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Abstract: The source term of atmospheric radionuclide releases is essential for the hazardous 

consequence assessment and emergency response. However, the artificial release oscillations in 

the source term estimate remain a fundamental challenge and may deliver misleading information, 

because of the unavoidable model biases and observation uncertainties. We propose a new method 

that removes oscillations while recovering the release details. This method explicitly corrects the 

model biases using the joint correction model and compensates the observation uncertainties 

through non-smooth competing priors that involve two rival functions. The new priors better 

model the unsteady feature of the radionuclide releases and distinguish the true releases from 

oscillations, enabling release-preserving oscillation removal. We extend the projected alternating 

minimization algorithm for an efficient solution. The method achieves oscillation-free and nearly 

perfect profiles for real releases of the Perfluoro-Methyl-Cyclo-Hexane on continental and 

regional scales, and the radionuclide 41Ar on a local scale, outperforming state-of-the-art and very 

recent methods. The sensitivities to model inputs and key parameters are also investigated. Robust 

performance is exhibited under emissions of both radioactive and non-radioactive substances, 

different meteorological inputs and numbers of observations, paving the way for identifying 

dynamic atmospheric radionuclide releases at multiple scales, especially when the release status is 

unknown. 

Keywords: inverse modeling, atmospheric emission, hazardous substance, model bias correction, 

observation uncertainties  
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1. Introduction 

The atmospheric release of radionuclides is a widely-concerned hazard to both the 

environment and the public health, which raises global public interest in a series of release events, 

such as the 1986 Chernobyl accident [1], 2011 Fukushima accident [2], 2017 Ru-106 leakage [3] 

and the recent fire-induced releases in and around the Chernobyl exclusion zone [4]. The source 

term, i.e., the temporal profile, of radionuclide releases in these events is important for 

consequence assessment and emergency response. The inversion method retrieves the release 

profile by comparing environmental observations with the simulation results of an atmospheric 

dispersion model (ADM). Compared with forward methods, which attempt to model the emission 

procedure, a key advantage of the inversion method is that environmental observations are more 

accessible than data regarding the emission process. This makes the inversion method extremely 

useful in situations where the emission process cannot be measured or derived with the forward 

method, such as the aforementioned events. 

In practice, the artificial release oscillations in the estimated profile remain a fundamental 

challenge in applying the inversion method, as these may be mixed with the true release to produce 

misleading results. A critical source of these oscillations is the mismatch between observations and 

ADM simulations, i.e., the model biases [5], which come from the inevitable uncertainties in both 

the meteorological inputs [6] and the ADM [7]. The handling of these model biases is important 

for oscillation removal, and can generally be divided into two families: explicit correction and 

implicit compensation. 

Explicit methods simultaneously correct the model biases and estimate the release profile, 

such as the direct refinement of the ADM parameters [8–10], joint correction of the combined 

effects of model biases [5,7], and spatiotemporal displacement correction of model predictions 
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[11]. Among these, joint correction models that correct the combined model biases have achieved 

nearly perfect inversion with high-quality observations in two wind tunnel experiments [5,7]. 

However, explicit correction has more unknown variables than standard inversion, leading to 

increased ill-posedness and further amplification of observation uncertainties. For this reason, the 

displacement correction method still exhibits considerable oscillations in real scenarios where 

observation uncertainties exist, even if the advanced sparsity and smoothness priors are used to 

constrain the solution [11]. 

Implicit methods compensate the model biases using regularization, which adds additional a 

priori information of the release profile (i.e., the prior) into the inversion, such as the statistical 

distribution [10,12–17], smoothness, sparsity [13,18–20], and a priori profile [14]. Through 

appropriate parameterization, the implicit approach tips the solution toward the prior and reduces 

its dependence on the biased model and the observations, so that the influence of the observation 

uncertainties and the oscillations are reduced. However, this strategy increases the prior error, 

which results from the inevitable discrepancy between the prior and the true release profile. Most 

of the existing priors assume that the release is smooth with limited overall amplitude or number 

of releases [14], but the radionuclide release is unsteady and unsmooth, involving sharp peaks and 

constant releases [21,22]. Because of this discrepancy, the implicit method may deteriorate 

information regarding the true releases when removing oscillations and may fail to recover the 

release details.  

Therefore, it is still difficult for both explicit and implicit methods to balance oscillation 

removal with release recovery in a real case, where both significant model biases and observation 

uncertainties exist. Because of this dilemma, perfect inversion of real atmospheric emissions 

remains an open problem. 
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Herein, we propose a new inversion method that combines the joint correction model and a 

new regularization scheme using two competing non-smooth priors. The joint model explicitly 

corrects the model biases, while the new priors adaptively compensate the observation 

uncertainties. The two priors respectively encourage piecewise-constant releases and temporal 

sparsity in the estimated profile, offsetting each other’s side effects and enabling a better 

description of the unsteady and unsmooth features of the radionuclide releases. Through their 

competition, the priors can distinguish the true releases from oscillations and can simultaneously 

achieve both oscillation removal and release recovery. We extend the projected alternating 

minimization (PAM) [23] algorithm to stably solve the proposed regularized joint correction model. 

