250 iterations.

212 A 1-way Permutation Analysis of Variance (PERMANOVA) was then used to quantify the
213 influence of time on community structure from each sampling site. PERMANOVAs were
214 conducted (10,000 permutations) on Bray-Curtis dissimilarities as the response variable and year
215 of collection as the predictor variable. The correlation between year of collection and the pattern
216 in 2-d ordinations was also calculated across 1,000 permutations. All similarity calculations,
217 ordinations, PERMANOVAs, and correlations were conducted in the vegan package (v2.6-2)
218 (Oksanen et al 2022) in R (v3.6.1) using the metaMDS, adonis2, and envfit functions.

219 Taxa from each sample site were grouped in categories of shelled and non-shelled organisms.
220 The relationships of these taxonomic groups with water quality/chemistry and oceanographic
221 patterns at each site were quantified using random forest regression. Regression models were
222 structured with faunal abundance as the response variable and the water quality and
223 oceanographic variables detailed in Table 1 as the potential predictor variables across 10,000
224 trees per relationship. The relative influence of each predictor variable on the abundance of the
225 taxonomic groups through time was quantified from % Mean Square Error change values for
226 each predictor in the models. Random forests regressions were calculated using the
227 randomForest and importance functions within the randomForest package (v4.6-16) (Liaw &
228 Wiener 2002) in R (v3.6.1).

229 Changes in the presence and absence of frequently observed individual taxa throughout time
230 were characterized using logistic regression. The presence of each taxon observed in 10 or more
231 years at each sampling site was treated as the response variable, with year of collection as the
232 predictor variable. An alpha value of 0.05 was used to select taxa whose presence significantly
233 changed over the span of the sampling period. Taxa were characterized as increasers – more
234 likely to be observed in modern samples – or decreasers – less likely to be observed in modern

235 samples – based upon the sign of the beta term in the logistic regression equation. Polychaetes,
236 crustaceans, echinoderms, and molluscs that were identified to the level of family or higher were
237 omitted from consideration. The abundance of each increaser or decreaser taxon was then
238 modeled with the suite of water quality/chemistry, sediment, and oceanographic variables
239 detailed in Table 1 as predictor variables across 10,000 trees in a random forest regression. The
240 relative influence of each predictor variable on the abundance of each taxon through time was
241 quantified from % Mean Square Error change values for each predictor in the models. Random
242 forests regressions were calculated using the randomForest and importance functions within the
243 randomForest package (v4.6-16) (Liaw & Wiener 2002) in R (v3.6.1).

244 Changes in species richness and total abundance at each sample site and depth zone were both
245 characterized using simple linear least squares regression. Species richness or total abundance
246 were set as the response variable, with year of collection as the predictor variable. Regressions
247 were done using the lm function in R (v3.6.1).

248 Geographic changes through time among frequently observed taxa were characterized using
249 linear least squares regression. Abundance-weighted latitude for each taxon observed in 10 or
250 more years was treated as the response variable and the year of collection was the predictor
251 variable. Year-specific, abundance-weighted latitude for each taxon was calculated by summing
252 across all four sampling sites the product of latitude at a sample site multiplied by relative
253 abundance (sample abundance/total abundance) of a taxon within that year (EQ 1). An alpha
254 value of 0.05 was used to select taxa whose location significantly changed over the span of the
255 sampling period. Taxa were characterized as shifting northwards – taxa centered in higher
256 latitudes in more modern samples – or shifting southwards – taxa centered in lower latitudes in
257 more modern samples – based upon the sign of the beta term in the linear regression equation.

258

259 EQ1 - *Abundance Weighted Latitude (Sample Site i(CLAEMD → CSD)*

267
$$\sum_i Latitude at Sample Site * \frac{Abundance at Sample Site}{Total Abundance}$$

268

260 Abundance of each northward or southward taxon was then modeled with the suite of water
261 quality/chemistry and oceanographic variables detailed in Table 1 as predictor variables across
262 10,000 trees in a random forest regression. The relative influence of each predictor variable on
263 the abundance of each taxon through time was quantified from % Mean Square Error change
264 values for each predictor in the models. Random forests regressions were calculated using the
265 randomForest and importance functions within the randomForest package (v4.6-16) (Liaw &
266 Wiener 2002) in R (v3.6.1).269

3. RESULTS

270

3.1 Patterns in Oceanographic Data

271 From the 1970s through the 2010s there was greater spatial variability in the selected
272 oceanographic measures across the different depth zones and sampling sites than temporal
273 variability at any given location. (Figure 2). Spatial patterns largely followed expectations, with
274 the water masses being colder, saltier, denser, more acidified, less oxygenated, and with more
275 nitrate as depth increased. The mid-shelf depth waters (~60m) were the most variable from year
276 to year, while the slope depth waters (~300m) were the most stable. Inspection of the time-series
277 data in Figure 2 suggests an increasing trend in temperature of mid-shelf depth waters at the
278 northern sampling sites and in the upper-slope depth waters at the southern sampling site.

279 Furthermore, there is a suggestion of declining dissolved oxygen across all depths and sampling
280 sites from the early 1980's through 2010's. The pattern amongst the modelled carbonate
281 chemistry variables suggests a more acidified/corrosive conditions in the outer-shelf depth
282 waters (~150m) of the northern sample sites. The carbonate chemistry variables fluctuated year-
283 to-year from the 1970s – 2010s, but were non-corrosive at mid-shelf depths across all three
284 sampling sites.

285 **3.2 Patterns in Benthic Data**

286 The nMDS plots (Figure 3) illustrate a pattern of changes in benthic community composition
287 through time in all four sampling regions and across all depth zones. While there is year-to-year
288 variation in ordination space, the general trend, as illustrated by the year correlation vector, is a
289 relatively unidirectional change from the 1970s through the 2010s. The most visually distinct
290 patterns are observable in the northernmost sample locations (LACSD and CLAEMD) (Figure 3,
291 panels A-E). Quantitatively, both the multivariate correlation (Table 2) and the PERMANOVA
292 (Table 3) results support the visual interpretation that the year of collection was significant ($\alpha =$
293 0.05) from the perspective of both the 2-D ordination (correlation) and the underlying
294 dissimilarity relationships among samples (PERMANOVA). Analysis of these patterns using
295 either presence/absence data, as done here, or abundance data (Supplement 2) did not change the
296 clear pattern of community composition change through time.

297 The top-ten most abundant taxa for each decade within each depth zone from the LACSD and
298 OCSan samples sites are presented in Table 4. Tracking these taxa through time presents a
299 similar pattern to the nMDS ordinations of Figure 3, where there was a shift in community
300 dominants across the decades. Of the 10 taxa that were community dominants at a given depth
301 and location in the 1970s, an average of only 3.6 of these across the two programs were still

302 dominant taxa in the 2010s. At mid-shelf depths, there was a shift from bivalves, polychaetes
303 (cirratulids, lumbrinerids, and terebellids), and ostracods in the 1970s, giving way to ophiuroids,
304 amphipods, and spionid polychaetes in the 1980s and 1990s. The mid-shelf communities of the
305 2000s and 2010s were dominated by ophiuroids and a variety of polychaetes, with no shelled
306 molluscs among the top-ten most abundant taxa. The outer-shelf communities show a similar
307 break between 1970s and 1980s taxa in contrast to more modern samples. The outer-shelf was a
308 bivalve and ophiuroid dominated community before 1990 that shifted to an ophiuroid and
309 polychaete dominated community in the 2000s and 2010s. The dominant taxa of the upper-slope
310 from the 1970s and 1980s were relatively persistent through 2000s compared to the other depth
311 zones. The upper-slope communities had a mix of polychaetes and amphipods consistently in the
312 top-10 taxa through the 2000s, with a shift to different species of polychaetes and molluses in the
313 2010s.

314 Many taxa were inconsistently observed through time, with only 8 to 25% of the taxa at a given
315 site occurring in 10 or more years (Table 5a). It is important to note that the consistency of
316 detection of a given taxon through time within our data set may have potentially been impaired
317 for some taxa due to the regional standard operating practice of using only a single benthic grab
318 to characterize benthic communities combined with high biodiversity of the region. Despite this,
319 the logistic regressions of taxa presence vs. absence indicated that 105 taxa had an increasing
320 probability of being observed in more modern years – increaser taxa – and 44 had a decreasing
321 probability of being observed in more modern years – decreaser taxa (details in Supplement 3 –
322 Table S5). These patterns can be illustrated by the ampeliscid amphipod *Ampelisca hancocki* or
323 the travisiid polychaete *Travisia brevis* – both increasers – versus the tellinid bivalve *Macoma*
324 *carlottensis* or entropneusts – both decreasers (Figure 4). Nearly all of the taxa that displayed a

325 temporal trend had consistent increaser/decreaser patterns across all sampling locations and
326 depth zones, with the exception of three taxa that increased in some sites and decreased in others:
327 the bivalve *Axinopsida serricata* decreased in the mid-shelf and upper-slope of northern sites
328 (CLAEMD and LACSD), while increasing in the outer-shelf of the southern location (CSD); the
329 sigalionid polychaete *Sthenelanella uniformis* decreased in southern outer-shelf depths while
330 increasing at the northern mid-shelf locations; lastly, the spionid polychaetes in the
331 *Spiochaetopterus costarum* complex decreased in mid-shelf central locations (OCSan) but
332 increased in outer-shelf depths.

333 The random forest models of the individual increaser and decreaser taxa through time indicates
334 that there were relatively distinct influences on the two types of taxa. The most influential
335 predictors (based upon their effect on model mean square error) of the abundance of decreaser
336 taxa through time were associated with ocean acidification or dissolved oxygen at all three depth
337 zones, as well as ENSO/PDO oceanographic variables for decreaser taxa from the outer-shelf
338 and sediment composition for decreaser taxa from the upper-slope (Figure 5). Conversely, the
339 top three most influential variables for increaser taxa were related to changes in temperature in
340 all depth zones and ENSO/PDO in the mid and outer-shelf zones. Relatively few increaser taxa
341 were influenced by acidification or dissolved oxygen patterns. Sediment grain size was an
342 important predictor for approximately 20% of the taxa, most commonly among polychaetes at
343 upper-slope depths. Supplement 3 (Tables S6 and S7) contains the detailed variable importance
344 data for each increaser or decreaser taxon.

345 The greater number of increaser taxa versus decreaser taxa across the sampling sites was echoed
346 in the overall trend of species richness through time. All sites had significantly ($\alpha = 0.1$)
347 increasing taxa richness through time except mid-shelf depths at CSD and upper-slope depths at

348 LACSD (Figure 6). In contrast, the total abundance within a given sample significantly ($\alpha = 0.1$)
349 declined through time in the mid-shelf depths of the CLAEMD, OCSan, and CSD sites, as well
350 as at the outer-shelf and upper-slope depths of the LACSD site (Figure 7). Total abundance
351 increased at the OCSan outer-shelf sites and there was no discernable trend at the other sample
352 sites.

353 Eighty-six taxa shifted their geographic center of abundance northward or southward across the
354 study region (Supplement 3 – Table S8). Most shifts occurred among mid-shelf taxa, with 37
355 taxa shifting northward and only 7 shifting southward (Table 5b). Conversely, the distributions
356 of more taxa from the outer-shelf (29) and upper shelf (3) shifted southward than shifted
357 northward (18 and 0, respectively). These patterns are illustrated in Figure 8 with the northward
358 shifts in distribution of the spionid polychaete *Prionospio dubia* and the ampharetid polychaete
359 *Asabellides lineata* (both mid-shelf). Conversely, southward shifts in distribution are illustrated
360 by the spionid polychaete *Prionospio jubata*, the ampeliscid amphipod *Ampelisca pacifica*, and
361 the thyasirid bivalve *Adontorhina cyclia* along the outer-shelf, or the scaphopod mollusc
362 *Rhabdus rectius* on the upper-slope. The center of distribution for 51 of the 86 taxa shifted by
363 more than 1 degree of latitude (a maximum of 1.24 degrees) north or south within our sampling
364 area.

365 The random forest models of individual taxa whose distributions shifted northward or southward
366 indicated a mix of influences on the two types of taxa (Figure 9). Of the taxa whose distribution
367 shifted northward, temperature and acidification variables were the most influential predictors of
368 abundance for more than 50% of the taxa on the mid-shelf and the outer-shelf, while
369 oceanographic and dissolved oxygen predictors were less (<30%) frequently important to mid-
370 shelf and outer-shelf taxa. Among those taxa whose distribution shifted southwards, acidification

371 was the only clearly important predictor for outer-shelf taxa and acidification and dissolved
372 oxygen were similarly important for mid-shelf taxa. As noted above, only 3 upper-slope taxa had
373 significantly southward shifted distributions and only 1 taxon had a northward shifted
374 distribution. For these taxa acidification and dissolved oxygen predictors were important for all
375 of the northward and southward taxa, with temperature also important for 2 of the 3 southward
376 taxa (full details in Supplement 3 – Tables S9 and S10). Note that ENSO/PDO oceanographic
377 variables were not influential predictors for any southward shifting taxa at upper-slope depths.

378 A visual inspection of the relative abundance of shelled and non-shelled taxa through time
379 showed distinct changes in the fauna through time. Figure 10 highlights the pattern in all three
380 depth zones from the LACSD sampling sites. The upper-slope location, where there is the
381 greatest, consistent exposure to acidified waters, and the outer-shelf location, where exposure has
382 increased in more recent decades, showed relatively high abundance of shelled organisms in the
383 1970s and early 1980s. This was then followed by an initial sharp decline in the mid-1980s,
384 short-term recovery, and a longer-term decline in the mid 1990's (Figure 10). In contrast, the
385 abundance of non-shelled organisms showed a less distinct pattern through time, with fluctuating
386 abundance that would be expected with most fauna. At mid shelf depths, where there is little
387 expected exposure to corrosive waters, the relative abundance of shelled organisms declined
388 briefly in the early 1990s, but recovered to normal levels soon after, while the abundance of non-
389 shelled organisms was relatively consistent through time. Plots of shelled and non-shelled
390 organisms from all depths and sites are presented in Supplement 4. The decline in shelled
391 organisms at outer-shelf depth was not as drastic at the centrally located OCSan site, with a
392 muted decline in the mid-1990s and recovery through the 2000s. It was not apparent at all at the
393 southern-most, CSD sampling site.

