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Highlights
e Dual nutrient decreases resulted in negative growth rates for cyanobacteria
during late season experiments, suggesting the possibly to diminish or shorten the

bloom
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¢ Dual nutrient decreases may reduce microcystin production during the bloom.
e Decreases in both P and N may be more effective to mitigate HABs in Lake Erie

than P reduction management strategies alone.

Abstract

The primary management strategy for minimizing harmful algal blooms (HABs) in Lake
Erie has been to reduce springtime loading of phosphorus (P) to the lake. However, some
studies have shown that the growth rate and toxin content for the HABs-causing
cyanobacterium Microcystis also respond to the availability of dissolved inorganic
nitrogen (N). This evidence is based on both observational studies that correlate bloom
development with changes in N forms and concentrations in the lake, and experiments in
which P and/or N are added at concentrations in excess of those present in the lake. The
goal of this study was to determine whether a combined decrease in N and P
concentrations from ambient levels in Lake Erie could limit the development of HABs
more than a reduction in P concentration only. To directly test the impact of P-only
versus dual N and P concentration decreases on phytoplankton in the western basin of
Lake Erie, we evaluated changes in growth rate, community composition, and
microcystin (MC) concentration through eight bioassay experiments performed from
June through October 2018, which encompassed the normal Lake Erie Microcystis-
dominated HAB season. Our results showed that during the first five experiments
covering June 25 to August 13, the P-only and the dual N and P decrease treatments had

similar effects. However, when ambient N became scarce later in the season, the N and P
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decrease treatments resulted in negative growth rates for cyanobacteria, whereas —P only
decreases did not. During low ambient N conditions, dual nutrient decreases lowered the
prevalence of cyanobacteria among the total phytoplankton community and decreased
microcystin concentrations. The results presented here complement previous
experimental work on Lake Erie and suggest that dual nutrient control could be an
effective management strategy to decrease microcystin production during the bloom and
even possibly diminish or shorten the duration of the bloom based on creating nutrient

limiting conditions sooner in the HAB growing season.

Keywords: Microcystis, Eutrophication, Lake Erie, Nitrogen, Phosphorus
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1. Introduction

Many freshwater and coastal marine ecosystems experience cyanobacterial
harmful algal blooms (HABs) due to anthropogenic nutrient pollution, land use practices,
and global climate change (Paerl et al., 2016a; Paerl and Huisman, 2009; Smith, 2003).
The western basin of Lake Erie is particularly susceptible to cyanobacterial blooms
owing to abundant agricultural activity within the Maumee River watershed that results in
high nutrient loads and its shallow water depth that result in warm temperatures,
relatively low volume to dilute nutrient concentrations from Maumee River input, and
relatively high light exposures (Bullerjahn et al., 2016, Maclsaac et al., 1992). Those
blooms are dominated by Microcystis, which can produce peptide toxins called
microcystins (MCs) (Rinta-Kanto et al., 2005; Steffen et al., 2017), that lead to serious
threats to public health and wildlife (Bullerjahn et al., 2016; Chorus, 2012; Pouria et al.,
1998; Qin et al., 2009).

Beginning in the 1960s, Lake Erie experienced poor water quality and algal
blooms owing to nutrient pollution (Steffen et al., 2014). Water quality and HABs in the
lake have fluctuated since then in response to management actions and changes in
nutrient loading (Watson et al 2016; Makarewicz and Bertram 1991; Stumpf et al 2016).
The Great Lakes Water Quality Agreement (GLWQA) of 1972 identified reductions to
phosphorus (P) loads as a primary goal for managing eutrophication in the lake (DePinto
et al., 1986; Stow et al., 2020). Phosphorus was targeted both because this element is
routinely implicated in eutrophication of freshwater lakes (Schindler et al., 2016) and was

considered the primary limiting nutrient in Lake Erie at that time (Curl, 1959; Schelske,
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1979). Management actions were therefore enacted to decrease P loading and these goals
were targeted at point sources related to wastewater and P-based detergents (Dolan,
1993). Those actions led to a decrease in P loads between the late 70’s and early 90’s,
and eutrophic conditions improved until the late 1990s, when HABs began to reemerge as
a major water quality concern (Stumpf et al., 2012). In response to this resurgence of
HABS, the current water quality management target is to decrease P loading from the
Maumee River, a major source of agricultural P runoff, into western Lake Erie by 40%
by 2025 as compared to 2008 baseline P loads (Annex 4, 2015; Verhamme et al., 2016).
Despite overall reductions in total phosphorus loads to the lake, the forms of P entering
the lake have also changed and input of soluble reactive P (Baker at al. 2014; Maccoux et
al. 2016). The contemporary P loading targets are based on an ensemble of deterministic
models and statistical models based on the relationship between interannual total P load
and bloom magnitude (Scavia et al., 2016; Kane et al., 2014; Scavia et al., 2014; Stumpf
et al., 2012). Despite these research findings and the past successes in decreasing P
inputs, the resurgence of HABs in western Lake Erie over the past decade (Stumpf et al.
2016) warrants investigation into the role of other nutrients or factors besides P.

A number of factors have been proposed for explaining the recent increase in
HABsS, including changes in the forms of P entering the lake from its watershed (Bertani
et al., 2016), invasive mussels that recycle P (Hecky et al., 2004; Vanderploeg et al.,
2001), and changes in precipitation patterns that alter the timing and magnitude of P
inputs (Paerl et al., 2016a, Michalak et al., 2013; Paerl and Huisman, 2009). While each

of these mechanisms are supported to some extent, the role of nitrogen (N) in influencing
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bloom dynamics is now receiving renewed emphasis (Newell et al., 2019; Paerl et al.,
2016b). While primary P-limitation of algae has been observed in bioassay experiments
performed in the lake (Saxton et al., 2012; Moon and Carrick, 2007; Chaffin et al., 2013;
Chaffin et al., 2014), recent evidence suggests that P-limitation can shift to co-limitation
or limitation by other nutrients later in the summer season (Barnard et al 2021). Although
P limitation is common in lakes, N limitation or N and P co-imitation are pervasive
across systems (Elser et al., 1990; Elser et al., 2007; Paerl et al., 2016b). There is
evidence that N is both a crucial limiting nutrient in freshwater eutrophication (Conley et
al., 2009; Lewis and Wurtsbaugh, 2008; Pearl et al., 2009) and may impact
cyanobacterial biomass and toxin concentration (Muller and Mitrovic, 2015; Gobler et
al., 2016; Newell et al., 2019; Barnard et al., 2021; Paerl and Otten, 2013). Similarly,
when P is widely available there is potential for low N concentrations to constrain the
growth of cyanobacteria during bloom conditions (Chaffin et al., 2013; Jeppesen et al.,
2005; Paerl et al., 2016b; Gobler et al., 2016).

While a decrease in P is expected to have beneficial impacts on mitigating the
occurrence and size of HABs in the western basin of Lake Erie, availability of N may
become secondarily limiting or affect the composition of algae and production of toxins.
In Lake Erie dissolved inorganic nitrogen (N) is at high concentrations from Spring until
early August, and the pattern of this seasonal availability of N may play a role in bloom
duration (Gobler et al., 2016). Recent studies have indicated that phytoplankton in Lake
Erie, Microcystis in particular, are responsive to the availability and forms of nitrogen in

the lake (Chaffin et al., 2018; Newell et al., 2019). Bloom development over the course
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of the season is coincident with a decrease in dissolved inorganic N concentration
(Chaffin et al., 2013; Jankowiak et al., 2019). Based on these more recent studies and a
broader examination of nutrient effects, it is apparent that a decrease of both N and P
inputs has the potential to be more effective in constraining HAB biomass than P-only
decreases.

In addition to acting as a limiting nutrient for growth of HABs, nitrogen also
impacts the production of microcystin (MC) by cyanobacteria. Microcystin is rich in N
and its availability has been documented to affect regulation of mcy genes necessary for
the synthesis of the complete peptide (Harke and Gobler, 2013; Harke and Gobler, 2015;
Davis et al., 2015, Ouellette et al., 2006). In Microcystis, the transcription of N uptake
and MC production genes are both impacted by the same mechanism of the NtcA (global
nitrogen regulator) transcription factor, suggesting that N metabolism coincides with
microcystin synthesis (Pimentel and Giani, 2014, Harke and Gobler, 2013). Under N-
depleted conditions, Microcystis allocates its N toward cell functions required for
survival and growth (Harke and Gobler, 2013). Multiple studies have emphasized the
importance of N in controlling microcystin levels and the proportion of potentially toxin-
producing cells in Lake Erie HABs (Jankowiak et al., 2019; Gobler et al., 2016; Barnard
et al., 2021; Harke et al., 2015; Wagner et al., 2021) and that N addition can lead to a
larger increase in microcystin concentration than P additions (Davis et al. 2015; Donald
et al. 2011). One of the challenges for clearly understanding the potential benefits of
managing both N and P, is that most previous work regarding dual-nutrient control has

focused on nutrient addition experiments, versus responses to N or P decreases. More



143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

recent work has employed experimental approaches involving decreasing nutrients to
below ambient concentrations to evaluate the impacts of decreased availability (Paerl et
al., 2011; Xu et al 2015). A recent study in two locations in Western Lake Erie employed
experimental decreases in N and P below those expected for river inputs and found that a
P decrease alone is insufficient to limit microcystin production (Barnard et al 2021). That
paper also indicated that the degree of co-limitation varied between pre-bloom (June) and
mid-bloom (August) conditions, suggesting the need for further investigation on the
timing of those shifts in relation to ambient lake conditions.

The goal for this study was to determine if decreases in concentrations of both
inorganic P and N below ambient concentrations in the lake, compared to decreases in P
only, has a greater capability to decrease the growth rate, toxin concentrations and
prevalence of Microcystis among the phytoplankton community in western Lake Erie.
Moreover, we hypothesized that these effects would be mediated by ambient N and P
concentrations in the lake, which change dramatically over the course of bloom
development. To address this goal, we tested three hypotheses: 1) dual nutrient decreases
below ambient concentrations are required to reduce growth rates in comparison to single
nutrient control when ambient N concentrations are low; 2) dual inorganic nutrient
decreases will decrease the abundance of cyanobacteria within the phytoplankton
community, particularly when N is low; and 3) dual nutrient decrease will reduce toxin
concentrations, the ratio of toxin to biomass, and proportion of mcyE-containing
cyanobacteria when compared to single or no nutrient control. Our experiments were

performed with natural phytoplankton communities from the western basin of Lake Erie
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in order to identify the role of single and dual nutrient decreases below ambient
concentrations on cyanobacterial growth rates, community prevalence, and MC
production. These experiments complement earlier work using similar methodology in a
different part of the western basin (Barnard et al., 2021), but our design repeated the
experiment eight times over the course of the boom season to offer new insight on the
phenology of phytoplankton response to nutrient availability and particularly nutrient

deplete conditions.

2. Material and Methods
2.1 Sample collection and treatment preparation

We executed a series of experiments to determine the impacts of phosphorus-only
decreases and dual-nutrient decreases below ambient concentrations in Lake Erie (Paerl
et al., 2016b). In order to test our hypotheses during different stages of the bloom and
ambient nutrient concentrations (Supplemental Figure S1), we collected water on eight
occasions in 2018 from pre-bloom (June) to post-bloom season (October). Our treatments
were -N-P (both soluble reactive P and nitrate decreased 40% compared to ambient), -P
(only soluble reactive P decreased 40% compared to ambient), ambient, and +N+P (both
nitrate and soluble reactive P increased to 40% above ambient). Lake sampling dates
were June 25, July 16, July 23, July 30, August 13, August 27, September 11, and
October 1 in the year 2018, and herein experiments will be referred to by these dates. Site
selection was based on using a location known to be influenced by Maumee River loads
and the availability of real-time nutrient data from a continuous monitoring buoy. We

collected water from the NOAA Great Lakes Environmental Research Laboratory
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monitoring site WE2 (41.76217°, -83.33000°) located in the western basin approximately
14.5 kilometers northeast of the Maumee River mouth and 15 kilometers west of the
municipal water intake for the city of Toledo, Ohio (CIGLR & NOAA GLERL, 2019).

For each sampling event 60 L of lake water were collected via a peristaltic pump
1 meter below the water surface and stored in dark insulated containers. Once at the
laboratory (approximately 4 hours after collection), the carboys were inverted 10 times to
ensure water was well mixed prior to any sub-sampling. We estimated ambient nitrate
and SRP concentrations using in-situ WE2 buoy data at noon (12:00pm) of the day of
collection. The buoy was integrated with a Wet Labs Hydrocycle P instrument (Anderson
et al., 2021) that measured soluble reactive P using the same ascorbic acid and
molybdenum method as used in the laboratory (CIGLR & NOAA GLERL, 2019). To
dilute nutrients to below ambient concentrations, lake water was mixed with Hard Water
Mussel Medium (HWMM, 0.2 mM MgSQOs, 1.5 mM NaHCOs3, and 0.75 mM CaCly) and
then amended with N or P to create the specific nutrient treatments. HWMM is a salt
solution that contains no major nutrients and reflects the major ion chemistry of Lake
Erie (Chapra et al., 2012). We routinely check the dissolved inorganic N and P in
HWMM and it is below 0.5 ugP L-!, 0.02 mgN L-! as nitrate, and 5 ugN L-! as
ammonium.

The -N-P treatment contained no additional nutrients added following the 40%
dilution with HWMM and represents a total 40% decrease of nutrients and biomass. For
the -P treatment, N was added back as nitrate to ambient levels and represents a 40%

decrease of phosphorus and biomass. For the ambient treatment, N and P were added
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back to ambient levels. If phosphorus levels were not detected via buoy sensors, then 1.5
ug L1 of phosphorus was added to represent a typical low-level concentration observed
by laboratory analysis of the weekly NOAA-GLERL monitoring. For the +N+P
treatment, N and P were added back to match ambient levels, and then additional N and P
was added to represent the nutrient conditions under the influence of spring loads (2 mgN
L-"and 20 pgP L. If soluble reactive P was reported at less than the instrument
detection limit (2.3 pgP L), then the final concentration of P in the +N+P treatment was
brought to 21.5 pg L-!.

Each treatment was replicated three times in each experiment using transparent 4-
L polycarbonate bottles. The mesocosm bottles were placed in an insulated outdoor
incubation tank in which water was constantly mixed by pumps to gently mix the bottles
and reduce Microcystis colony settling (Den Uyl et al., 2021). The tanks were
temperature controlled within 1°C of the measured Lake Erie water temperatures at
station WE2 at noon (12:00pm) of the collection day by a recirculating temperature bath
(Cole-Parmer Instrument Company). We used a neutral density filter membrane applied
to each bottle to decrease light intensity to 50% of surface irradiance to represent the light
intensity that algal cells would experience at approximately 1 meter depth. An RBR Solo
temperature sensor was placed in the tank to monitor tank temperature.

Response variables identified include size-fractionated chlorophyll, fluorometry,
pH, quantitative polymerase chain reaction of total cyanobacteria and toxin mcyE, and
particulate microcystins. The first sampling (Tinitia1) oOccurred immediately after filling the

bottles on the day of collection. We sampled the entire range of parameters on days 0, 3
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(Tmia), and 7 (Tena), where data was collected for a total of 7 days for each experiment.
However, the June 25 experiment ran for 9 days with mid and endpoint data collected on
Day 4 and Day 9 respectively. Tmid and Tenq data was collected from each individual

bottle around 9 am local time.

2.2 Biomass Concentrations

Size-fractionated chlorophyll was analyzed by filtering two replicate subsamples
(approximately 150 mL) at Tinitiatl, Tmid, and Trnaithrough either a 53 pm Nitex screen or a
Whatman GF/F filter (Bowers, 1980; