

1 Intra-lake trends and inter-lake comparisons of *Mysis diluviana* life history variables and their
2 relationships to food limitation.

3

4 Authors:

5 Toby J. Holda^{1,2}, holda2@illinois.edu

6 James M. Watkins¹ jmw237@cornell.edu

7 Anne E. Scofield³ scofield.anne@epa.gov

8 Stephen Pothoven⁴ steve.pothoven@noaa.gov

9 David M. Warner⁵ dmwarner@usgs.gov

10 Timothy O'Brien⁵ tiobrien@usgs.gov

11 Kelly L. Bowen⁶ kelly.bowen@dfo-mpo.gc.ca

12 Warren J. S. Currie⁶ warren.currie@dfo-mpo.gc.ca

13 David Jude⁷ djude@umich.edu

14 Patrick Boynton¹ pvbxx@cornell.edu

15 Lars G. Rudstam¹ lgr1@cornell.edu, (607) 255-1555

16 1) Cornell Biological Field Station, Department of Natural Resources and the Environment, Cornell
17 University, 900 Shackleton Point Road, Bridgeport, NY 13030

18 2) Illinois River Biological Station, Illinois Natural History Survey, Prairie Research Institute,
19 University of Illinois, 704 N. Schrader Ave., Havana, IL 62644

20 3) Great Lakes National Program Office, US Environmental Protection Agency, Chicago IL
21 4) Great Lakes Environmental Research Laboratory, NOAA, Ann Arbor, MI.

22 5) Great Lakes Science Center, USGS, Ann Arbor, MI.

23 6) Department of Fisheries and Oceans, Great Lakes Laboratory for Fisheries and Aquatic Sciences
24 Great Lakes

25 7) University of Michigan, School of Environment and Sustainability, 440 Church St. Ann Arbor, MI
26 48109

28 **Abstract**

29 The opossum shrimp, *Mysis diluviana*, is an important member of the offshore food webs of the
30 Laurentian Great Lakes, but its response to ecosystem changes that have occurred over the past several
31 decades is not well understood. We combined the data of four long-term sampling programs, adding
32 several years of data (post and prior) to previously published analyses to offer a longer-term, cross-basin
33 analysis of *M. diluviana* populations in the Great Lakes from 1997 to 2019. Densities were high in lakes
34 Superior and Ontario (summer values 100-300/m²), high and variable but declining (from 200-300/m² in
35 1997-2004 to less than 100/m² in 2017-2019) in Lake Michigan, low (~20-50/m² since 2005) in Lake
36 Huron, and very low in shallower eastern Lake Erie (<1/m²). Biomass showed similar trends. Life history
37 parameters (mortality, fecundity, and growth) were consistently highest in eastern Lake Erie, followed
38 by lakes Ontario, Michigan, Huron, and Superior. Generation time was 1 year in Lake Erie and 2 years in
39 the other lakes. Cross-basin relationships between annual *M. diluviana* areal densities and food indices
40 (chlorophyll-a concentration and zooplankton biomass) were non-linear, increasing with food levels up
41 to about 250 mysids/m² and about 650 mg dry wt/m². Annual growth rates were also positively
42 correlated to both food indices in the four deep lakes, but fecundity and mortality rates were not. Our
43 results suggest food availability is a primary factor predicting *M. diluviana* density and biomass. Density-
44 dependent mortality and fish predation could explain some of the inter-lake differences but requires
45 further investigations.

46 **Keywords**

47 Abundance; mortality, growth, fecundity, chlorophyll, zooplankton

48 **Introduction**

49 *Mysis diluviana* (formerly *Mysis relicta*) is a relatively large (up to 30-mm) shrimp-like crustacean
50 native to the Laurentian Great Lakes (hereafter, “Great Lakes”) and other deep post-glacial lakes in
51 North America (Rudstam and Johannsson, 2009). *Mysis diluviana* is an important component of these
52 lakes’ deep offshore ecosystems, both as a predator of other zooplankton and as a prey of benthic and
53 pelagic fishes (Gamble et al., 2011; O’Malley et al., 2017; Sierszen et al., 2014). This mysid can reach
54 densities of over 500 /m² in Great Lakes offshore waters and represent up to 30% of the crustacean
55 zooplankton biomass (Holda et al., 2019; Jude et al., 2018; Pothoven and Vanderploeg, 2017). Thus,
56 determining if density and biomass of mysids are changing over time and which factors drive mysid
57 population dynamics are important for understanding changing Great Lakes ecosystems. This may be
58 particularly important after the decline in the benthic amphipod *Diporeia hoyi* in the 1990s (Nalepa et
59 al., 2009; Burlakova et al., 2022) as *M. diluviana* is now the dominant larger deep-water crustacean in
60 lakes Ontario, Michigan, and Huron (Pothoven and Bunnell, 2016; Bunnell et al., 2018).

61 Over the past 50 years, the Great Lakes have undergone substantial ecological change, both from
62 decreasing nutrient loading and from invasive species that have restructured biological communities
63 (Bunnell et al., 2021, 2014; Burlakova et al., 2018; Sturtevant et al., 2019). While these ecosystem
64 changes have likely impacted *M. diluviana* ecology in the Great Lakes, it is unclear if we should expect
65 positive or negative effects on mysid populations (Holda et al., 2019; Jude et al., 2018). For instance,
66 total food resources of *M. diluviana* may have declined due to oligotrophication and competition with
67 invasive species (Bunnell et al., 2011; Johannsson et al., 2011; Pothoven et al., 2010; Pothoven and
68 Vanderploeg, 2017). However, because *M. diluviana* occurs and feeds in the deep chlorophyll layer at
69 night, and clearer water may have increased the importance of the deep chlorophyll layer (Scofield et
70 al., 2020), such vertical restructuring of the food web due to oligotrophication may have increased
71 rather than decreased mysid food resources. Similarly, invasive predatory cladocerans may compete

72 with *M. diluviana* for food (Johannsson et al., 2011) but are also known to be a food resource for *M.*
73 *diluviana* (O’Malley and Bunnell, 2014; O’Malley et al., 2017). Thus, it is difficult to know *a priori* how
74 the *M. diluviana* populations in the Great Lakes are likely to respond to recent and continuing ecosystem
75 changes in the Great Lakes.

76 Several studies have been published on mysid population trends in the Great Lakes. Jude et al.
77 (2018) compared *M. diluviana* populations across the five Great Lakes over the decade 2006 to 2016.
78 They found offshore *M. diluviana* to be most abundant in lakes Ontario and Superior, followed by lakes
79 Michigan, Huron, and Erie. The populations did not change significantly over time from 2006/07 to 2016
80 in lakes Ontario, Michigan, and Huron, but did increase slightly over time in Lake Superior (Lake Erie was
81 not tested due to low population density and sample size). The lack of change in mysid populations
82 reported for lakes Michigan, Huron, and Ontario could be the result of the limited time frame (2006-
83 2016). Hypothesized causes of *M. diluviana* change (e.g., oligotrophication, loss of *Diporeia*, and
84 invasions of predatory cladocerans and dreissenids) began prior to the mid-2000s (Barbiero et al.,
85 2018b; Mills et al., 2003). Three studies comparing *M. diluviana* density in the late 2000s or early 2010s
86 to those in earlier decades (1971, the late 1980s, or the late 1990s in lakes Michigan, Huron, and
87 Ontario) documented lower densities of mysids after the mid-2000s than during earlier time periods
88 (Bunnell et al., 2011; Johannsson et al., 2011; Pothoven and Vanderploeg, 2017).

89 In this paper, we used *M. diluviana* data from several annual monitoring programs to expand on the
90 time frame and spatial extent of previous mysid studies. The additional data allowed us to expand the
91 among-lake analysis of Jude et al. (2018) which spanned 11 years (2006-2016) with 12 years of
92 additional data, including 9 preceding years (1997-2005) and 3 succeeding years (2017-2019). The
93 preceding years are especially important as some of the large ecosystem changes known to have
94 occurred in the Great Lakes (declines in nutrient concentrations, collapse of alewife, increases in

95 dreissenid mussels) occurred during those years, especially in lakes Michigan and Huron (Barbiero et al.,
96 2018b). In this paper we will use the term “density” for numerical density, “biomass” for biomass
97 density and “abundance” when we are referring to both numerical density and biomass density. We
98 also directly correlated *M. diluviana* abundance with available time series of zooplankton biomass from
99 1997 to 2019 (described in Barbiero et al., 2019), and an available time series of surface chlorophyll-a
100 data from 1998 to 2019 derived from satellite data (methods in Lesht et al., 2018). The mysid data sets
101 we analyzed included length measurements and embryo counts. We derived age distributions from the
102 lengths for calculation of annual mortality and annual growth rates. Changes in life history variables
103 (mortality, growth, and fecundity) both over time and across lakes could explain changes in *M. diluviana*
104 populations and provide information on the importance of food resources and predation rates.

105 We used the expanded data set to ask the following questions about *M. diluviana* populations in the
106 Great Lakes. First, are there significant differences in mysid abundance among lakes, and have such
107 differences been maintained throughout the last two to three decades? Second, for each lake, what are
108 the trends in abundance of mysids from the 1990s to 2019? Third, are mysid abundance related to
109 indices of trophic state / food resources (e.g., spring phytoplankton bloom, zooplankton biomass)?
110 Fourth, are the life history variables mortality, growth, and fecundity different among lakes? Fifth, are
111 differences over time and among lakes in these life history variables related to mysid abundance of food
112 resources (indicative of intra-specific competition and food limitation). ? Finally, we discuss the most
113 likely drivers of variation in *M. diluviana* population changes across the Great Lakes given the results of
114 these analyses.

115

116 **Methods**

117 *Long-term annual monitoring datasets with Mysis data*

118 Mysid density, biomass, and life history rates in the Great Lakes have been monitored by several
119 annual programs using net sampling methods designed specifically to target *M. diluviana*. The U.S.
120 Environmental Protection Agency's (EPA) Great Lakes National Program Office (GLNPO) biological
121 monitoring program has included sampling of mysids at offshore stations in all five Great Lakes during
122 spring (usually April) and summer (usually August) since 2006 (Jude et al., 2018). Although this program
123 sampled a limited number of stations per lake (Fig. 1), it uses consistent methods in all five lakes,
124 thereby enabling among-lake comparisons of long-term trends (Barbiero et al., 2018a). Other mysid
125 monitoring programs focus on one or two lakes (Fig. 1). The U.S. Geological Survey's (USGS) Great Lakes
126 Science Center (GLSC) have monitored mysids in lakes Michigan (during summer: usually August) and
127 Huron (during late summer: usually September) since 2005 with samples taken as part of lake-wide
128 acoustic surveys (Bunnell et al., 2011; Warner et al., 2010). The National Oceanic and Atmospheric
129 Administration's (NOAA) Great Lakes Environmental Research Laboratory (GLERL) have monitored
130 mysids in southeast Lake Michigan with monthly March-to-December sampling at their Muskegon
131 transect since 1995 (with a sampling gap during 2003-2006) (Pothoven and Vanderploeg, 2017).
132 Fisheries and Oceans Canada's (DFO) Great Lakes Laboratory for Fisheries and Aquatic Sciences (GLLFAS)
133 have monitored mysids in Lake Ontario, collecting samples in the fall (usually October-November) and
134 on a lake-wide basis in 1990, 1991, 1995, and from 2002 to 2017 (Johannsson et al., 2011). Earlier
135 publications from these monitoring programs have presented data through 2013 (DFO-GLLFAS: Rudstam
136 et al., 2017), 2015 (USGS GLSC: Bunnell et al., 2018; NOAA GLERL: Pothoven and Vanderploeg, 2017);
137 and 2016 (EPA GLNPO: Jude et al., 2018). Here, we included additional years of data from these
138 monitoring programs (through 2019) to estimate areal density, areal biomass, and several life history
139 variables (fecundity, growth rate, mortality) of *M. diluviana* populations in the Great Lakes. Because the
140 GLNPO surveys for *M. diluviana* that consistently sample all five Great Lakes, all among-lake
141 comparisons and tests were based solely on data from GLNPO surveys. Data from the single-lake

142 surveys conducted by USGS, NOAA, and the DFO were included in within-lake analyses of temporal
143 trends.

144 Field and lab methods for targeted sampling of mysids were similar among the different monitoring
145 programs (Johannsson et al., 2011; Jude et al., 2018; Pothoven and Vanderploeg, 2017; Warner et al.,
146 2010). All programs used vertical plankton nets with similar specifications deployed to near the bottom
147 of the lake (generally within 5 meters) at night to sample mysids (Table 1), which we refer to collectively
148 hereafter as mysid nets. Samples were preserved with either ethanol or formaldehyde, and in some
149 cases brooding females were separated into separate vials to assess brood size. All mysids were tallied
150 in every sample, and the areal abundance calculated based on the area of the net opening. Individual
151 mysids were assessed for standard length (tip of rostrum to end of abdomen), sex, and brooding status,
152 which were recorded for all individuals or for a subsample when total count in a sample was high (> 100-
153 125). Only mysids larger than 3 mm were included in the density and biomass numbers as smaller
154 mysids may have been released from the brood pouch during sampling. Average length of late-stage
155 mysids in the brood pouch measured 2016 to 2019 was 2.40 mm with the upper 97.5 percentile at 2.96
156 mm with minimal differences among lakes (N=4445, Huron, Michigan, Superior and Ontario, authors
157 unpublished data) The mass of individual *M. diluviana* was calculated from measured standard length
158 according to the formula $\ln(\text{dry mass in g}) = -12.27 + 2.72 \ln(\text{length in mm})$ (Johannsson et al., 2011), and
159 areal biomass calculated as the product of mean individual mass and areal density.

160

161 *Using EPA zooplankton samples to extend Mysis time series back to 1997*

162 In addition to annual monitoring programs directly targeting *M. diluviana*, EPA GLNPO surveys have
163 collected samples targeting whole-water column zooplankton at all monitoring stations since 1997
164 (Barbiero et al., 2019). We hereafter refer to this net as the GLNPO zooplankton net (153- μm mesh

165 throughout net and cod end, 0.5-m diameter, 1.5 m long, towed from 100 m or 2 m above the bottom at
166 sites shallower than 100 m). The volume sampled by the zooplankton net was measured with a
167 calibrated flowmeter, and that volume was used to calculate volumetric density. Areal biomass of *M.*
168 *diluviana* in zooplankton net samples was calculated as the product of tow depth and volumetric
169 biomass, where volumetric biomass was estimated as the product of volumetric density and mean
170 individual dry mass. Mean individual dry mass was estimated from up to 20 length measurements per
171 sample and a length-mass regression [$\ln(\text{dry mass in g}) = -12.55 + 2.72 \ln(\text{length in mm})$] based on
172 Johannsson et al. (1995) as modified by Rudstam et al. (2008) to account for differences in how the
173 animals were measured – end of abdomen in mysid nets versus cleft of telson in zooplankton nets). We
174 only used zooplankton net data collected at night. Unlike mysid collections, deck lights are on during
175 collection of zooplankton.

176 Although the zooplankton net frequently contained mysids when towed at night, we expected this
177 net to have lower catch efficiency for *M. diluviana* due to the smaller mouth area, the deck lights, and a
178 shorter tow depth to 100 m instead of the whole water column. Paired catches in the two GLNPO nets
179 (mysid net and zooplankton net) for nighttime visits collected in 2006 to 2019 were highly correlated for
180 both density and biomass ($r^2 = 0.70$ and 0.63, respectively, based on 4th-root transformed data to
181 improve homogeneity of variance in residuals and including zero catches). The GLNPO zooplankton net
182 underestimated mysid density by 15% and mysid biomass by 58% compared to paired samples in the
183 GLNPO mysid net (Fig. S1-S2). Thus, the GLNPO zooplankton net data are useful but biased indicators of
184 mysid abundance. Even so, the data provided by the GLNPO zooplankton net are important because
185 they provide information on each lake's *M. diluviana* populations during several critical years in which
186 we have no information from other surveys (roughly 1997 to 2005 depending on the lake). Data
187 collected from GLNPO zooplankton net samples do not include information on sex, life stage, or
188 reproductive status of *M. diluviana*. In addition, although the GLNPO zooplankton net data includes up

189 to 20 length measurements per net tow, this net was selective against larger mysids, which would result
190 in skewed size structures. Therefore, while we used these data to help inform areal density and biomass
191 estimates in 1997-2005, we did not use them to obtain estimates of the life history variables obtained
192 from the mysid net datasets. Note that since the GLNPO zooplankton net dataset was collected as part
193 of the among-lake GLNPO design, we did include its abundance data in among-lake statistical tests and
194 comparisons while including a factor for relative net efficiency to correct for bias in abundance
195 estimates of the GLNPO zooplankton net.