394 The random forest regression models of total shelled fauna abundance indicated in the northern
395 and centrally located mid-shelf stations (CLAEMD, LACSD, and OCSan) that acidification
396 predictors were most frequently selected as influential variables. Temperature and oceanographic
397 variables were most influential at the southern mid-shelf station. At outer-shelf depths,
398 acidification variables were never identified as influential predictors of shelled fauna abundance,
399 whereas DO, temperature and oceanographic variables were. In the upper-slope locations,
400 acidification variables were most frequently identified as influential predictors, though DO,
401 temperature, and oceanographic variables were all selected once too. Of the individual shelled
402 taxa that could be classified as increaser or decrease taxa, the likelihood of observing 8 taxa
403 decreased through time and 13 increased (Supplement 3 – Table S5) across all three depth zones.
404 Of the individual shelled taxa that could be classified as northward or southward shifting taxa,
405 the distribution of 4 shifted northwards and 8 shifted southwards (Supplement 3 – Table S8).

406 **4. DISCUSSION**

407 This study presents empirical evidence for ongoing temporal changes in the composition of the
408 macrobenthic communities of the coastal ocean of Southern California. The changes appear to be
409 gradual and relatively unidirectional at a decadal scale, with oscillation of community dominants
410 and secondary taxa from year-to-year at all of the sampling locations and depth zones. Beyond
411 demonstrating the change, we were able to characterize the nature of the change. Some taxa
412 became more frequently observed in modern samples than in the past, while others commonly
413 observed in the past were rarely observed in modern times. Similarly, there were detectable shifts
414 in the geographic distribution of a number of taxa, shifting either northward or southward across
415 the breadth of the Southern California Bight. Most significantly, we were able to provide insight

416 into the relative influence of changing ocean conditions on these appearances, disappearances, or
417 geographic shifts. The bulk of the decreasing taxa were driven by changes in carbonate
418 chemistry and dissolved oxygen regimes of their habitats, while the increasing taxa were more
419 frequently linked to changes in water temperature and ENSO/PDO cycles.

420 Our findings for benthic fauna are similar to that of Hale et al. (2018) on the Atlantic Coast of
421 the US. When considering the autecology and natural history of the taxa across the decades,
422 there were shifts away from a bivalve (thyasirids, lucinids, tellinids) and polychaete (spionids
423 and cirratulids) dominated community towards a community dominated by amphipodid
424 ophiuroids, amphipods, and a more functionally diverse array of polychaetes. These data indicate
425 that the communities of the continental shelf and slope of the Southern California Bight are,
426 within recent record, comprised of a majority of deposit and interface feeding taxa, which makes
427 sense given the depth of the water and separation from the photic zone. However, the shifts from
428 a community dominated by lucinid bivalves (i.e., *Axinopsida serricata* and *Parvilucina*
429 *tenuisculpta*) and deposit/interface-feeding polychaetes to one with an array of additional feeding
430 modes from predatory polychaetes (e.g., *Lumbrineris* spp., *Scoletoma tetraura*) and crustaceans
431 (e.g., *Metaphoxus frequens*, *Rhepoxynius* spp.) to true filter feeders (e.g., *Phoronis* sp.)
432 represents a broadening of the realized ecological niche space in the habitat. The broadening of
433 niche space occupied by the fauna, may in part account for the increasing species richness
434 combined with declining total abundance observed across the decades in the dataset (Cardinale et
435 al. 2009, Niklaus et al. 2017).

436 We would suggest that the scope of the temporal community composition changes we observed
437 was ecologically relevant. To give that change context, the difference in composition between
438 samples from the 1970s and the 2010s was equivalent to differences in composition between a

439 reference condition site and one disturbed by anthropogenic activities. As an illustration, the
440 Bray-Curtis dissimilarity of presence/absence data between the 1974 and 2018 sample from the
441 LACSD mid-shelf site was 0.75. The same dissimilarity measure between a mid-shelf reference
442 condition site and a disturbed site from a 2018 Southern California Bight regional survey – using
443 a similar type of grab, as well as the same sieve size and taxonomic standard – was 0.73 (Gillett
444 et al. 2022). The nature of the changes was different – one is a shift from an older community to
445 a more modern community, the other a shift from an intact modern assemblage to a pollution
446 tolerant assemblage – but both pairs represent an approximately 75% difference in sample
447 composition.

448 There are likely multiple mechanisms for the change in community composition and increase in
449 species richness observed over the decades. All of the sample sites were selected to minimize
450 influence of local human disturbance (i.e., wastewater outfalls, dredging, trawling). However, the
451 dominance of the lucinid bivalves and deposit feeders in older samples (i.e., typical indicators of
452 organic matter enrichment) versus a broader array of feeding types in newer samples could be
453 reflective of regional recovery from anthropogenic pollution in the earlier part of the 20th century
454 (Leonard-Pingel et al. 2019, Los Angeles County Sanitation Districts 2020, Orange County
455 Sanitation District 2021). This recovery could partially explain the species richness and
456 abundance patterns that were observed (e.g., Diaz et al. 2008). However, the degree of
457 disturbance observed at the sampling sites across the length of the dataset was relatively
458 minimal, with nearly all of the samples within a reference or low disturbance category (following
459 Smith et al. 2001, Gillett et al. 2022) (Figure 11).

460 An alternative, non-environmental explanation one could posit for both the increased species
461 richness and the differences in taxa observed across time might be changes in the science of

462 taxonomy (Isaac et al. 2004, Agapow & Sluys 2005, Morrison et al. 2009). Taxonomy changes
463 as new species are erected from within old polyphyletic “species”, local taxonomic precision
464 changes, or the names change due to refined precedence of descriptions. This can be of particular
465 concern with data records as long as those used in this study, during which the taxonomist
466 personnel in each of the monitoring program has changed numerous times. However, that does
467 not appear to be a major contributing factor to the patterns observed in the present study. The
468 nature and magnitude of community change we observed was similar across four independent
469 programs whose taxonomists did not change at the same times. Furthermore, the declines in
470 abundance that were observed concurrently with the increases in species richness are unlikely to
471 occur if species names were just being split or refined from family to species. In fact, the relative
472 taxonomic stability across our data sets is a tribute to the Southern California Association of
473 Marine Invertebrate Taxonomists (SCAMIT, www.scamit.org) who work diligently to ensure
474 consistency in nomenclature over time and who assisted in assembling these data sets prior to
475 analysis to limit any taxonomic confounding.

476 Beyond any changes in regional pollution levels or shifts in taxonomic nomenclature, our
477 analyses indicate that temperature and carbonate chemistry appear to have been important factors
478 affecting the benthic composition over time. Temperature was an important predictor for taxa
479 whose geographic distribution shifted, as well as those that increased in frequency of occurrence
480 in the more modern samples. We would suggest that a combination of range expansions within
481 the study area and from outside of the region to inside of it created the increase in overall species
482 richness observed within the dataset. This would follow patterns observed in benthic
483 communities along the Atlantic coast of US (Hale et al. 2017) and the Kattegat (Goransson
484 2017), as well pelagic communities in the Atlantic and the Pacific (e.g., ter Hofstede et al. 2010,

485 McClatchie et al. 2016). Of the taxa whose range did shift, temperature was more frequently
486 important for those moving northwards than southwards (predominantly crustaceans, as well as
487 spionid and maldanid polychaetes), which follows with the encroachment of warmer waters into
488 the northern parts of the Southern California Bight (e.g., Fumo et al. 2020) (Figure 2). The scale
489 of range shifts for benthic species has been documented up to 70km per decade (Birchenough et
490 al. 2015). These rates are in line with observations of the taxa in the present study, where more
491 than two-thirds of the taxa that had northward or southward shifts in their distribution changed
492 by 1-1.2 degrees latitude (approximately 111 – 133km) across the five decades of our study.

493 There is less evidence in the literature for geographic shifts in benthic infauna related to changes
494 in carbonate chemistry, though the patterns from our study suggest that carbonate chemistry and
495 dissolved oxygen can shape the distribution of benthic taxa as strongly as the more well
496 documented changes related to water temperature noted above. Sato et al (2017) demonstrated
497 habitat compression for motile benthic epifauna on the continental shelf of the Southern
498 California Bight as a product of changes in carbonate chemistry and dissolved oxygen. The
499 gradient in exposure to low pH waters across relatively short spatial scales in the region (Hauri et
500 al. 2013, McLaughlin et al. 2018, Kessouri et al. 2022) may contribute to the range shifts we
501 observed. Conversely, the influence of carbonate chemistry on changes in community
502 composition related to local extirpations and appearances we observed in the macrobenthos has
503 been predicted or observed in other systems (e.g., Kroeker et al. 2011, Busch et al. 2013,
504 Nagelkerken & Connell 2022). A large number of the decrease taxa influenced by carbonate
505 chemistry were bivalve and gastropod molluscs, which makes sense given their calcium
506 carbonate shells (Green et al. 2009, Clements & Hunt 2017). In contrast, the increase taxa
507 influenced by carbonate chemistry were mostly spionid or cirratulid polychaetes and crustaceans,

508 most of which were also deposit/interface feeders and could be filling the niche and physical
509 space vacated by the disappearing bivalves and gastropods.

510 The specific impacts of the observed changes in macrobenthic community composition on the
511 functioning of the soft-sediment continental shelf and slope ecosystem are hard to quantify
512 within the scope of the present study. However, experiments exposing different types of infauna
513 to altered temperature and pH conditions have demonstrated changes in behavior and allocation
514 of energetic resources within individual fauna (Wood et al. 2008, Widdicombe et al. 2009,
515 Christensen et al. 2017). When these climate change- and ocean acidification-driven impacts are
516 extrapolated to the whole of the benthic ecosystem (e.g., Busch et al. 2013, Morley et al. 2022,
517 Weinert et al. 2022), decreases in rates of secondary production, nutrient cycling, and carbon
518 sequestration are predicted. Our data indicate that the macrobenthic community of the Southern
519 California continental margin has changed compositionally and that total abundance has
520 declined. When viewed through the lens of the aforementioned studies, the patterns we observed
521 could be suggestive of the potential for a reduction in ecosystem functioning (e.g.,
522 bioturbation/nutrient cycling and secondary productivity). However, the accompanying increase
523 in taxonomic and feeding guild diversity suggests that there may have been some degree of
524 community compensation against the influence of climate change and acidification (e.g.,
525 Hendriks et al. 2010, Lavergne et al. 2010, Kroeker et al. 2011).

526 One of the more striking examples of community change we observed was the decline of shelled
527 organisms over time in the northern portions of the region (see also Tomašových & Kidwell
528 2017, Leonard-Pingel et al. 2019). The northern parts of our sample area have greater exposure
529 to acidic waters (Hauri et al. 2013, McLaughlin et al. 2018) due to the oceanographic currents of
530 the region (Harms & Winant 1998, Bray et al. 1999). However, the abundance patterns of shelled

531 fauna, especially in the 1970s and early 1980s, at the northern sample sites did not perfectly track
532 the patterns in Ω_{arag} . This is, in part, due to the unfortunate lack of consistent data at our water
533 quality/chemistry sites during the early years of the benthic monitoring data record that prevents
534 us from drawing quantitative conclusions. McClatchie et al. (2010) highlight the 1970s and
535 1980s as a period of increased oxygen concentrations in the Southern California Bight as a
536 whole, from which one could infer generally lower pCO₂ and less acidic conditions. The four
537 data points prior to 1984 where we estimate low Ω_{arag} values may represent local anomalies or
538 influence of legacy organic matter pollution in the continental shelf of the region.

539 An additional level of complexity to consider when interpreting these patterns is that water
540 column acidification most likely affects the veliger larvae and freshly settled infaunal molluscs
541 more acutely than the adults buried deeper in the sediment (Green et al. 2009, Widdicombe et al.
542 2009, Waldbusser et al. 2015). This differential impact would create a lag where the adults –
543 which are detected in the benthic monitoring data – persist through acidified conditions but are
544 not being replaced at the population level by juveniles and larvae – which are not detected in the
545 benthic monitoring data. Illustrating this potential lag in population-level response, the
546 abundance of a many of the molluscs classified as decreasers in our data set (e.g., *Acila*
547 *castrensis*, *Chaetoderma* sp, *M. carlottensis*, *P. tenuisculpta*) were influenced in our random
548 forest analyses by ocean acidification variables from one and three years prior to their collection
549 rather than measurements from the same year of their collection (Supplement 3 – Table S7).

550 There has been increasing recognition among managers of the need to monitor and track both the
551 exposure to and potential effects of climate change and acidification in coastal waters (Boehm et
552 al 2015, Cross et al. 2019, Tilbrook et al 2019). The present study could represent the first steps
553 towards developing specific benthic indicators of dissolved oxygen, temperature, or

554 acidification. We have identified a number of species that appear to be either sensitive to or
555 indicative of exposure to these different water chemistry/quality stressors. These species could
556 be used as the subjects of focused exposure or physiological studies to support the statistical
557 relationships we observed in this retrospective study, much as Bednarsek et al. (2017) suggested
558 pteropods as sentinels for midwater taxa. Alternatively, the patterns in abundance of the benthic
559 species could be combined into multi-species metrics or used to create a stressor-specific
560 assemblage models in a benthic index of acidification exposure. These types of experiments and
561 assessment tools would combine nicely with existing chemical and biological monitoring efforts
562 in the water column to create a holistic perspective on the exposure and effects of climate change
563 on the coastal ocean.

564

565 5. ACKNOWLEDGEMENTS

566 The authors thank SCCWP's Commission Technical Advisory Group for reviewing the
567 manuscript and providing feedback on its content and readability. They also thank Valerie
568 Goodwin for assistance in data preparation. The authors acknowledge the efforts of the present
569 and former staff working at the LACSD, CLAEMD, OCSan, and CSD ocean monitoring
570 programs over the decades who have spent, and continue to spend, their careers collecting the
571 samples and producing the benthic data used in this study. Finally, the authors thank Richard
572 Feely and two anonymous reviewers who helped to improve the science and readability of the
573 manuscript. This is PMEL contribution number 5467. This work was funded by SCCWRP
574 internal funds, while the contributions of SRA were funded by PMEL.

575 5. LITERATURE CITED

- 576 Agapow PM, Sluys R (2005) The reality of taxonomic change. *Trends Ecol Evol* 20:278–280.
- 577 Algueró-Muñiz M, Alvarez-Fernandez S, Thor P, Bach LT, Esposito M, Horn HG, Ecker U,
578 Langer JAF, Taucher J, Malzahn AM, Riebesell U, Boersma M (2017) Ocean acidification
579 effects on mesozooplankton community development: Results from a long-term mesocosm
580 experiment. *PLoS One* 12:1–21.
- 581 Alin SR, Feely RA, Dickson AG, Martín Hernández-Ayón J, Juranek LW, Ohman MD,
582 Goericke R (2012) Robust empirical relationships for estimating the carbonate system in the
583 southern California Current System and application to CalCOFI hydrographic cruise data
584 (2005–2011). *J Geophys Res Ocean* 117.
- 585 Alin, SR., Feely, RA, Hales, B, Byrne, RH, Cochlan, W, Liu, X, Greeley, D. 2017. Dissolved
586 inorganic carbon, total alkalinity, pH on total scale, and other variables collected from
587 profile and discrete sample observations using CTD, Niskin bottle, and other instruments
588 from NOAA Ship Ronald H. Brown in the U.S. West Coast California Current System
589 from 2016-05-08 to 2016-06-06 (NCEI Accession 0169412). NOAA National Centers for
590 Environmental Information. Dataset. <https://doi.org/10.7289/v5v40shg>. Accessed
591 October 25, 2018.
- 592 Barclay KM, Gaylord B, Jellison BM, Shukla P, Sanford E, Leighton LR (2019) Variation in the
593 effects of ocean acidification on shell growth and strength in two intertidal gastropods. *Mar*
594 *Ecol Prog Ser* 626:109–121.
- 595 Bednaršek N, Calosi P, Feely RA, Ambrose R, Byrne M, Chan KYK, Dupont S, Padilla-Gamiño
596 JL, Spicer JI, Kessouri F, Roethler M, Sutula M, Weisberg SB (2021) Synthesis of
597 Thresholds of Ocean Acidification Impacts on Echinoderms. *Front Mar Sci* 8.
- 598 Beuselinck L, Govers G, Poesen J, Degraer G, Froyen L (1998) Grain-size analysis by laser
599 diffractometry: Comparison with the sieve-pipette method. *Catena* 32:193–208.

- 600 Birchenough SNR, Reiss H, Degraer S, Mieszkowska N, Borja Á, Buhl-mortensen L,
 601 Braeckman U, Craeymeersch J, De Mesel I, Kerckhof F, Kröncke I, Parra S, Rabaut M,
 602 Schröder A, Van Colen C, Van Hoey G, Vincx M, Wätjen K, Mesel I De, Kerckhof F,
 603 Kröncke I, Parra S, Rabaut M, Schröder A, Colen C Van, Hoey G Van (2015) Climate
 604 change and marine benthos: A review of existing research and future directions in the North
 605 Atlantic. *Wiley Interdiscip Rev Clim Chang* 6:203–223.
- 606 Bograd SJ, Castro CG, Di Lorenzo E, Palacios DM, Bailey H, Gilly W, Chavez FP (2008)
 607 Oxygen declines and the shoaling of the hypoxic boundary in the California Current.
 608 *Geophys Res Lett* 35:1–6.
- 609 Bograd SJ, Pozo M, Di E, Castro CG, Schroeder ID, Goericke R, Anderson CR, Benitez-nelson
 610 C, Whitney FA (2015) Changes in source waters to the Southern California Bight. *Deep Sea*
 611 *Res II* 112:42–52.
- 612 Bograd SJ, Schroeder ID, Jacox MG (2019) A water mass history of the Southern California
 613 current system. *Geophys Res Lett* 46:6690–6698.
- 614 Booth JAT, Woodson CB, Sutula M, Micheli F, Weisberg SB, Bograd SJ, Steele A, Schoen J,
 615 Crowder LB, Nin E (2014) Patterns and potential drivers of declining oxygen content along
 616 the southern California coast. *Limnol Oceanogr* 59:1–14.
- 617 Bray NA, Keyes A, Morawitz WM (1999) The California Current system in the Southern
 618 California Bight and the Santa Barbara Channel. *J Geophys Res Ocean* 104:7695–7714.
- 619 Briggs JC, Bowen BW (2013) Marine shelf habitat : biogeography and evolution. *J Biogeogr*
 620 40:1023–1035.
- 621 Busch DS, Harvey CJ, McElhany P (2013) Potential impacts of ocean acidification on the Puget
 622 Sound food web. *ICES J Mar Sci* 70:823–833.
- 623 Cai W, Santoso A, Collins M, Dewitte B, Karamperidou C, Kug JS, Lengaigne M, McPhaden
 624 MJ, Stuecker MF, Taschetto AS, Timmermann A, Wu L, Yeh SW, Wang G, Ng B, Jia F,
 625 Yang Y, Ying J, Zheng XT, Bayr T, Brown JR, Capotondi A, Cobb KM, Gan B, Geng T,
 626 Ham YG, Jin FF, Jo HS, Li X, Lin X, McGregor S, Park JH, Stein K, Yang K, Zhang L,
 627 Zhong W (2021) Changing El Niño–Southern Oscillation in a warming climate. *Nat Rev*
 628 *Earth Environ* 2:628–644.
- 629 Cardinale BJ, Bennett DM, Nelson CE, Gross K (2009) Does productivity drive diversity or vice
 630 versa? A test of the multivariate productivity-diversity hypothesis in streams. *Ecology*
 631 90:1227–1241.
- 632 Chhak K, Di Lorenzo E (2007) Decadal variations in the California Current upwelling cells.
 633 *Geophys Res Lett* 34:1–6.
- 634 Christensen AB, Radivojevich KO, Pyne MI (2017) Effects of CO₂, pH and temperature on
 635 respiration and regeneration in the burrowing brittle stars *Hemipholis cordifera* and
 636 *Microphiopholis gracillima*. *J Exp Mar Bio Ecol* 495:13–23.
- 637 City of Los Angeles Environmental Monitoring Division (2019) Marine Monitoring in Santa
 638 Monical Bay: Biennial Assessment Report for the Period of January 2017 through
 639 December 2018. Playa del Rey, CA.

- 640 City of San Diego Ocean Monitoring Program (2020) Biennial Receiving Waters Monitoring and
641 Assessment Report for the Point Loma and South Bay Ocean Outfalls 2018-2019. San
642 Diego, CA.
- 643 Claisse JT, Blanchette CA, Dugan JE, Williams JP, Freiwald J, Pondella DJI, Schooler NK,
644 Hubbard DM, Davis K, Zahn LA, Williams CM, Caselle JE (2018) Biogeographic patterns
645 of communities across diverse marine ecosystems in southern California. *Mar Ecol* 39:1–
646 22.
- 647 Clements JC, Hunt HL (2017) Effects of CO₂-driven sediment acidification on infaunal marine
648 bivalves: A synthesis. *Mar Pollut Bull* 117:6–16.
- 649 Cross JN, Turner JA, Cooley SR, Newton JA, Azetsu-Scott K, Chambers RC, Dugan D,
650 Goldsmith K, Gurney-Smith H, Harper AR, Jewett EB, Joy D, King T, Klinger T, Kurz M,
651 Morrison J, Motyka J, Ombres EH, Saba G, Silva EL, Smits E, Vreeland-Dawson J, Wickes
652 L (2019) Building the knowledge-to-action pipeline in North America: Connecting ocean
653 acidification research and actionable decision support. *Front Mar Sci* 6.
- 644 Diaz RJ, Rhoads DC, Blake JA, Kropf RK, Keay KE (2008) Long-term trends of benthic
habitats related to reduction in wastewater discharge to Boston Harbor. *Estuaries and Coasts*
31:1184–1197.
- 644 Doney SC, Fabry VJ, Feely RA, Kleypas JA (2009) Ocean acidification : The other CO₂
problem. *Ann Rev Mar Sci* 1:169–192.
- 644 Dong C, Idica EY, Mcwilliams JC (2009) Circulation and multiple-scale variability in the
Southern California Bight. *Prog Oceanogr* 82:168–190.
- 644 Ellingsen KE (2002) Soft-sediment benthic biodiversity on the continental shelf in relation to
environmental variability. *Mar Ecol Prog Ser* 232:15–27.
- 644 Espinel-Velasco N, Hoffmann L, Agüera A, Byrne M, Dupont S, Uthicke S, Webster NS,
645 Lamare M (2018) Effects of ocean acidification on the settlement and metamorphosis of
646 marine invertebrate and fish larvae : a review. *Mar Ecol Prog Ser* 606:237–257.
- 644 Feely, RA., Alin, SR, Hales, B, Johnson, GC, Byrne, RH, Peterson, WT, Liu, X, Greeley, D.
645 2015a. Dissolved inorganic carbon, total alkalinity, pH on total scale and other variables
646 collected from profile and discrete sample observations on NOAA Ship Fairweather
647 (EXPOCODE 317W20130803) and R/V Point Sur (EXPOCODE 32P020130821) in the
648 U.S. West Coast California Current System during the 2013 West Coast Ocean
649 Acidification Cruise (WCOA2013) from 2013-08-03 to 2013-08-29 (NCEI Accession
650 0132082). NOAA National Centers for Environmental Information. Dataset.
651 <https://doi.org/10.7289/v5c53hxp>. Accessed October 25, 2018.
- 644 Feely, RA., Alin, SR, Hales, B, Johnson, GC, Juranek, LW, Byrne, RH, Peterson, WT, Goni, M,
645 Liu, X, Greeley, D. 2015b. Dissolved inorganic carbon, total alkalinity, pH, temperature,
646 salinity and other variables collected from profile and discrete sample observations using
647 CTD, Niskin bottle, and other instruments from R/V Wecoma in the U.S. West Coast
648 California Current System during the 2011 West Coast Ocean Acidification Cruise
649 (WCOA2011) from 2011-08-12 to 2011-08-30 (NCEI Accession 0123467). NOAA

- 680 National Centers for Environmental Information. Dataset.
681 <https://doi.org/10.7289/v5jq0xz1>. Accessed October 25, 2018.

682 Feely, RA., Alin, SR, Hales, B, Johnson, GC, Juranek, LW, Peterson, WT, Greeley, D. 2016.
683 Dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected
684 from discrete sample and profile observations using Alkalinity titrator, CTD and other
685 instruments from NOAA Ship Bell M. Shimada in the Columbia River estuary -
686 Washington/Oregon, Gulf of the Farallones National Marine Sanctuary and others from
687 2012-09-04 to 2012-09-17 (NCEI Accession 0157445). NOAA National Centers for
688 Environmental Information. Dataset. <https://doi.org/10.25921/e7m6-gh32>. Accessed
689 October 25, 2018.

690 Feely, RA, Sabine, CA. 2013. Dissolved inorganic carbon, alkalinity, temperature, salinity and
691 other variables collected from discrete sample and profile observations using Alkalinity
692 titrator, CTD and other instruments from WECOMA in the U.S. West Coast California
693 Current System from 2007-05-11 to 2007-06-14 (NCEI Accession 0083685). [indicate
694 subset used]. NOAA National Centers for Environmental Information. Dataset.
695 https://doi.org/10.3334/cdiac/otg.clivar_nacp_west_coast_cruise_2007. Accessed
696 October 25, 2018.

697 Freund MB, Henley BJ, Karoly DJ, McGregor H V., Abram NJ, Dommenech D (2019) Higher
698 frequency of Central Pacific El Niño events in recent decades relative to past centuries. *Nat
699 Geosci* 12:450–455.

700 Fumo JT, Carter ML, Flick RE, Rasmussen LL, Rudnick DL, Iacobellis SF (2020)
701 Contextualizing Marine Heatwaves in the Southern California Bight Under Anthropogenic
702 Climate Change. *J Geophys Res Ocean* 125.

703 Furukawa Y, Bentley SJ, Lavoie DL (2001) Bioirrigation modeling in experimental benthic
704 mesocosms. *J Mar Res* 59:417–452.

705 Gelpi CG, Norris KE (2008) Seasonal temperature dynamics of the upper ocean in the Southern
706 California Bight. *J Geophys Res Ocean* 113.

707 Gillett DJ, Enright W, Walker JB (2022) Southern California Bight 2018 Regional Monitoring
708 Program: Volume III. Benthic Infauna. SCCWRP Technical Report 1289. Costa Mesa, CA.

709 Gillett DJ, Gilbane L, Schiff KC (2021) Characterizing Community Structure of Benthic Infauna
710 From the Continental Slope of the Southern California Bight. *Front Mar Sci* 8.

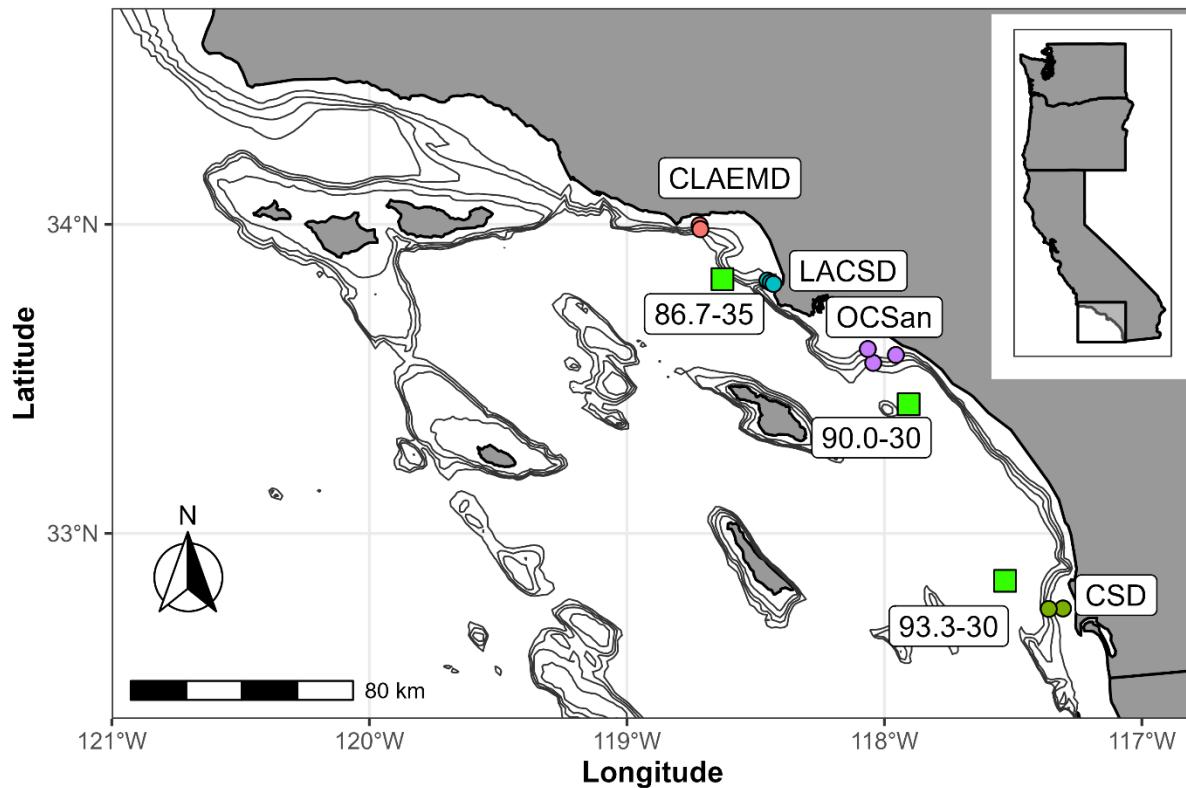
711 Gilly WF, Michael Beman J, Litvin SY, Robison BH (2013) Oceanographic and biological
712 effects of shoaling of the oxygen minimum zone. *Ann Rev Mar Sci* 5:393–420.

713 Goransson P (2017) Changes of benthic fauna in the Kattegat - An indication of climate change
714 at mid-latitudes ? *Estuar, Coast Shelf Sci* 194:276–285.

715 Gray JS, Elliott M (2009) *Ecology of Marine Sediments: From Science to Management*, 2nd ed.
716 Oxford University Press, New York.

717 Green MA, Waldbusser GG, Reilly SL, Emerson K, O'Donnell S (2009) Death by dissolution:

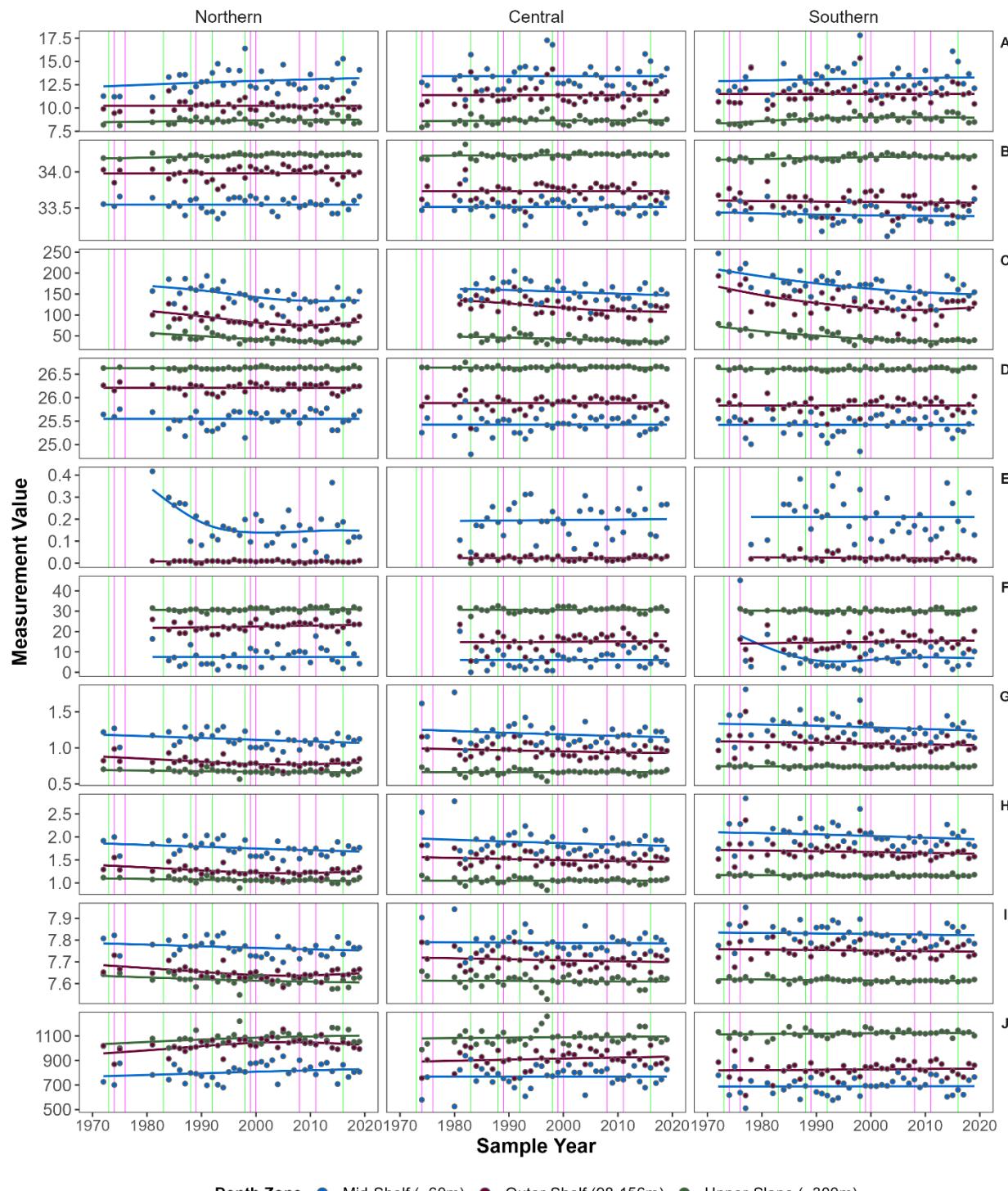
- 718 Sediment saturation state as a mortality factor for juvenile bivalves. *Limnol Oceanogr*
 719 54:1037–1047.
- 720 Hale SS, Buffum HW, Kiddon JA, Hughes MM (2017) Subtidal Benthic Invertebrates Shifting
 721 Northward Along the US Atlantic Coast. *Estuaries and Coasts* 40:1744–1756.
- 722 Hale SS, Hughes MM, Buffum HW (2018) Historical Trends of Benthic Invertebrate
 723 Biodiversity Spanning 182 Years in a Southern New England Estuary. *Estuaries and*
 724 *Coasts*:1–14.
- 725 Harley CDG, Hughes AR, Hultgren KM, Miner BG, Sorte CJB, Thornber CS, Rodriguez LF,
 726 Tomanek L, Williams SL (2006) The impacts of climate change in coastal marine systems.
 727 *Ecol Lett* 9:228–241.
- 728 Harms S, Winant CD (1998) Characteristic patterns of the circulation in the Santa Barbara
 729 Channel. *J Geophys Res* 103:3041–3065.
- 730 Haselmair A, Stachowitsch M, Zuschin M, Riedel B (2010) Behaviour and mortality of benthic
 731 crustaceans in response to experimentally induced hypoxia and anoxia in situ. *Mar Ecol*
 732 *Prog Ser* 414:195–208.
- 733 Hauri C, Gruber N, Vogt M, Doney SC, Feely RA, Lachkar Z, Leinweber A, McDonnell AMP,
 734 Munnich M, Plattner GK (2013) Spatiotemporal variability and long-term trends of ocean
 735 acidification in the California Current System. *Biogeosciences* 10:193–216.
- 736 Hendriks IE, Duarte CM, Álvarez M (2010) Vulnerability of marine biodiversity to ocean
 737 acidification: A meta-analysis. *Estuar Coast Shelf Sci* 86:157–164.
- 738 Hiddink JG, Burrows MT, García Molinos J (2015) Temperature tracking by North Sea benthic
 739 invertebrates in response to climate change. *Glob Chang Biol* 21:117–129.
- 740 ter Hofstede R, Hiddink JG, Rijnsdorp AD (2010) Regional warming changes fish species
 741 richness in the eastern North Atlantic Ocean. *Mar Ecol Prog Ser* 414:1–9.
- 742 Isaac NJB, Mallet J, Mace GM (2004) Taxonomic inflation: Its influence on macroecology and
 743 conservation. *Trends Ecol Evol* 19:464–469.
- 744 Jin P, Hutchins DA, Gao K (2020) The Impacts of Ocean Acidification on Marine Food Quality
 745 and Its Potential Food Chain Consequences. *Front Mar Sci* 7:1–6.
- 746 Johnson GC, Lyman JM (2020) Warming trends increasingly dominate global ocean. *Nat Clim*
 747 *Chang* 10:757–761.
- 748 Juranek LW, Feely RA, Peterson WT, Alin SR, Hales B, Lee K, Sabine CL, Peterson J (2009) A
 749 novel method for determination of aragonite saturation state on the continental shelf of
 750 central Oregon using multi-parameter relationships with hydrographic data. *Geophys Res*
 751 *Lett* 36:4–9.
- 752 Kekuewa SAH, Courtney TA, Cyronak T, Andersson AJ (2022) Seasonal nearshore ocean
 753 acidification and deoxygenation in the Southern California Bight. *Sci Rep* 12:1–10.
- 754 Kessouri F, Renault L, McWilliams JC, Damien P, Bianchi D (2022) Enhancement of Oceanic
 755 Eddy Activity by Fine-Scale Orographic Winds Drives High Productivity, Low Oxygen,


- 756 and Low pH Conditions in the Santa Barbara Channel. *J Geophys Res Ocean* 127.
- 757 Kroeker KJ, Micheli F, Gambi MC, Martz TR (2011) Divergent ecosystem responses within a
758 benthic marine community to ocean acidification. *Proc Natl Acad Sci U S A* 108:14515–
759 14520.
- 760 Lavergne S, Mouquet N, Thuiller W, Ronce O (2010) Biodiversity and climate change:
761 Integrating evolutionary and ecological responses of species and communities. *Annu Rev
762 Ecol Evol Syst* 41:321–350.
- 763 Leis JM (2018) Paradigm lost: Ocean acidification will overturn the concept of larval-fish
764 biophysical dispersal. *Front Mar Sci* 5:1–9.
- 765 Lemasson AJ, Fletcher S, Hall-Spencer JM, Knights AM (2017) Linking the biological impacts
766 of ocean acidification on oysters to changes in ecosystem services: A review. *J Exp Mar Bio
767 Ecol* 492:49–62.
- 768 Lenihan HS, Peterson CH, Kim SL, Conlan KE, Fairey R, McDonald C, Grabowski JH, Oliver
769 JS (2003) Variation in marine benthic community composition allows discrimination of
770 multiple stressors. *Mar Ecol Prog Ser* 261:63–73.
- 771 Leonard-Pingel JS, Kidwell SM, Tomašových A, Alexander CR, Cadine DB (2019) Gauging
772 benthic recovery from 20th century pollution on the southern California continental shelf
773 using bivalves from sediment cores. *Mar Ecol Prog Ser* 615:101–119.
- 774 Los Angeles County Sanitation Districts (2020) Joint Water Pollution Control Plant Biennial
775 Receiveing Water Monitoring Report 2018-2019. Whittier.
- 776 Mantua NJ, Hare SR (2002) The Pacific Decadal Oscillation. *J Oceanogr* 58:35–44.
- 777 McClatchie S, Goericke R, Cosgrove R, Auad G, Vetter R (2010) Oxygen in the Southern
778 California Bight: Multidecadal trends and implications for demersal fisheries. *Geophys Res
779 Lett* 37:1–5.
- 780 McClatchie S, Thompson AR, Alin SR, Siedlecki S, Watson W, Bograd SJ (2016) The influence
781 of pacific equatorial water on fish diversity in the southern califonia current system. *J
782 Geophys Res Ocean* 121:1–16.
- 783 McLaughlin K, Nezlin NP, Weisberg SB, Dickson AG, Booth JAT, Cash CL, Feit A, Gully JR,
784 Howard MDA, Johnson S, Latker A, Mengel MJ, Robertson GL, Steele A, Terriquez L
785 (2018) Seasonal patterns in aragonite saturation state on the southern California continental
786 shelf. *Cont Shelf Res* 167:77–86.
- 787 Michaud E, Aller RC, Zhu Q, Heilbrun C, Stora G (2021) Density and size-dependent
788 bioturbation effects of the infaunal polychaete *Nephtys incisa* on sediment biogeochemistry
789 and solute exchange. *J Mar Res* 79:181–220.
- 790 Morley SA, Souster TA, Vause BJ, Gerrish L, Peck LS, Barnes DKA (2022) Benthic
791 Biodiversity, Carbon Storage and the Potential for Increasing Negative Feedbacks on
792 Climate Change in Shallow Waters of the Antarctic Peninsula. *Biology (Basel)* 11.
- 793 Morrison WR, Lohr JL, Duchen P, Wilches R, Trujillo D, Mair M, Renner SS (2009) The impact

- 794 of taxonomic change on conservation: Does it kill, can it save, or is it just irrelevant? *Biol*
795 *Conserv* 142:3201–3206.
- 796 Muff S, Nilsen EB, O’Hara RB, Nater CR (2022) Rewriting results sections in the language of
797 evidence. *Trends Ecol Evol* 37:203–210.
- 798 Nagelkerken I, Connell SD (2022) Ocean acidification drives global reshuffling of ecological
799 communities. *Glob Chang Biol* 28:7038–7048.
- 800 Niklaus PA, Baruffol M, He JS, Ma K, Schmid B (2017) Can niche plasticity promote
801 biodiversity–productivity relationships through increased complementarity? *Ecology*
802 98:1104–1116.
- 803 Nixon SW, Fulweiler RW, Buckley BA, Granger SL, Nowicki BL, Henry KM (2009) The
804 impact of changing climate on phenology, productivity, and benthic-pelagic coupling in
805 Narragansett Bay. *Estuar Coast Shelf Sci* 82:1–18.
- 806 Oey L-Y (1996) Flow around a coastal bend: A model of the Santa Barbara Channel eddy. *J*
807 *Geophys Res* 101:16667–16682.
- 808 Orange County Sanitation District (2021) Marine Monitoring Annual Report Year 2019-2020.
809 Fountain Valley, CA.
- 810 Pinsky ML, Selden RL, Kitchel ZJ (2020) Climate-Driven Shifts in Marine Species Ranges:
811 Scaling from Organisms to Communities. *Ann Rev Mar Sci* 12:153–179.
- 812 Pinsky ML, Worm B, Fogarty MJ, Sarmiento JL, Levin SA (2013) Marine taxa track local
813 climate velocities. *Science* (80-) 341:1239–1242.
- 814 Plumb RHJ (1981) Procedure for Handling and Chemical Analysis of Sediment and Water
815 Samples. Technical Report EPA/CE-81-1. Vicksburg, MS.
- 816 Poloczanska ES, Burrows MT, Brown CJ, Molinos JG, Halpern BS, Hoegh-Guldberg O, Kappel
817 C V., Moore PJ, Richardson AJ, Schoeman DS, Sydeman WJ (2016) Responses of marine
818 organisms to climate change across oceans. *Front Mar Sci* 3:1–21.
- 819 Riedel B, Pados T, Prettner K, Schiener L, Steckbauer A, Haselmair A, Zuschin M,
820 Stachowitsch M (2014) Effect of hypoxia and anoxia on invertebrate behaviour: Ecological
821 perspectives from species to community level. *Biogeosciences* 11:1491–1518.
- 822 Rodil IF, Lohrer AM, Thrush SF (2013) Sensitivity of heterogeneous marine benthic habitats to
823 subtle stressors. *PLoS One* 8.
- 824 Sato KN, Levin LA, Schiff K (2017) Habitat compression and expansion of sea urchins in
825 response to changing climate conditions on the California continental shelf and slope
826 (1994–2013). *Deep Res Part II Top Stud Oceanogr* 137:377–389.
- 827 Silburn B, Kröger S, Parker ER, Sivyer DB, Hicks N, Powell CF, Johnson M, Greenwood N
828 (2017) Benthic pH gradients across a range of shelf sea sediment types linked to sediment
829 characteristics and seasonal variability. *Biogeochemistry* 135:69–88.
- 830 Smith RW, Bergen M, Weisberg SB, Cadien D, Dalkey A, Montagne D, Stull JK, Velarde RG
831 (2001) Benthic response index for assessing infaunal communities on the southern

- 832 California mainland shelf. *Ecol Appl* 11:1073–1087.
- 833 Stiasny MH, Mittermayer FH, Sswat M, Voss R, Jutfelt F, Chierici M, Puvanendran V,
834 Mortensen A, Reusch TBH, Clemmesen C (2016) Ocean acidification effects on Atlantic
835 cod larval survival and recruitment to the fished population. *PLoS One* 11:1–11.
- 836 Sutton PJH, Bowen M (2019) Ocean temperature change around New Zealand over the last 36
837 years. *New Zeal J Mar Freshw Res* 53:305–326.
- 838 The Southern California Association of Marine Invertebrate Taxonomists (2018) A Taxonomic
839 Listing of Benthic Macro- and Megainvertebrates from Infaunal and Epifaunal Monitoring
840 and Research Programs in the Southern California Bight, 12th ed. Cadien DB, Lovell LL
841 (eds).
- 842 Thomson RE, Krassovski M V. (2010) Poleward reach of the California Undercurrent extension.
843 *J Geophys Res Ocean* 115:1–9.
- 844 Thrush SF, Hewitt JE, Hickey CW, Kelly S (2008) Multiple stressor effects identified from
845 species abundance distributions: Interactions between urban contaminants and species
846 habitat relationships. *J Exp Mar Bio Ecol* 366:160–168.
- 847 Tilbrook B, Jewett EB, DeGrandpre MD, Hernandez-Ayon JM, Feely RA, Gledhill DK, Hansson
848 L, Isensee K, Kurz ML, Newton JA, Siedlecki SA, Chai F, Dupont S, Graco M, Calvo E,
849 Greeley D, Kapsenberg L, Lebrec M, Pelejero C, Schoo KL, Telszewski M (2019) An
850 enhanced ocean acidification observing network: From people to technology to data
851 synthesis and information exchange. *Front Mar Sci* 6:1–21.
- 852 Tomašových A, Kidwell SM (2017) Nineteenth-century collapse of a benthic marine ecosystem
853 on the open continental shelf. *Proc R Soc B Biol Sci* 284.
- 854 Villnäs A, Norkko A (2011) Benthic diversity gradients and shifting baselines: Implications for
855 assessing environmental status. *Ecol Appl* 21:2172–2186.
- 856 Vlaminck E, Cepeda E, Moens T, Colen C Van (2023) Ocean acidification modifies behaviour
857 of shelf seabed macrofauna : A laboratory study on two ecosystem engineers , *Abra alba*
858 and *Lanice conchilega*. *J Exp Mar Bio Ecol* 558.
- 859 Waldbusser GG, Hales B, Langdon CJ, Haley BA, Schrader P, Brunner EL, Gray MW, Miller
860 CA, Gimenez I, Hutchinson G (2015) Ocean acidification has multiple modes of action on
861 bivalve larvae. *PLoS One* 10.
- 862 Wang G, Cai W, Gan B, Wu L, Santoso A, Lin X, Chen Z, McPhaden MJ (2017) Continued
863 increase of extreme El Niño frequency long after 1.5 C warming stabilization. *Nat Clim
864 Chang* 7:568–572.
- 865 Wang M, Jeong CB, Lee YH, Lee JS (2018) Effects of ocean acidification on copepods. *Aquat
866 Toxicol* 196:17–24.
- 867 Wares JP, Gaines SD, Cunningham CW (2001) A comparative study of asymmetric migration
868 events across a marine biogeographic boundary. *Evolution (N Y)* 55:295–306.
- 869 Watson JR, Hays CG, Raimondi PT, Mitarai S, Dong C, McWilliams JC, Blanchette CA, Caselle

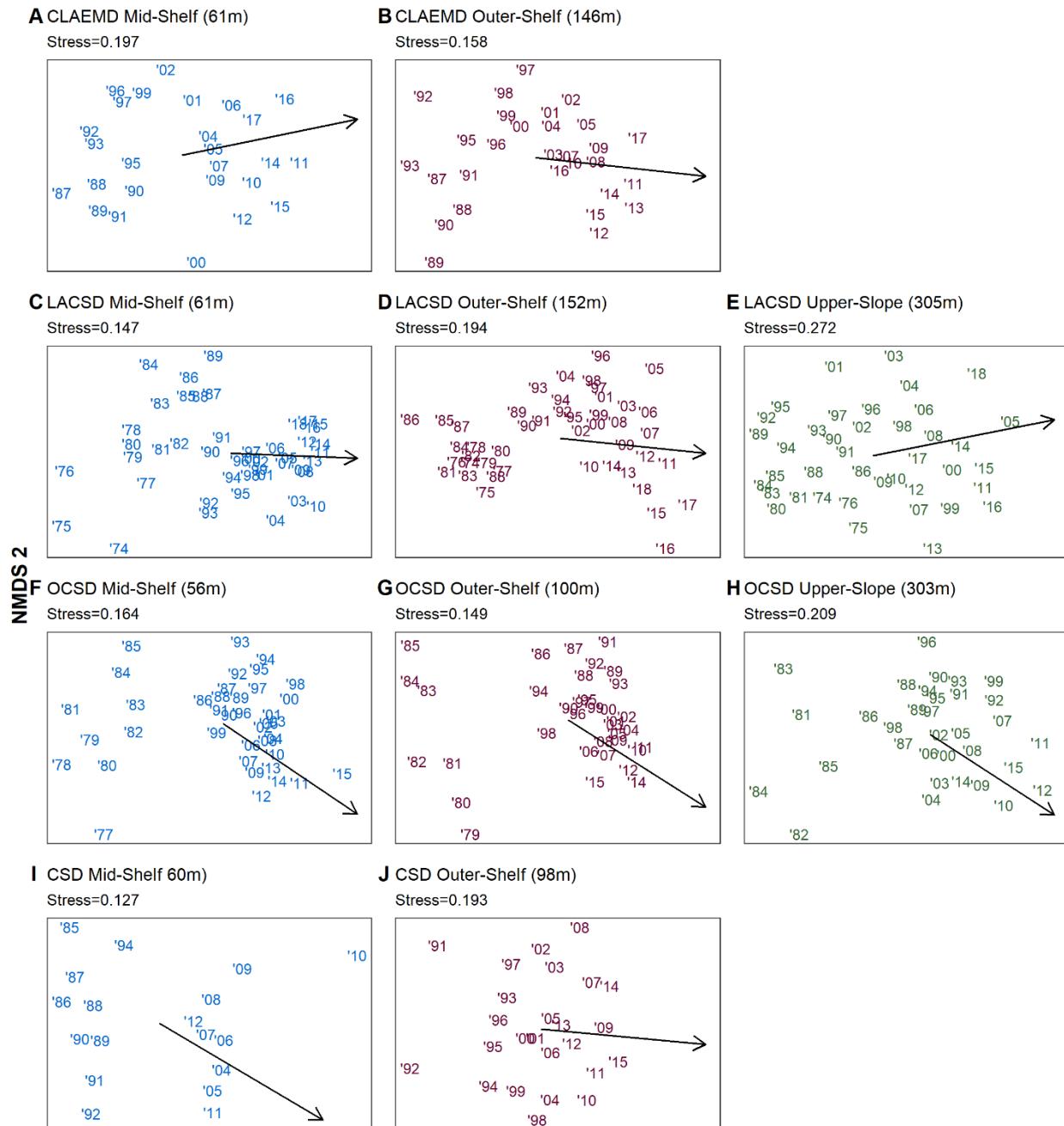
- 870 JE, Siegel DA (2011) Currents connecting communities: nearshore community similarity
871 and ocean circulation. *Ecology* 92:1193–1200.
- 872 Weinert M, Kröncke I, Meyer J, Mathis M, Pohlmann T, Reiss H (2022) Benthic ecosystem
873 functioning under climate change: modelling the bioturbation potential for benthic key
874 species in the southern North Sea. *PeerJ* 10.
- 875 Wesławski JM, Kendall MA, Włodarska-Kowalczuk M, Iken K, Kedra M, Legezynska J, Sejr
876 MK (2011) Climate change effects on Arctic fjord and coastal macrobenthic diversity-
877 observations and predictions. *Mar Biodivers* 41:71–85.
- 878 Widdicombe S, Dashfield SL, McNeill CL, Needham HR, Beesley A, McEvoy A, Øxnevad S,
879 Clarke KR, Berge JA (2009) Effects of CO₂ induced seawater acidification on infaunal
880 diversity and sediment nutrient fluxes. *Mar Ecol Prog Ser* 379:59–75.
- 881 Widdicombe S, Spicer JI (2008) Predicting the impact of ocean acidification on benthic
882 biodiversity: What can animal physiology tell us? *J Exp Mar Bio Ecol* 366:187–197.
- 883 Wilson TJB, Cooley SR, Tai TC, Cheung WWL, Tyedmers PH (2020) Potential socioeconomic
884 impacts from ocean acidification and climate change effects on Atlantic Canadian fisheries.
885 *PLoS One* 15:1–29.
- 886 Wood HL, Spicer JI, Widdicombe S (2008) Ocean acidification may increase calcification rates,
887 but at a cost. *Proc Biol Sci* 275:1767–73.
- 888


889 Figures

890

891 Figure 1 A map of the Southern California Bight illustrating the locations of the ten benthic
892 sampling sites, color-coded by their sampling locations/data sources. The green squares represent
893 the location of the CalCOFI water quality monitoring stations labelled with their transect
894 number-station ID. The black lines represent the 100-m isobaths between 100 and 400 m deep.
895 The inset shows the position of the Southern California Bight relative to the California and
896 eastern Pacific coasts.

897

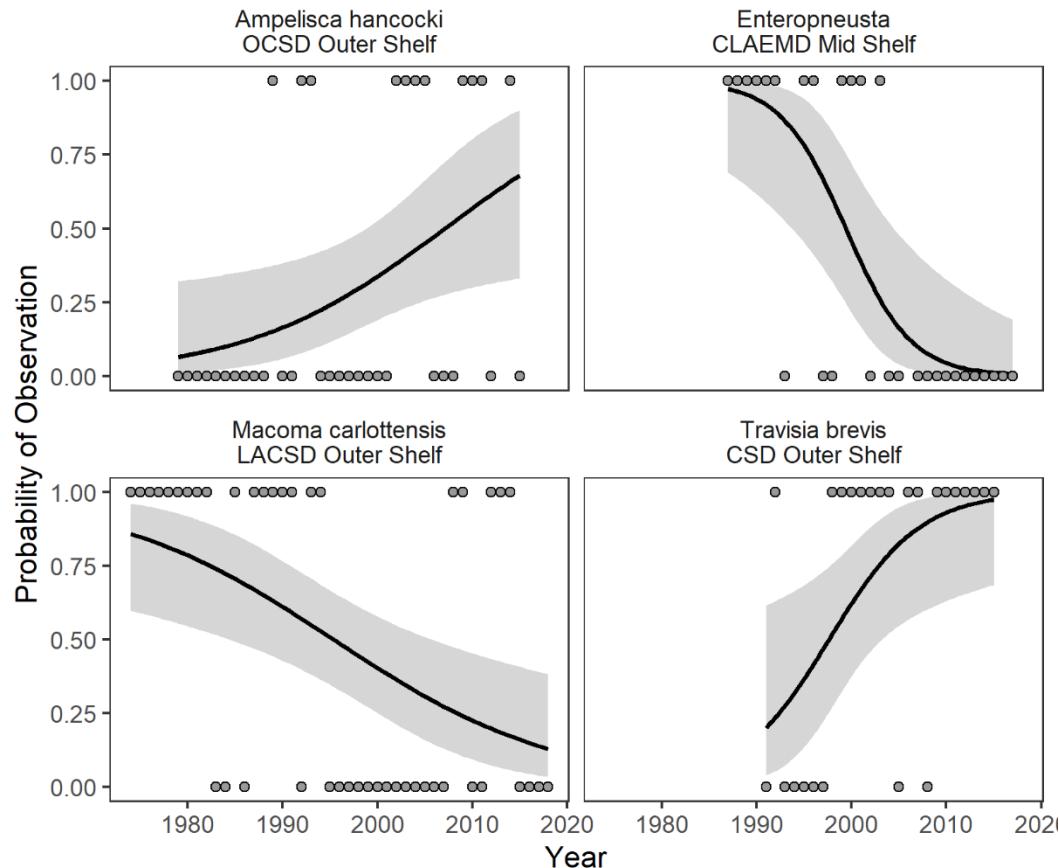


898

899 Figure 2 Water quality and water chemistry (summarized from quarterly bottle samples) at each
 900 of the three CalCOFI water monitoring stations (see Figure 1) used in subsequent analyses of
 901 benthic fauna. A trend line (general additive model for smoothing) for each set of data is

902 presented only to help the reader follow the patterns amongst the individual points. Bottles were
903 selected within 20m of the depth of the associated benthic sample locations. A = maximum
904 bottom water temperature (C), B= median salinity (PSU), C= minimum dissolved oxygen (μmol
905 kg^{-1}), D=median water density (σ_T), E=median chlorophyll a ($\mu\text{g L}^{-1}$), F= median nitrate ($\mu\text{g L}^{-1}$),
906 G=minimum estimated aragonite saturation State, H=minimum estimated calcite saturation State,
907 I=minimum estimated pH, and J=maximum estimated pCO_2 . The green vertical lines indicate
908 years with strong to very strong El Niño events. The magenta lines indicate years with strong La
909 Niña events. ENSO designations based upon NOAA Oceanic Niño Index
910 (<https://psl.noaa.gov/data/correlation/oni.data>).

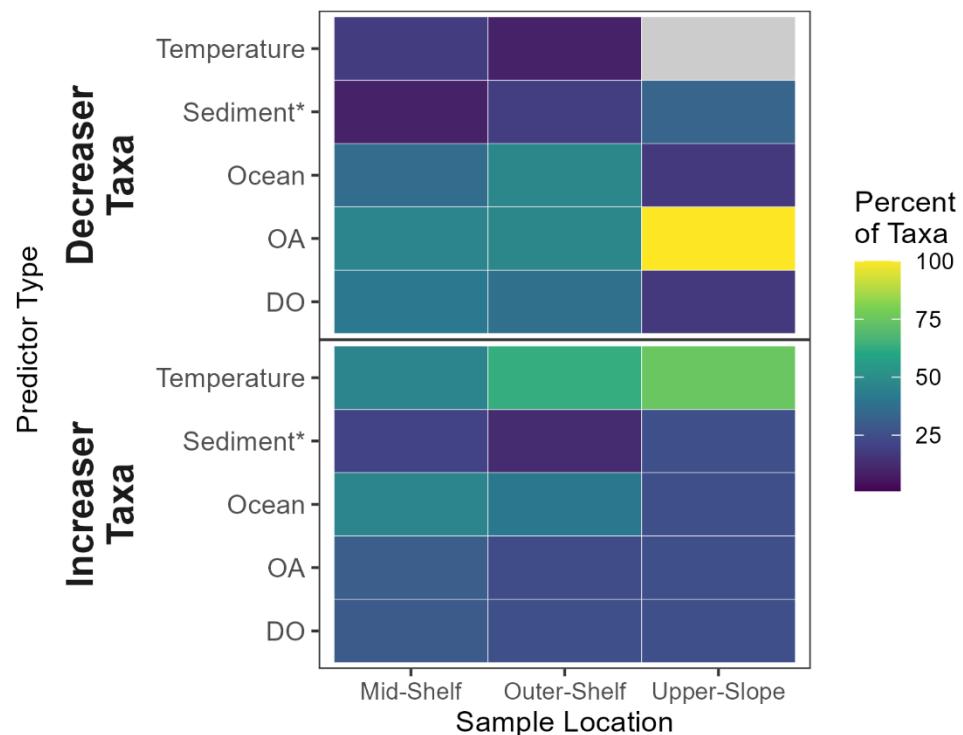
911



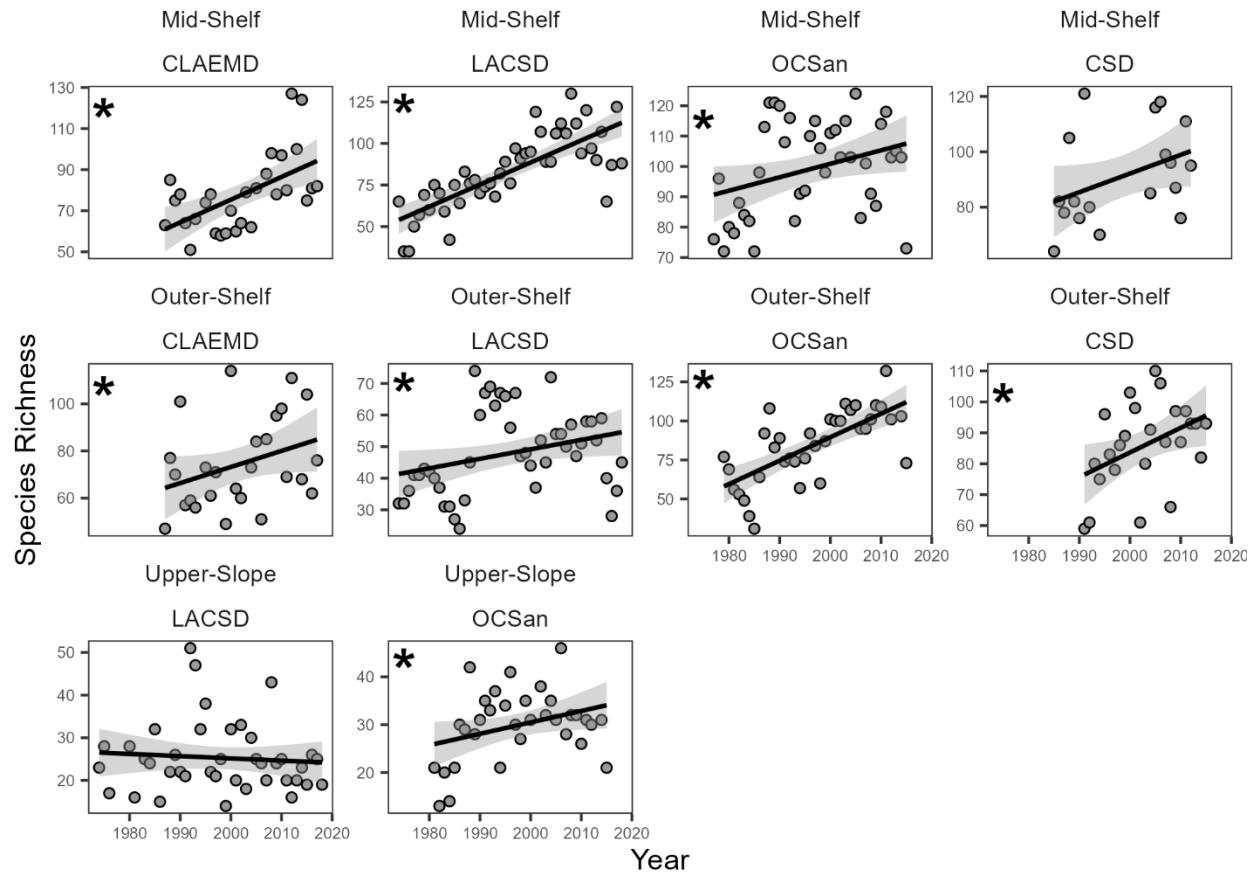
912

913 Figure 3 A series of 2-D nMDS ordination plots of Bray-Curtis dissimilarity values of benthic
 914 infauna communities at each of the sampling sites from each year across the breadth of the data
 915 set. The two-digit number represents the year of collection (i.e., 1998=98, 2001=01). The black

916 arrows indicate the trend of time across the different ordinations based upon multivariate
917 correlations (Table 2). Ordinations based upon dissimilarities of presence-absence transformed
918 community data with a minimum of 250 iterations.

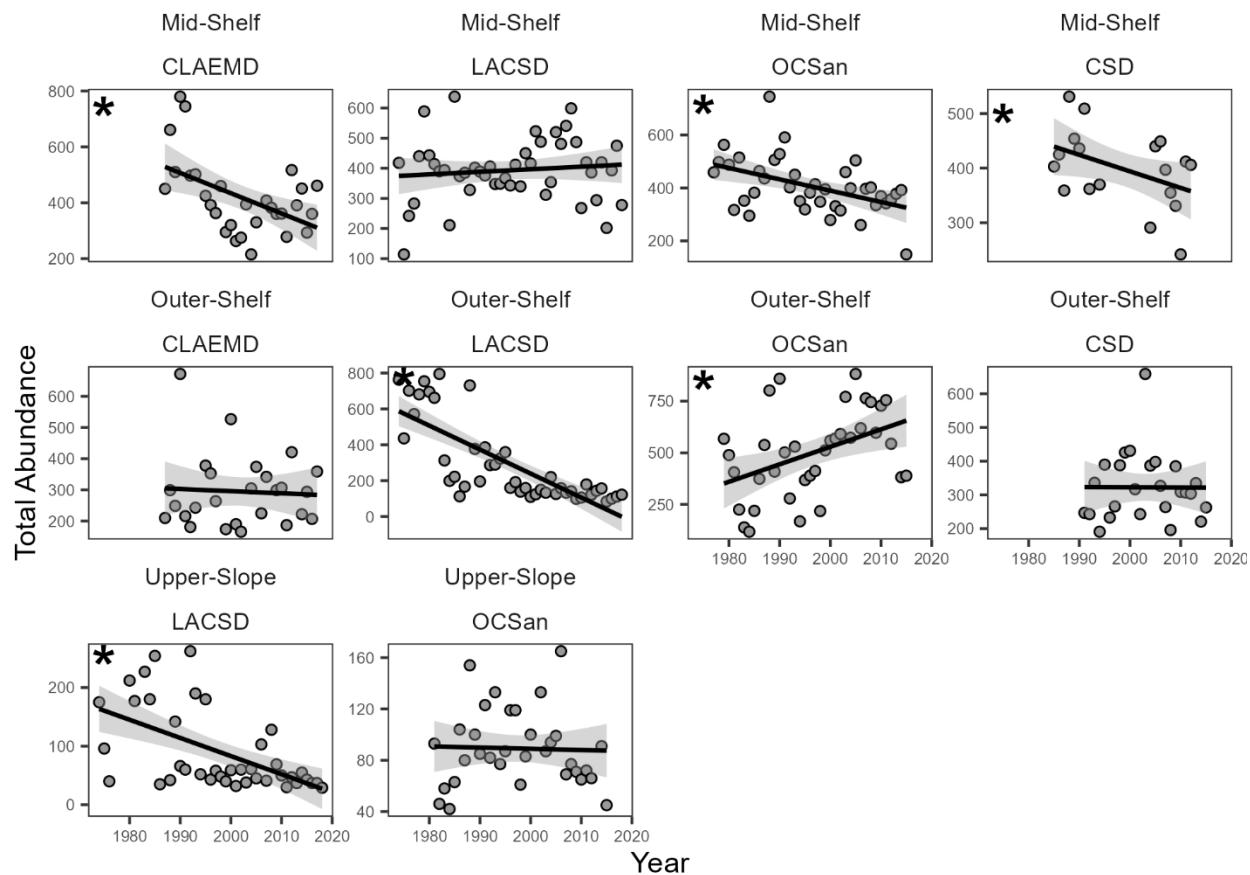

919

920


921 Figure 4 Logistic regression curves of four example taxa illustrating patterns of increasing
 922 probability of observation through time (*Ampelisca hancocki* and *Travisia brevis*) and decreasing
 923 probability of observation through time (*Enteropneusta* and *Macoma carlottensis*). Each of
 924 these taxa, as well as all taxa identified in Supplement 3 – Table S5, had a regression with a beta
 925 term significantly different than 0 ($\alpha=0.05$). The grey ribbon represents the standard error of the
 926 probability estimate. The grey dots in the rug represent the presence (1) or absence (0) of that
 927 taxon in a given year at the site.

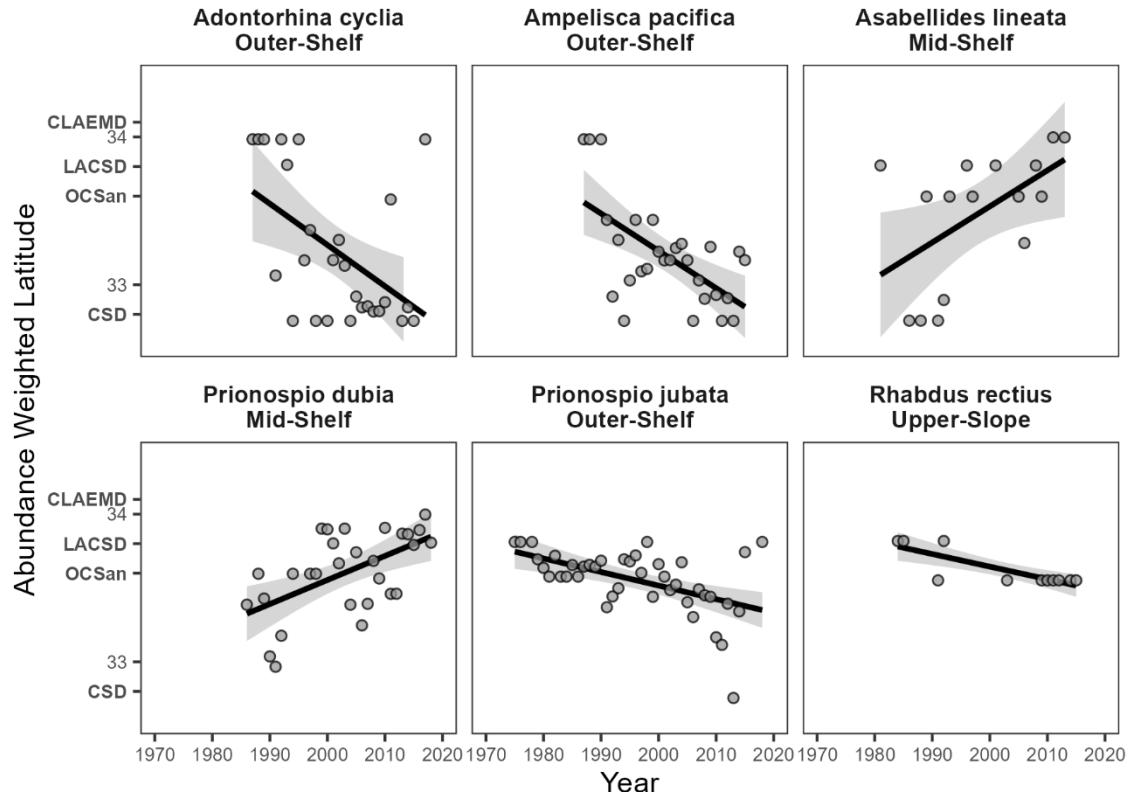
928

929


930 Figure 5 A heat map summarizing the most important variables in predicting the abundance
 931 patterns of benthic infauna classified as decreasing or increasing in abundance through time (see
 932 Supplement 3 – Tables S6 and S7) across all four sample locations and divided by depth zone.
 933 Predictors included measures of temperature (surface water temperature, bottom water
 934 temperature), oceanographic patterns (ENSO, PDO), bottom water ocean acidification (aragonite
 935 saturation, calcite saturation, pH, pCO₂), bottom water dissolved oxygen, or sediment grain size
 936 (%Sand, %Silt, %Clay). Their predictive importance was derived from random forest regression
 937 variable importance outputs. Warmer colors indicate a predictor that was important for more taxa
 938 within a given depth zone. Cooler colors indicate a predictor that was important for fewer taxa.
 939 No temperature variables were important predictors for decrease taxa from the upper-slope. See
 940 Table 1 for a full list of all potential predictor variables. Note that sediment* grain size data were
 941 only available for the CLAEMD, LACSD, and CSD sample sites.

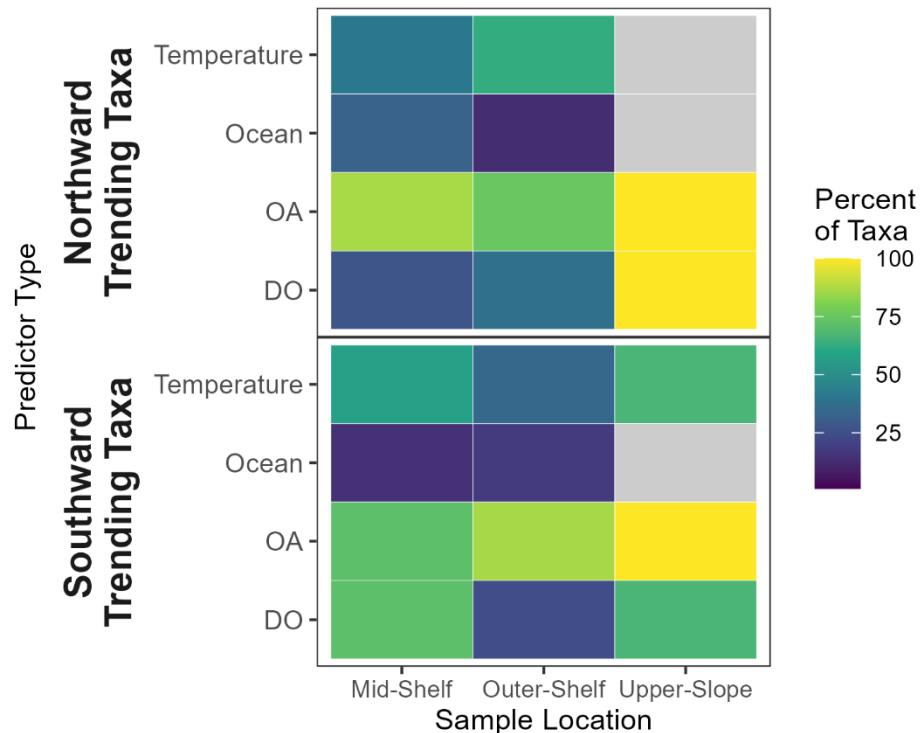
942

943 Figure 6 Least squares linear regression plots of taxa richness through time at each of the
 944 sampling sites at the three depth zones. An asterisk indicates a slope significantly ($\alpha = 0.1$)
 945 different than zero. The grey ribbon indicates the standard error of the predicted values.


