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Abstract

Understanding how interactions among microevolutionary forces generate genetic population
structure of exploited species is vital to the implementation of management policies that facilitate
persistence. Philopatry displayed by many coastal shark species can impact gene flow and facilitate
selection, and has direct implications for the spatial scales of management. Here, genetic structure
of the blacktip shark (Carcharhinus limbatus) was examined using a mixed-marker approach
employing mitochondrial control region sequences and 4,339 SNP-containing loci generated using
ddRAD-Seq. Genetic variation was assessed among young-of-the-year sampled in 11 sites in
waters of the United States in the western North Atlantic Ocean, including the Gulf of Mexico.
Spatial and environmental analyses detected 68 nuclear loci putatively under selection, enabling
separate assessments of neutral and adaptive genetic structure. Both mitochondrial and neutral
SNP data indicated three genetically distinct units — the Atlantic, eastern Gulf, and western Gulf —
that align with regional stocks and suggest regional philopatry by males and females.
Heterogeneity at loci putatively under selection, associated with temperature and salinity, was
observed among sites within Gulf units, suggesting local adaptation. Furthermore, five pairs of
siblings were identified in the same site across timescales corresponding with female reproductive
cycles. This indicates that females re-used a site for parturition, which has the potential to facilitate
the sorting of adaptive variation among neighboring sites. The results demonstrate differential
impacts of microevolutionary forces at varying spatial scales and highlight the importance of
conserving essential habitats to maintain sources of adaptive variation that may buffer species

against environmental change.

Keywords

conservation genomics; local adaptation; elasmobranch; parturition site fidelity; male philopatry.
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Introduction

Genetic population structure is determined by differences in the distribution of alleles among
contemporary populations that result from interactions of microevolutionary forces (Laikre et al.,
2005). Because genetic drift and gene flow influence allele frequencies on a genome-wide scale,
selectively neutral loci exhibit patterns of variation that can be used to understand historical and
contemporary demographic processes (Luikart et al., 2003). By contrast, selection acts upon
variation at specific genes and/or genomic regions, and often produces patterns of structure distinct
from those observed at neutral loci (Gagnaire et al., 2015; Nielsen, 2001). Disentangling these
patterns is especially informative for the management of exploited species. While neutral structure
can inform the designation of management units (Waples et al., 2008), loci under selection can be
used to infer local adaptation across heterogeneous environments within management units
(Nielsen et al., 2009). Understanding levels of gene flow among and within units is also critical
because the adaptive potential of populations can facilitate the persistence of species confronted

with environmental change (Bowen & Roman, 2005; Garant et al., 2007).

Examining the interplay of microevolutionary forces is challenging in marine systems because
barriers to gene flow are fewer and often cryptic and they can be more difficult to study than many
terrestrial systems (Grummer et al., 2019; Palumbi, 1994). In addition, marine species typically
exhibit weak structure that is difficult to detect (Waples, 1998), resulting from the potential for
long-distance dispersal (via adults and/or larvae), high fecundity, and large effective population
sizes that reduce the magnitude of genetic drift (Poulsen et al., 2006). However, large population
sizes and high fecundities provide more opportunities for mutation and increase the efficacy of
selection relative to drift (Allendorf et al., 2010; Cormack et al., 1990). Further, many marine

species have broad geographic ranges and are distributed across heterogeneous environments,



72

73

74

75

76

77

78

79

80

81

82

&3

&4

&5

86

87

88

&9

90

91

92

93

94

Molecular Ecology

increasing the potential for local adaptation (Bernatchez, 2016). Therefore, selection acting with
varying degrees of strength upon a small number of loci can lead to fine-scale adaptive structure
while neutral processes produce weaker, genome-wide structure across broader geographic scales

(Gagnaire & Gaggiotti, 2016; Hoey & Pinsky, 2018).

The life history characteristics of elasmobranchs (i.e., sharks, skates, and rays) have an important
role in shaping patterns of genetic structure. In contrast to many bony fishes and marine
invertebrates, elasmobranchs mature late, have long life spans, and produce relatively few progeny
within and across reproductive efforts (Conrath & Musick, 2012). Frequently, this leads to smaller
effective sizes that are more coupled to census sizes (Portnoy et al., 2009). Though elasmobranchs
lack a dispersive larval stage, they retain the potential for high levels of gene flow because they
can move vast distances during juvenile and adult life stages (Kohler & Turner, 2019). However,
many species display fidelity to specific habitats where they mate and give birth or deposit eggs
(Chapman et al., 2015; Flowers et al., 2016). Furthermore, this behavior can extend across
generations, causing individuals to reproduce in their region of birth (i.e., regional philopatry;
Pardini et al., 2001) and even result in females giving birth in the same habitat in which they were

born (i.e., natal philopatry; Feldheim et al., 2014).

Female philopatry is common among coastal shark species that give birth in bays and estuaries
where progeny may remain for extended periods (Heupel et al., 2007; Karl et al., 2011; Keeney et
al., 2005). Female regional philopatry has the potential to limit gene flow mediated by females
compared with males, and evidence for this has been documented in multiple species based on
discrepancies in maternally- and biparentally-inherited DNA (Phillips et al., 2021). Because
coastal sharks are heavily exploited around the world (Dulvy et al., 2017), understanding how

philopatry influences neutral genetic structure by impacting gene flow is vital for delineating
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management units that will promote persistence. In addition, parturition sites can be
environmentally heterogeneous (Bethea et al., 2015; Matich et al., 2017) and newborn sharks can
be subject to higher rates of mortality than other life stages (Heupel & Simpfendorfer, 2002; Lowe,
2002; Manire & Gruber, 1993). Therefore, natal philopatry could drive selection for locally
adaptive phenotypes and lead to fine-scale adaptive structure (Portnoy et al., 2015; Portnoy &
Heist, 2012). This could have further implications for management because parturition sites

harboring novel adaptive variants may require individually tailored policies.

The blacktip shark (Carcharhinus limbatus) is a coastal shark species with a circumglobal
distribution in tropical and warm temperate latitudes, that is harvested for meat, fins, and liver oil
(Compagno et al., 2005; Rigby et al., 2021). In waters of the United States (hereafter U.S. waters),
blacktip sharks are found along the Atlantic coast from Florida to Massachusetts and throughout
the Gulf of Mexico, where they are targeted by commercial and recreational fisheries (Castro,
1996; SEDAR, 2018, 2020). Commercial fisheries operate year-round and harvest adults in federal
and state waters; however, recreational fisheries also operate in state waters, and some may land
smaller blacktip sharks closer to shore (SEDAR, 2020). Male and female blacktip sharks mature
after four and six years (respectively) and females produce one to eight pups (four on average)
every two years (Baremore & Passerotti, 2013; Natanson et al., 2019). Moreover, the species is
highly migratory: males and females can move ~1,200 km in fewer than 100 days (Weber et al.,
2020) and males have been recorded traveling over 3,400 km per year (Bowers and Kajiura
unpublished data). In the spring and early summer, females move into bays and estuaries to give
birth (Castro, 1996; Hueter & Tyminski, 2007). Young-of-the-year (YOY) remain in their

parturition site until the autumn of their birth year and migrate south and/or offshore when water
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temperatures decrease (Castro, 1996; Heupel et al., 2004; Heupel, 2007), and many return to the

vicinity of their parturition site the following spring (Hueter et al., 2005).

Based in part on population genetics studies, the U.S. National Marine Fisheries Service (hereafter
NOAA Fisheries) currently manages blacktip sharks as two stocks — one in the Atlantic and one
in Gulf — but the Gulf stock is split into two subregions (eastern and western), with the dividing
line through Mobile Bay, Alabama (SEDAR, 2018, 2020). An assessment of genetic structure
based on YOY sampled in parturition sites from Texas, Florida, and Georgia/South Carolina
identified three genetic units using the mitochondrial control region, but did not find significant
differences using eight nuclear-encoded microsatellites, suggesting female regional philopatry
(Keeney et al., 2005). However, the discordance between nuclear and mitochondrial data could
also be due to limited resolution (i.e., too few loci) or insufficient time for differences to accrue
(Whitlock & McCauley, 1999). Thus, to inform appropriate management and avoid loss of genetic
variation resulting from localized depletion, it is vital to accurately characterize blacktip shark
population structure and adaptive potential. An assessment of genetic structure at neutral and

putatively adaptive loci is therefore warranted.

Here, the genetic structure of blacktip sharks in U.S. waters of the western North Atlantic Ocean
was examined using mitochondrial control region and double digest restriction-site associated
DNA sequencing (ddRAD-Seq) data. The sampling design targeted YOY within or just outside
parturition sites during their spring-autumn residency to ensure that structure reflected differences
among reproductive units. By examining thousands of loci spread throughout the genome, a higher
resolution assessment of genetic structure at nuclear-encoded loci is possible, and the data can also
be used to identify siblings captured in the same habitats across years, a pattern indicative of

parturition site fidelity by females. Moreover, by screening for loci putatively under selection, the
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approach facilitates an assessment of the influence of genetic drift, gene flow, and selection in
structuring genomic variation, providing a means to identify habitats harboring adaptive variants

that may facilitate the species’ persistence.

Materials and Methods

Sampling

Tissue samples were collected as fin clips from 503 individual blacktip sharks captured within or
near 11 estuaries (sites) off the U.S. Atlantic Coast (hereafter Atlantic) and throughout the northern
Gulf of Mexico (hereafter Gulf). The three sites in the Atlantic were along the coast of South
Carolina. In the Gulf, there were three sites along the west coast of Florida, one on the coast of
Alabama, and four along the coast of Texas. Mobile Bay, the site in Alabama, straddles the 88"
meridian that separates the eastern and western blacktip shark Gulf stock subregions (NMFS,
2006). Fin clips were immersed in 20% DMSO-0.25M EDTA NaCl-saturated buffer (DMSO,
Seutin et al., 1991), or ethanol and then transferred into DMSO, and stored at room temperature
until DNA extraction. All sharks were captured between March and November 2012-2019. The
location of capture (latitude and longitude) was recorded for each individual, and sex was recorded
for all but seven individuals. Body measurements (i.e., at least one of pre-caudal, fork, total, and
stretch total lengths) were also recorded. If a fork or total length was not recorded, a customized
R script (v3.6.0; R Development Core Team, 2008) was used to assign missing values based on
observed relationships among length measurements (Carlson et al., 2006). Of the 503 individuals
sampled, 488 were YOY: 227 (~47%) were classified as YOY based on the presence of an
umbilical scar (Castro, 1993) and 261 (~53%) were classified as YOY using fork length (< 593
mm) if sampled in the Atlantic (Ulrich et al., 2007) or total length (<= 800 mm) if sampled in the

Gulf (Parsons & Hoffmayer, 2007). Based on observations that YOY blacktip sharks in the
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Atlantic and Gulf remain in or near their parturition site into the autumn months of their first year
of life (Castro, 1996; Heupel et al., 2004), these 488 individuals were assumed to have been

sampled in their parturition site (Table S1).

ddRAD-Seq Library Preparation and Genotyping

High molecular weight genomic DNA was extracted from fin clips using either Mag-Bind® Blood
and Tissue DNA Kits (Omega Bio-Tek) or phenol-chloroform extraction (Sambrook et al., 1989).
A modified version of ddRAD-Seq (Peterson et al., 2012) was used to prepare genomic libraries
containing the 488 YOY individuals plus 31 technical replicates spread across sites and libraries
and sequenced using 11 lanes of an [llumina HiSeq 4000 (paired-end 150 bp; see Supplementary

Methods for more information).

To map and improve the genotyping efficacy of HiSeq data, a separate library consisting of 27
individuals sampled across Atlantic and Gulf locations at multiple life history stages (Table S2)
was prepared using the same protocol and sequenced on a single Illumina MiSeq lane (paired-end
300 bp). Of these 27 individuals, 12 were included in the HiSeq libraries. All raw HiSeq and MiSeq
reads were demultiplexed using process radtags (Catchen et al., 2011) and quality-trimmed using
default parameters implemented in DDOCENT (Puritz et al., 2014). DDOCENT was also used to
assemble MiSeq reads into a reference of contiguous sequence alignments (i.e., contigs)
representing putatively single-copy (orthologous) loci. DDOCENT was subsequently used to map

HiSeq reads to the MiSeq reference and genotype SNPs.

ddRAD-Seq Data Filtering

Raw SNPs were filtered using VCFTOOLS (v0.1.14; Danecek et al., 2011) and R functions in a

customized workflow, following practices laid out in O’Leary et al. (2018). Filtering initially
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removed genotypes with < 5 reads and quality < 20 while applying a minor allele count of three.
Loci were further filtered based on allele balance, mapping quality, ratio of reference vs. alternate
allele, consistency of scoring in forward and reverse directions, proper pairing, depth/quality ratio,
and excess heterozygosity to remove potential paralogs and other technical artifacts. Individuals
with > 20% missing data or very negative Fis (< -0.13) indicative of cross-contamination (Petrou
et al., 2019) were removed. Retained loci had a mean depth > 20 and were called in at least 90%
of individuals, 80% of individuals in each site, and 50% of individuals in each library. Haplotypes
were then generated by collapsing SNPs on the same contig to produce a dataset of multi-allelic
SNP-containing loci (Willis et al., 2017). In addition, the composite genotypes of technical
replicates included within and across libraries were compared to characterize locus-specific
genotyping error. Replicates were confirmed by assessing relatedness between each pair of
individuals using the dyadic likelihood estimator (Milligan, 2003) executed using the R package
related (Pew et al., 2015). Loci with systematic genotyping error (i.e., in > 1 replicate pair) and
one individual from each pair were removed, along with monomorphic loci. To minimize genotype
inconsistencies across libraries (i.e., library effects), individuals were grouped by library and
BAYESCAN (Fischer et al., 2011; Foll et al., 2010; Foll & Gaggiotti, 2008) executed to identify and

remove loci contributing to differences among libraries.

Mitochondrial Sequencing and Haplotyping

A 915 bp portion of the mitochondrial control region (1070 bp total length) was amplified for a
subset of individuals (323) wusing a pair of primers within the proline (Pro:
GCCCTTGGCTCCCAAAGC) and phenylalanine (Phe: TCATCTTAGCATCTTCAGTGCCA)
tRNA genes (Table S3). These primers were designed to amplify the mitochondrial control region

of multiple shark species (see Supplementary Methods and Table S4). Amplification was
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10

performed using polymerase chain reaction (PCR) in 50 pl reactions with 1x Green GoTaq buffer
(Promega), 2 mM MgCl,, 200 uM of each ANTP, 0.5 uM of each primer, and 1.25 units of GoTaq
DNA Polymerase. Amplification consisted of an initial denaturation at 95°C for two minutes,
followed by 40 cycles of denaturation at 94°C for 30 seconds, annealing at 54°C for 60 seconds,
and extension at 72°C for 90 seconds, with a final extension of 72°C for 10 minutes. PCR products
were visualized using gel electrophoresis before being cleaned, quantified, and standardized to 20
ng/ul. Mitochondrial sequence data was generated by unidirectional Sanger sequencing using the

Pro primer and an ABI 3730xI platform.

Mitochondrial sequences were aligned using CLUSTAL OMEGA (Sievers et al., 2011) and edited
manually in BIOEDIT (Hall, 1999). The R package haplotypes was used to identify unique
haplotypes. To visualize the distribution of haplotypes among sites, a TCS network (Clement et

al., 2000) was produced using POPART (Leigh & Bryant, 2015).

Relatedness

To identify full- and half-siblings, pairwise relatedness was assessed using Wang’s estimator
corrected for sample size (Wang, 2002) executed using the R package demerelate (Kraemer &
Gerlach, 2017). Because female blacktip sharks are thought to display regional philopatry (Keeney
et al., 2005) and relatedness analysis used to confirm technical replicates already screened for kin
sampled between regions, relatedness between individuals was assessed for each region separately
(i.e., Atlantic, eastern Gulf, and western Gulf). For each region, 1,000 pairs of simulated full- and
half-sibling relationships were generated using empirical allele frequencies. To identify full- and
half-siblings, minimum relatedness thresholds were set after trimming the lowest 1% of simulated
values to reduce instances of false positives. Mitochondrial haplotypes were then compared for

observed sibling pairs to determine if any half-siblings were paternally related (i.e., had distinct
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11

haplotypes). Removal of randomly sampled siblings can reduce the precision of population
genetics analyses, as can the inclusion of siblings that are non-randomly sampled (Waples &
Anderson, 2017). Therefore, full- and half-siblings were considered non-randomly sampled if both
individuals were captured in the same site on the same day, in which case one individual from each

pair was removed for all downstream analyses.

Fgr Outlier Analysis

Three methods were used to screen for Fsy outlier loci putatively under directional selection with
individuals grouped by site. The first approach, implemented in OutFLANK (Whitlock &
Lotterhos, 2015), identifies Fst outliers (g-value < 0.05) based on an inferred distribution of neutral
Fgr after trimming the lowest and highest 5% of Fsr values, thus avoiding implicit assumptions of
population structure and demography. The second method generates a null distribution of Fgr for
neutral loci using a Bayesian approach implemented in BAYESCAN (Fischer et al., 2011; Foll et
al., 2010; Foll & Gaggiotti, 2008). This method assumes an island model where allele frequencies
in each group are correlated through a common ancestral gene pool. BAYESCAN was executed with
prior odds of 1,000 and a burn-in of 200,000 iterations; 25 pilot runs of 5,000 iterations were used
to tune MCMC parameters and following 35,000 sampling iterations with a thinning interval of
50, significance was evaluated using a g-value of 0.05. Finally, the FDIST method (Beaumont &
Nichols, 1996), implemented in ARLEQUIN V3.5 (Excoffier & Lischer, 2010), identifies loci with
elevated Fst for simulated background heterozygosity under two models: an island model and a
hierarchical island model in which sites in the Atlantic and Gulf were grouped. For both models,
50,000 simulations were executed, 100 demes were simulated per group, and significance was
evaluated using a of 0.05 corrected for multiple comparisons (Benjamini & Hochberg, 1995) by

the p.adjust function of the R package stats.
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Spatial and Environmental Analysis

To examine the effects of spatial and environmental variation on genetic structure, correlations
among genomic variation, spatial position, and environmental variables were assessed using
redundancy analysis (RDA), as implemented in the R package vegan (Oksanen et al., 2018). RDA
is a constrained ordination method based on multivariate regression that models how linear
combinations of explanatory variables explain variation at a series of response variables, thereby
enabling the identification of loci that co-vary with multivariate predictors (Legendre & Legendre,
2012). This approach is particularly useful when applied to genomic datasets because it can be
performed without grouping individuals by location and does not rely on assumptions of
equilibrium between microevolutionary forces, both of which are inherent components of Fgr-
based analyses. Thus, RDA provides an alternative approach to assess population structure while

screening for loci putatively under selection (Forester et al., 2018).

The genomic dataset was transformed into a response matrix detailing the allelic composition of
each individual across loci (i.e., the number of copies of each allele at each locus for each
individual). Two explanatory matrices describing relative spatial positions and environmental
measurements for each sampling location were then produced. To ensure that each individual had
a unique sampling location, the R package geoR (Ribeiro & Diggle, 2001) was used to jitter
latitudes and longitudes for individuals caught in the same sampling effort. To generate the spatial
matrix, Moran’s eigenvector maps (MEMs; Dray et al., 2006) were calculated using the R package
adespatial (Dray et al., 2019) based on coastal distances estimated between all sample locations
using the R package gdistance (Van Etten, 2017). The environmental matrix encompassed
measurements for coastal locations (Table S5) that were procured from the MARSPEC (35

variables; Sbrocco & Barber, 2013) and Bio-ORACLE (447 variables; Assis et al., 2018;
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Tyberghein et al., 2012) databases using the R package sdmpredictors (Bosch & Fernandez, 2021).
For each explanatory matrix, forward model selection was used to identify the combination of
variables that best explained genomic variation based on adjusted R? and significance testing (999
permutations; o < 0.01; Blanchet et al., 2008). Because collinearity is likely among environmental
variables, model selection prohibited the inclusion of variables with variance inflation factors

(VIF) > 3 (Zuur et al., 2010).

The significance of each axis of the spatial and environmental RDA models was assessed using
999 permutation tests with a of 0.05. To visualize the differential effects of space and environment
on genetic structure, the approach outlined by Forester et al. (2018) was used to produce individual
biplots depicting how spatial and environmental RDA clustered individuals based on the
combination of variables that were selected by each analysis. However, because environmental
data is almost always spatially autocorrelated (Legendre, 1993), it is vital to disentangle spatial
and environmental signals when identifying loci putatively under selection (Hoban et al., 2016).
Therefore, partial RDA (pRDA), in which the linear effects of one set of variables are adjusted by
accounting for covariables (Capblancq & Forester, 2021), was used to identify alleles most
strongly correlated with environmental variables adjusted for spatial position. Allele loadings
should form a distribution in which alleles at the center show no relationship with environment,
while those with loadings in the tails are strongly associated, and may therefore be considered
putatively under selection (Forester et al., 2018). Environmentally-associated loci were defined
using a function that sets thresholds three standard deviations from the mean (equivalent to a two-
tailed p-value of 0.0027; (Forester et al., 2018)). The significance of the full environmental pRDA

model and each axis was assessed using 999 permutation tests with o of 0.05.

Population Structure
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Allele frequencies of neutral and adaptive loci are shaped by different sets of interactions among
microevolutionary forces and may provide for distinct patterns of genetic structure (Luikart et al.,
2003). Therefore, nuclear loci flagged as being putatively under selection by either of the Fgsr
outlier methods or determined to be environmentally associated using pRDA were designated as

adaptive. The nuclear data was then divided into adaptive and neutral (i.e., all other loci) datasets.

For each of the three datasets (mitochondrial control region, neutral, and adaptive nuclear loci),
hierarchical AMOVA (Excoffier et al., 1992) was executed separately using ARLEQUIN. For the
mitochondrial data, standard AMOVA was performed. For neutral and adaptive datasets, locus-
by-locus AMOV A was performed, with F-statistics calculated as weighted means of locus-specific
values to account for uneven levels of missing data among loci (Weir & Cockerham, 1984). Sites
were grouped as Atlantic and Gulf, with significance assessed (o < 0.05) by permuting individuals
among sites 10,000 times and by bootstrapping the nuclear data 20,000 times to create 95%
confidence intervals. For each dataset, single-level AMOVA was also executed for Atlantic and
Gulfsites separately. Subsequently, post-hoc estimates of pairwise Ospand Fst between sites were
calculated using ARLEQUIN, with 95% confidence intervals produced and significance assessed as
above, but corrected for multiple comparisons (Benjamini & Hochberg, 1995). For the nuclear
datasets, pairwise Fst was estimated on a locus-by-locus basis. Finally, to test for isolation-by-
distance, linear regression was used to determine if pairwise ®gr, neutral Fgsr, and adaptive Fsr

increased with coastal distance between sites.

Genetic Diversity and Effective Population Size

The diversity of mitochondrial sequence data was assessed for each site based on the number of
haplotypes, as well as haplotype (/) and nucleotide sequence () diversities (Nei, 1987) calculated

in ARLEQUIN. For neutral and adaptive nuclear loci, diversity was assessed separately for each site

Page 68 of 113



Page 69 of 113

323
324
325
326
327

328

329
330
331
332
333
334
335

336

337

338

339

340
341
342

343

Molecular Ecology

15

using Nei’s gene diversity (H.; Nei, 1978) and rarified allelic richness (4,; El Mousadik & Petit,
1996) using the R packages hierfstat (Goudet, 2005) and poppr (Kamvar et al., 2014), respectively.
For each nuclear diversity estimate, differences among sites were assessed using Friedman’s rank-
sum test (o < 0.05), and Wilcoxon signed-rank tests were used to assess for post-hoc pairwise

differences (a < 0.05), with p-values corrected for multiple comparisons (Benjamini & Hochberg,

1995).

Contemporary effective population size (N,) was estimated for each site using the linkage
disequilibrium method (Hill, 1981) implemented in NEESTIMATOR (v2.1; Do et al., 2014). To
ensure that the effective sample size was the same for each pair of loci, NV, was estimated using
1,823 neutral nuclear loci with no missing data. Singleton alleles were also removed for each site.
In addition to point estimates, 95% confidence intervals were estimated using a method that
jackknifes over individuals (Jones et al., 2016). To account for downward bias resulting from
physical linkage among loci, N, estimates were adjusted based on the haploid number of

chromosomes (43; Asahida et al., 1995) for the blacktip shark, following Waples et al. (2016).

All figures were produced in R using the package ggplot2 (Wickham, 2016).

Results

ddRAD-Seq Data Filtering

After demultiplexing and trimming, the mean number of HiSeq and MiSeq reads per sample was
3,796,003 and 1,121,052, respectively (standard deviation: 2,240,246 and 322,556). Filtering
removed 47 individuals with missing data > 20% and 31 individuals with Fi5 < -0.13. Also, one

sample was removed from each of 17 pairs of technical replicates confirmed using the dyadic
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likelihood estimator. After filtering, 424 individuals genotyped at 4,339 SNP-containing loci (1.54

SNPs and 2.39 alleles per locus on average) were retained for subsequent analyses.

Mitochondrial Sequencing and Haplotyping

Sixteen unique mitochondrial haplotypes were identified among 323 individuals, seven of which

were previously identified by Keeney et al. (2003, 2005).

Relatedness

Minimum values of relatedness used to identify siblings, as determined by simulations, were 0.44-
0.45 for full-siblings and 0.19-0.20 for half-siblings (Figure S1). No siblings were identified in the
Atlantic. Non-randomly sampled siblings included one full-sibling pair in Terra Ceia Bay (eastern
Gulf) and a group of six full- and half-siblings in San Antonio Bay (western Gulf; Table S6).
Randomly sampled siblings were detected only in Terra Ceia Bay and included three pairs of full-
siblings and 15 pairs of half-siblings (Table S7). Notably, three pairs of half-siblings were sampled
two years apart and two pairs were sampled four years apart. All other siblings were sampled
within the same year or one year apart. Parent-offspring and avuncular relationships can produce
similar relatedness values to full- and half-siblings (respectively). However, blacktip sharks do not
mature until after four years, and because all kin were sampled within four years, pairs of kin
identified in this study are most likely siblings. Mitochondrial haplotypes were assessed for 12

pairs of siblings (67%) and two pairs of half-siblings were found to have distinct haplotypes.

After an individual from each non-randomly sampled sibling pair was removed, 418 individuals
remained, 77% of which (323) were also haplotyped using the mitochondrial control region

(Figure 1).

Fgst Outlier Analysis
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Zero Fgr outliers were detected by OutFLANK, BAYESCAN, or ARLEQUIN.

Spatial and Environmental Analysis

Ten MEMs describing spatial differences were generated based on coastal distances between
sampling locations, and the first two MEMs were chosen by model selection: MEM1 (adjusted R?
=0.00123; p < 0.01; Figure 2C) and MEM2 (adjusted R*> = 0.00188; p < 0.01; Figure 2D). The full
spatial RDA model and both axes were significant (p < 0.001), and linear combinations of MEMs
produced three groups (Figure 2A). While MEMI clustered individuals into Atlantic and Gulf
groups, MEM?2 divided Gulf individuals into eastern and western groups. Individuals from Mobile
Bay — which straddles the boundary between the eastern and western Gulf stock subunits — grouped
predominantly with individuals from Florida. Model selection chose two environmental variables
with VIF < 3 (Table S8): minimum annual sea surface temperature (°C; adjusted R? = 0.00133; p
<0.01; Figure 2F) and mean sea surface salinity in June (unitless; adjusted R>=0.00193; p <0.01;
Figure 2G). The full environmental RDA model and both axes were significant (p < 0.001), and
linear combinations of environmental variables also produced three groups (Figure 2B). Like
MEMI, temperature grouped Atlantic and Gulf individuals separately, and salinity split Gulf
individuals into two groups; however, in contrast to MEM2, salinity grouped individuals from
Mobile Bay with those from the western Gulf. Furthermore, while 69% of loci (9/13) with high
loadings for MEM1 also had high loadings for temperature, an additional 15 loci had high loadings
only for temperature (Table S9), and structured Mobile Bay and western Gulf sites by latitude.
MEM?2 and salinity each had 11 loci with high loadings, including six loci for both variables, and

a latitudinal pattern was also observed among Florida sites due to salinity.

The full pPRDA model (i.e., the effect of temperature and salinity adjusted by MEMs 1 and 2) and

each axis were significant (p < 0.05). Allele loadings resembled a normal distribution (Figure S2)
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and 68 environmentally-associated loci (1.6%) were identified and removed to produce putatively

adaptive (68 loci) and neutral nuclear datasets (4,271 loci).

Population Structure

For the mitochondrial dataset, heterogeneity was observed among groups (Atlantic and Gulf; ®¢r
= 0.0997; p < 0.05) and among sites within groups (®sc = 0.0795; p < 0.0001; Table 1).
Heterogeneity was also observed at neutral nuclear loci among groups (Fcr= 0.0015; p <0.0001)
and among sites within groups (Fsc= 0.0006; p <0.001; Table 1). By contrast, heterogeneity was
observed at adaptive nuclear loci among sites within groups (Fsc = 0.0069; p < 0.0001), but not
among groups (Fcr= 0.0002; p = 0.3641; Table 1). Within the Gulf, heterogeneity was observed
for the mitochondrial (®@gr: 0.0826 and p < 0.0001), neutral nuclear (Fsr: 0.0007 and p < 0.0001),
and adaptive nuclear (Fst: 0.0085 and p < 0.0001) datasets based on single-level AMOVA (Table
1). By contrast, homogeneity was found in the Atlantic for all three datasets (Ogr: 0.0246 and p =

0.1768; neutral Fst: 0.0004 and p = 0.1871; adaptive Fsr: 0.0006 and p = 0.4687; Table 1).

Post-hoc estimates of pairwise neutral Fst between sites were statistically significant (p < 0.05
after corrections) for all but two Atlantic-Gulf comparisons (92%; Table S10). A similar, albeit
weaker pattern was observed for the mitochondrial dataset, with differences found for 63% of
Atlantic-Gulf comparisons (Table S11). Furthermore, the neutral nuclear dataset indicated
differences within the Gulf between Terra Ceia and Waccasassa Bays (both eastern Gulf), as well
as between Terra Ceia Bay and each of the four sites in the western Gulf (Table S10). However,
after excluding siblings randomly sampled in Terra Ceia Bay, the difference with Waccasassa Bay
was no longer significant (Table S12). A similar pattern was observed in the Gulf using the
mitochondrial data, but in addition to Terra Ceia Bay being different from all four sites in the

western Gulf, Apalachicola Bay was significantly different from San Antonio and Corpus Christi
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Bays (Table S11). Terra Ceia Bay was also significantly different from Waccasassa Bay, but not
after the removal of randomly sampled siblings (Table S13). Consequently, estimates of pairwise
®gr and Fgr calculated after removing randomly sampled siblings from Terra Ceia Bay were used
to assess for relationships between pairwise genetic differences and coastal distances between
sites. Linear regression demonstrated a positive relationship between pairwise coastal distances
and genetic differences for eastern and western Gulf sites based on the mitochondrial (adjusted R?
= (0.2360; p < 0.05) and neutral nuclear datasets (adjusted R> = 0.5168; p < 0.01; Figure 2E). By
contrast, no such relationship was observed for Atlantic-eastern Gulf nor Atlantic-western Gulf

comparisons (Figure S3).

For the adaptive dataset, estimates of pairwise Fsr were much larger, but statistically significant
comparisons were fewer and predominantly observed between Gulf sites with the greatest
latitudinal differences (Table S14). For example, Mobile Bay (the most northern Gulf site) was
different from all other Gulf sites except Waccasassa and Galveston Bays; Terra Ceia Bay (the
most southern Gulf'site) was different from all Gulf sites but Waccasassa, San Antonio, and Corpus
Christi Bays. Furthermore, in contrast to the mitochondrial and neutral nuclear datasets, linear
regression demonstrated a negative relationship between pairwise genetic differences and coastal
distances for eastern and western Gulf sites (adjusted R? = 0.4428; p < 0.01). Consequently, linear
regression was then used to determine if pairwise adaptive Fgsr increased with latitudinal
differences between eastern and western Gulf sites, and a positive relationship was observed

(adjusted R? = 0.4757; p < 0.01; Figure 2H).

Genetic Diversity and Effective Population Size

Each Atlantic site had fewer mitochondrial haplotypes (3-4) than all but one Gulf site (Mobile

Bay; 4), and haplotype and nucleotide diversities were lower in Atlantic sites than in all Gulf sites
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(Table 2). Though similar numbers of haplotypes were observed within the eastern (4-7) and
western Gulf (5-9), haplotype and nucleotide diversities were greater in the western Gulf. For the
neutral and adaptive nuclear datasets, gene diversity (H.) and allelic richness (4,) differed among
the 11 sites (p < 0.0001; Table 2). Estimated neutral H. was lowest in Port Royal Sound (0.1537;
Atlantic) and smaller (p < 0.05) than all sites except St. Helena Sound (Atlantic); estimated neutral
H, was greatest in San Antonio Bay (0.1584; western Gulf) and greater (p < 0.05) than all but three
Gulf sites (i.e., Waccasassa, Mobile, and Corpus Christi Bays). Estimated adaptive H. was lowest
in San Antonio (0.1370; western Gulf) and greater in Mobile Bay (0.2076; eastern Gulf) than all
other sites (p < 0.001).) Estimated neutral 4, was lowest in Port Royal Sound (2.8174; Atlantic)
and lower (p < 0.05) than three Gulf sites (i.e., Mobile, Galveston, and San Antonio Bays);
estimated neutral 4, was greatest in San Antonio Bay (2.8545; western Gulf) and greater (p < 0.05)
than six sites. Estimated adaptive 4, was lowest in San Antonio Bay (2.8332; western Gulf) and

greater in Mobile Bay (3.5343; eastern Gulf) than all other sites (p < 0.001).

While finite upper and point N, estimates were obtained for only one and six sites, respectively
(Table S15), lower N. estimates were obtained for all sites and varied considerably, with no

obvious pattern among regions (Figure 3).

Discussion

The results of this study highlight how philopatry can influence genetic population structure at
multiple spatial scales by restricting gene flow and facilitating the sorting of adaptive variants by
selection. Mitochondrial and neutral genetic structure indicated that blacktip sharks in the U.S.
Atlantic and Gulf of Mexico constitute three genetically distinct units with little to no gene flow
between them. Structure within Gulf units at putatively adaptive loci, correlated with variation in

sea surface temperature and salinity, suggested local adaptation to environmental conditions.
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Instances of parturition site fidelity were documented based on the sampling of maternally-related
siblings, and if this behavior extends across generations (i.e., natal philopatry), it could contribute

to the observed patterns of adaptive structure.

Neutral Genetic Structure

Results from mitochondrial and neutral nuclear data confirm that blacktip sharks in the Atlantic
and Gulf are genetically distinct. The first MEM of the spatial RDA grouped Atlantic and Gulf
individuals separately (Figure 2A) and genetic structure was also observed between these groups
based on hierarchical AMOVA and post-hoc estimates of Ogrand Fst between sites. In addition,
genetic diversity was generally lower in the Atlantic than in the Gulf. The finding of genetically
distinct blacktip shark units in the Atlantic and Gulf is consistent with previous assessments of
mitochondrial DNA (Keeney et al., 2003, 2005) and life history traits such as maximum length
and growth rate (Carlson et al., 2006). This observation is also consistent with studies of other
marine fishes (Gold et al., 2009; Leidig et al., 2015; Seyoum et al., 2017), including coastal sharks
(Dimens et al., 2019; Portnoy et al., 2015, 2016), and aligns with the Florida Vicariance Zone
(Neigel, 2009), where constriction of the continental shelf from Miami to West Palm Beach has
reduced nearshore habitat (Avise, 1992; Neigel, 2009). Consequently, suitable parturition sites for
coastal sharks are lacking in southeastern Florida and may dissuade female movement across the
vicariance zone. Although gene flow via males should be less affected, tagging data suggest that
male blacktip sharks do not move between the Atlantic and Gulf either (Kohler & Turner, 2019),

thus additional factors likely limit connectivity.

Neutral genetic structure was also found within the Gulf, but not within the Atlantic. YOY blacktip
sharks occupy U.S. Atlantic estuaries from northern Florida to southern North Carolina (Castro,

1996; McCallister et al., 2013), so the lack of observed structure in the Atlantic could be due to
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limited spatial sampling. For the Gulf, single-level AMOVA indicated heterogeneity, and
differences in both pairwise ®gr and Fst were observed between the most eastern and the four
western sites. This could indicate an isolation-by-distance effect (Laikre et al., 2005), which is
supported by positive relationships between pairwise @gr/Fst and coastal distances (Figure 2E).
However, the spatial RDA clustered Gulf individuals into eastern and western groups, with
individuals from Mobile Bay grouping predominantly with those from Florida (Figure 2A). This
division aligns with a biogeographic break in the northern Gulf (McClure & McEachran, 1992),
centered on an area of transition from carbonate sediments in the east to mostly terrigenous
sediments in the west (McClure & McEachran, 1992; Neigel, 2009). Further, low salinity outflows
from the Mississippi and Atchafalaya rivers to the west of Mobile Bay could act as a barrier to
gene flow for blacktip sharks. This has been suggested for other stenohaline sharks in the Gulf
(Portnoy et al., 2014), as well as a variety of marine species around the world (Rocha, 2003; Volk
et al., 2021). In addition, spatial RDA and estimates of pairwise gy and Fgr are consistent with
the idea that straying by females occurs mostly among neighboring parturition sites, as suggested
by other studies of coastal sharks (Duncan et al., 2006; Keeney et al., 2003). Nevertheless, it should
be noted that this study did not include sites between Mobile and Galveston Bays because a
sufficient number of samples could not be collected in Louisiana. Thus, neutral structure in the
Gulf may follow an isolation-by-distance pattern and the lack of samples from Louisiana could
have facilitated the finding of discrete eastern and western Gulf groups by spatial RDA. The pattern
of neutral structure documented by this study has been observed in multiple marine fishes in the
northern Gulf (Karlsson et al., 2009; Portnoy et al., 2014; Seyoum et al., 2018). In particular, the
results are similar to those of a genomic assessment of red drum (Sciaenops ocellatus; Hollenbeck

et al., 2019), which do not give live birth but display spawning site fidelity to estuaries to which
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juveniles recruit after the larval period (Lowerre-Barbieri et al., 2019; Matlock, 1990). This is in
contrast with the patterns seen in genomics studies of two species that spawn offshore, red snapper
(Lutjanus campechanus; Portnoy et al., 2021) and southern flounder (Paralichthys lethostigma,
O’Leary et al., 2021), and suggests that habitat use may be an important predictor of genetic

structure for fishes of the Gulf of Mexico.

A previous assessment of blacktip shark genetic structure found differences among the Atlantic,
eastern, and western Gulf in mitochondrial DNA, but not nuclear DNA, and the authors
hypothesized that this reflected female regional philopatry and male-mediated gene flow (Keeney
et al., 2005). While this study found similar patterns of mitochondrial DNA structure among the
Atlantic, eastern, and western Gulf, heterogeneity was also detected among these regions at neutral
nuclear loci. Inconsistencies in the observed patterns of neutral nuclear structure are likely due to
the greater resolution offered by thousands of SNP-containing loci as compared to the eight
microsatellite loci used by Keeney et al. (2005). Thus, it appears that male blacktip sharks also
display regional philopatry, or that male-mediated gene flow is insufficient to homogenize allele
frequencies among these regions. Evidence of male regional philopatry is noteworthy because it
suggests that the widespread notion of male-biased dispersal in elasmobranchs — which developed
from mixed-marker studies typically using microsatellites and mitochondrial DNA — may be
overemphasized (Phillips et al., 2021). Taken together, the results suggest that regional philopatry
by both male and female blacktip sharks has contributed to the formation of genetically distinct
units in the Atlantic, eastern Gulf, and western Gulf that align well with the current stock

subregions defined by NOAA Fisheries.

Adaptive Genetic Structure
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Genetic structure at putatively adaptive loci was observed on a more localized scale in the Gulf.
Environmental RDA structured Gulf individuals into two groups along latitudinal gradients based
on minimum annual temperature and mean salinity in June, and in contrast to spatial RDA, Mobile
Bay individuals grouped with those from Texas (Figure 2B). These groups correspond with a
transition in environmental conditions and a break in the coastal shark assemblage of the northern
Gulf that has been described by multiple studies (Bethea et al., 2015; Drymon et al., 2020).
Significant pairwise Fst estimates based on adaptive loci were observed between sites within each
group, and the greatest Fisy values were observed between sites with the greatest latitudinal
differences (Figure 2H), indicating local adaptation among parturition sites. Furthermore,
estimates of adaptive H, and 4, were highly elevated in Mobile Bay, which could be related to the
spatial and temporal environmental heterogeneity that characterizes this estuary (Kim & Park,
2012; Orlando Jnr et al., 1993). However, Mobile Bay is proximal to a marine-suture zone (Portnoy
& Gold, 2012), an area of overlap between biotic assemblages (Remington, 1968), so greater

diversity could also reflect contact between the eastern and western Gulf.

While the lack of a suitable reference genome precludes assessments of putative function, aspects
of blacktip shark biology provide potential explanations for the fine-scale adaptive structure
observed here. Adaptive differences associated with minimum annual temperature could reflect
temporal variation in YOY migration out of parturition sites when waters cool in the autumn. Sea
surface temperatures in Gulf estuaries are colder seasonally in the north than in the south and can
vary considerably due to a variety of climatic factors. A gradient exists along the Texas coast
because temperature differences are predominantly influenced by seasonal heat flux and river
discharges (Portela et al., 2018), whereas differences along the Gulf coast of Florida appear less

stark. Blacktip sharks born in Terra Ceia Bay were thought to remain until late October to late
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November, with emigration following dramatic decreases in water temperature (1.5-2°C) to
approximately 21°C (Heupel, 2007). However, it now appears that some remain until January
because water temperatures do not decrease sufficiently until then (Goldner, 2022). If there is a
fitness cost to a shorter residency period, local adaptation could lead to individuals born in estuaries
further north being more tolerant of lower temperatures. However, blacktip shark emigration from
an Atlantic coast estuary (i.e., Bulls Bay, South Carolina) also coincides with ~21°C (Castro,
1996). Therefore, it appears that similar temperature changes stimulate emigration, and blacktip
sharks born in more northern Gulf estuaries should migrate earlier in the year when those
temperatures are reached. This is observed along the Texas coast where YOY blacktip sharks are
found in Corpus Christi Bay until mid-November (Matich et al., 2021), weeks after they have
emigrated from Galveston Bay (Matich and Texas Parks and Wildlife unpublished data). Likewise,
the species is mostly absent in Mobile Bay after October (Parsons & Hoffmayer, 2007). A similar
pattern of migratory timing is seen when Atlantic salmon (Salmo salar) leave nurseries in the
spring/summer (Hodgson & Quinn, 2002; Hvidsten et al., 1998), with individuals from southern
habitats migrating weeks before those born further north because the temperatures that stimulate

emigration are reached earlier (Otero et al., 2014; Vollset et al., 2021).

Salinities also vary among Gulf estuaries and adaptive differences associated with mean salinity
in June — immediately after the peak period of parturition (Baremore & Passerotti, 2013) — could
indicate local adaptation based on salinity tolerance. Peninsular Florida estuaries are relatively
saline because conditions are predominantly influenced by precipitation, with little freshwater
inflow compared with estuaries to the west. Conditions are less saline in the Florida panhandle due
to lower evaporation rates and freshwater discharge from the Apalachicola, Chattahoochee, and

Flint rivers that flow into Apalachicola Bay (Orlando Jnr et al., 1993). Mobile Bay is relatively
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hyposaline because of the large freshwater influx via the Mobile River (Orlando Jnr et al., 1993),
and June salinities in Texas estuaries are similar to Mobile Bay because precipitation is greatest in
May (TexasET, 2022). Also, the major river systems (e.g., Mobile, Mississippi, Rio Grande) that
drain into the Gulf are distributed from Alabama to the border with Mexico (USGS, 1990).
Nonetheless, a salinity gradient exists along the Texas coast because estuaries in the north receive
hyposaline waters from the central Gulf via westerly currents, while isolated freshwater pulses
lead to more saline conditions in the south (Orlando Jnr et al., 1993). Consequently, blacktip sharks
born in estuaries on the lower Texas coast may experience higher salinities, consistent with the
conditions at which individuals have been captured in Corpus Christi (mean: 25.0-33.4) and
Galveston Bays (mean: 16.1-22.3; (Matich et al., 2017)). By contrast, the species has been captured
in Mobile Bay at salinities as low as 11 (Parsons & Hoffmayer, 2007) and is usually found at

salinities of 22.3-34.2 in Florida estuaries (Bethea et al., 2009).

A limitation of this study is that the available data sources provide insufficient resolution to
describe environmental variation within estuaries. The MARSPEC and B10-ORACLE databases
reflect coastal conditions for which differences are predominantly driven by latitude, and
consequently, environmental heterogeneity among the sites is underestimated. Additionally, the
environmental measurements are unable to account for habitat usage by blacktip sharks because
these individuals are highly mobile, only use a subset of the available estuarine habitat, and move
with environmental conditions (Froeschke et al., 2010). Even so, the environmental RDA shows
latitudinal gradients in both the eastern and western Gulf, thus the results may reflect local
adaptation to conditions that are not described by the environmental data but also vary with

latitude.

Philopatry and Local Adaptation
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Two pairs of half-siblings had distinct mitochondrial haplotypes, demonstrating they had different
mothers and thus were paternally related. For one pair, both siblings were sampled (born) in the
same year, meaning a male reproduced with two females in the same breeding season that each
gave birth in Terra Ceia Bay (eastern Gulf). This suggests that breeding sites may be proximal to
parturition sites, which is consistent with what is understood about breeding locations in the U.S.
Atlantic (Castro, 1996). For the other sibling pair, the individuals were sampled (born) one year
apart, providing direct evidence that a male blacktip shark reproduced in the eastern Gulf in
consecutive breeding seasons. This observation suggests that male blacktip sharks might display
breeding site fidelity and is consistent with the indirect evidence of male regional philopatry based

on patterns of neutral genetic structure.

Five pairs of half-siblings with the same mitochondrial haplotypes were captured two and four
years apart in Terra Ceia Bay, accordant with the biennial reproductive period of female blacktip
sharks (Baremore & Passerotti, 2013; Castro, 1996). This implies that five females re-used the
habitat for parturition. It is important to note that all randomly sampled siblings were detected in
Terra Ceia Bay, and N, estimates indicated that the number of breeders using this habitat is much
smaller than in other sites (Figure 3). Hence, blacktip sharks may exhibit parturition site fidelity
to additional estuaries, but the behavior may be easier to detect in Terra Ceia Bay because there is
a higher probability of catching siblings. Females that re-use the same estuary for parturition
display a strong degree of habitat fidelity, but for this behavior to constitute natal philopatry, the
estuary that is re-used must be the habitat in which females were born. Multiple studies have
demonstrated that sharks can navigate to their place of birth (Edrén & Gruber, 2005; O’Gower,
1995; Sundstréom et al., 2001), including blacktip sharks (Gardiner et al., 2015; Heupel et al.,

2003), and while natal philopatry has been speculated to occur in this species (Hueter et al., 2005),
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the behavior has been demonstrated directly only in the lemon shark (Negaprion brevirostris) in
Bimini, The Bahamas (Feldheim et al., 2014). This was possible because lemon sharks in Bimini
are captured in a nearly exhaustive manner, relatively few females give birth there, and genetic
profiling has been ongoing for decades (Feldheim et al., 2004; Gruber et al., 2001; Postaire et al.,
2022). The results presented here indicate that long-term studies focused on identifying kin among
blacktip sharks in Terra Ceia Bay may demonstrate a second example of natal philopatry by coastal

sharks.

While the observation of three genetically distinct units in the Atlantic and Gulf suggests male and
female blacktip sharks reproduce in the region of their birth (i.e., regional philopatry), this behavior
cannot explain the fine-scale adaptive structure observed within Gulf units. Adaptive variation
could sort among neighboring estuaries if alleles adapted to local conditions conferred phenotypes
with greater fitness and matrilines carrying these alleles re-used the same estuaries as parturition
sites in subsequent generations (i.e., natal philopatry). Under this scenario, YOY with phenotypes
locally adapted to their parturition site would have a higher probability of surviving and
reproducing. Differential selection pressures among parturition sites would drive selection for
locally adapted phenotypes and overcome gene flow of maladapted alleles from neighboring
estuaries via patrilines and/or female straying. Given the heterogeneity in conditions like
temperature and salinity among Gulf estuaries and the high rates of mortality experienced by YOY
blacktip sharks (Heupel & Simpfendorfer, 2002), directional selection and natal philopatry could
facilitate the sorting of adaptive alleles (Kawecki & Ebert, 2004), generating the patterns of

adaptive structure observed in this study.

Conclusions
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The genetic structure found among parturition sites within management units highlights the
importance of policies that focus on the preservation of adaptive variation (Funk et al., 2012).
Estuaries in which progeny are born and/or reside as juveniles are considered essential because
they are fundamental to life cycles (Fluharty, 2000), but if neighboring habitats are
environmentally heterogeneous and sources of novel adaptive variants, it may be necessary to
individually evaluate their contributions to ensure future persistence (Stiebens et al., 2013). These
considerations are particularly important for species displaying fine-scale philopatry because the
loss of certain habitats could lead to irreversible declines in recruitment and adaptive potential
(Hess et al., 2013; Hueter et al., 2005). Furthermore, as environmental conditions continue to shift
with climate change, the capability of organisms to adapt and persist will depend on existing

genetic variation and levels of gene flow among habitats.
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Figure Captions

Figure 1: Haplotype network of the mitochondrial control region and map of sampling locations
in the U.S. Atlantic and Gulf of Mexico for the blacktip shark (Carcharhinus limbatus). Dotted
lines denote regions that follow designations by NOAA Fisheries. Mobile Bay, Alabama straddles
the 88th meridian which separates the eastern and western Gulf stock subregions. Mobile Bay was
found to be part of the eastern Gulf in this study. Numbers refer to the sample size for each site
included in the ddRAD-Seq data. Abbreviations of U.S. States: Texas (TX), Louisiana (LA),

Mississippi (MS), Alabama (AL), Florida (FL), Georgia (GA), South Carolina (SC).

Figure 2: The differential effects of spatial and environmental differences on genetic population
structure of blacktip sharks (Carcharhinus limbatus). A) Biplot showing ordination space loadings
determined by MEM1 and MEM2 from the full spatial redundancy analysis. B) Biplot showing
ordination space loadings determined by minimum annual temperature and mean salinity in June
from the full environmental redundancy analysis. C) Mean + one standard deviation value for

MEMI1 by site vs. coastal distance. D) Mean + one standard deviation value for MEM2 by site vs.
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1192 coastal distance. E) Pairwise neutral Fsy between eastern and western Gulf sites vs. pairwise
1193  coastal distance between sites. F) Mean + one standard deviation value for minimum annual
1194  temperature by site vs. coastal distance. G) Mean = one standard deviation value for mean salinity
1195  in June by site vs. coastal distance. H) Pairwise adaptive Fsr between eastern and western Gulf

1196  sites vs. absolute difference in latitudinal degrees between sites.

1197  Figure 3: Lower 95% confidence interval estimates of contemporary effective population size (V)
1198  of blacktip sharks (Carcharhinus limbatus) by site. Numbers above the x-axis denote the sample
1199  size per site. Site abbreviations: Bulls Bay (BLB®), St. Helena Sound (SHS™), Port Royal Sound
1200  (PRS"), Terra Ceia Bay (TCB¥), Waccasassa Bay (WAB?¥), Apalachicola Bay (APB¥), Mobile Bay
1201  (MOB?¥), Galveston Bay (GAB?), Matagorda Bay (MABY), San Antonio Bay (SABY), and Corpus

1202 Christi Bay (CCB?). Symbols denote regions: Atlantic®, eastern Gulf¥, and western Gulf®.

1203  Supporting Information

1204  Detailed in two documents: supplementary materials and methods (PDF) and supplementary tables

1205  and figures (Excel Workbook).

1206
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Table 1: Results from hierarchical and single-level AMOVA using the mitochondrial control

region, 4,271 neutral, and 68 putatively adaptive SNP-containing nuclear loci. Underlined p-values

denote statistically significant heterogeneity. For nuclear datasets, * denotes lower 2.5% of

bootstrapped F-statistics were greater than zero.

. Source of Variance Percent .
Dataset Sites Variation Components | Variation @/ F-statistic | p-value
Among groups
(i.e., Atlantic and 0.0585 9.9700 0.0997 <0.05
All Gulf)
Among sites 0.0420 7.1500 0.0795 <0.0001
Mitochondrial within groups
Control Among sites 0.0065 2.4600 0.0246 0.1768
i Atlanti indivi
Region antic Amoqg 1'nd1.Vlduals 0.2592 97 5400 i i
within sites
Among sites 0.0495 8.2600 0.0826 <0.0001
It —.
Gu Among individuals 0.5502 | 91.7400 . .
within sites
(ic Aﬁf;gﬁfr;’;lgs(}ul | 05151 0.1542 0.0015 | <0.0001%
All = .
\ﬁﬁ?ﬁ’iﬁ;ﬁs 0.1993 0.0597 0.0006 | <0.001*
Neutral Among sites 0.1167 0.0353 0.0004 0.1871
. Atl t‘ . . .
Nuclear Loci antic Amon.g_/,y 1‘nd1.Vlduals 330.1258 99 9647 i i
within sites
Among sites 0.2182 0.0652 0.0007 <0.0001*
Gulf indivi
! Among individuals | 33 5166 | 999348 - -
within sites
Among groups
Al (i.e.. Atlantic and Gulf 0.0012 0.0242 0.0002 0.3641
v’:ﬁ?ﬁ’iﬁ;ﬁfs 0.0340 0.6858 0.0069 | <0.0001*
Adaptive Among sites 0.0028 0.0568 0.0006 0.4687
. Atl t‘ . . .
Nuclear Loci antic Among 1.nd1.V1duals 4.9062 99 9432 i i
within sites
Among sites 0.0423 0.8510 0.0085 <0.0001*
Gulf indivi
u Among individuals 49233 99 1490 i i

within sites
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Table 2: Estimates of genetic diversity based on the mitochondrial control region, 4,271 neutral,

and 68 putatively adaptive SNP-containing nuclear loci. Mean estimates are given for all, with +

one standard deviation estimates for the mitochondrial control region only. n refers to sample size

per site. 4 and & refer to mitochondrial haplotype diversity and nucleotide diversity, respectively.

H. and 4, refer to Nei’s gene diversity and allelic richness, respectively. Site abbreviations: Bulls

Bay (BLB), St. Helena Sound (SHS), Port Royal Sound (PRS), Terra Ceia Bay (TCB), Waccasassa

Bay (WAB), Apalachicola Bay (APB), Mobile Bay (MOB), Galveston Bay (GAB), Matagorda

Bay (MAB), San Antonio Bay (SAB), and Corpus Christi Bay (CCB).

Region Site Mitochondrial Control Region Neutral Loci Adaptive Loci
n Haplotypes h T n H, A, H, A,

BLB | 30 4 io('ffg; 10008835358 49 | 0.1551 | 2.8273 | 0.1434 | 2.8932
Atlantic | SHS | 29 4 s | S0 | a7 | 01544 | 28199 | 01445 | 28771
PRS | 12 3 i063.1123’27 iooo(())(())gsljo 16 | 0.1537 | 2.8174 | 0.1466 | 2.9122
TCB | 70 6 io('fgg& iooo(())(())gg]s5 84 | 0.1547 | 2.8234 | 0.1373 | 2.8397
Eastern WAB | 32 6 io('fg79§4 1000(())5396;)0 34 | 0.1574 | 2.8448 | 0.1373 | 2.8521
Gulf APB | 31 7 io(')7353334 iooo(())égg(i 46 | 0.1568 | 2.8399 | 0.1533 | 2.9057
MOB | 12 4 io(')?(é)‘éjz 1000853532 16 | 0.1578 | 2.8470 | 0.2076 | 3.5343
GAB | 13 5 io('fgggl iooo(())é ;3790 15 | 0.1572 | 2.8420 | 0.1393 | 2.8943
Western MAB | 30 6 io('fg;; 10008(1?3355 31 | 0.1562 | 2.8362 | 0.1450 | 2.8881
Gulf SAB | 44 9 106?32754 iooogéf?& 56 | 0.1584 | 2.8545 | 0.1370 | 2.8323
CCB | 20 6 i%?gg% 100085 ?(3;8 24 | 0.1578 | 2.8525 | 0.1465 | 2.8988
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