196 *Abundance analyses*

197 *Mysis diluviana* areal abundance is known to increase with bottom depth. In the Great Lakes, few
198 *M. diluviana* are encountered in water shallower than 30 m and areal abundance increase noticeably
199 with depth at sites deeper than 30 m, plateauing at between 70 m and 100 m (Holda et al., 2021, 2019;
200 Johannsson, 1995; Jude et al., 2018; Rudstam et al., 2008; Watkins et al., 2015). Therefore, we excluded
201 samples collected from stations shallower than 70 m – except for eastern Lake Erie (where we excluded
202 samples shallower than 30 m because the lake's maximum depth is around 70 m). Average areal
203 abundance of mysids were calculated from the average values of each visit to a station (station-visit, i.e.
204 replicates averaged and not considered independent samples). Averages were calculated separately for
205 each agency conducting the sampling and for each gear used. For lakes Superior, Huron, and Erie, we
206 only had samples from spring and summer (we categorized Lake Huron's late summer samples as
207 "summer" to avoid confounding season and agency terms in later statistical models), while for lakes
208 Michigan and Ontario we also had samples from late summer / fall. We also reported average annual
209 abundance for each lake, season, and gear for time periods corresponding to 1990-1995 (only for Lake
210 Ontario), 1997-2004, 2005-2012, and 2013-2019 (with minor variations among agencies due to annual
211 programs spanning different years). We chose these time periods to include roughly equal numbers of
212 years in each period. Using GLNPO datasets, we compared mean annual density and biomass among

213 the lakes for each period – resulting in six ANOVA models (both response variables in each of three time
214 periods). We log_e transformed density and biomass to satisfy assumptions of homoscedasticity and
215 normality (adding the smallest observed value (0.15 *Mysis*/m² and 0.3 mg/m²) to accommodate 0
216 catches). In addition to the effect of lake, we included an effect of season and, for the two most recent
217 time periods when both the mysid net and zooplankton net were used, an effect of net type.

218 Within-lake temporal patterns were analyzed using generalized additive models (GAMs). We fit a
219 separate GAM for each lake and each response variable (density and biomass) for a total of 10 GAMs.
220 All GAM analyses were done using the function *gam* in the R package *mgcv* (Wood, 2017). In each GAM,
221 the abundance metric was fit to a smoother function of *year* along with non-smoothed, categorical
222 additive terms for *season* (Spring, Summer, or Fall), and for *collecting agency/net type* (GLNPO mysid
223 net, GLNPO zooplankton net, USGS mysid net, NOAA mysid net, or DFO mysid net). Applying the
224 smoothing function to the *year* variable allowed us to generate smoothed temporal patterns and
225 accounted for temporal autocorrelation in our data. Including season allowed us to combine known
226 seasonal effects such as abundance estimates in the open water being lower in spring than in summer
227 (Johannsson, 1992; Jude et al., 2018; Pothoven and Vanderploeg, 2017). Due to non-homogenous
228 variance and lack of normality in GAM residuals when using non-transformed abundance data, we
229 applied fourth-root transformations to areal density and biomass data prior to fitting each GAM model.
230 We used GAM fits to evaluate trends over time within and among lakes, while accounting for differences
231 due to season, agency, and gear. Note that each lake-specific GAM is informed by the data from both
232 spring and summer and from all sampling programs from that lake. We plotted the fit of all ten GAMs in
233 terms of summer values normalized to the mysid net in the GLNPO survey, with separate panels for
234 density and for biomass.

235 *Comparison to lower trophic level data*

236 We compared *M. diluviana* abundance to available data on mysid food supply to evaluate the
237 influence of bottom-up drivers on *M. diluviana* density and biomass. The spring diatom bloom has been
238 suggested to be important for mysids (Johannsson et al., 2001; Pothoven et al., 2010). We obtained
239 annual spring bloom data from satellite measures of spring (lake-wide average of March-June) surface
240 chlorophyll-a concentrations available from GLNPO for each lake for 1998-2019 (Lesht et al., 2018; U.S.
241 EPA on-line database) (Fig. S3). We calculated a zooplankton index for each year as the average of
242 spring and summer 0-100 m areal biomass (dry mass, excluding mysids captured in the zooplankton net)
243 from the GLNPO stations deeper than 70 m (30 m for eastern Lake Erie) (Barbiero et al., 2019) (Fig. S4).
244 Summer *M. diluviana* abundance (as predicted by previous GAM fits) were plotted against our annual
245 indices of zooplankton biomass and spring phytoplankton, and relationships between food indices and
246 *M. diluviana* density and biomass were examined with additional GAMs, where *M. diluviana* abundance
247 was predicted as a smoothed function of a food index (phytoplankton and zooplankton). These
248 additional GAMs included data from all lakes except eastern Lake Erie due to the limited number of
249 mysids caught in that lake.

250 *Life history rates*

251 *Mysis diluviana* life history rates may indicate which changes in ecosystem structure (e.g., food
252 supply, predation pressure) are impacting its populations. Mysid age distributions are most reliably
253 determined from length distributions during summer when nearly all mysids: 1) have been released
254 from the marsupium, and 2) belong to one of just two cohorts that do not overlap much in size (Jude et
255 al., 2018). Because the main breeding pulse of Great Lakes *M. diluviana* is fall to spring (Holda et al.,
256 2021, 2019; Johannsson, 1992; Pothoven and Vanderploeg, 2017), we used data from those seasons and
257 not summer for reproductive rates. Although life history metrics for Lake Michigan were available from
258 NOAA for the 1990s, we only used data from 2007 onwards both because comparisons of rates during
259 the 1990s to the mid-late 2000s have already been published (Pothoven et al., 2010; Pothoven and

260 Vanderploeg, 2017) and although the older values represent an important baseline for comparisons, we
261 were more interested in recent changes in life history metrics in Great Lakes *M. diluviana*. Density-
262 dependence of life history rates was explored by comparing those rates with observed mysid density
263 and biomass.

264 All individual length measurements based on summer collections (excluding the GLNPO zooplankton
265 net samples) were pooled for each lake, year, and agency to obtain agency-specific time series of annual
266 summer length distributions in each lake (except eastern Lake Erie). For both age classes ($a = 0, 1+$) and
267 for all years ($t = 2006 - 2019$), summer age distributions ($P_{a,t}$) were estimated by applying Gaussian
268 mixed models using the *Mclust()* function from the R package *mclust* (Scrucca et al., 2016) to summer
269 length distributions. *Mclust()* output for bimodal distributions includes two means ($\bar{L}_{a,t}$), two standard
270 deviations, and one proportion value ($P_{a=0,t}$). We report the $P_{a=0}$ values because they are important for
271 later mortality calculations but are not individually dependent on multi-year calculations and any biases
272 those might introduce. Mortality rates ($Mort_t$, in %) of *M. diluviana* were estimated from annual age
273 distributions combined with annual density estimates as:

$$274 \quad Mort_t = 100 \cdot \left[1 - \left((1 - P_{a=0,t+1}) \cdot Density_{t+1} \right) / \left(P_{a=0,t} \cdot Density_t \right) \right] \quad (1)$$

275 This gave us a mortality estimate in each lake for each year. From the mean standard lengths (mm)
276 of each age class for each year ($\bar{L}_{a,t}$), we could estimate average growth rates of *M. diluviana* (in
277 mm/month) for each year (\bar{G}_t) as:

$$278 \quad \bar{G}_t = (\bar{L}_{a=1+,t+1} - \bar{L}_{a=0,t}) / 12 \quad (2)$$

279 Thus, our growth and mortality rates represent the time period between the first and second summer of
280 a *M. diluviana* cohort. We calculated these life history variables separately for each agency's dataset.

281 We also had information on mature, brooding (i.e., brood-carrying) females in the spring from
282 GLNPO datasets and in the spring and fall from NOAA datasets. For each female, we measured standard
283 length and counted the number of embryos in the marsupium. These data were used to calculate yearly
284 mean lengths and mean brood sizes of brooding females by lake, season, and agency.

285 We examined life history variables for statistically significant, among-lake differences, for correlation
286 with density and biomass, and for correlation with each food index described above. We used ANOVAs
287 to test for among-lake differences in yearly estimates of age distribution ($P_{a=0}$), growth rate (\bar{G}_t), and
288 mortality rate ($Mort_t$) based on the GLNPO dataset. For fecundity rates, we used an ANCOVA (with lake
289 and female length as independent variables) to test for among-lake differences in length-dependent
290 fecundity rates based on the GLNPO mysid net dataset (2006-2019). To examine correlations between
291 mysid life history variables and mysid abundance or food indices, we fitted a linear model to each
292 relationship for each agency dataset. From this, we reported the r^2 outputs of the model and both the
293 sign (i.e., direction) and significance of parameter estimates. Each life history variable was compared to
294 mysid density and biomass and food indices averaged over the portion of the year that would be
295 relevant to the particular life history variable. Summer density of age-0 mysids was compared to mysid
296 density and food indices from spring and summer of that year (for NOAA, this also included the previous
297 year's fall). Summer-to-summer age-0-to-age-1+ percent annual mortality and average monthly growth
298 rates were compared with the average densities from the current summer to the following spring.
299 Spring brooding female length and embryos/brood were both compared with the previous year's
300 abundance or food index (Spring – Summer, or for NOAA datasets: Spring – Fall).

301

302 **Results**

303 *Abundance of Mysis diluviana*

304 For the GLNPO data, *M. diluviana* were generally more abundant in lakes Superior, Michigan, and
305 Ontario, less abundant in Lake Huron, and rare in eastern Lake Erie (Table 2, Fig. 2) in all three time
306 periods that we investigated (1997-2004, 2005-2012, and 2013-2019). Lake and season showed
307 significant effects in all six among-lake comparisons of density and biomass (three time periods x two
308 net types = six comparisons). Net (mysid and zooplankton) effects were also significant in three of the
309 four comparisons where it was relevant (Tables S1, S2). Abundance of *M. diluviana* in eastern Lake Erie
310 was significantly lower than in all other lakes for all three time periods. Mysid abundance in Lake Huron
311 was significantly lower than in lakes Superior, Michigan, and Ontario for the two more recent time
312 periods 2005-2012 and 2013-2019, but not for 1997-2004 when only Lake Michigan had significantly
313 higher abundance than Lake Huron. With one exception, mysid abundance in lakes Superior, Michigan,
314 and Ontario for all three time periods were not significantly different (Fig. 2, S5). The exception was that
315 density (but not biomass) of *M. diluviana* was significantly lower in Lake Michigan than in Lake Ontario
316 in the most recent time period, 2013-2019 (Fig. 2).

317 Expanding to all available data from each lake, we generated lake-specific GAM models for density
318 (Fig. 3, S6) and biomass (Fig. 4, S7) over a continuous time series accounting for season, agency, and net
319 effects. These combined time series are presented in terms of summer GLNPO mysid net abundance.
320 Density and biomass were consistently above 250 mysids/m² and 500 mg dw/m² in Lake Ontario, and
321 above 150 mysids/m² and 400 mg dw/m² in Lake Superior, with little change in either lake since 2005.
322 Density and biomass in Lake Huron were initially close to levels in Lake Superior, but declined from 1997
323 to 2010 to less than 50 mysids/m² and less than 100 mg dw/m², where they have remained through the
324 end of the data series (2019). Eastern Lake Erie abundances were very low for the entire time series. In
325 Lake Michigan, abundances were variable and some of the highest in the data set (200-400 mysids/m²
326 and 300-1600 mg dw/m²) in the early time periods, then declined substantially so that by 2019, Lake
327 Michigan abundances were similar to the low levels observed in Lake Huron since 2007.

328

329 *Food indices*

330 The relationships between food indices and *M. diluviana* abundance (Fig. 5) were all significant
331 based on GAMs ($n = 84-105$, $edf = 2.6 - 3.7$, $p < 0.001$, $r^2 = 0.35 - 0.61$). Mysid abundance increased
332 rapidly with an increase in spring chlorophyll concentrations up to 1.5 mg/m^3 with only small changes
333 with further increases in chlorophyll (Fig. 5). Mysid abundance also increased with zooplankton biomass
334 up to 3 g dry wt/m^2 , with less change thereafter (Fig. 5). For both indices, *M. diluviana* abundance in
335 Lake Huron prior to 2003 were lower than predicted, while *M. diluviana* abundance in Lake Michigan
336 during 2002-2006 were higher than predicted. Eastern Lake Erie (not included in the among-lake
337 analyses) had very low abundance of *M. diluviana* even though spring chlorophyll concentrations were
338 higher than observed in the other lakes. However, eastern Lake Erie zooplankton concentrations were
339 low compared to other lakes.

340 *Life history metrics*

341 Cohorts of *M. diluviana* were successfully distinguished using length and the R package *Mclust()* for
342 83 of 86 lake- and agency-specific summer length distributions in the four deep lakes. Summer length
343 distributions of *M. diluviana* for all agencies and lakes (except for eastern Lake Erie) were bimodal,
344 indicating a 2-year generation time with most young released from the brood pouch in spring. For
345 reproductive metrics in the GLNPO mysid net dataset (2006-2019), spring brooding females were
346 present in each of the four deep lakes in all years. For eastern Lake Erie, only 5 individuals were
347 available from three of the years in the data set. The NOAA spring and fall dataset (2007-2019) added
348 another 236 brooding females from Lake Michigan which we included in time trend analysis for that
349 lake. The total number of brooding females in the GLNPO and NOAA datasets combined was 1909.

350 In eastern Lake Erie, all *M. diluviana* individuals caught in April were adults and all but one of the
351 mysids caught in August were juveniles. This is consistent with a 1-year generation time of *M. diluviana*
352 in eastern Lake Erie with release of young in late spring or early summer. Because mysids were very rare
353 in eastern Lake Erie, we pooled all the lengths measured in both seasons from all years from the GLNPO
354 mysid net. Therefore, we have only one (multi-year) estimate of the proportion of age-0 mysids ($P_{a=0}$),
355 monthly growth (\bar{G}), and annual mortality ($Mort$) for eastern Lake Erie; this precluded any analysis of
356 time trends in that lake. The lone summer adult captured in eastern Lake Erie was a mature, non-
357 brooding female of the same size as brooding females collected during spring. Also note that because
358 most adults were collected during spring, we estimated growth and mortality rates of the eastern Lake
359 Erie *M. diluviana* population based on the 8-month time period from August to April (excluding the one
360 summer-collected adult). Similarly, we based average annual age-0 proportion of the eastern Lake Erie
361 *M. diluviana* population on the numbers of summer juveniles and spring adults (excluding the lone
362 summer adult). We included the five brooding females collected from eastern Lake Erie (one in spring of
363 2012 and two each in the springs of 2014 and 2018) in our among-lake ANCOVA analysis of fecundity,
364 but we did not include eastern Lake Erie in analyses of time trends in fecundity.