The proposed method is validated on three different field experiments at different scales, which 

are the first European Tracer Experiment (ETEX-I, continental-scale) [24] and the Cross-

Appalachian Tracer Experiment (CAPTEX, regional-scale) [25] with emissions of Perfluoro-

Methyl-Cyclo-Hexane (PMCH), and the SCK-CEN experiment (local-scale) [26] with emissions 

of the radionuclide 41Ar. The performance of this method is compared with the least-square with 

the adaptive prior covariance (LSAPC) method [12] and its successor BiasCorr-LSAPC [11], 

which are state-of-the-art methods. Its sensitivity to the meteorological inputs and the number of 

observations is investigated. The key parameters as well as the roles of each prior and the PAM 

algorithm are also discussed. 

2. Materials and methods 

2.1. Standard inversion model 

The basic relationship between observations and the release profile of atmospheric emissions 

can be described as: 
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 𝛍 = 𝐇𝛔 + 𝛆 (1) 88 



 7 

where 𝛍 ∈ 𝐑𝑚  is a vector of spatiotemporal observations and 𝛔 ∈ 𝐑𝑛  is an unknown vector 

containing the release profile over N time steps. 𝛆 ∈ 𝐑𝑚 represents the possible errors. 𝐇𝒎×𝒏 is 

the source–receptor matrix, describing the sensitivity of each observation to a unit release rate, and 

𝐇𝛔 is equivalent to running an ADM with 𝛔 as the input release profile. Because H is calculated 

using such a model, it inherits the biases that are inevitable in ADMs. Consequently, 𝐇𝛔 may 

deviate from the true dispersion and will not necessarily match the observations on the left-hand 

side of Eq. (1), even if 𝛔 is the true release profile. The standard method assumes a certain 

distribution of 𝛆, and adds a corresponding regularization term to the inversion to implement this 

prior knowledge. For instance, the most widely-used prior knowledge assumes that 𝛆 follows a 

Gaussian distribution, which leads to the following Tikhonov regularization.  
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 𝛔 = argmin
𝛔

{
1

2
(𝛍 − 𝐇𝛔)𝑇𝐑−1(𝛍 − 𝐇𝛔) +

1

2
𝛔𝑇𝐏−1𝛔} (2) 99 

where 𝐑 and 𝐏 represent the covariance matrices of the observation error and the prior error, 

respectively. However, the standard approach does not update H, so this mismatch is not corrected 

and may lead to unrealistic oscillations in the solution. 

2.2. Joint correction model 

The joint correction model explicitly corrects the mismatch that resides within H in the 

standard inversion model, while retrieving the release profile at the same time. This is achieved by 

adding a diagonal matrix of correction coefficients 𝐖 to Eq. (1), in which every diagonal element 

𝑤𝑖(𝑖 = 1,2,⋯ ,𝑚) separately corrects the ADM simulation for a single observation. The resultant 

joint correction model is formulated as:  
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 𝛍 = 𝐖𝐇𝛔 +  𝛆 =

[
 
 
 
𝑤1 ⬚

⬚ 𝑤2
⬚ ⬚

⬚ ⋱ ⬚
⬚ ⬚ 𝑤𝑚]

 
 
 
[

𝐇1𝛔
𝐇2𝛔

⋮
𝐇𝑚𝛔

] + 𝛆 (3) 109 
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where 𝐇𝑖 is the i-th row of 𝐇 and 𝐇𝑖𝛔 is the model simulation for the i-th observation. In Eq. (3), 

both 𝐖 and 𝛔 are unknown variables. Hence, Eq. (3) is much more difficult to solve than Eq. (1) 

and additional prior knowledge has to be incorporated to obtain a reliable solution. In a previous 

study [5], a new form of prior knowledge was proposed for solving W, whereby the center of the 

diagonal elements of W is assumed to be a constant, and the regular Gaussian prior is employed 

for solving 𝛔. This combination achieved substantially improved inversion accuracy in two wind 

tunnel experiments [5,7], in which the release rate was constant and the quality of observations 

was high. However, the joint correction model is more ill-posed than the standard method, because 

it introduces more unknown variables (i.e. W in Eq. (3)). For this reason, the joint correction model 

is more sensitive to observation uncertainties than the standard method. Unfortunately, large 

uncertainties may exist in the observations in a real dispersion case, aggravating the artificial 

oscillations in the solution of the joint correction model. This sensitivity has been observed in a 

previous study that also introduces additional unknown variables for spatiotemporal displacement 

correction [11], even though the advanced sparsity and smoothness prior is implemented for 

oscillation reduction. 

2.3. Regularized joint correction model with non-smooth competing priors 

Noticing that the radionuclide releases are unsteady and unsmooth [21,22], we propose the 

use of two non-smooth competing priors to better model these features and to constrain the joint 

correction model. The first is the sparsity prior which assumes that the releases are sparse in the 

temporal domain. The sparsity prior encourages a limited number of sharp peaks and reduces the 

number of small releases in the solution (Fig. 1A), which the latter is mainly determined by the 

artificial oscillations. To implement this prior, we add the term ||𝛔||  as the first regularization 
1

term, where ||∙||  denotes the L1-norm [27]. A side effect of the sparsity prior is that it reduces the 
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duration of the true releases. To offset this, a second prior is added which assumes that the release 

profile is piecewise-constant. This assumption encourages constant releases with finite durations 

(Fig. 1B), which preserves the release duration and reduces the frequent changes of releases, i.e., 

the oscillations. To implement the piecewise-constant prior, we add the total variation (TV) term 

||∇𝛔||  as a second regularization term, where ∇ is the derivative operator. The combination of 
1

these two priors enables the modeling of both the sharp peaks and constant releases in the 

regularization, which better preserves the unsteady and unsmooth features of the radionuclide 

releases in the solution. Because both priors suppress oscillations, this combination can 

simultaneously remove oscillations while recovering release details. With the non-smooth 

competing priors, Eq. (3) can be solved under the framework of regularization as: 

133 
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𝐖,𝛔 = argmin
𝐖,𝛔

{
1

2
||𝐖𝐇𝛔 − 𝛍||

2

2
+ 𝜆(𝛼||𝛔||

1
+ (1 − 𝛼)||∇𝛔||

1
)}  

𝒔. 𝒕. W>=0, center(diag(W)) = Const. (4) 

143 

 144 

where 𝜆 is the regularization parameter; the second line of Eq. (4) states the non-negativity and 

center constraints on the correction coefficients matrix W. 𝛼  is the weight for the L1-norm 

regularization. By choosing an appropriate weight 𝛼, a good balance can be achieved between the 

two terms, enabling simultaneous oscillation removal and release recovery in solving Eq. (4). 
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 149 

Figure 1. Illustration of the features of non-smooth competing priors. (A) the sparsity prior 

||𝛔|| ; (B) the piecewise constant prior ||∇𝛔|| . 
1 1
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2.4. Projected alternating minimization algorithm 

An effective strategy for solving Eq. (4) is to split it into two subproblems with only a single 

unknown variable using the fact that W is a diagonal matrix: 
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 𝛔 subproblem:   𝛔 = argmin
𝐖,𝛔

{
1

2
||𝐖𝐇𝛔 − 𝛍||

𝟐

𝟐
+ 𝜆(𝛼||𝛔||

1
+ (1 − 𝛼)||∇𝛔||

1
)} (5) 

𝐰̃ subproblem:   𝐰̃ = argmin
𝐖,𝛔

{
1

2
||𝐖𝐇𝛔 − 𝛍||

𝟐

𝟐
}   𝒔. 𝒕.  𝐰̃>=0, center(𝐰̃) = 𝑐. (6) 

155 

 156 

Here, 𝐰̃ = diag(𝐖) is a vector comprising the diagonal elements of 𝐖, 𝐇̃ = diag(𝐇𝑖𝛔),

𝑖 = 1,2,⋯ ,𝑚,  𝐇𝑖 is the i-th row of 𝐇, and 𝐇̃ is a diagonal matrix with diagonal elements 𝐇𝑖𝛔. 

And 𝑐 is a constant constraint posed to the center of the correction coefficients. The alternating 

minimization algorithm [5,7] solves the two subproblems sequentially in each iteration. Although 

satisfactory accuracy has been achieved in wind tunnel experiments, the alternating minimization 

algorithm prefers a smooth solution and may not preserve the sharp jumps of the estimate [28]. 

Thus, the PAM algorithm [23] is used to solve Eq. (4) in this study, as this has the ability to 

preserve sharp changes in the estimates. PAM also alternates between the two subproblems in each 

iteration, but does not pursue complete (final) solutions. Instead, in each iteration, PAM updates 

the solution of the two subproblems by a small step based on the gradients of Eqs. (5) and (6), 

respectively. 
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In our Projected Alternating MInimization with L1-norm and Total variation regularization 

(PAMILT) algorithm, each iteration consists of three sequential steps: update of the release profile, 

update of the correction coefficients, and the constraining of the correction coefficients. The two 

update steps adjust the corresponding current estimate with a single gradient descent step. The 

constraining step imposes the constraints in the second line of Eq. (4).  

The update formulae for the two subproblems based on the gradient descent method are as 

follows: 

168 

169 

170 

171 

172 

173 

174 

∇𝛔k−1 ∇𝛔k−1

𝛔k ← 𝛔k−1 − δ [(𝐖k−1𝐇)T ∙ (𝐖k−1𝐇 ∙ 𝛔k−1 − 𝐟) − λ(α ∙ + (1 − α) ∙ ∇ ∙ )] (7) 
||∇𝛔k−1|| ||∇𝛔k−1||

2 2

 𝐰̃k ← 𝐰̃k−1 − δ[(𝐇𝛔k)T ∙ (𝐇𝛔k ∙ 𝐰̃k−1 − 𝐟)] (8) 

175 

176 

where δ is the update step. After these two steps, the positivity constraints in Eq. (6) are 

applied to the estimated correction coefficients 𝐰̃ in the projection step: 

177 

178 

 𝐰̃k = max{𝐰̃k, 0}, 𝐰̃k = 𝐰̃k/center(𝐰̃k)*𝑐. (9) 179 

The center of the correction coefficients is estimated using the univariate Minimum 

Covariance Determinant (MCD) method [5].  