946

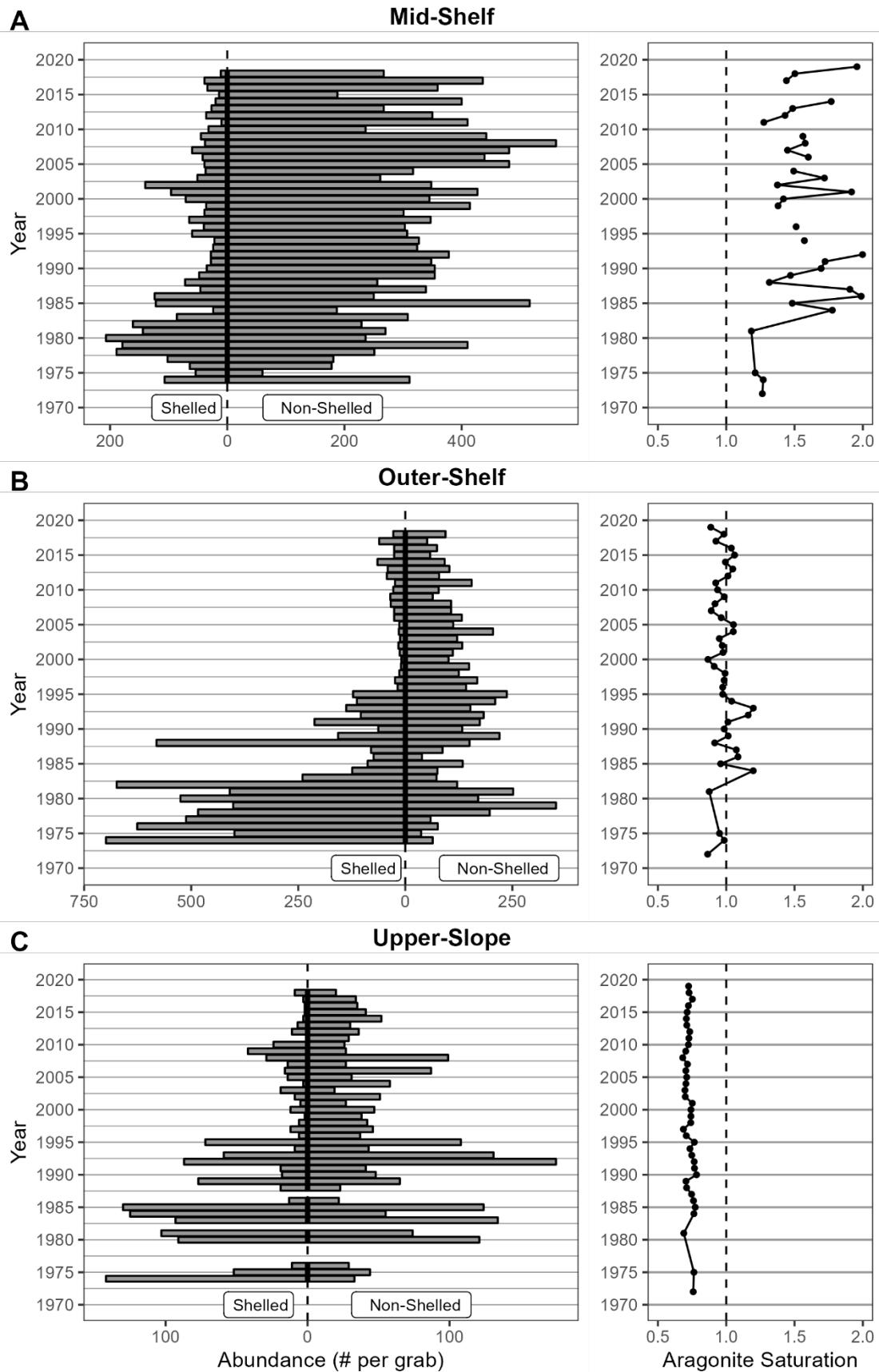
947

948 Figure 7 Least squares linear regression plots of sample abundance through time at each of the
 949 sampling sites at the three depth zones. An asterisk indicates a slope significantly ($\alpha = 0.1$)
 950 different than zero. The grey ribbon indicates the standard error of the predicted values.

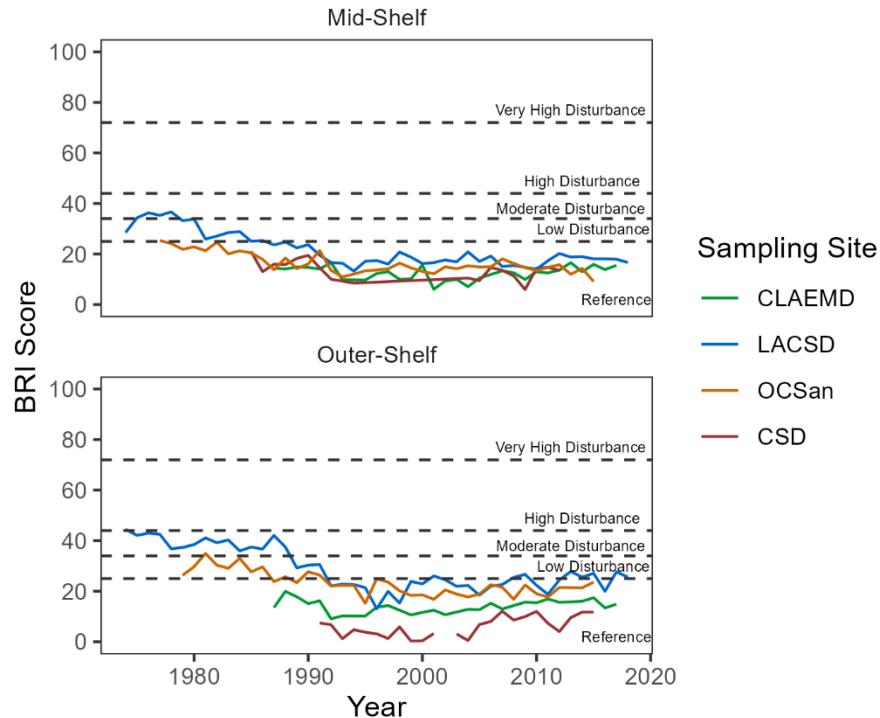

951

952

953 Figure 8 Least squares linear regression of abundance weighted latitude through time for six taxa
 954 illustrating a trend of a taxon whose distribution has shifted northwards (*Asabellides lineata* and
 955 *Prionospio dubia*) or a taxon whose distribution has shifted southwards through time (*Prionospio*
 956 *jubata*, *Adontorhina cyclia*, *Ampelisca pacifica*, and *Rhabdus rectius*). Each of these taxa, as well
 957 as all taxa identified in Supplement 3 – Table S8, had a regression with a slope significantly
 958 different than 0 ($\alpha=0.05$). The grey ribbon indicates the standard error of the predicted values.
 959 The average latitudinal position of the four sampling sites is indicated on the y-axis for reference.


960

961


962 Figure 9 A heat map summarizing the most important variables in predicting the abundance
 963 patterns of benthic infauna classified as northward or southward shifting taxa through time (see
 964 Supplement 3 – Tables S9 and S10) within each of the three depth zones. Predictors included
 965 measures of temperature (surface water temperature, bottom water temperature), oceanographic
 966 patterns (ENSO, PDO), bottom water ocean acidification (aragonite saturation, calcite saturation,
 967 pH, pCO_2), or bottom water dissolved oxygen. Their predictive importance was derived from
 968 random forest regression variable importance outputs. Warmer colors indicate a predictor that
 969 was important for more taxa within a given depth zone. Cooler colors indicate a predictor that
 970 was important for fewer taxa. Only one northward trending taxon was observed from the upper-
 971 slope and oceanographic variables were not important predictors for southward shifting taxa
 972 from the upper-slope. See Table 1 for a full list of all potential predictor variables.

973

975 Figure 10 An illustration of the change in abundance of shelled and non-shelled organisms at
976 Mid-Shelf (A), Outer-Shelf (B), and Upper-Slope (C) sample sites relative to modeled aragonite
977 saturation values at the LACSD location through time. The dashed vertical line on the aragonite
978 saturation plots highlight a value of 1.0, below which aragonite will dissolve into seawater from
979 a solid form.

980

981

982 Figure 11 Benthic condition scores through time at each of the sampling sites in the mid-shelf
 983 and outer-shelf depth zones using the Benthic Response Index (BRI) of Smith et al. (2000). A
 984 higher score indicates a more disturbed sample. The dashed lines indicate the different thresholds
 985 of community impact that were linked to compositional changes in addition to loss of taxonomic
 986 and functional diversity with high levels of disturbance. The BRI is not calibrated to Upper-
 987 Slope habitats.

988 [Tables](#)

989 **Table 1.** Environmental variables used as potential predictors of change in macrobenthic community composition through time, the
 990 sources of those data, and the coverage of those variables at each of the four sampling locations. PDO - Pacific Decadal Oscillation
 991 index value. SOI - Southern Oscillation Index value. *CSD sediment data were reported in % sand and % mud, where % mud = % silt
 992 +% clay. 1- and 3-year time lags were selected for consideration, as most of the benthic infauna are thought to live from 1 to 3 years at
 993 a maximum, though some of larger bivalves may persist longer.

Data Type	Potential Predictor Variables	Data Source	CLAEMD	LACSD	OCSan	CSD
Local Sediment	% Sand	Discharger	X	X		X
	% Silt	Discharger	X	X		X*
	% Clay	Discharger	X	X		X*
Regional Oceanography	Mean Springtime PDO	NOAA	X	X	X	X
	Mean Spring PDO One Year Prior	NOAA	X	X	X	X
	Mean Spring PDO Three Years Prior	NOAA	X	X	X	X
	Mean Springtime SOI	NOAA	X	X	X	X
	Mean Springtime SOI One Year Prior	NOAA	X	X	X	X
	Mean Springtime SOI Three Years Prior	NOAA	X	X	X	X
Local Temperature	Mean Summer Surface Water Temperature	CalCOFI	X	X	X	X
	Mean Summer Surface Water Temperature One Year Prior	CalCOFI	X	X	X	X
	Mean Summer Surface Water Temperature Three Years Prior	CalCOFI	X	X	X	X
	Mean Summer Bottom Water Temperature	CalCOFI	X	X	X	X
	Mean Summer Bottom Water Temperature One Year Prior	CalCOFI	X	X	X	X
	Mean Summer Bottom Water Temperature Three Years Prior	CalCOFI	X	X	X	X

Local Dissolved Oxygen	Mean Summer Bottom Water Dissolved Oxygen	CalCOFI	X	X	X	X
	Mean Summer Bottom Water Dissolved Oxygen One Year Prior	CalCOFI	X	X	X	X
	Mean Summer Bottom Water Dissolved Oxygen Three Years Prior	CalCOFI	X	X	X	X
	pCO2	Modelled	X	X	X	X
Local Acidification	pCO2 One Year Prior	Modelled	X	X	X	X
	pCO2 Three Years Prior	Modelled	X	X	X	X
	pH	Modelled	X	X	X	X
	pH One Year Prior	Modelled	X	X	X	X
	pH Three Years Prior	Modelled	X	X	X	X
	Aragonite Saturation	Modelled	X	X	X	X
	Aragonite Saturation One Year Prior	Modelled	X	X	X	X
	Aragonite Saturation Three Years Prior	Modelled	X	X	X	X
	Calcite Saturation	Modelled	X	X	X	X
	Calcite Saturation One Year Prior	Modelled	X	X	X	X
	Calcite Saturation Three Years Prior	Modelled	X	X	X	X

995

996 **Table 2** Multivariate correlation of year of sampling with the nMDS ordinations presented in
 997 Figure 3. Correlations were calculated across 1,000 permutations.

Depth Zone	Sample Location	r	p-value
Mid-Shelf	CLAEMD	0.93	0.002
	LACSD	0.96	0.002
	OCSan	0.92	0.002
	CSD	0.91	0.002
Outer-Shelf	CLAEMD	0.95	0.002
	LACSD	0.91	0.002
	OCSan	0.84	0.002
	CSD	0.88	0.002
Upper-Slope	LACSD	0.80	0.002
	OCSan	0.86	0.002

998

999

1000 **Table 3.** Outputs of 1-way PermANOVAs testing the differences in macrobenthic community
 1001 structure through time at the different depth zones of each of the four sampling locations based
 1002 upon Bray-Curtis dissimilarities of taxon presence-absence over 10,000 permutations.

Depth Zone	Sample Location	Term	Df	SS	R ²	pseudo-F	p-value
Mid-Shelf	CLAEMD	Year	1	0.92	0.20	6.79	<0.0001
		Residual	27	3.64	0.80		
	LACSD	Year	1	1.99	0.23	12.87	<0.0001
		Residual	43	6.65	0.77		
	OCSan	Year	1	1.12	0.16	6.86	<0.0001
		Residual	37	6.04	0.84		
	CSD	Year	1	0.76	0.26	5.56	<0.0001
		Residual	16	2.20	0.74		
Outer-Shelf	CLAEMD	Year	1	0.84	0.17	4.97	<0.0001
		Residual	24	4.05	0.83		
	LACSD	Year	1	1.94	0.19	10.31	<0.0001
		Residual	43	8.09	0.81		
	OCSan	Year	1	0.98	0.17	6.77	<0.0001
		Residual	34	4.91	0.83		
	CSD	Year	1	0.50	0.15	3.92	<0.0001
		Residual	23	2.92	0.85		
Upper-Slope	LACSD	Year	1	0.94	0.09	3.79	<0.0001
		Residual	38	9.41	0.91		
	OCSan	Year	1	0.96	0.13	4.44	<0.0001
		Residual	31	6.72	0.87		

1003

1004

1005 **Table 4.** Top-10 most abundant taxa in descending rank order (with ties) for each decade 1970s
1006 – 2010s at Mid-Shelf, Outer-Shelf, and Upper-Slope depth zones from the LACSD and OCSan
1007 sampling sites. Taxa are color-coded based upon the decade during which they first appeared in
1008 the top-10 of the sample site. ^ denotes taxa indicative of disturbed conditions based upon Smith
1009 et al. (2001). # denotes taxa indicative of non-disturbed conditions based upon Smith et al.
1010 (2001). (c) = crustacean, (e) = echinoderm, (h) = hemichordate, (l) = phoronid, (m) = mollusc,
1011 and (p) = polychaete. Note that that no samples were collected from the OCSan Upper-Slope site
1012 in the 1970s.

District	Depth Zone	1970s	1980s	1990s	2000s	2010s
LACSD	Mid-Shelf	<i>Parvilucina tenuisculpta</i> [^] (m)	<i>Spiophanes duplex</i> (p)	<i>Amphiodia</i> sp (e)	<i>Amphiodia</i> sp (e)	<i>Amphiodia</i> sp (e)
		<i>Aphelochaeta-Kirkegaardia</i> Cmplx [^] (p)	<i>Parvilucina tenuisculpta</i> [^] (m)	<i>Spiophanes duplex</i> (p)	<i>Spiophanes duplex</i> (p)	<i>Lumbrineris cruzensis</i> (p)
		<i>Axinopsida serricata</i> (m)	<i>Axinopsida serricata</i> (m)	<i>Amage scutata</i> (p)	<i>Axinopsida serricata</i> (m)	<i>Spiophanes duplex</i> (p)
		<i>Prionospio jubata</i> (p)	<i>Amphiodia</i> sp (e)	<i>Axinopsida serricata</i> (m)	<i>Mediomastus</i> sp (p)	<i>Aphelochaeta-Kirkegaardia</i> Cmplx [^] (p)
		<i>Mediomastus</i> sp (p)	<i>Myriochele striolata</i> (p)	<i>Phoronis</i> sp	<i>Thysira flexuosa</i> (m)	<i>Mediomastus</i> sp (p)
		<i>Euphilomedes producta</i> (c)	<i>Lumbrineris</i> sp (p)	<i>Pectinaria californiensis</i> (p)	<i>Paraprionospio alata</i> (p)	<i>Cossura candida</i> (p)
		<i>Lumbrineris</i> sp (p)	<i>Marphysa disjuncta</i> (p)	<i>Marphysa disjuncta</i> (p)	<i>Prionospio jubata</i> (p)	<i>Prionospio dubia</i> (p)
		<i>Hamatocalpium californicum</i> (c)	<i>Prionospio jubata</i> (p)	<i>Prionospio jubata</i> (p)	<i>Phoronis</i> sp (l)	<i>Prionospio jubata</i> (p)
		<i>Euphilomedes carcharodonta</i> (c)	<i>Heterophoxus</i> sp (c)	<i>Paraprionospio alata</i> (p)	<i>Lumbrineris cruzensis</i> (p)	<i>Gymnonereis crosslandi</i> (p)
		<i>Pectinaria californiensis</i> (p)	<i>Cossura candida</i> (p)	<i>Glycera nana</i> (p)	<i>Maldane sarsi</i> (p)	<i>Eclyssipe trilobata</i> [#] (p)
						<i>Lumbrineris</i> sp (p)
						<i>Phoronis</i> sp (l)
OCSan	Mid-Shelf	<i>Amphiodia</i> sp (e)				
		<i>Euphilomedes carcharodonta</i> (c)	<i>Pectinaria californiensis</i> (p)	<i>Prionospio jubata</i> (p)	<i>Prionospio jubata</i> (p)	<i>Prionospio jubata</i> (p)
		<i>Pectinaria californiensis</i> (p)	<i>Prionospio jubata</i> (p)	<i>Chloea pinnata</i> (p)	<i>Mediomastus</i> sp (p)	<i>Euphilomedes carcharodonta</i> (c)
		<i>Kirkegaardia serratiseta</i> [^] (p)	<i>Spiophanes duplex</i> (p)	<i>Pectinaria californiensis</i> (p)	<i>Aricidea (Acmira) catherinae</i> (p)	<i>Lumbrineris cruzensis</i> (p)
		<i>Heterophoxus oculatus</i> (c)	<i>Euphilomedes carcharodonta</i> (c)	<i>Rhepoxynius bicuspidatus</i> (c)	<i>Euphilomedes carcharodonta</i> (c)	<i>Chloea pinnata</i> (p)
		<i>Chloea pinnata</i> (p)	<i>Heterophoxus oculatus</i> (c)	<i>Amphideutopus oculatus</i> (c)	<i>Leptochelia dubia</i> Cmplx(c)	<i>Scoloplos armiger</i> Cmplx(p)
		<i>Lumbrineris</i> sp (p)	<i>Ampelisca brevisimulata</i> (c)	<i>Phoronida</i> (l)	<i>Rhepoxynius bicuspidatus</i> (c)	<i>Aricidea (Acmira) catherinae</i> (p)
		<i>Prionospio jubata</i> (p)	<i>Tellina modesta</i> (m)	<i>Ampelisca brevisimulata</i> (c)	<i>Chloea pinnata</i> (p)	<i>Sthenelanella uniformis</i> (p)
		<i>Sabellidae</i> (p)	<i>Goniada maculata</i> (p)	<i>Aricidea (Acmira) catherinae</i> (p)	<i>Lumbrineris ligulata</i> (p)	<i>Stereobalanus</i> sp (h)
		<i>Axinopsida serricata</i> (m)	<i>Rhepoxynius bicuspidatus</i> (c)	<i>Euclymeninae</i> sp A (p)	<i>Paraprionospio alata</i> (p)	<i>Photis californica</i> (c)
LACSD	Outer-Shelf	<i>Parvilucina tenuisculpta</i> [^] (m)	<i>Parvilucina tenuisculpta</i> [^] (m)	<i>Axinopsida serricata</i> (m)	<i>Paradiopatra parva</i> (p)	<i>Aphelochaeta-Kirkegaardia</i> Cmplx [^] (p)
		<i>Axinopsida serricata</i> (m)	<i>Axinopsida serricata</i> (m)	<i>Spiophanes fimbriata</i> (p)	<i>Paraprionospio alata</i> (p)	<i>Paraprionospio alata</i> (p)
		<i>Acila castrensis</i> (m)	<i>Acila castrensis</i> (m)	<i>Spiophanes kimbballi</i> (p)	<i>Spiophanes berkeleyorum</i> (p)	<i>Spiophanes kimbballi</i> (p)
		<i>Macoma carlottensis</i> [^] (m)	<i>Tellina</i> sp B (m)	<i>Paraprionospio alata</i> (p)	<i>Mediomastus</i> sp (p)	<i>Axinopsida serricata</i> (m)
		<i>Pectinaria californiensis</i> (p)	<i>Spiophanes berkeleyorum</i> (p)	<i>Aphelochaeta-Kirkegaardia</i> Cmplx [^] (p)	<i>Aphelochaeta-Kirkegaardia</i> Cmplx [^] (p)	<i>Nuculana</i> sp A (m)
		<i>Aphelochaeta-Kirkegaardia</i> Cmplx [^] (p)	<i>Pectinaria californiensis</i> (p)	<i>Pectinaria californiensis</i> (p)	<i>Tellina</i> sp B (m)	<i>Tellina</i> sp B (m)
		<i>Spiophanes berkeleyorum</i> (p)	<i>Aphelochaeta-Kirkegaardia</i> Cmplx [^] (p)	<i>Lumbrineridae</i> (p)	<i>Spiophanes fimbriata</i> (p)	<i>Chloea pinnata</i> (p)
		<i>Spiophanes duplex</i> (p)	<i>Lumbrineris</i> sp (p)	<i>Tellina</i> sp B (m)	<i>Axinopsida serricata</i> (m)	<i>Brisaster</i> sp (e)
		<i>Onuphis</i> sp (p)	<i>Onuphis</i> sp (p)	<i>Heterophoxus affinis</i> (c)	<i>Spiophanes duplex</i> (p)	<i>Mediomastus</i> sp (p)
		<i>Tellina</i> sp B (m)	<i>Macoma carlottensis</i> [^] (m)	<i>Parvilucina tenuisculpta</i> [^] (m)	<i>Marphysa disjuncta</i> (p)	<i>Polyschides quadrifissatus</i> (m)
1013			<i>Maldane sarsi</i> (p)		<i>Spiophanes kimbballi</i> (p)	
1014						

OCSan	Outer-Shelf	<i>Pectinaria californiensis</i> (p)	<i>Amphiodia</i> sp (e)	<i>Pectinaria californiensis</i> (p)	<i>Aphelochaeta glandaria</i> Cmplx [^] (p)
		<i>Amphiodia</i> sp (e)	<i>Parvilucina tenuisculpta</i> [^] (m)	<i>Spiophanes berkeleyorum</i> (p)	<i>Axinopsida serricata</i> (m)
		<i>Chloea pinnata</i> (p)	<i>Aphelochaeta glandaria</i> Cmplx [^] (p)	<i>Euryalida</i> (e)	<i>Spiophanes berkeleyorum</i> (p)
		<i>Parvilucina tenuisculpta</i> [^] (m)	<i>Kirkegaardia serratiseta</i> [^] (p)	<i>Aphelochaeta glandaria</i> Cmplx [^] (p)	
		<i>Axinopsida serricata</i> (m)	<i>Spiophanes duplex</i> (p)	<i>Spiophanes duplex</i> (p)	<i>Petaloclymene pacifica</i> (p)
		<i>Lumbrineris</i> sp (p)	<i>Spiophanes berkeleyorum</i> (p)	<i>Parvilucina tenuisculpta</i> [^] (m)	<i>Prionospio jubata</i> (p)
		<i>Maldanidae</i> (p)	<i>Lumbrineris</i> sp (p)	<i>Prionospio jubata</i> (p)	<i>Pectinaria californiensis</i> (p)
		<i>Glycera nana</i> (p)	<i>Prionospio jubata</i> (p)	<i>Scoletoama tetraura</i> Cmplx (p)	<i>Lumbrineris cruzensis</i> (p)
		<i>Mediomastus</i> sp (p)	<i>Prionospio lighti</i> (p)	<i>Glycera nana</i> (p)	<i>Rhepoxynius bicuspidatus</i> (c)
		<i>Praxillella pacifica</i> (p)			
LACSD	Upper-Slope	<i>Parvilucina tenuisculpta</i> [^] (m)	<i>Lirobittium rugatum</i> (m)	<i>Lirobittium rugatum</i> (m)	<i>Cyclopecten catalinensis</i> (m)
		<i>Macoma carlottensis</i> [^] (m)	<i>Pectinaria californiensis</i> (p)	<i>Parapriionospio alata</i> (p)	
		<i>Onuphis</i> sp (p)	<i>Parvilucina tenuisculpta</i> [^] (m)	<i>Ampelisca unsocalae</i> (c)	<i>Yoldia seminuda</i> (m)
		<i>Bipalponephrys cornuta</i> (p)	<i>Axinopsida serricata</i> (m)	<i>Onuphis</i> sp (p)	<i>Onuphis</i> sp (p)
		<i>Parapriionospio alata</i> (p)	<i>Parapriionospio alata</i> (p)	<i>Delectopecten vancouverensis</i> (m)	
		<i>Harpiniopsis galera</i> (c)	<i>Bipalponephrys cornuta</i> (p)	<i>Axinopsida serricata</i> (m)	<i>Mediomastus</i> sp (p)
		<i>Amphipoda</i> (c)	<i>Macoma carlottensis</i> [^] (m)	<i>Bipalponephrys cornuta</i> (p)	
		<i>Malmgreniella</i> sp (p)	<i>Aoroides columbiae</i> [#] (c)	<i>Aoroides columbiae</i> [#] (c)	<i>Bipalponephrys cornuta</i> (p)
		<i>Goniada brunnea</i> (p)	<i>Aphelochaeta-Kirkegaardia</i> Cmplx (p)	<i>Myriochele gracilis</i> (p)	<i>Delectopecten vancouverensis</i> (m)
		<i>Pectinaria californiensis</i> (p)			
OCSan	Upper-Slope		<i>Pectinaria californiensis</i> (p)	<i>Aphelochaeta monilaris</i> (p)	<i>Aphelochaeta monilaris</i> (p)
			<i>Parapriionospio alata</i> (p)	<i>Ampelisca unsocalae</i> (c)	<i>Ampelisca unsocalae</i> (c)
			<i>Ampelisca unsocalae</i> (c)	<i>Parapriionospio alata</i> (p)	<i>Myriochele gracilis</i> (p)
			<i>Aphelochaeta glandaria</i> Cmplx (p)	<i>Melinna heterodonta</i> (m)	<i>Parapriionospio alata</i> (p)
			<i>Melinna heterodonta</i> (m)	<i>Spiophanes kimballi</i> (p)	<i>Spiophanes berkeleyorum</i> (p)
			<i>Kirkegaardia serratiseta</i> (p)	<i>Limifosser fratula</i> (m)	<i>Spiophanes kimballi</i> (p)
			<i>Prionospio ehlersi</i> (p)	<i>Eudorella pacifica</i> (c)	<i>Melinna heterodonta</i> (m)
			<i>Aphelochaeta monilaris</i> (p)	<i>Caecognathia crenulatifrons</i> (c)	<i>Eudorella pacifica</i> (c)
			<i>Lumbrineris</i> sp (p)	<i>Onuphis</i> sp A (p)	<i>Caecognathia crenulatifrons</i> (c)

1016 **Table 5** Inventories of the number of taxa from the data set whose likelihood of occurrence
 1017 increased or decreased through time (A) or whose geographic distribution shifted northward or
 1018 southward through time (B). Total Richness is the count of all distinct taxa observed at a site or
 1019 depth zone. Frequent Taxa are those observed ten or more times at a site or depth zone and were
 1020 considered for classification as increaser/decreaser or northward/southward.

A	Depth Zone	Sample Site	Total Richness	Frequent Taxa	Increaser	Decreaser	Other
Mid-Shelf	LACSD		547	129	51	9	69
	CLAEMD		415	73	18	4	51
	OCSan		602	135	33	13	89
	CSD		496	90	7	1	82
Outer-Shelf	LACSD		389	66	14	16	36
	CLAEMD		441	66	10	7	49
	OCSan		468	107	37	3	67
	CSD		460	115	15	9	91
Upper-Slope	LACSD		259	29	1	6	22
	OCSan		266	22	3	2	17

B	Depth Zone	Total Richness	Frequent Taxa	Northward	Southward	Neither
Mid-Shelf		861	246	37	7	202
Outer-Shelf		773	207	15	29	163
Upper-Slope		365	50	1	3	46

1021