365 All summer life history characteristics differed significantly across lakes (Tables S3:S6). The
366 proportion of summer *M. diluviana* in the age-0 cohort ($P_{a=0,t}$), annual mortality rate ($Mort_t$), annual
367 growth rate (\bar{G}_t) (Table 3), and embryos per brooding female (Fig. 6, Table S3) generally increased from
368 Lake Superior to lakes Huron, Michigan, Ontario and eastern Lake Erie. For all summer life history
369 metrics, pairwise comparisons between lakes Ontario and Superior were significantly different at either
370 the $\alpha = 0.05$ level ($P_{a=0,t}$, Table S4), or at $\alpha = 0.10$ level ($Mort_t$, Table S5; \bar{G}_t , Table S6). No other pairwise
371 comparisons of summer life history metrics between lakes were statistically significant (Tables S4-S6).
372 However, eastern Lake Erie was excluded from ANOVA tests on summer life history metrics due to our
373 possessing only one multi-year estimate for each such metric in that lake. Eastern Lake Erie life history

374 variables were higher than the values from all other lakes and outside the confidence limits of the next
375 highest value lake (Lake Ontario). Female length was significantly positively related to embryos per
376 brooding female ($p < 0.001$, Tables S7) with no significant interactions between lake and brooding
377 female length ($df = 4$ and 1175, $F = 0.48$, $p = 0.75$). The model estimated a slope of 1.5 embryos / mm
378 brooding female length (Fig. 6). Lake was also significant, and a Tukey HSD test showed brood counts to
379 be significantly different between most pairwise comparisons of lakes (Table S7), with the exception of
380 two non-significant comparisons (Huron and Superior at $p = 0.37$, and Michigan and Ontario at $p = 1.00$).

381 Few significant relationships were observed between life history metrics and density and biomass or
382 food indices (Table 4). However, Lake Michigan fall fecundity rates were negatively related to mysid
383 density and biomass. Across all lakes, growth rates of *M. diluviana* showed significant positive
384 relationships with both food indices.

385

386 **Discussion**

387 Our analyses revealed consistent patterns in mysid abundance and biomass across the lakes and
388 trends over time. *Mysis diluviana* abundances were consistently high in lakes Superior and Ontario,
389 initially high but variable and then declining in Lake Michigan, low in Lake Huron since a decline in the
390 mid-2000s, and very low in eastern Lake Erie. These observations using additional datasets corroborated
391 the findings reported by Jude et al. (2018), but our data added several new insights. The addition of pre-
392 2006 mysid abundance data from GLNPO, NOAA, and DFO allowed us to observe 1) that the slight
393 increase in Lake Superior in the Jude et al. (2018) data started in the early 2000s, 2) that Lake Michigan
394 values were high and variable prior to 2007, 3) that the timing of declines in Lake Michigan between
395 1995 and 2007 noted by Pothoven and Vanderploeg (2017) occurred between 2003 and 2007, 4) that
396 declines in Lake Huron from the late 1990s and early 2000s to the mid-2000s were coincident with the

397 large decrease in zooplankton in Lake Huron occurring in 2003/2004 (Barbiero et al., 2019; Riley et al.,
398 2008), 5) that the timing of declines in Lake Ontario between 1995 and 2002 noted by Johannsson et al.
399 (2011) occurred prior to 1997, and 6) that low values in eastern Lake Erie have persisted at least since
400 1997. The inclusion of 2017-2019 mysid abundance data from all sources revealed: 1) continued
401 stability with high values in lakes Superior and Ontario and low values in Huron and Erie, but 2) a multi-
402 year decline in Lake Michigan (2015-2019). Our results present the status of the mysid population in all
403 five Great Lakes up to 2019. We have a high degree of confidence in these results due to the
404 consistency across multiple datasets contributed by the cooperating agencies.

405 Having observed these recent long-term patterns in Great Lakes *M. diluviana* abundance, we
406 explored whether they were related to two food resources (spring chlorophyll-a concentration and
407 spring-summer zooplankton biomass). Mysids of all ages utilize both phytoplankton and zooplankton in
408 their diets (Johannsson et al., 2001, 1994; O'Malley et al., 2017; O'Malley and Bunnell, 2014). Among
409 lakes, annual mysid abundance showed strong, significant, positive, saturating relationships with both
410 food indices. Further, among lakes, both food resource indices were positively related to mysid annual
411 growth rate estimates, as one would expect from the mechanistic link between food availability and *M.*
412 *diluviana* density and biomass. These basin-wide relationships provided strong evidence that food
413 availability is important for *M. diluviana* abundance and biomass in the Great Lakes. In addition, the
414 declines in mysid abundance in lakes Michigan and Huron correspond to known declines in zooplankton
415 biomass and spring chlorophyll-a concentrations (Barbiero et al., 2018b). Others have also reported
416 positive correlations between mysid abundance and both chlorophyll-a concentration (Pothoven et al.,
417 2010; Lake Michigan) and zooplankton abundance (Johannsson et al., 2011; Lake Ontario). Our results
418 suggest these trends may explain not only within-lake trends but also among-lake patterns in mysid
419 abundance. Apparently, phytoplankton in the deep chlorophyll layer present in the summer (Scofield et
420 al. 2020) did not compensate for the decline in spring diatom concentrations

421 However, there was still much among-lake variability that food resources did not explain. First, the
422 among-lake trend showed that mysid abundance were more strongly related to food resource indices at
423 lower values than at higher values, suggesting a threshold beyond which food resources do not affect *M.*
424 *diluviana* abundance. Second, while *M. diluviana* abundance was generally positively related to food
425 resources, mysid abundance was lowest in eastern Lake Erie, where algae resources (but not areal
426 zooplankton biomass) were similar to Lake Ontario. Third, there is variability in the response of mysid
427 biomass to food resources among the four deep lakes; most notably the Lake Huron mysid abundance is
428 lower than expected compared with the other deep lakes.

429 Where bottom-up effects are not driving variability in *M. diluviana* abundance, that variability is
430 likely caused by either density-dependent effects (e.g., interference competition or cannibalism), or fish
431 predation. Mysids interfere with feeding of conspecifics at sufficiently high concentrations in laboratory
432 experiments (Hansson et al., 2001) and are known to cannibalize (Johannsson et al., 2001; O'Malley et
433 al., 2017; O'Malley and Bunnell, 2014). Thus, growth rates per individual would decline and mortality
434 rates increase at high mysid density and biomass, which may explain the apparent among-lake threshold
435 of a 'maximum' *M. diluviana* abundance value that rarely exceeds about 200-300 mysids / m² even at
436 high food resource levels. Mysid abundances over 1000 /m² are rare in the literature suggesting an
437 upper limit of areal abundance for these animals (reviewed by Rudstam, 2009). However, we observed
438 little evidence of density-dependent mortality and growth rates in our among-lake comparisons. The
439 only variable which showed some density-dependence was fall fecundity values in Lake Michigan, which
440 were negatively related to the preceding year's abundance levels, making Interference competition less
441 likely. Therefore, we consider cannibalism to be a more likely mechanism as cannibalism probably
442 affects mortality rates of young mysids prior to the first summer and our mortality rates were calculated
443 from the first to the second summer. However, this is a hypothesis that needs to be tested.

444 Predation has been suggested to affect mysid abundance and distributions (McDonald et al., 1990;
445 Boscarino et al., 2010; Johannsson, 1995). The low abundance in Lake Erie and perhaps Lake Huron may
446 be due to higher fish predation associated with higher light levels expected on the bottom of these
447 shallower lakes (Boscarino et al. 2010). Mysids have relatively low fecundity compared to many other
448 aquatic animals, including fish, and therefore they are sensitive to changes in predation pressure
449 (Rustam et al., 1998; Johannsson et al., 2003). In eastern Lake Erie, a high mortality rate estimate and a
450 high proportion age-0 estimate (a proxy for mortality) strongly suggest that eastern Lake Erie *M.*
451 *diluviana* abundance are low due to high predation by fishes in that lake. The eastern Lake Erie
452 population has remained low since at least 1997 even though eastern Lake Erie *M. diluviana* have a
453 shorter generation time (1 year) and significantly higher growth and fecundity rates compared with the
454 other four lakes. Fish predation on mysids is likely high in eastern Lake Erie (Johannsson et al., 1999).
455 Rainbow smelt (*Osmerus mordax*) – a species that feeds heavily on mysids when available (Stritzel
456 Thomson et al., 2011) – can be abundant in eastern Lake Erie (Parker et al., 2001). In addition, eastern
457 Lake Erie is relatively shallow, lacking a deep-water refuge from visual predation – which was
458 hypothesized by Johannsson (1995) to be present at depths of > 100 m in Lake Ontario. The high
459 abundance of rainbow smelt combined with scarce refuge habitat would be expected to result in high
460 mortality rates for *M. diluviana*. Similarly, the *M. diluviana* population in Lake Champlain, a lake with
461 high rainbow smelt populations, is low relative to the deep Great Lakes even though mysid growth rates
462 in that lake are high (Hrycik et al., 2015). For Lake Huron, it is possible that the lower-than-expected
463 abundance of mysids is also due to higher predation rates from abundant bloater (*Coregonus hoyi*) and
464 rainbow smelt below the thermocline (O'Brien et al. 2022). In addition, this lake is shallower than the
465 other three deep Great Lakes and water clarity has increased dramatically in Lake Huron over this time
466 period (Bunnell et al., 2021), perhaps eliminating the deep-water low-light refuge in much of the lake. It
467 is likely that rainbow smelt and bloater have a greater reliance on *M. diluviana* as food than do alewife

468 which is still abundant in Lake Michigan (Warner et al. 2022). We do not have estimates of life history
469 rate metrics from the years 1997-2005 when Lake Huron abundance was relatively lower than expected
470 from the food indices, although Hinderer et al. (2012) suggested that Lake Huron mysids were in poor
471 condition during 2007-2008.

472 One of the more striking results of our study is the substantial decline in Lake Michigan *M. diluviana*
473 abundance in recent years. Our among-lake analysis indicated that declining food resources are a strong
474 predictor of mysid abundance, so the occurrence of declining spring chlorophyll-a concentrations in Lake
475 Michigan may explain the observed mysid decline during this time period. Additionally, an intensive
476 study of Lake Michigan *M. diluviana* in 2015 revealed that values of age-0 mortality in 2015 were high,
477 and values of fecundity and percentage of females brooding were relatively low when compared with
478 rates from the previous 8 to 9 years (Holda et al., 2021). Both increasing mortality and decreasing
479 fecundity for 2015 compared with previous years would be consistent with the initiation of the observed
480 population decline. It is also possible that vertical migration behavior has changed over time; the
481 proportion of *M. diluviana* migrating each night may be in decline as a response to changes in food
482 resources in the night-time metalimnion habitat (Stockwell et al., 2020). One additional explanation is
483 an observed shift in pelagic fish biomass from alewife-dominant to bloater-dominant. Bloater biomass
484 increased beginning in 2017 because of strong year classes in 2015 and 2016 (Bunnell et al. 2020). This
485 dominance of bloater persisted through 2021 (Warner et al. 2022). Although the decline in Lake
486 Michigan mysids since 2015 is consistent with the continued decline in food resources in that lake, the
487 decline is larger than expected perhaps because the shift in the fish community has increased fish
488 predation on mysids.

489 In summary, our collaborative, Great Lakes basin-wide study of *M. diluviana* has revealed consistent
490 patterns in density and biomass across lakes and over time, confirmed published and suspected historic
491 trends, and highlighted the 2017-2019 decline in Lake Michigan, whereas the other lakes' populations

492 remain relatively stable. Our study highlights the importance of bottom-up drivers to *M. diluviana*
493 abundance, but also points at density-dependent processes that may result in threshold abundance
494 levels in the Great Lakes, and that the higher predation risk expected in shallow eastern Lake Erie and
495 perhaps Lake Huron is likely limiting *M. diluviana* abundance in those lakes. The among-lake life history
496 rates we observed strongly support the predation mortality hypothesis in eastern Lake Erie, but offer
497 little evidence of density-dependence in any of the Great Lakes. This collaboration among the agencies
498 surveying mysids across the Great Lakes allowed for the inclusion of several independent data sets
499 thereby providing strong support of the observed time trends.

500 **Acknowledgements**

501 We thank the captains of the research vessels and the many crew members and technicians who
502 helped with mysid sampling and sample processing over the almost four decades included in this study.
503 Dr. Mary Balcer contributed the 2006 data and helped with interpreting field notes. Comments from
504 two anonymous reviewer and Dr. Brian O’Malley improved the manuscript. Funding was provided by a
505 grant from the U.S. EPA’s Great Lakes National Program Office (GLNPO), Cooperative Agreement GL
506 00E01184-0 to Cornell University, with additional funding from DFO-GLERL, USGS-GLSC, NOAA-GLERL,
507 and EPA-GLNPO. NOAA-GLERL contribution number XXXX

508 **References**

509 Barbiero, R.P., Lesht, B.M., Hinchey, E.K., Nettesheim, T.G., 2018a. A brief history of the U.S. EPA Great
510 Lakes National Program Office’s water quality survey. *J. Great Lakes Res.* 44, 539–546.
511 <https://doi.org/10.1016/j.jglr.2018.05.011>

512 Barbiero, R.P., Lesht, B.M., Warren, G.J., Rudstam, L.G., Watkins, J.M., Reavie, E.D., Kovalenko, K.E.,
513 Karatayev, A.Y., 2018b. A comparative examination of recent changes in nutrients and lower
514 food web structure in Lake Michigan and Lake Huron. *J. Great Lakes Res.* 44, 573–589.
515 <https://doi.org/10.1016/j.jglr.2018.05.012>

516 Barbiero, R.P., Rudstam, L.G., Watkins, J.M., Lesht, B.M., 2019. A cross-lake comparison of crustacean
517 zooplankton communities in the Laurentian Great Lakes, 1997–2016. *J. Great Lakes Res.* 45,
518 672–690. <https://doi.org/10.1016/j.jglr.2019.03.012>

519 Boscarino, B.T., Rudstam, L.G., Tirabassi, J., Janssen, J., Loew, E.R., 2010. Light effects on alewife-mysid
520 interactions in Lake Ontario: A combined sensory physiology, behavioral, and spatial approach.
521 Limnol. Oceanogr. 55, 2061–2072. <https://doi.org/10.4319/lo.2010.55.5.2061>

522 Bunnell, D.B., Barbiero, R.P., Ludsin, S.A., Madenjian, C.P., Warren, G.J., Dolan, D.M., Brenden, T.O.,
523 Briland, R., Gorman, O.T., He, J.X., Johengen, T.H., Lantry, B.F., Lesht, B.M., Nalepa, T.F., Riley,
524 S.C., Riseng, C.M., Treska, T.J., Tsehay, I., Walsh, M.G., Warner, D.M., Weidel, B.C., 2014.
525 Changing ecosystem dynamics in the Laurentian Great Lakes: Bottom-up and top-down
526 regulation. BioScience 64, 26–39. <https://doi.org/10.1093/biosci/bit001>

527 Bunnell, D.B., Carrick, H.J., Madenjian, C.P., Rutherford, E.S., Barbiero, R.P., Hinckley-Malloy, E.,
528 Pothoven, S.A., Claramunt, R.M., Bootsma, H.A., Elgin, A.K., Rowe, M.D., Turschak, B.A., Czesny,
529 S., Pangle, K.L., Warner, D.M., 2018. Are changes in lower trophic levels limiting prey-fish
530 biomass and production in Lake Michigan? Great Lakes Fishery Commission. Miscellaneous
531 Publication No. 2018–01.

532 Bunnell, D.B., Davis, B.M., Warner, D.M., Chriscinske, M.A., Roseman, E.F., 2011. Planktivory in the
533 changing Lake Huron zooplankton community: *Bythotrephes* consumption exceeds that of *Mysis*
534 and fish. Freshw. Biol. 56, 1281–1296. <https://doi.org/10.1111/j.1365-2427.2010.02568.x>

535 Bunnell, D.B., Ludsin, S.A., Knight, R.L., Rudstam, L.G., Williamson, C.E., Höök, T.O., Collingsworth, P.D.,
536 Lesht, B.M., Barbiero, R.P., Scofield, A.E., 2021. Consequences of changing water clarity on the
537 fish and fisheries of the Laurentian Great Lakes. Can. J. Fish. Aquat. Sci. 78, 1524–1542.

538 Bunnell, D.B., Warner, D.M., Madenjian, C.P., Turschak, B., Armenio, P., and Desorcie, T. 2020. Status
539 and trends of pelagic and benthic preyfish populations in Lake Michigan, 2019. A report to the
540 Great Lakes Fishery Commission, Lake Michigan Committee, Ypsilanti, MI, March 25, 2019

541 Burlakova, L.E., Barbiero, R.P., Karatayev, A.Y., Daniel, S.E., Hinckley, E.K., Warren, G.J., 2018. The benthic
542 community of the Laurentian Great Lakes: Analysis of spatial gradients and temporal trends
543 from 1998 to 2014. J. Great Lakes Res. 44, 600–617. <https://doi.org/10.1016/j.jglr.2018.04.008>

544 Burlakova, L.E., Karatayev, A.Y., Hrycik, A.R., Daniel, S.E., Mehler, K., Rudstam, L.G., Watkins, J.M.,
545 Dermott, R., Scharold, J., Elgin, A.K., Nalepa, T.F., 2022. Six decades of Lake Ontario ecological
546 history according to benthos. J. Great Lakes Res. 48, 274–288.

547 Gamble, A.E., Hrabik, T.R., Stockwell, J.D., Yule, D.L., 2011. Trophic connections in Lake Superior part I:
548 the offshore fish community. J. Great Lakes Res. 37, 541–549.
549 <https://doi.org/10.1016/j.jglr.2011.06.003>

550 Hansson, S., DeStasio, B.T., Gorokhova, E., Mohammadian, M.A., 2001. Ratio-dependent functional
551 responses - tests with the zooplanktivore *Mysis mixta*. Mar. Ecol. Prog. Ser. 216, 181–189.
552 <https://doi.org/10.3354/meps216181>

553 Hinderer, J.L., Jude, D.J., Schaeffer, J.S., Warner, D.M., Scavia, D., 2012. Lipids and fatty acids of *Mysis*
554 *diluviana* in lakes Michigan and Huron, 2008. J. Great Lakes Res. 38, 93–97.
555 <https://doi.org/10.1016/j.jglr.2011.07.001>

556 Holda, T.J., Rudstam, L.G., Bowen, K.L., Weidel, B.C., Watkins, J.M., Sullivan, P.J., Holden, J.P., Connerton,
557 M., J., 2019. Status of *Mysis diluviana* in Lake Ontario in 2013: smaller populations but higher
558 fecundity than 1990s. J. Great Lakes Res. 45, 307–316.

559 Holda, T.J., Rudstam, L.G., Pothoven, S.A., Warner, D.M., Khrystenko, D.S., Watkins, J.M., 2021. Lake-
560 wide, annual status of the *Mysis diluviana* population in Lake Michigan in 2015. J. Great Lakes
561 Res. 47, 190–203. <https://doi.org/10.1016/j.jglr.2020.11.012>

562 Hrycik, A.R., Simonin, P.W., Rudstam, L.G., Parrish, D.L., Pientka, B., Mihuc, T.B., 2015. *Mysis*
563 zooplanktivory in Lake Champlain: A bioenergetics analysis. J. Great Lakes Res. 41, 492–501.
564 <https://doi.org/10.1016/j.jglr.2015.03.011>

565 Johannsson, O.E., 1995. Response of *Mysis relicta* population dynamics and productivity to spatial and
566 seasonal gradients in Lake Ontario. Can. J. Fish. Aquat. Sci. 52, 1509–1522.

567 Johannsson, O.E., 1992. Life history and productivity of *Mysis relicta* in Lake Ontario. *J. Great Lakes Res.*
568 18, 154–168.

569 Johannsson, O.E., Bowen, K.L., Holeck, K.T., Walsh, M.G., 2011. *Mysis diluviana* population and cohort
570 dynamics in Lake Ontario before and after the establishment of *Dreissena* spp., *Cercopagis*
571 *pengoi*, and *Bythotrephes longimanus*. *Can. J. Fish. Aquat. Sci.* 68, 795–811.
572 <https://doi.org/10.1139/f2011-028>

573 Johannsson, O.E., Graham, D.M., Einhouse, D.W.E., Mills, E.L., 1999. Historical and recent changes in the
574 Lake Erie zooplankton community and their relationship to ecosystem function, in: *State of Lake*
575 *Erie : Past, Present, and Future*, Ecovision World Monograph Series. Backhuys Publishers,
576 Leiden, The Netherlands, pp. 169–196.

577 Johannsson, O.E., Leggett, M.F., Rudstam, L.G., Servos, M.R., Mohammadian, M.A., Gal, G., Dermott,
578 R.M., Hesslein, R.H., 2001. Diet of *Mysis relicta* in Lake Ontario as revealed by stable isotope and
579 gut content analysis. *Can. J. Fish. Aquat. Sci.* 58, 1975–1986. <https://doi.org/10.1139/cjfas-58-10-1975>

581 Johannsson, O.E., Rudstam, L.G., Gal, G., Mills, E.L., 2003. *Mysis relicta* in Lake Ontario: population
582 dynamics, trophic linkages, and further questions, in: Munawar, M. (Ed.), *State of Lake Ontario,*
583 *Past, Present and Future*. Michigan State University Press, pp. 257–288.

584 Johannsson, O.E., Rudstam, L.G., Lasenby, D.C., 1994. *Mysis relicta*: assessment of metalimnetic feeding
585 and implications for competition with fish in Lakes Ontario and Michigan. *Can. J. Fish. Aquat. Sci.*
586 51, 2591–2602.

587 Jude, D.J., Rudstam, L.G., Holda, T.J., Watkins, J.M., Euclide, P.T., Balcer, M.D., 2018. Trends in *Mysis*
588 *diluviana* abundance in the Great Lakes, 2006–2016. *J. Great Lakes Res.* 44, 590–599.
589 <https://doi.org/10.1016/j.jglr.2018.04.006>

590 Lesht, B.M., Barbiero, R.P., Warren, G.J., 2018. Using satellite observations to assess the spatial
591 representativeness of the GLNPO Water Quality Monitoring Program. *J. Great Lakes Res.* 44,
592 547–562. <https://doi.org/10.1016/j.jglr.2018.05.001>

593 McDonald, M.E., Crowder, L.B., Brandt, S.B., 1990. Changes in *Mysis* and *Pontoporeia* populations in
594 southeastern Lake Michigan: a response to shifts in the fish community. *Limnol. Oceanogr.* 35,
595 220–227.

596 Mills, E.L., Casselman, J.M., Dermott, R., Fitzsimons, J.D., Gal, G., Holeck, K.T., Hoyle, J.A., Johannsson,
597 O.E., Lantry, B.F., Makarewicz, J.C., Millard, E.S., Munawar, I.F., Munawar, M., O’Gorman, R.,
598 Owens, R.W., Rudstam, L.G., Schaner, T., Stewart, T.J., 2003. Lake Ontario: food web dynamics in
599 a changing ecosystem (1970-2000). *Can. J. Fish. Aquat. Sci.* 60, 471–490.
600 <https://doi.org/10.1139/f03-033>

601 Nalepa, T., Fanslow, D., Lang, G., 2009. Transformation of the offshore benthic community in Lake
602 Michigan: recent shift from the native amphipod *Diporeia* spp. to the invasive mussel *Dreissena*
603 *rostriformis bugensis*. *Freshw. Biol.* 54, 466–479.

604 O’Brien, T.P., Hondorp, D.W., Esselman, P.C., and Roseman, E.F. 2022. Status and Trends of the Lake
605 Huron Prey Fish Community, 1976-2021. U.S.G.S Annual report to the Great Lakes Fishery
606 Commission. U.S.G.S. Great Lakes Science Center, Ann Arbor, MI.

607 O’Malley, B.P., Bunnell, D.B., 2014. Diet of *Mysis diluviana* reveals seasonal patterns of omnivory and
608 consumption of invasive species in offshore Lake Michigan. *J. Plankton Res.* 36, 989–1002.
609 <https://doi.org/10.1093/plankt/fbu038>

610 O’Malley, B.P., Rudstam, L.G., Watkins, J.M., Holda, T.J., Weidel, B.C., 2017. Effects of food web changes
611 on *Mysis diluviana* diet in Lake Ontario. *J. Great Lakes Res.* 43, 813–822.
612 <https://doi.org/10.1016/j.jglr.2017.02.003>

613 Parker, S.L., Rudstam, L.G., Mills, E.L., Einhouse, D.W., 2001. Retention of *Bythotrephes* spines in the
614 stomachs of eastern Lake Erie rainbow smelt. *Trans. Am. Fish. Soc.* 130, 988–994.
615 [https://doi.org/10.1577/1548-8659\(2001\)130<0988:ROBSIT>2.0.CO;2](https://doi.org/10.1577/1548-8659(2001)130<0988:ROBSIT>2.0.CO;2)

616 Pothoven, S.A., Bunnell, D.B., 2016. A shift in bloater consumption in Lake Michigan between 1993 and
617 2011 and its effects on *Diporeia* and *Mysis* prey. *Trans. Am. Fish. Soc.* 145, 59–68.
618 <https://doi.org/10.1080/00028487.2015.1094130>

619 Pothoven, S.A., Fahnstiel, G.L., Vanderploeg, H.A., 2010. Temporal trends in *Mysis relicta* abundance,
620 production, and life-history characteristics in southeastern Lake Michigan. *J. Great Lakes Res.* 36,
621 60–64. <https://doi.org/10.1016/j.jglr.2010.03.008>

622 Pothoven, S.A., Vanderploeg, H.A., 2017. Changes in *Mysis diluviana* abundance and life history patterns
623 following a shift toward oligotrophy in Lake Michigan. *Fundam. Appl. Limnol. Arch. für
624 Hydrobiol.* 190, 199–212. <https://doi.org/10.1127/fal/2017/1039>.

625 Riley, S.C., Roseman, E.F., Nichols, S.J., O'Brien, T.P., Kiley, C.S., Schaeffer, J.S., 2008. Deepwater
626 demersal fish community collapse in Lake Huron. *Trans. Am. Fish. Soc.* 137, 1879–1890.
627 <https://doi.org/10.1577/T07-141.1>

628 Rudstam, L.G., Melnik, N.G., Shubenkov, S.G., 1998. Invertebrate predators in pelagic food webs:
629 similarities between *Macrohectopus branickii* (Crustacea: Amphipoda) in Lake Baikal and *Mysis
630 relicta* (Crustacea: Mysidaceae) in Lake Ontario. *Siberian Journal of Ecology* 5, 429-434.

631 Rudstam, L.G., 2009. Other zooplankton, in: Likens, G.E. (Ed.), *Encyclopedia of inland waters*. Elsevier,
632 Oxford, UK, pp. 667-677.

633 Rudstam, L., Johannsson, O., 2009. Advances in the ecology of freshwater mysids. *Aquat. Biol.* 5, 246–
634 248. <https://doi.org/10.3354/ab00167>

635 Rudstam, L.G., Holeck, K.T., Watkins, J.M., Hotaling, C., Bowen, K.L., Munawar, M., Lantry, J.R., Weidel,
636 B.C., Barbiero, R.P., Warren, G.J., Luckey, F.J., Dove, A., Johnson, T.B., Stewart, T.J., Beisinger, Z.,
637 2017. Nutrients, phytoplankton, zooplankton, and macrobenthos. In: O'Gorman, R. (Ed.), *State
638 of Lake Ontario (SOLO) 2008-2013*, Special Publication. Great Lakes Fishery Commission.

639 Rudstam, L.G., Schaner, T., Gal, G., Boscarino, B.T., O'Gorman, R., Warner, D.M., Johannsson, O.E.,
640 Bowen, K.L., 2008. Hydroacoustic measures of *Mysis relicta* abundance and distribution in Lake
641 Ontario. *Aquat. Ecosyst. Health Manag.* 11, 355–367.
642 <https://doi.org/10.1080/14634980802539708>

643 Scofield, A.E., Watkins, J.M., Osantowski, E., Rudstam, L.G., 2020. Deep chlorophyll maxima across a
644 trophic state gradient: A case study in the Laurentian Great Lakes. *Limnol. Oceanogr.*
645 65:2460:2484. <https://doi.org/10.1002/limo.11464>

646 Scrucca, L., Fop, M., Murphy, T., Brendan, Raftery, A., E., 2016. mclust 5: clustering, classification and
647 density estimation using Gaussian finite mixture models. *R J.* 8, 289.
648 <https://doi.org/10.32614/RJ-2016-021>

649 Sierszen, M.E., Hrabik, T.R., Stockwell, J.D., Cotter, A.M., Hoffman, J.C., Yule, D.L., 2014. Depth gradients
650 in food-web processes linking habitats in large lakes: Lake Superior as an exemplar ecosystem.
651 *Freshw. Biol.* 59, 2122–2136. <https://doi.org/10.1111/fwb.12415>

652 Stockwell, J.D., O'Malley, B.P., Hansson, S., Chapina, R.J., Rudstam, L.G., Weidel, B.C., 2020. Benthic
653 habitat is an integral part of freshwater *Mysis* ecology. *Freshw. Biol.* 65, 1997-2009.
654 <https://doi.org/10.1111/fwb.13594>

655 Stritzel Thomson, J.L., Parrish, D.L., Parker-Stetter, S.L., Rudstam, L.G., Sullivan, P.J., 2011. Growth rates
656 of rainbow smelt in Lake Champlain: effects of density and diet. *Ecol. Freshw. Fish* 20, 503–512.
657 <https://doi.org/10.1111/j.1600-0633.2010.00472.x>

658 Sturtevant, R.A., Mason, D.M., Rutherford, E.S., Elgin, A., Lower, E., Martinez, F., 2019. Recent history of
659 nonindigenous species in the Laurentian Great Lakes; An update to Mills et al., 1993 (25 years
660 later). *J. Great Lakes Res.* 45, 1011–1035. <https://doi.org/10.1016/j.jglr.2019.09.002>

661 U.S. EPA, 2019. Great lakes biology monitoring technical report: status and trends through 2014 for
662 chlorophyll, phytoplankton, zooplankton, and benthos; and through 2016 for *Mysis* (Technical
663 Report No. 950- R-19- 001). EPA.

664 Warner, D.M., Claramunt, R.M., Holuszko, J.D., 2010. Status of pelagic prey fishes and pelagic
665 macroinvertebrates in Lake Michigan, 2009. Presented at the Great Lakes Fishery Commission
666 Lake Michigan Committee Meeting, USGS Great Lakes Science Center, Windsor, Ontario, p. 13.

667 Warner, D.M., Claramunt, R.M., Schaeffer, J.S., Yule, D.L., Hrabik, T.R., Pientka, P., Rudstam, L.G.,
668 Holuszko, J.D., and O'Brien, T.P. 2012. Relationship between mid-water trawling effort and catch
669 composition uncertainty in two large lakes dominated by alosines, osmerids, and coregonines.
670 Fish. Res. 123:62-69.

671 Warner, D.M., Tingley, R., Madenjian, C.P., Turschak, B., Dieter, P. and Hanson, D. 2022. Status and
672 trends of pelagic and benthic prey fish populations in Lake Michigan, 2021. A report to the Great
673 Lakes Fishery Commission, Lake Michigan Committee, March 2019.

674 Watkins, J.M., Rudstam, L.G., Connerton, M.J., Schaner, T., Rudstam, P.G., Bowen, K.L., 2015. Abundance
675 and spatial distribution of *Mysis diluviana* in Lake Ontario in 2008 estimated with 120 kHz
676 hydroacoustic surveys and net tows. Aquat. Ecosyst. Health Manag. 18, 63–75.
677 <https://doi.org/10.1080/14634988.2014.965646>

678 Wood, S.N., 2017. Generalized Additive Models: An Introduction with R, Second Edition. CRC Press.

679 **Tables**

680 Table 1. Vertical plankton net specifications and typical number of replicates per site visit for each of
 681 the survey programs with annual *M. diluviana* monitoring data (EPA GLNPO = US Environmental
 682 Protection Agency Great Lakes National Program Office, NOAA = National Oceanic and Atmospheric
 683 Administration, USGS = US Geological Survey, DFO = Fisheries and Oceans, Canada). Cod-end mesh was
 684 always the same as the lower 1/3 mesh. Note that EPA GLNPO nets targeting *M. diluviana* changed
 685 form between 2011 and 2012. Since most methods are similar and density and biomass are
 686 standardized to area sampled, we refer to both collectively as 'the GLNPO *Mysis* net'. The 153- μm net is
 687 the 'GLNPO zooplankton net'.

	EPA GLNPO 2006-2011	EPA GLNPO 2012-2019	EPA-GLNPO 1997-2019	USGS	NOAA	DFO
Opening	Square	Circular	Circular	Circular	Circular	Square
Diameter or Width	1 m	1 m	0.5 m	1 m	1 m	1 m
Length	2-3 m	2 m	2 m	3 m	3 m	3 m
Upper 2/3 Mesh	1 mm/500 μm	500 μm	153 μm	1 mm	1 mm	1 mm
Lower 1/3 Mesh	250 μm	250 μm	153 μm	1 mm	1 mm	1 mm
Reps per Visit	2	2	1	1	3	2

688

689 Table 2. Among-lake comparison of annual *M. diluviana* abundance estimates by season for three different time periods (four in Lake Ontario
 690 with the 1990-1995 data from the DFO). Data separated by lake, agency, and sampling gear (mysid net or zooplankton net 'zoop'). Values
 691 shown are means of annual means for the time periods shown, ± 2 SE, where N is the number of years for which values are present. Note that
 692 bounds of time periods differ slightly between different agencies due to variation in history of annual sampling operations and inactive years.
 693 For instance, the annual DFO fall survey for *M. diluviana* was not conducted in 2018 and 2019. See Table 1 for definition of agencies. Spring
 694 refers to April-June, Summer refers to July -September, and Fall refers to October-November.

Lake	Time Period	Agency	Net	N	Density (#/m ²)			Biomass (mg/m ²)		
					Spring	Summer	Fall	Spring	Summer	Fall
Ontario	1990-1995	DFO	mysid	3	-	-	439 \pm 101	-	-	2,022 \pm 915
Ontario	1997-2004	GLNPO	zoop	7	82 \pm 23	136 \pm 46	-	120 \pm 45	268 \pm 147	-
Ontario	2002-2004	DFO	mysid	3	-	-	258 \pm 80	-	-	895 \pm 292
Ontario	2006-2012	GLNPO	mysid	7 ^a - 6	102 \pm 42	377 \pm 282	-	287 \pm 167	817 \pm 337	-
Ontario	2005-2012	GLNPO	zoop	8	169 \pm 85	278 \pm 126	-	323 \pm 324	641 \pm 397	-
Ontario	2005-2012	DFO	mysid	8	-	-	208 \pm 48	-	-	742 \pm 157
Ontario	2013-2019	GLNPO	mysid	7	200 \pm 60	278 \pm 123	-	341 \pm 91	591 \pm 180	-
Ontario	2013-2019	GLNPO	zoop	6 ^b - 7	114 \pm 30	182 \pm 57	-	102 \pm 54	214 \pm 65	-
Ontario	2013-2017	DFO	mysid	4	-	-	165 \pm 39	-	-	724 \pm 100
Superior	1997-2004	GLNPO	zoop	7 ^b - 8	105 \pm 31	125 \pm 28	-	99 \pm 58	154 \pm 68	-
Superior	2006-2012	GLNPO	mysid	6	78 \pm 15	213 \pm 69	-	209 \pm 42	456 \pm 149	-
Superior	2005-2012	GLNPO	zoop	8	70 \pm 14	146 \pm 43	-	77 \pm 18	175 \pm 60	-
Superior	2013-2019	GLNPO	mysid	7	146 \pm 29	216 \pm 23	-	318 \pm 65	407 \pm 48	-
Superior	2013-2019	GLNPO	zoop	6 ^b - 7	91 \pm 33	146 \pm 37	-	87 \pm 25	145 \pm 42	-
Michigan	1997-2004	GLNPO	zoop	7 ^b - 8	159 \pm 57	334 \pm 127	-	307 \pm 224	528 \pm 311	-
Michigan	1995-2002	NOAA	mysid	4 ^c , 5 ^a , 6	154 \pm 52	224 \pm 82	133 \pm 66	257 \pm 91	619 \pm 204	444 \pm 194
Michigan	2006-2012	GLNPO	mysid	7	123 \pm 30	158 \pm 66	-	282 \pm 81	408 \pm 257	-
Michigan	2005-2012	GLNPO	zoop	8	97 \pm 23	189 \pm 64	-	127 \pm 55	218 \pm 120	-
Michigan	2005-2015	USGS	mysid	8	-	200 \pm 73	-	-	406 \pm 274	-
Michigan	2007-2015	NOAA	mysid	6	49 \pm 32	99 \pm 39	81 \pm 29	137 \pm 81	296 \pm 124	298 \pm 112
Michigan	2013-2019	GLNPO	mysid	7	79 \pm 33	153 \pm 50	-	160 \pm 50	292 \pm 87	-
Michigan	2013-2019	GLNPO	zoop	6 ^b - 7	48 \pm 28	127 \pm 43	-	34 \pm 18	97 \pm 41	-
Michigan	2013-2019	USGS	mysid	7	-	146 \pm 60	-	-	426 \pm 214	-

Michigan	2013-2019	NOAA	mysid	7	36 ± 25	57 ± 29	59 ± 34	113 ± 50	167 ± 87	202 ± 120
Huron	1997-2004	GLNPO	zoop	$7^b - 8$	53 ± 35	135 ± 60	-	73 ± 68	134 ± 45	-
Huron	2006-2012	GLNPO	mysid	7	17 ± 7	51 ± 11	-	42 ± 16	103 ± 27	-
Huron	2005-2012	GLNPO	zoop	8	16 ± 13	43 ± 28	-	40 ± 45	41 ± 30	-
Huron	2005-2015	USGS	mysid	8	-	64 ± 14	-	-	183 ± 67	-
Huron	2013-2019	GLNPO	mysid	7	8 ± 3	30 ± 6	-	21 ± 9	58 ± 13	-
Huron	2013-2019	GLNPO	zoop	$6^b - 7$	8 ± 3	23 ± 12	-	7 ± 4	24 ± 20	-
Huron	2013-2019	USGS	mysid	7	-	45 ± 10	-	-	130 ± 41	-
Erie	1997-2004	GLNPO	zoop	$2^b - 6$	0	3.2 ± 3.6	-	0	3.8 ± 6.8	-
Erie	2007-2012	GLNPO	mysid	$3^b - 5$	0.2 ± 0.4	1.0 ± 1.1	-	1.6 ± 3.2	0.7 ± 1.1	-
Erie	2005-2012	GLNPO	zoop	$4^b - 6$	0	1.4 ± 1.2	-	0	0.7 ± 1.1	-
Erie	2013-2019	GLNPO	mysid	$4^a - 5$	0.6 ± 0.9	6.6 ± 6.3	-	4.4 ± 6.3	1.7 ± 1.7	-
Erie	2013-2019	GLNPO	zoop	$4^b - 5$	0	3.1 ± 3.4	-	0	1.0 ± 1.4	-

695 a – summer sampling was conducted in fewer years than spring or fall sampling for this row.

696 b – spring sampling was conducted in fewer years than summer sampling for this row.

697 c – fall sampling was conducted in fewer years than spring and summer sampling for this row.

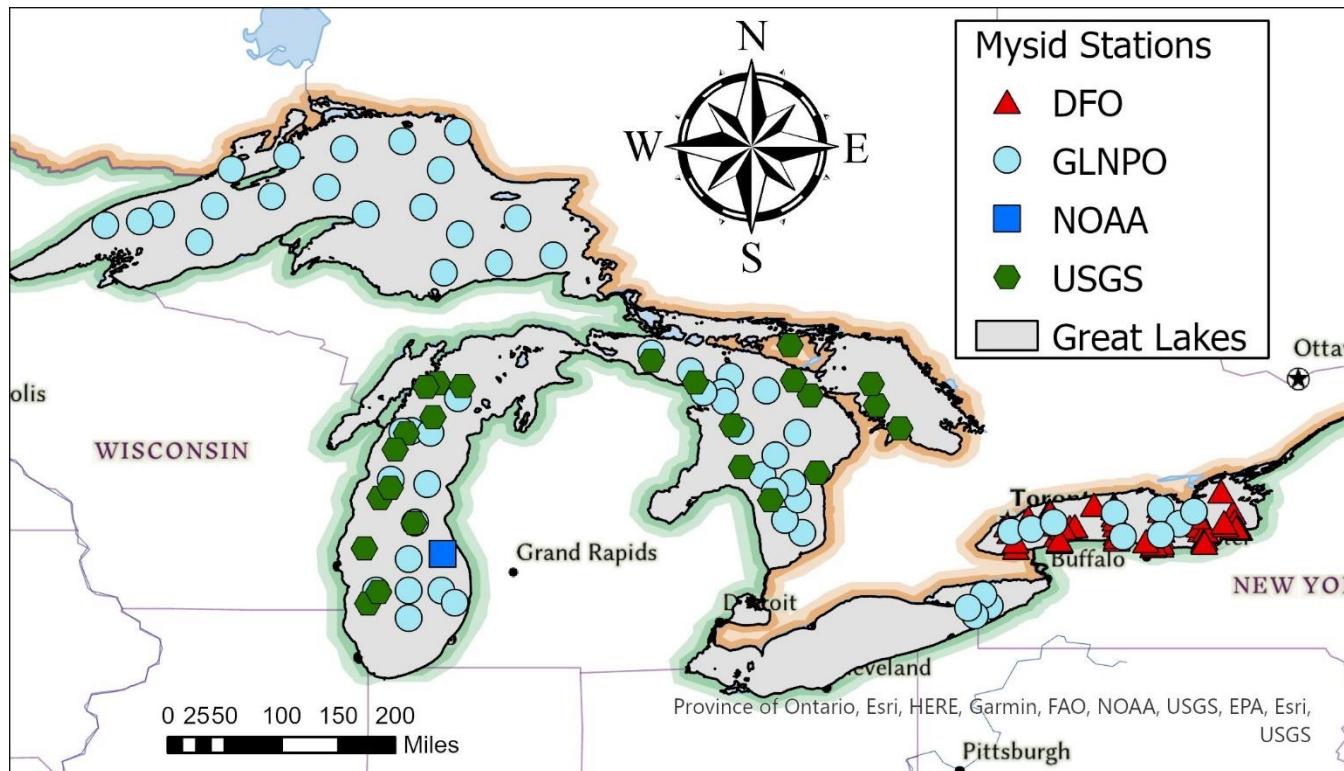
698

699 Table 3. Among-lake comparison of multi-year summaries of annual life history metrics based on GLNPO collections with the mysid net
700 (2006/07-2019). Age distribution, mortality, and growth rate were calculated from annual summer length distributions and based on one
701 estimate per summer for the number of summers indicated in the table. Growth was calculated as the difference in mean-length increment from
702 age 0 to age 1 the following year divided by 12 to give mm/month. Mortality is the complement of age-1+ abundance in one summer over age-0
703 abundance the previous summer, multiplied by 100% (for eastern Lake Erie, 8-month mortality and growth estimates were converted to 12-
704 month equivalents for this table for comparison with the other lakes). Same letters indicate lakes that are not significantly different (Tukey HSD
705 test).

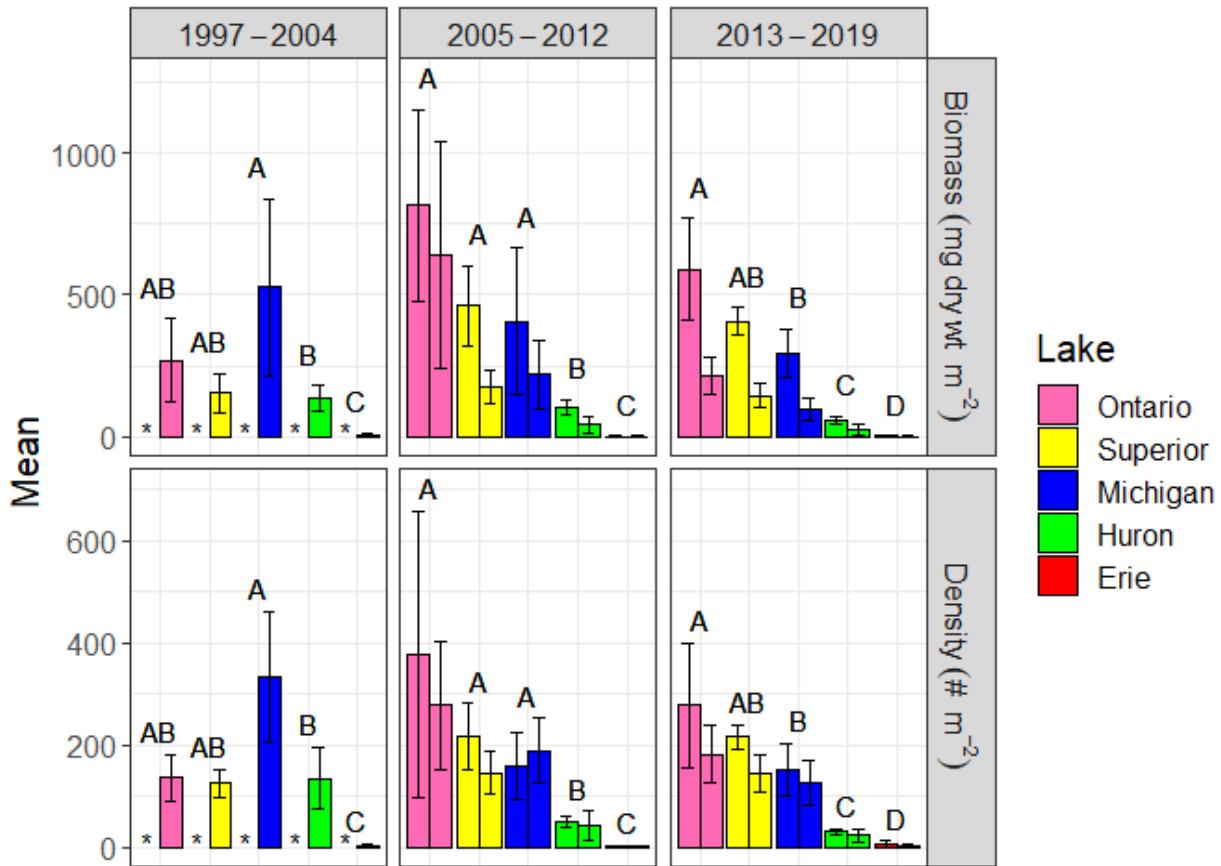
706

Lake	Summers	Percent Age-0	Growth (mm/mo)	Annual mortality (%)
Superior	12	71.6 ± 2.9 b	0.59 ± 0.03 b	55 ± 12 b
Michigan	13	76.2 ± 3.9 ab	0.64 ± 0.04 ab	71 ± 7 ab
Huron	13	77.0 ± 4.5 ab	0.61 ± 0.03 ab	68 ± 11 ab
Erie	Pooled	93.9	1.33	98
Ontario	12	80.8 ± 5.4 a	0.66 ± 0.03 a	72 ± 12 a

707


708

709 Table 4. Correlation strength (r^2) and direction for the relationships between *Mysis diluviana* life-history metrics and annual values of four
 710 different indices: *M. diluviana* density (Den), *M. diluviana* biomass (Bio), satellite-derived spring surface chlorophyll-a concentration (Chl-a), and
 711 mean spring and summer zooplankton biomass (Zoo). Bold and underlined r^2 values indicate slope estimates significantly different from the null
 712 hypothesis slope of 0 (i.e., $p \leq 0.05$). Up-arrows (\uparrow) and down-arrows (\downarrow) indicate direction of best-fit slope estimate(s) for the trends when
 713 slope was significant or when $r^2 \geq 0.3$. Each regression is based on agency specific among-lake data from 2005-7 to 2019. Values from eastern
 714 Lake Erie were excluded due to insufficient data to produce life history metrics on an annual basis from that lake.


715

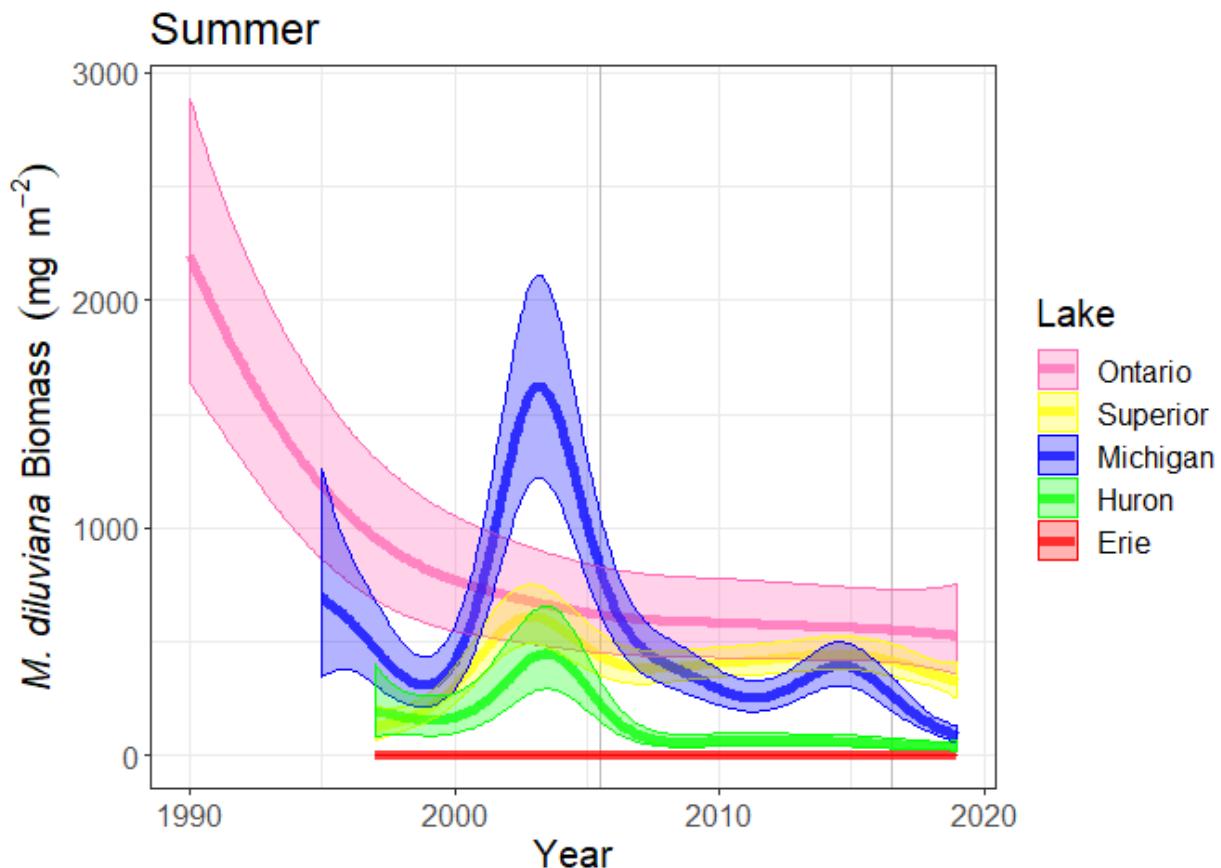
Index	Agency	Age-0 Cohort Proportion	Mortality rate (% / yr)	Growth Rate (mm TL/mo)	Spring embryos/brood	Fall embryos/brood	Spring TL (mm) brooding ♀	Fall TL (mm) brooding ♀
Den	GLNPO	0.07	0.04	0.00	0.02	–	0.02	–
Den	NOAA	0.00	0.00	0.01	0.06	<u>0.54</u> (\downarrow)	0.17	0.17
Den	USGS	0.02	0.00	0.01	–	–	–	–
Bio	GLNPO	0.01	0.04	0.00	0.03	–	0.03	–
Bio	NOAA	0.00	0.00	0.00	0.02	0.30 (\downarrow)	0.17	0.06
Bio	USGS	0.03	0.02	0.01	–	–	–	–
Chl-a	GLNPO	0.03	0.01	<u>0.09</u> (\uparrow)	0.08	–	0.02	–
Zoo	GLNPO	0.00	0.08	<u>0.16</u> (\uparrow)	0.09	–	0.00	–

716


719 Figure 1. Map of the Laurentian Great Lakes with: 1) GLNPO monitoring stations sampled with 153- μ m mesh net (1997-2019) and 250- μ m mesh
720 net (2006-2019) (light blue circles), 2) USGS station locations from representative years in lakes Michigan and Huron (green hexagons), 3) NOAA
721 offshore Lake Michigan monitoring station in transect near Muskegon, MI (blue square), and 4) DFO monitoring stations in Lake Ontario (red
722 triangles). Note that USGS stations were not at the same locations each year but achieved similar annual spatial coverage of lakes Michigan and
723 Huron as depicted here in most other years included in our dataset. See legend for station identification.

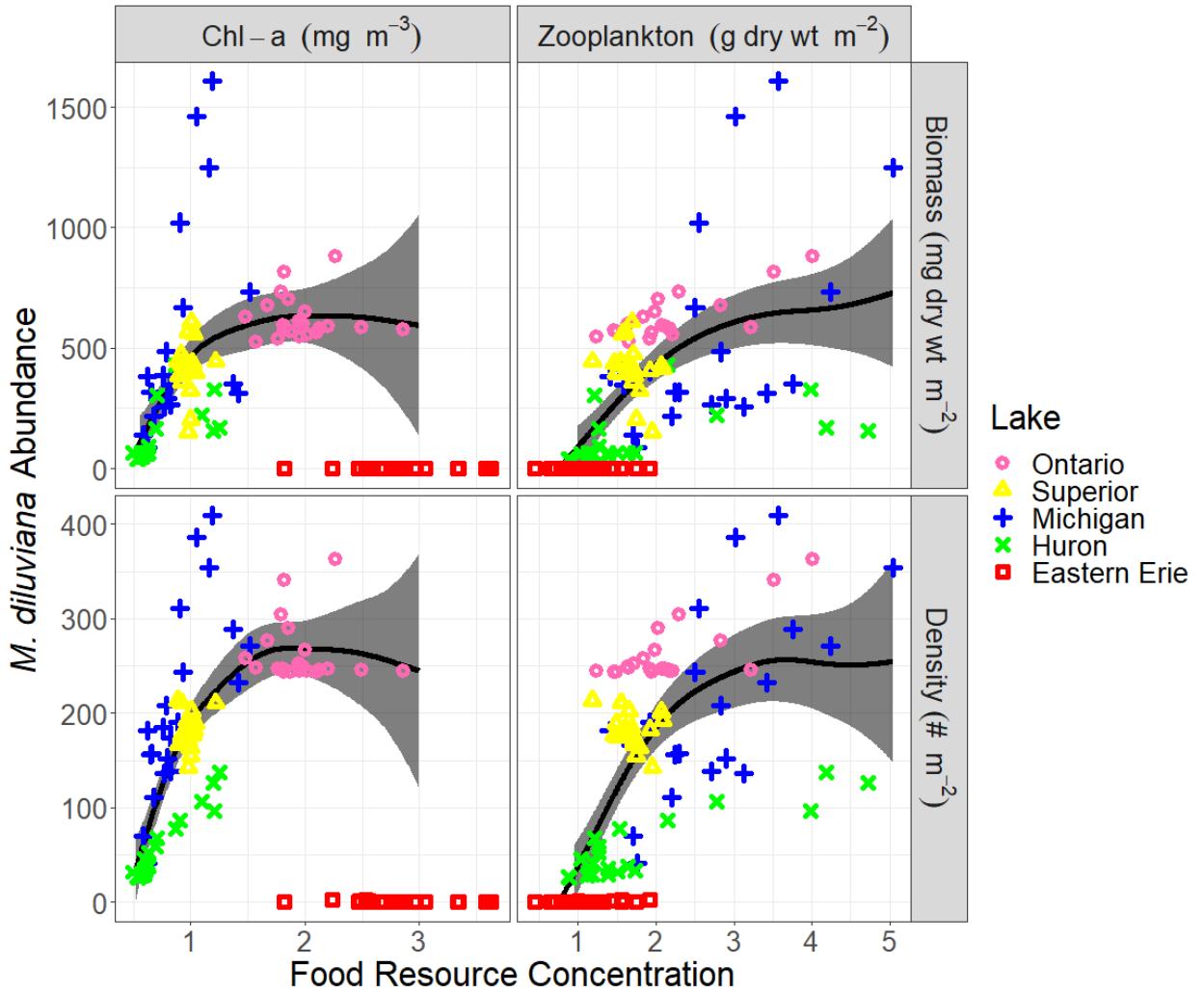
724

725 Figure 2. Summer density and biomass (mean \pm 2 SE) of *M. diluviana* in each lake during three time
 726 periods for the GLNPO mysid net (left bars) and the GLNPO zooplankton net (right bars). ANOVAs of
 727 abundance as a function of lake, season, and net type (only four of the six panels) were performed
 728 (one per panel) on log_e-transformed data. Lake and season were significant effects in all six
 729 comparisons, and net type was significant in three of the four comparisons where it was relevant.
 730 Each of these was followed by a Tukey HSD assessment of significant pairwise differences between
 731 lakes for each time period (accounting for variation due to net types) resulting in groupings of lakes
 732 represented by the letters above the bars (see Tables S1-S6 for detailed statistics). The '*' symbols
 733 in the 1997-2004 time period highlight the absence of samples from the mysid net during those
 734 years. A plot of the same values for spring data is available as supplemental Figure S5.


735

736

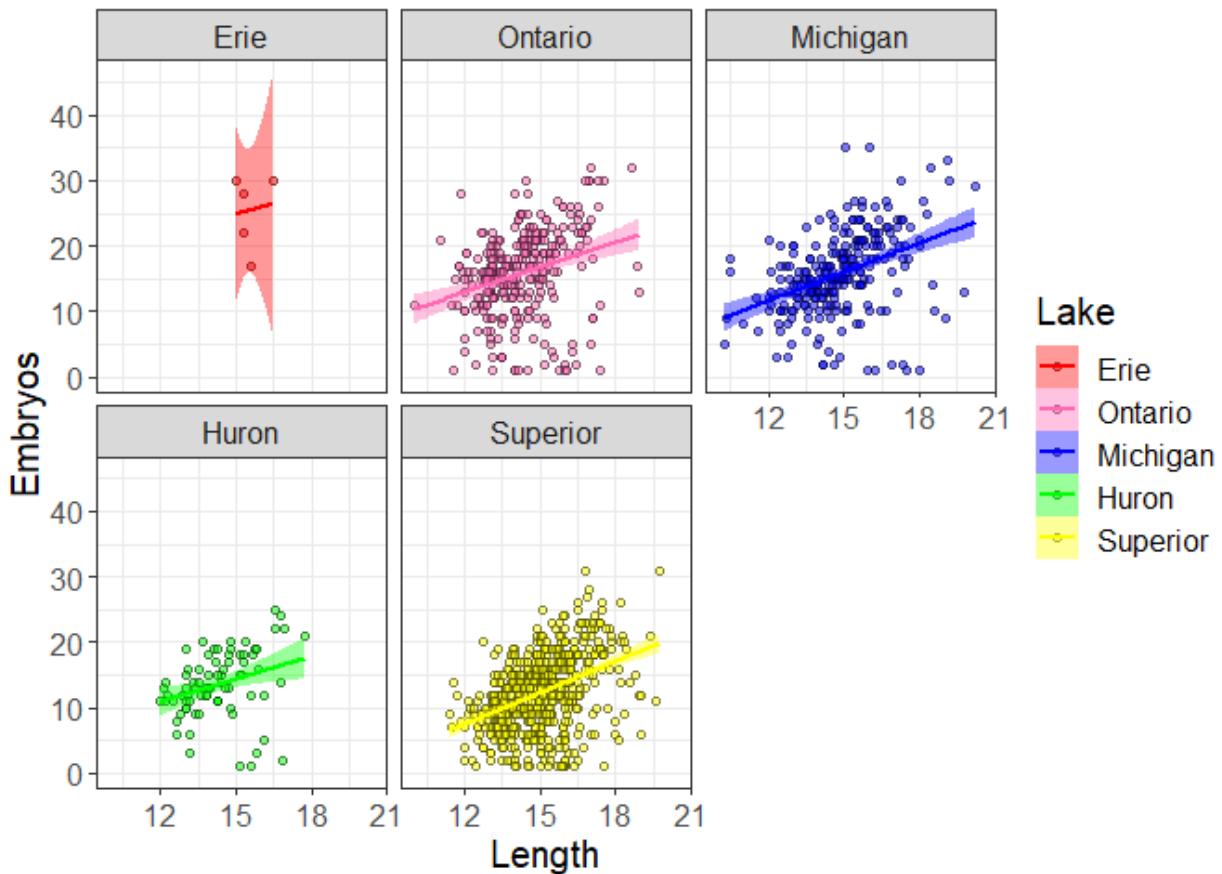
737 Figure 3. Summer density trends over time in each Great Lake, as predicted by lake specific GAMs fit
 738 to all available density data, with the grey area representing ± 2 SE. Values represent density
 739 references to the Summer GLNPO mysid net. Spring and Fall trends will be the same for each lake
 740 due the structure of the GAMs but have different density scale. A plot of the GAM density fits
 741 related to spring mysid net density data is available as supplementary Figure S6.


742

743

744 Figure 4. Summer biomass trends over time in each Great Lake, as predicted by lake specific GAMs
 745 fit to all available biomass data. Values represent biomasses as collected by the Summer GLNPO
 746 mysid net. Spring and Fall trends will show the same pattern for each lake due the GAM structures
 747 but have different biomass scales. A plot of the Spring GAM biomass fits is available as
 748 supplementary Figure S7.

749



750

751 Figure 5. *Mysis diluviana* biomass and density as a function of two different food
 752 resource concentrations: spring (March-June) satellite surface chlorophyll-a and spring-summer (April
 753 and August) zooplankton dry biomass. *Mysis* biomass is in unit of mg dry wt/m^2 , *Mysis* density is in $\#/ \text{m}^2$,
 754 chlorophyll is in mg/m^3 , and zooplankton biomass is in g dry wt/m^2 . The black line is a GAM fit to all lake
 755 data excluding Lake Erie, with a grey area representing the 95% confidence interval of the mean of the
 756 GAM fit. The GAM fits are not forced through 0.

757

758

759

760 Figure 6. Brood size (count of embryos/female) as a function of brooding female length (mm).

761 Common slope for all lakes combined) was 1.5 embryos/female/mm (ANCOVA, $n = 1909$, $df = 1$,

762 1179 , $F = 31$, $p < 0.001$) with additive lake effect ($df = 4, 1179$, $F = 184$, $p < 0.001$). See table S7 for

763 more details.

764

765 **Supplementary Tables**766 Table S1. ANOVA tables for the among-lake comparisons of $\log_e M. diluviana$ density for different time
767 periods. Analyses only includes GLNPO data for zooplankton and mysid nets.

Sources of variation	Sum of Squares	df	Mean Square	F	P
1997-2004					
Lake	202.6	4	50.7	65.3	< 0.0001
Season	8.7	1	8.7	11.2	0.001
Error	47.3	61	0.8		
Total	258.6	66			
2005-2012					
Lake	506.9	4	126.7	262.1	< 0.0001
Season	26.2	1	26.2	54.2	< 0.0001
Net	0.5	1	0.5	1	0.32
Error	61.9	128	0.5		
Total	595.5	134			
2013-2019					
Lake	429.1	4	107.3	188.8	< 0.0001
Season	25	1	25	44.1	< 0.0001
Net	6.6	1	6.6	11.6	0.001
Error	67.6	119	0.6		
Total	528.3	225			

768

769

770 Table S2. ANOVA tables for the among-lake comparisons of $\log_e M. diluviana$ biomass during 1997-2004.
771 Analysis only includes GLNPO data for zooplankton and mysid nets.

Sources of variation	Sum of Squares	df	Mean Square	F	P
1997-2004					
Lake	307.6	4	76.9	51.2	< 0.0001
Season	8.1	1	8.1	5.4	0.023
Error	91.6	61	1.5		
Total	407.3	66			
2005-2012					
Lake	806.2	4	201.5	193.5	< 0.0001
Season	21.1	1	21.1	20.3	< 0.0001
Net	24.7	1	24.7	23.7	< 0.0001
Error	133.4	128	1		
Total	985.4	134			
2013-2019					
Lake	618.9	4	154.7	184.3	< 0.0001
Season	16.9	1	16.9	20.1	< 0.0001
Net	61.1	1	61.1	72.8	< 0.0001
Error	99.9	119	0.8		
Total	796.8	225			

772

773

774 Table S3. Among-lake comparison of multi-year summaries of fecundity and related measures based on
775 GLNPO collections with the mysid net (2006/07-2019). Mean number of embryos per brooding female
776 and mean brooding female length (mm) were calculated based on all individual gravid females caught
777 during this time period. Results of associated ANCOVA tests can be found in Table S7.

Lake	# females	Embryos/Brood	Length (mm)
Superior	645	12.3 ± 0.02	15.0 ± 0.005
Michigan	473	15.8 ± 0.05	14.5 ± 0.008
Huron	113	13.5 ± 0.13	14.2 ± 0.025
Erie*	5	25.4 ± 2.3	15.5 ± 0.23
Ontario	437	15.8 ± 0.05	14.3 ± 0.007

778

779

780 Table S4. ANOVA table for Proportion Age-0 ($P_{a=0}$). Differences significant at the $\alpha = 0.1$ level are in bold,
781 while those significant at the $\alpha = 0.05$ level are in bold and underlined.

782

Sources of Variation	Sum of Squares	df	Mean Square	F	P
<u>Lake</u>	<u>0.0514</u>	<u>3</u>	<u>0.0171</u>	<u>3.00</u>	<u>0.040</u>
Error	0.2622	46	0.0057		
Total	0.3136	49			

783

784 Tukey HSD multiple comparison table for Proportion Age-0 ($P_{a=0}$). Differences significant at the $\alpha = 0.1$
785 level are in bold, while those significant at the $\alpha = 0.05$ level are both in bold and also underlined.

786

Lake 1	Lake 2	Difference	SE	P
Ontario	Michigan	0.05	0.04	0.46
Ontario	Huron	0.04	0.04	0.66
<u>Ontario</u>	<u>Superior</u>	<u>0.09</u>	<u>0.04</u>	<u>0.02</u>
Michigan	Huron	-0.01	0.04	0.99
Michigan	Superior	0.05	0.04	0.42
Huron	Superior	0.06	0.04	0.25

787

788

789 Table S5. ANOVA table for Mortality (Mort). Differences significant at the $\alpha = 0.1$ level are in bold.

790

Sources of Variation	Sum of Squares	df	Mean Square	F	P
<u>Lake</u>	<u>2341</u>	<u>3</u>	<u>780</u>	<u>2.43</u>	<u>0.078</u>
Error	14789	46	322		
Total	17130	49			

791

792 Tukey HSD multiple comparison table for Mortality (Mort). Differences significant at the $\alpha = 0.1$ level
793 are in bold.

794

Lake 1	Lake 2	Difference	SE	P
Ontario	Michigan	1.1	9.8	1.00
Ontario	Huron	3.3	9.8	0.97
<u>Ontario</u>	<u>Superior</u>	<u>17.3</u>	<u>10.0</u>	<u>0.10</u>
Michigan	Huron	2.2	9.6	1.00
Michigan	Superior	16.2	9.8	0.12
Huron	Superior	14.0	9.8	0.22

795

796

797 Table S6. ANOVA table for Growth Rate (\bar{G}). Differences significant at the $\alpha = 0.1$ level are in bold.

798

Sources of Variation	Sum of Squares	df	Mean Square	F	P
Lake	0.0303	3	0.0101	2.53	0.069
Error	0.1834	46	0.0040		
Total	0.2137	49			

799

800 Tukey HSD multiple comparison table for Growth Rate (\bar{G}). Differences significant at the $\alpha = 0.1$ level are
801 in bold.

802

Lake 1	Lake 2	Difference	SE	P
Ontario	Michigan	0.014	0.034	0.95
Ontario	Huron	0.039	0.034	0.42
Ontario	Superior	0.065	0.035	0.07
Michigan	Huron	0.026	0.034	0.73
Michigan	Superior	0.052	0.034	0.19
Huron	Superior	0.026	0.034	0.74

803

804 Table S7 ANCOVA table for Fecundity with interactive Length x Lake term. Differences significant at the
805 $\alpha = 0.1$ level are in bold, while those significant at the $\alpha = 0.05$ level are in bold and underlined.
806

Sources of Variation	Sum of Squares	df	Mean Square	F	P
Length	5873	1	5873	184	< 0.001
Lake	3999	4	1000	31	< 0.001
Length x Lake	61	4	15	0.48	0.751
Error	37427	1175	32		
Total	47360	1184			

807
808 ANCOVA table for Fecundity (ANCOVA with additive terms only). Differences significant at the $\alpha = 0.1$
809 level are in bold, while those significant at the $\alpha = 0.05$ level are in bold and underlined.
810

Sources of Variation	Sum of Squares	df	Mean Square	F	P
Length	5873	1	5873	31	< 0.001
Lake	3999	4	1000	184	< 0.001
Error	37488	1179	32		
Total	47360	1184			

811
812 Tukey HSD multiple comparison table for Fecundity (based on additive ANCOVA). Differences significant
813 at the $\alpha = 0.1$ level are in bold, while those significant at the $\alpha = 0.05$ level are in bold and underlined.
814

Lake 1	Lake 2	Difference	SE	P
Erie	Ontario	9.6	3.5	0.002
Erie	Michigan	9.6	3.6	0.002
Erie	Huron	11.9	3.6	< 0.001
Erie	Superior	13.1	3.5	< 0.001
Ontario	Michigan	0.001	0.7	1.00
Ontario	Huron	2.2	1.0	0.02
Ontario	Superior	3.5	0.6	< 0.001
Michigan	Huron	2.2	1.0	0.02
Michigan	Superior	3.5	0.6	< 0.001
Huron	Superior	1.2	1.0	0.37

815

816

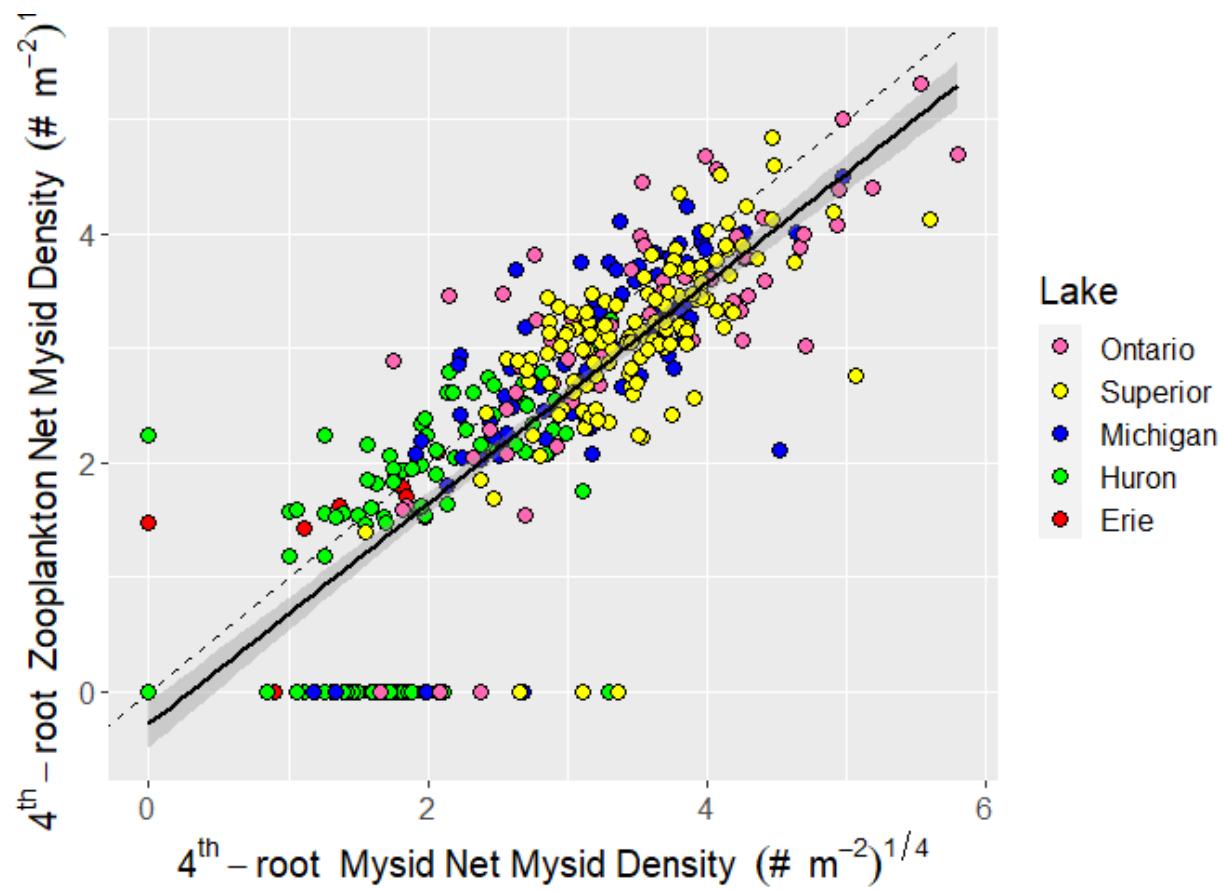
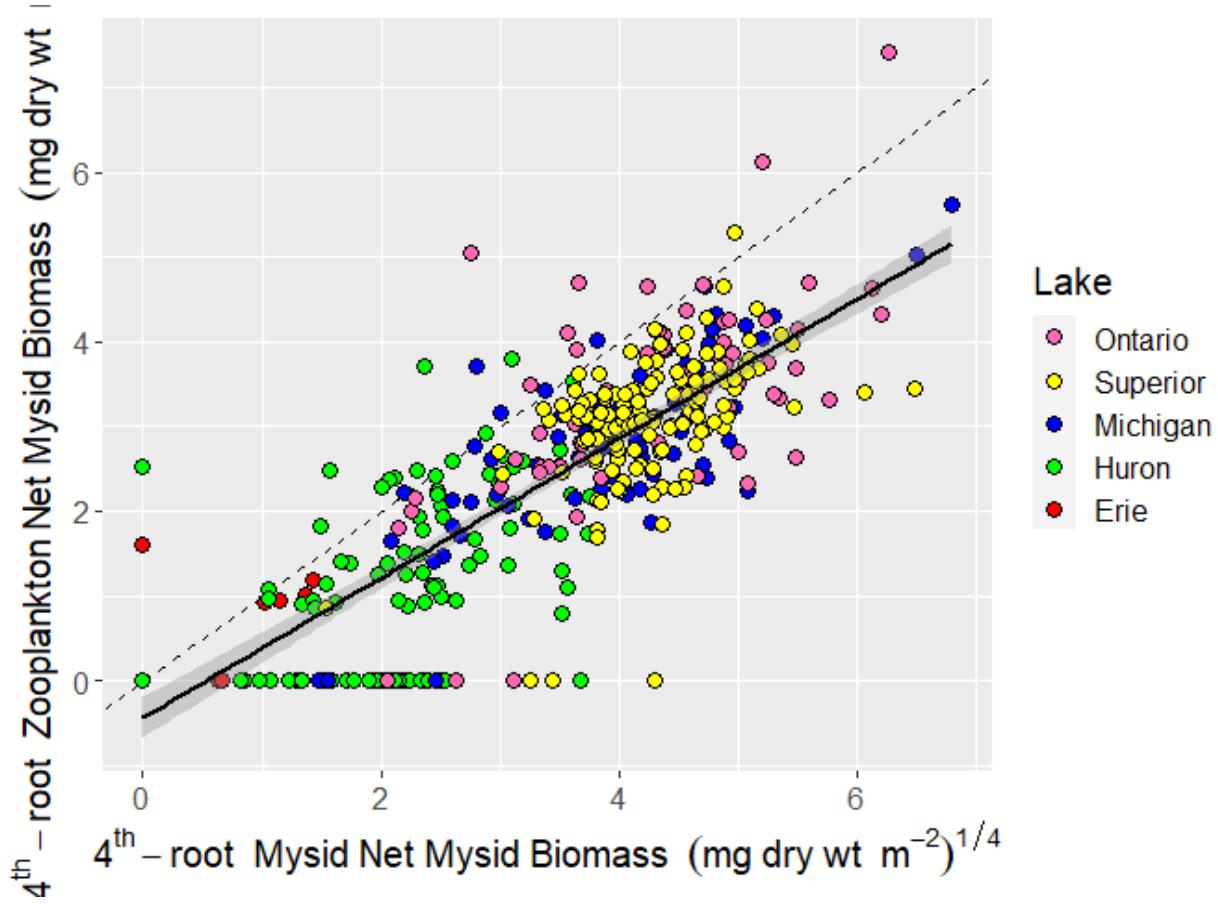
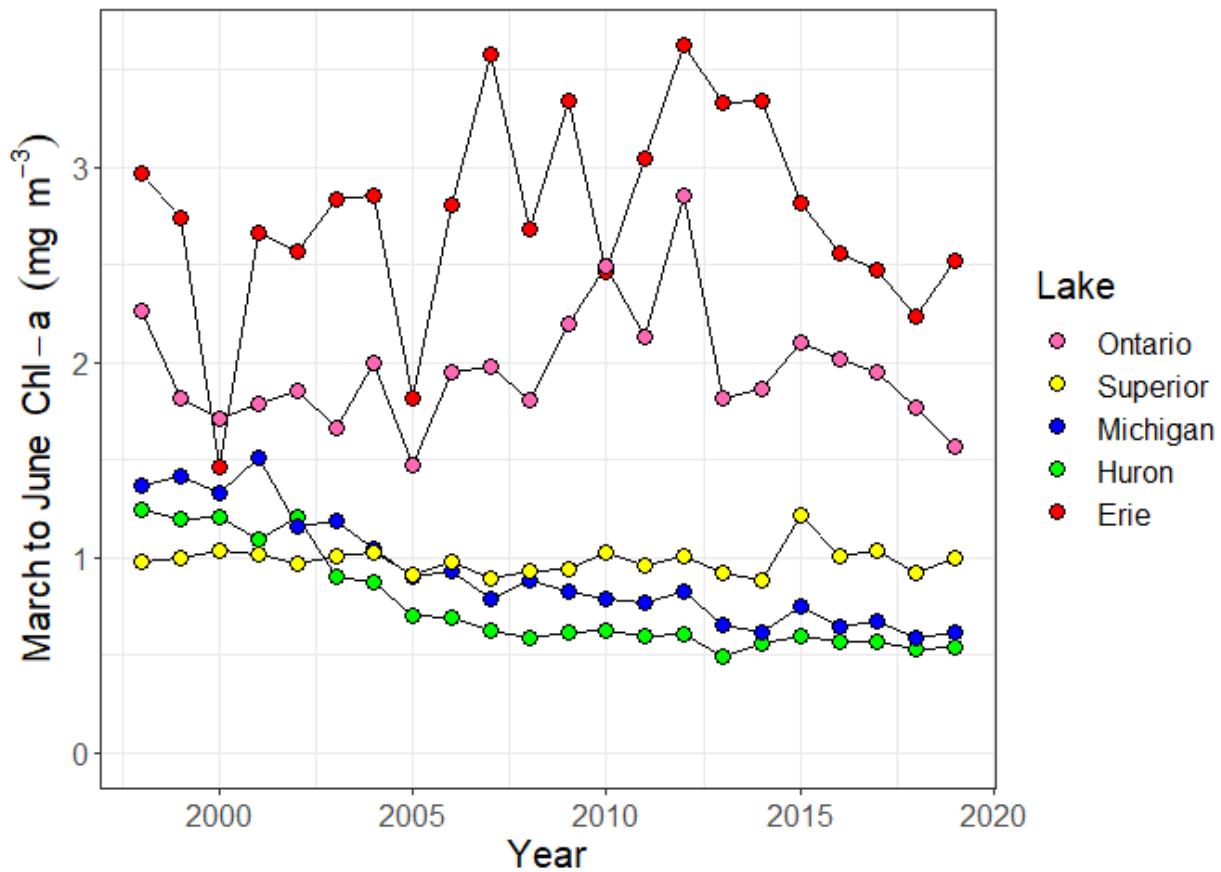
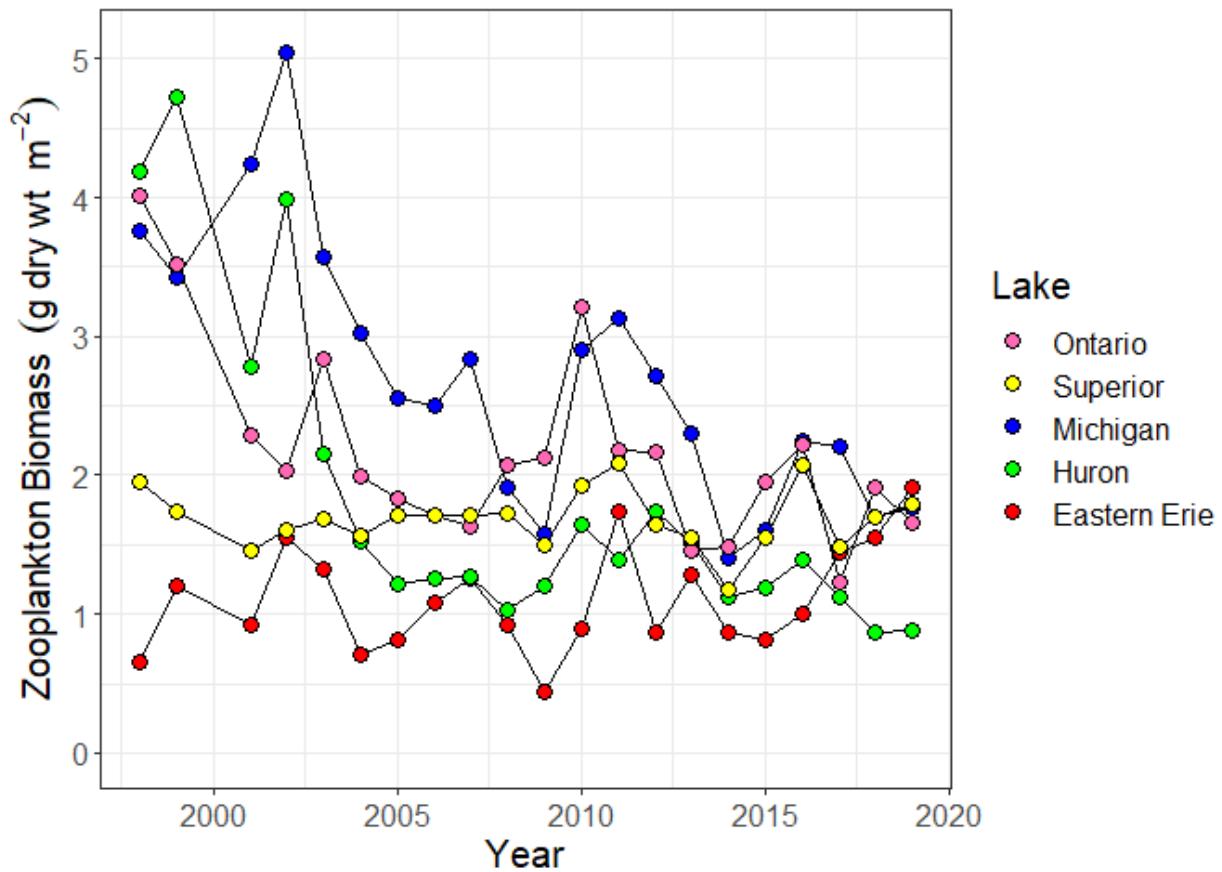