A flowchart of PAMILT, related parameter settings, and initializations are presented in Table 

1. The initial release profile is estimated as a zero vector, whereas that of the correction coefficients 

is calculated based on observations and model simulations using a constant release profile with 

unit rates. The main parameters of the proposed method are the regularization parameter 𝜆, the 

ratio between the TV and L1-norm terms 𝛼, and the center constraint of the correction coefficients 

𝑐. In this study, 𝛼 and 𝑐 are empirically determined to be 0.1 and 0.001, respectively.  

180 

181 

182 

183 

184 

185 

186 

187 

Table 1. Flow of the proposed method for solving 𝛔 and 𝐰̃. 188 

Set initial values: 𝛔0 = 0𝐈, 𝐰̃0 = 𝐲obs/(𝐇 ∙ 1𝐈) 
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Iterate 𝑘 = 1,2,⋯ until ‖𝛔k − 𝛔k−1‖
2
/‖𝛔k−1‖

2
< 10−3  

or ‖𝐰̃𝑘 − 𝐰̃𝑘−1‖2/‖𝐰̃𝑘−1‖2 < 10−10 

Form 𝐖𝑘−1 matrix: 𝐖𝑘−1 = diag(𝐰̃𝑘−1) 

𝛔-step:  

Update 𝛔𝑘 with 𝐖𝑘−1 using Eq. (7) 

𝐰̃-step:  

Update 𝐰̃𝑘 with 𝛔𝑘 using Eq. (8) 

Projection step:  

Update 𝐰̃𝑘 = max{𝐰̃𝑘, 0} 

Normalization step:  

Compute the center of 𝐰̃𝑘: 𝑡𝑘 = 𝑀𝐶𝐷(𝐰̃𝑘)  

Normalize 𝐰̃𝑘: 𝐰̃𝑘 = 𝐰̃𝑘/𝑡𝑘 ∗ 𝑐 

 189 

2.5. Field experiments 

The proposed method was validated against three field experiments at continental, regional, 

and local scales respectively. The continental-scale experiment is the ETEX-I [29], of which a total 

of 340 kg PMCH was released on October 23, 1994 and the corresponding observations were 

acquired across Europe. The observation network of ETEX-I comprises 168 ground sites (Fig. 2A) 

and covers 17 European countries [24]. The sampling action lasted 90 h with intervals of 3 h, and 

ultimately provided a total of 3104 usable observations. 

The regional-scale experiment is the 2nd release of the CAPTEX [25], of which 201 kg of 

PMCH was released from 17:05 to 20:05 on September 25, 1983. The locations of 68 observation 

sites are up to 1000 km from the release position (Fig. 2B). These sites provided 375 observations 

from the start of the experiment until 00:00 on September 27, 1983 [25].  
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The local-scale experiment is the SCK-CEN experiment on October 4, 2001, of which the 

radionuclide 41Ar was released from a stack [26]. Figure 2C presents the four radioactivity 

observation sites involved in inversion, which are all within 400 m of the release. A total of 592 

fluence rate observations of γ rays were collected using an array of NaI(Tl) detectors.  

201 

202 

203 

204 

  205

Figure 2. Monitoring networks (blue dots) and release positions (red star) of three different field 

experiments. (A) the ETEX- I experiment; (B) the CAPTEX experiment; (C) the SCK-CEN 

experiment. 
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2.6. Source–receptor matrices calculation 

For consistency with previous studies, the four source–receptor matrices of ETEX-I 

experiment used in a previous study [18] were adopted here, which were kindly shared by Adam 

Lukas and Ondrej Tichy at http://staff.utia.cas.cz/adam/research.html. These matrices (3104 × 120) 

were calculated using HYSPLIT 4 [18] with two different types of meteorological data (the 40-

year re-analysis (ERA-40) and the continuously updated ERA-Interim re-analysis) and two 

different time step settings [12,18], which are referred to as ERA-40 A, ERA-40 B, ERA-Interim 

A, and ERA-Interim B. More details of the matrix calculation can be found in the references 

[12,18]. 
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As for the CAPTEX experiment, the FLEXPART-WRF model (Version 3.3.2) was used to 

calculate the source–receptor matrix (2179 × 288). This software is available at 

https://www.flexpart.eu/. The raw meteorological data of CFSR were downloaded from 

https://rda.ucar.edu/. These data were processed into input meteorological fields using the Weather 

Research and Forecasting (WRF) numerical model, of which the spatial domain covers [69.5° W, 

85.0° W], [38.5° N, 47.0° N] and has 15 vertical levels from 0–8000 m. 

The SWIFT-RIMPUFF model was used to calculate the source–receptor matrix (592 × 148) 

of SCK-CEN experiment with the onsite meteorological observations and model parameters 

reported in a previous study [30]. 

2.7. Sensitivity analysis 

2.7.1. Sensitivity to the meteorological inputs 

Meteorological inputs affect the ADM parameter settings and pose challenges for inversion. 

Besides the ERA-40 B case, the performance of PAMILT was also compared with the LSAPC 

method for three other ETEX-I scenarios involving different meteorological inputs and parameter 

settings, i.e., the ERA-40 A, ERA-Interim A, and ERA-Interim B. The estimated release profiles 

were involved in comparison, as well as the maximal model biases at each site before and after 

PAMILT correction. 

2.7.2. Sensitivity to the number of observation sites 

The performance of PAMILT was evaluated with respect to the number of observation sites 

based on the ERA-40 B case of the ETEX-I experiment. Four ratios for random selection of the 

observation sites were considered for estimating the release profiles using LSAPC and PAMILT, 

which are 12.5%, 25%, 50%, and 75%.  

2.7.3. Sensitivity to the regularization parameter 
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The sensitivity of the proposed method to the regularization parameter 𝜆 was investigated by 

estimating the release profiles using a geometric range of 𝜆 for each field experiment. The relative 

inversion error was calculated using Eq. (10) to reveal the influence of 𝜆 on the accuracy. 

241 

242 

243 

 Relative inversion error = ‖σ𝐭𝐫𝐮𝐞 − σe‖𝟐/‖σ𝐭𝐫𝐮𝐞‖𝟐 (10) 244 

where, 𝛔true is the true release rate and 𝛔e is the estimated release profile. 

2.7.4. Sensitivity to the ratio of two regularization terms 

The behavior of the regularization is controlled by the ratio 𝛼 between the L1-norm and TV 

terms, which ensures the simultaneous preservation of both the sharp changes and the steady state 

of the profile. The proposed method was applied to the ERA-40 B case of the ETEX-I experiment 

with values of 𝛼 ranging from 0.1 to 0.9. The estimated release profiles were compared with the 

true release profiles, revealing the effect of the two competing priors with different weights. 

2.7.5. Sensitivity to the center constraint value 

The sensitivity of the proposed method to the center constraint 𝑐  was performed with a 

geometric range of center constraint values from 10-4 to 102, based on the ERA-40 B case of the 

ETEX-I experiment. The relative inversion error was calculated for selecting an optimal 𝑐   

whereas the distributions of the correction coefficients and release profiles are accessed to 

investigate the influence of this constraint on inversion. 

2.8. Quantitative evaluation 

2.8.1. Model biases calculation 

To quantify the discrepancies between the observations and the model simulations, the model 

biases of ADMs before correction were calculated as: 

245 
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261 

 𝑒𝑖 = 𝜇𝑖/(𝐇𝑖 ∙ 𝛔true) (11) 262 
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where 𝜇𝑖  is the i-th observation, 𝑒𝑖  is the bias for 𝜇𝑖 , 𝐇𝑖  is the i-th row of the source–receptor 

matrix H, and 𝛔true is the true release rate. After correction, the model biases were calculated as: 

263 

264 

 𝑒𝑖 = 𝜇𝑖/(𝐖 ∙ 𝐇𝑖 ∙  𝛔e) (12) 265 

where, 𝛔e is the estimated release profile. Equations (11) and (12) can be viewed as the ratio 

between every observation and the corresponding model simulation, where 𝑒𝑖 = 1  indicates 

perfect agreement, 𝑒𝑖 > 1 indicates underestimation, and 𝑒𝑖 < 1 indicates overestimation 

2.8.2. Comparison of observations and model simulations 

The model simulations at the observation sites using an estimated profile 𝛔e were calculated 

via: 

266 

267 

268 

269 

270 

271 

 𝐲e = 𝐇 ∙ 𝛔e (13) 272 

where 𝛔e represents the LSAPC profile or PAMILT profile. When with the correction function 𝐖, 

Eq. (13) can be written as: 

273 

274 

 𝐲e = 𝐖 ∙ 𝐇 ∙ 𝛔e (14) 275 

To investigate the discrepancy between the observations 𝐲o  and estimates 𝐲e  at each site 

quantitatively, the factor of 2/5 (FAC2/5), fractional bias (FB), normalized mean square error 

(NMSE), and Pearson correlation coefficient (PCC) were used as statistical metrics. These are 

defined as: 

276 

277 

278 

279 

 FAC2 = fraction of data for which 0.5 ≤
ye

yo
≤ 2.0 (15) 

FAC5 = fraction of data for which 0.2 ≤
ye

yo
≤ 5.0 (16) 

FB = 2(ye̅ − yo̅̅ ̅)/(ye̅ + yo̅̅ ̅) (17) 

NMSE = (ye − yo)
2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅/(ye̅ ∙ yo̅̅ ̅) (18) 

PCC = (yo − yo̅̅ ̅)(ye − ye̅)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ /(𝐷e ∙ 𝐷o) (19) 
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where y denotes the average value and 𝐷e , 𝐷o  are the standard deviations of simulations and 

observations, respectively. 

3. Results and discussion 

3.1. Results for three field experiments 

Figure 3A displays the maximal model biases at each observation site for the ETEX-I 

experiment. Without correction, most of the maximal model biases are above 108, indicating 

noticeable model biases in the ADM. After PAMILT correction, the maximal model biases are 

reduced to around 106 at most of the sites. The statistics in the lower-left corner indicate that 

PAMILT reduces the average of the maximal model biases by 30.3% and reduces the variance by 

11.6%, which confirms its effectiveness in correcting model biases.  