Figure S1. Areal density ($\#/m^2$) in the 250- μm mesh net (mysid net) as a function of areal density in 153- μm mesh net (zooplankton net), with fitted predictions (solid black line), prediction confidence intervals (grey shading), and the 1:1 line (dashed line). The scale is the 4^{th} root of abundances. Note that eight points (six from Erie and two from Huron) had zero *M. diluviana* in both nets and are therefore overlapped in this figure. The equation for the best fit line is: $[\text{Zoop Net Areal Density}]^{1/4} = 0.96 \cdot [\text{Mysid Net Areal Density}]^{1/4} - 0.29$ (df = 1, 385, F = 838, $r^2 = 0.68$, $p < 0.001$).

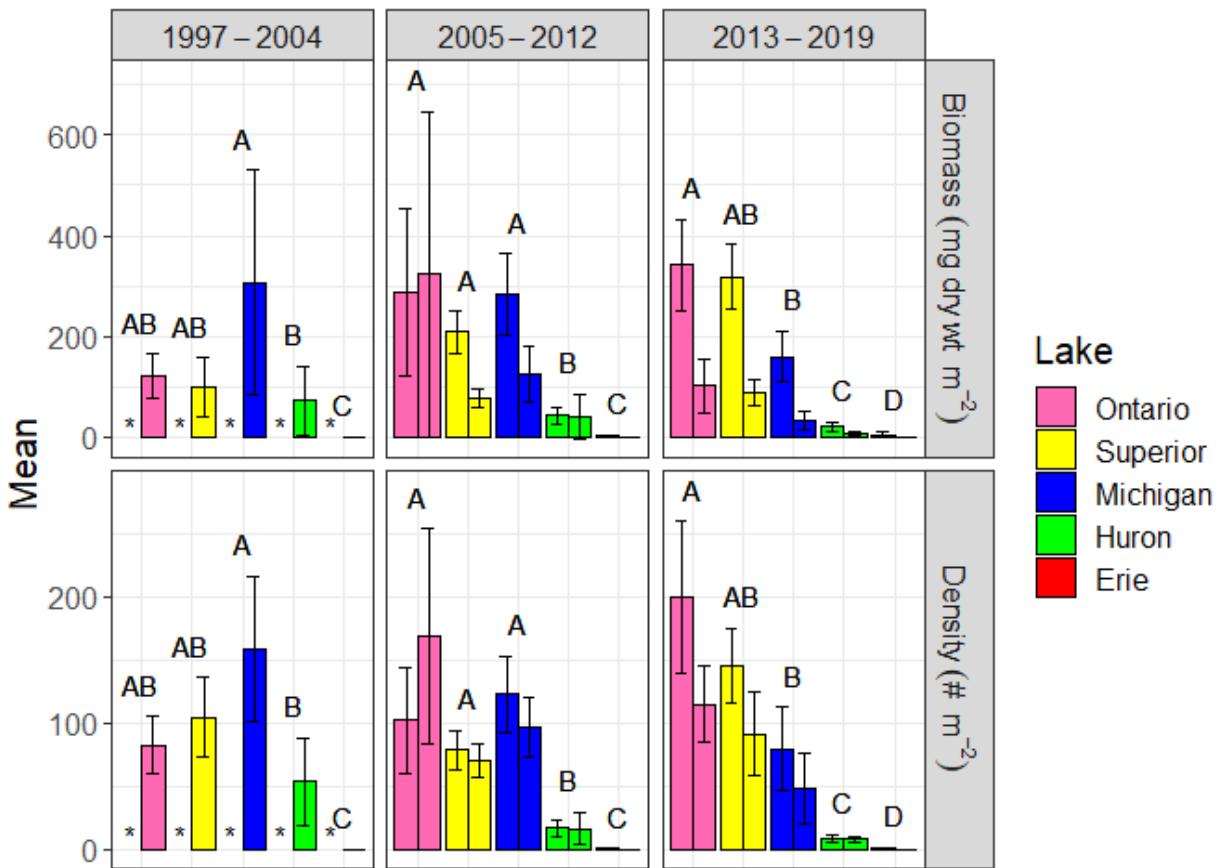


826

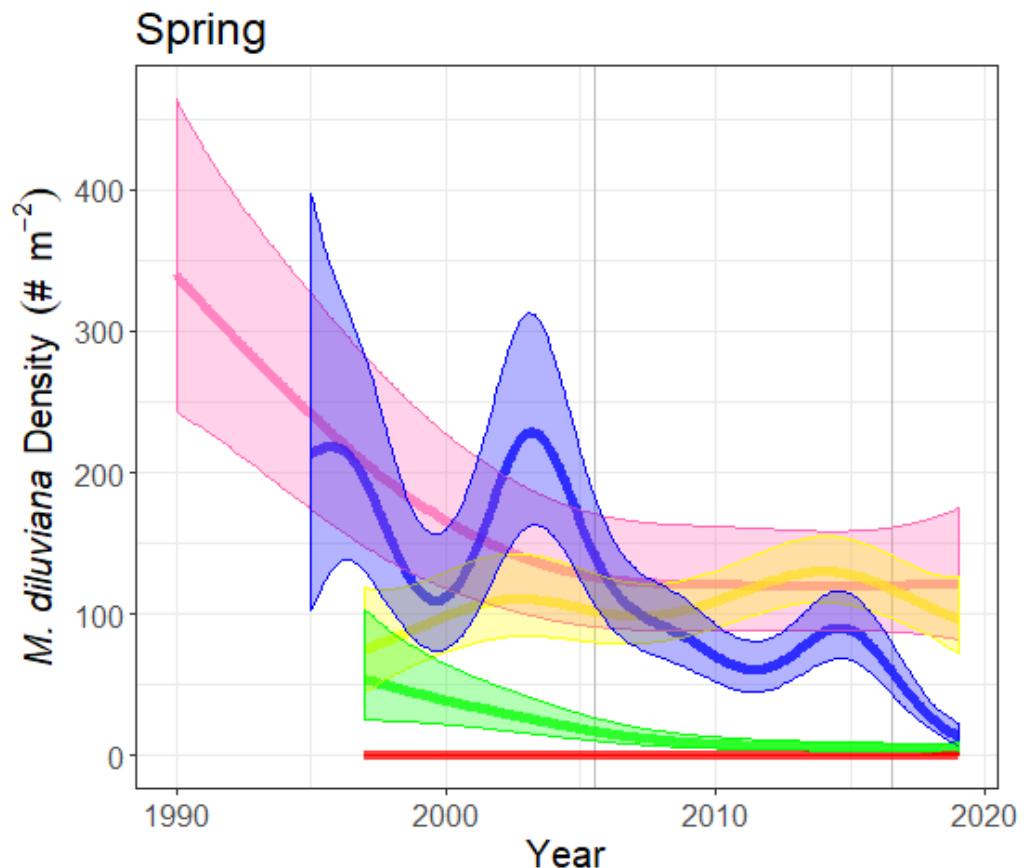
827 Figure S2. Areal biomass (mg/m²) in 250-μm mesh net (mysid net) as a function of areal biomass in
 828 153-μm mesh net (zooplankton net), with fitted predictions (solid black line), prediction confidence
 829 intervals (grey shading), and the 1:1 line (dashed line). The scale is the 4th root of biomass. Note that
 830 eight points (six from Erie and two from Huron) had zero *M. diluviana* in both nets and are therefore
 831 overlapped in this figure. The equation for the best fit line is: [Zoop Net Areal Biomass]^{1/4} = 0.82 ·
 832 [Mysid Net Areal Biomass]^{1/4} - 0.44 (df = 1, 385, F = 658, r² = 0.63, p < 0.001).


833

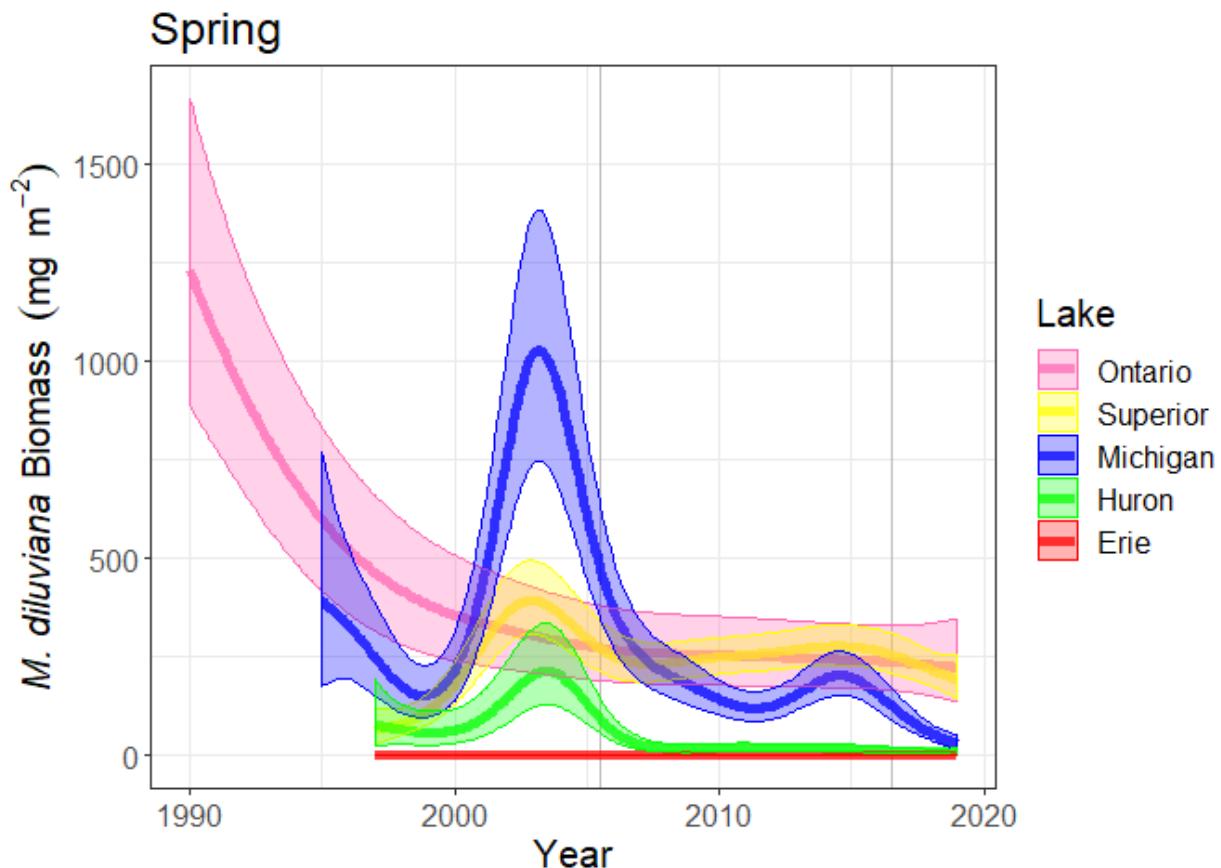
834


835

836 Figure S3. Annual lake-wide spring (March-June) satellite-derived surface chlorophyll-a
 837 concentrations at GLNPO monitoring stations (n stations per lake: Eastern Erie: 4, Ontario: 8,
 838 Michigan: 11, Huron: 14, Superior: 19). Lake Erie values are for the eastern basin only. Data
 839 available at the EPA GLNPO data repository and derived using methods developed by Lesht et al.
 840 (2018).


841

842 Figure S4. Annual average areal zooplankton biomass based on 153- μ m, 100-m tows from GLNPO
 843 monitoring stations. Values are averages of annual spring (April) and summer (August) values. Data
 844 available in the EPA-GLNPO data repository and methods described in Barbiero et al. (2019).


845

846 Figure S5. Spring biomass and density (mean \pm 2 SE) of *M. diluviana* in each lake during three time
 847 periods for the GLNPO mysid net (left bars) and the GLNPO zooplankton net (right bars). ANOVAs of
 848 density and biomass as a function of lake, season, and net gear were performed (one per panel) on
 849 the log_e-transformed version of the data. Lake and season were significant effects in all six
 850 comparisons, and net type was significant in three of the four comparisons where it was relevant.
 851 Each of these was followed by a Tukey HSD assessment of significant pairwise differences between
 852 lakes for each time period (accounting for variation due to net types) resulting in groupings of lakes
 853 represented by the letters above the bars (see Tables S1–S6). The '*' symbols in the 1997–2004 time
 854 period highlight the absence of samples from the mysid net during those years. A plot of the same
 855 values for summer data is in the main text as Fig. 1.

Lake

- Ontario
- Superior
- Michigan
- Huron
- Erie

Declaration of Interest Statement

The authors declare that we have no conflict of interest pertaining to the manuscript
"Evidence for bottom-up drivers of *Mysis diluviana* abundance across the Laurentian Great Lakes"
by Toby J Holda James M Watkins Anne E. Scofield, Stephen Pothoven, David M. Warner, Timothy
O'Brien, Kelly L. Bowen, Warren J.S. Currie, David Jude, Patrick Boynton, Lars G Rudstam