Figure 3B compares the release profile estimates of the state-of-art LSAPC method [12] and 

PAMILT. LSAPC recovers the sharp changes of the release rates at the start and end times of the 

release, and the major releases are within the time window of the true releases. However, there are 

oscillations in the release window, ranging from 1.3% to 337.2% of the true release rate. In addition, 

there is a noticeable artificial release of 4 h outside the true release window. In comparison, 

PAMILT not only successfully recovers the sharp release changes near the boundary of the release 

window, but also retrieves the steady release phase without any oscillations. Outside the release 

window, the PAMILT profile does not indicate any releases, which is in perfect agreement with 

the actual scenario. With respect to the total release, PAMILT shows a slight underestimation of 

about 13.4%, compared with up to 24.8% for LSAPC.  
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 305 

Figure 3. Inversion results for the ETEX-I experiment (ERA-40 B case). (A) Maximal model 

biases at each site before and after PAMILT correction; (B) comparison of the LSAPC and 

PAMILT estimates. 
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307 

308 

Figure 4A compares the maximal model biases before and after PAMILT correction of 

different observation sites in CAPTEX. PAMILT reduces the maximal model biases by two orders 

of magnitude, from 105.8 to 103.5, compared with the biases of the ADM before correction. The 

average and variance are reduced by 8.3% and 14.5%, respectively. Referring to the source term 

inversion, both methods avoid artificial releases outside the release window. The LSAPC profile 

shows a single sharp release, with the instant release rate overestimated by 104.7% and the release 

duration underestimated by 82.4% (Fig. 4B). PAMILT accurately recovers the start time, sharp 

increase, and steady phase of the release, though it overestimates the release duration by 0.83 h. 

As for the total release, LSAPC produces an underestimation of 89.1%, whereas PAMILT gives 

an overestimation of about 31.76%.  
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  319

Figure 4. Inversion results for the CAPTEX experiment. (A) Maximal model biases at each site 

before and after PAMILT correction; (B) comparison of the LSAPC and PAMILT estimates. 

320 

321 

The local-scale validation results are displayed in Fig. 5. The maximal model biases at these 

sites were around 100.9 before correction, dropping to 100.3 after PAMILT correction (Fig. 5A). 

The PAMILT profile of 41Ar avoids the oscillations in the LSAPC profile and the release rate at 

the steady phase matches the true release rate exactly (Fig. 5B). PAMILT also produces a sharper 

increase at the start time of the release, whereas LSAPC gives better results at the end time. Both 

methods exhibit a delay in the start time of the release (about 1.67 h). PAMILT underestimates the 

total release by 23.14%, whereas LSAPC gives an underestimation of 44.67%.  
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Figure 5. Inversion results for the SCK-CEN experiment. (A) Maximal model biases at each site 

before and after PAMILT correction; (B) comparison of the LSAPC and PAMILT estimates. 
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Table 2 summarizes the comparison between observations and model simulations for the 

three experiments using different release profile estimates. For both the ETEX-I and CAPTEX 

experiments, the PAMILT simulation without correction shows similar metrics as the LSAPC 

simulation. After correction, the PAMILT simulation exhibits noticeably improved FAC2/5s and 

PCCs than the LSAPC simulation. For the SCK-CEN experiment, the FAC5/2 of the PAMILT 

simulation without correction is better than that of the LSAPC simulation, whereas the PCC is 

slightly worse. With the correction, the FAC5/2 and PCC of PAMILT are noticeably improved 

and exceed those of the LSAPC. These metrics indicate the superior performance of PAMILT in 

the test cases, though the FBs are slightly worse than those of the LSAPC.  

Table 2. Summary of performance measures for three experiments using different methods. The 

metrics for LSAPC, PAMILT without correction (PAMILT1), and PAMILT with correction 

(PAMILT2) are included. 
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343 

Experiment Method FAC5 FAC2 FB PCC 

ETEX-I 

ERA-40 B 

LSAPC 0.23 0.20 1.94 0.71 

PAMILT1 0.23 0.20 1.95 0.67 

PAMILT2 0.72 0.71 2.00 0.73 

CAPTEX 

LSAPC 0.51 0.48 1.14 0.76 

PAMILT1 0.50 0.47 1.92 0.46 

PAMILT2 0.86 0.84 1.87 0.98 

SCK-CEN 

LSAPC 0.16 0.07 1.00 0.80 

PAMILT1 0.21 0.12 1.11 0.73 

PAMILT2 0.86 0.80 1.34 0.99 
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3.2. Sensitivity analysis 

3.2.1. Sensitivity analysis with respect to meteorological inputs 

Figure 6 compares the results for ETEX-I with three different types of meteorological input 

data. The maximal model biases in each case have similar ranges, but the spatial distributions are 

different. PAMILT reduces the maximal model biases to different degrees for the three cases, with 

respect to both the spatial distribution and the statistics in the lower-left corner (Fig. 6D–F). The 

LSAPC estimates exhibit oscillations of varying degrees in the release windows of the three cases, 

with the release rates deviating from the true values by up to −99.52% (underestimation) and up 

to 66.82% (overestimation). Additionally, LSAPC produces a noticeable artificial peak release at 

time zero for ERA-Interim A (indicated by the arrow in Fig. 6H). In contrast, the PAMILT profiles 

match the true release profiles closely, with deviations of less than 24.60% in the release window. 

For ERA-40 A and ERA-Interim B, PAMILT recovers both the sharp changes and steady phase 

of the release, and the end time of the release matches the true profile exactly for ERA-Interim B. 

For ERA-Interim A (Fig. 6H), the PAMILT profile shows some slight distortion, but there is no 

artificial peak at time zero and no oscillations in the release window. As for the total release, 

LSAPC produces underestimations of 32.42–79.70%, whereas the errors of PAMILT are at most 

13.19%, indicating that PAMILT can achieve steady performance with different meteorological 

inputs. 

Besides, the ERA-Interim B case (Fig. 6I) was also used to validate an upgraded LSAPC 

method (LSAPC with a bias correction function, i.e. BiasCorr-LSAPC) in a very recent study [11]. 

Yet, the BiasCorr-LSAPC methods still show residual oscillations and artificial release outside the 

release window (the second and third row of Fig. 6 in the reference [11]), whereas both errors have 

been corrected in the PAMILT result (Fig. 6I). 
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 368 

Figure 6. Inversion results for the ETEX-I experiment using different meteorological inputs: 

(left) ERA-40 A, (middle) ERA-Interim A, and (right) ERA-Interim B. (A)–(C) Maximal model 

biases at each site before correction; (D)–(F) maximal model biases at each site after PAMILT 

correction; (G)–(I) LSAPC and PAMILT estimated profiles. 

3.2.2. Sensitivity analysis with respect to the number of observation sites 

Figure 7 displays the representative temporal profiles estimated using 12.5%, 25%, 50%, and 

75% of the observation sites for ERA-40 B. The LSAPC profiles exhibit oscillations in the release 
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window and artificial releases outside the window for all cases, deviating from the true profile. In 

contrast, the PAMILT profile is free of oscillations and the shapes are close to the true profile, 

recovering both the sharp changes and steady phase. Additionally, PAMILT avoids artificial 

releases outside the release window. With fewer sites, the PAMILT profiles indicate earlier 

endpoints of the release than the ground truth. As the number of sites increases, PAMILT provides 

a more accurate end time, agreeing with the ground truth. With respect to the total release, 

PAMILT gives underestimations exceeding 30.82% with 12.5% or 25.0% sites. When 50% or 

more sites are considered, PAMILT provides more stable total release estimates, with deviations 

of less than 14.90% from the ground truth. Therefore, PAMILT achieves robust performance with 

respect to the number of observation sites.  
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 386 

Figure 7. Inversion results using partial observation sites for the ETEX-I ERA-40 B case. (A), 

(B) 12.5% of the observation sites; (C), (D) 25% of the observation sites; (E), (F) 50% of the 

observation sites; (G), (H) 75% of the observation sites. Each row presents two different cases 

involving the same number of randomly selected sites. 

3.2.3. Effect of the regularization parameter 
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Figure 8 displays the relative inversion error of PAMILT with different 𝝀. The relative error 

curves are generally quite typical for regularization methods, indicating that many existing 

algorithms may be applied for optimal parameter selection [31]. For ETEX-I ERA-40 B (Fig. 8A) 

and CAPTEX (Fig. 8B), the relative error curves show a rapid decrease as 𝝀 increases. After 

reaching the minimum, the relative errors increase smoothly and reach a steady state. For SCK-

CEN (Fig. 8C), the enlarged view illustrates the error behavior at small 𝝀, as the inversion error 

starts from a lower value than in the other two experiments. Although two regularization terms are 

involved, the relative inversion error of three real cases varies smoothly with the regularization 

parameter, enabling optimal selection of the regularization parameter. 
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 401 
Figure 8. Relative inversion error of PAMILT for three field experiments with different values 

of the regularization parameter 𝜆. (A) ETEX-I ERA-40 B; (B) CAPTEX; (C) SCK-CEN. The 

yellow stars denote the optimal values. 
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3.2.4. Competing effect of the two regularization terms 

As shown in Fig. 9A, with 𝛼≤0.01, the TV term dominates the model behavior, leading to a 

prolonged-release window and overestimated release rates. As 𝛼 increases, the sparsity promotion 

effect of the L1-norm term gradually appears, significantly reducing the artificial releases outside 

the true release window. Further increasing 𝛼 reduces the release rate and shortens the release 

window, leading to underestimated total releases. However, the shape of the release profile 
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remains similar to the true profile. Based on the results in Fig. 9, 𝛼 is set to 0.1 in all the test cases 

in this study. 

411 

412 

  413

Figure 9. Comparison of PAMILT estimates for the ETEX-I ERA-40 B case using different 

values of 𝜶 from 0.1 to 0.9. 
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3.2.5. Center constraint value of correction coefficients 416 
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Figure 10 displays the relative inversion error of different center constraint values. As the 

center constraint value increases, the relative error curve first drops to a minimum at 0.001 and 

then increases again.  

417 

418 

419 

 420 

Figure 10. Relative inversion error of PAMILT using different center constraints for the ETEX-I 

ERA-40 B case. 
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Figure 11 compares the distributions of the correction coefficients estimated using different 

center constraint values with the true model biases. The center constraint value influences not only 

the range of estimates but also the shape of the distribution. As the center constraint value decreases, 

the high-frequency parts of the two distributions initially exhibit an increasing degree of overlap 

and agreement. When the center constraint value exceeds 0.001, the overlap begins to decrease, 

which is consistent with the tendency in Fig. 10.  
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 429 

Figure 11. Distribution of the correction coefficients estimated using different center constraints 

𝒄 for the ETEX-I ERA-40 B case. 

Figure 12 displays the estimated release profiles corresponding to Fig. 11. Larger center 

constraint values (Fig. 12A–E) lead to flatter release profiles, featuring underestimated release 
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rates and overestimated release windows. Decreasing the center constraint increases the release 

rate and simultaneously shortens the release window, leading to a profile that is closer to the true 

profile. Further decreasing the center const raint leads to underestimated total releases and 

overestimated release rates in the steady state. 
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Figure 12. Comparison of estimates using different center constraints 𝑐 for the ETEX-I ERA-40 

B case. 

3.3. Roles of each component in PAMILT 

Figure 13 compares the release profile estimated using different components of PAMILT for 

the ERA-40 B case. Inversion using only TV (Fig. 13A) or TV + L1-norm (Fig. 13B) regularization 

does not take the model uncertainties into consideration, and produces stage-like variations in the 

release rates and artificial releases outside the window. Without any regularization, the joint 

correction model alone cannot handle the observation uncertainties and the PAM solution exhibits 

considerably overestimated release rates and prolonged release windows (Fig. 13C). For TV-

regularized PAM (PAM + TV), the estimated release profile exhibits overestimations of both the 

release rates and the release duration (Fig. 13D), but no oscillations. On the contrary, the L1-norm-

regularized PAM (PAM + L1-norm) exhibits a very short release duration, leading to an 

underestimated release amount (Fig. 13E). With PAMILT, the TV and L1-norm terms counteract 

the negative effects of one another, achieving a solution that almost perfectly matches the true 

profile (Fig. 13F). With respect to the total release, the TV and TV + L1-norm regularized profiles 

show similar underestimations (about 24.2% and 31.1%, respectively). Both PAM and PAM + TV 

noticeably overestimate the total release, whereas PAM + L1-norm produces a significant 

underestimation. The combination of PAM, TV, and L1-norm (PAMILT) gives a total release that 

is very close to the true value, which efficiently handles both the model biases and observation 

uncertainties.  
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  459

Figure 13. Comparison of estimates for the ETEX-I ERA-40 B case using different 

combinations of regularization terms and PAM. (A) Standard inversion + TV; (B) standard 

inversion + TV + L1-norm; (C) PAM; (D) PAM + TV; (E) PAM + L1-norm; (F) PAMILT. 

3.4. Extension as a target-driven framework 

The joint correction model, non-smooth priors (L1 and TV), and the new algorithm (tailored 

PAM) provide a fundamental framework for robust source term inversion, and achieve 

unprecedented (nearly perfect) inversion quality for both chemical and radioactive materials in 

three real emission cases at different scales. The framework has the flexibility to incorporate 

different inverse models and prior knowledge. 

For instance, it would be straightforward to replace the joint correction model with the 

Simultaneous Estimation of the Release rate And Correction of both the plume range and Transport 

pattern (SERACT) model described in our previous study [7]. SERACT can overcome the 

inefficiency of the joint correction model in cases where the ADM simulation produces a zero 

output for a nonzero observation, and further improves the robustness of the framework. Similarly, 
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the generality of the framework allows the use of other priors, especially the specific features of 

the emission. For example  a prior specifying the radionuclide composition can be employed to 

reconstruct the multi-radionuclide emissions of multiple radionuclides following nuclear accidents 

[14 32].  

4. Conclusion 

We have proposed an inversion method that returns oscillation-free and nearly perfect 

temporal release profiles of real emissions of the PMCH and radionuclide 41Ar across different 

spatial scales. This method extends the joint correction model with a new regularization of two 

competing non-smooth priors, to compensate the large observation uncertainties and to recover 

fine release details in real cases. The two priors offset each other’s side effects, of which the 

combination better models the unsteady and unsmooth feature of the radionuclide releases. This 

help distinguish the true releases from oscillations, enabling simultaneous oscillation removal and 

release recovery. A tailored algorithm is also designed for solving the regularized joint correction 

model. The multiscale validations against three real cases demonstrate that the proposed method 

achieves superior inversion quality to that of state-of-the-art algorithms, with improvements in the 

peak estimates, temporal window, and total release amount. The proposed method exhibits stable 

performance in the presence of different meteorological inputs and different numbers of 

observation sites. In addition, it requires only limited parameter tuning, indicating strong potential 

for operational usage. The proposed method shows that model biases and observation uncertainties 

can be efficiently handled through the combinational framework of the joint correction model, 

non-smooth competing priors, and the tailored projected alternating minimization algorithm. This 

framework can be applied to the inversion of diverse emissions at different scales, ranging from 

global to industrial park emissions.   
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Data and materials availability 

Meteorological data, source–receptor matrices of ETEX- I, and FLEXPART-WRF model are 

available online as described in Materials and Methods. Note that the data that support the findings 

of this study are deposited in local storage at Tsinghua University. Additional scripts, codes, or 

data are available which may be requested from the authors upon reasonable request. 
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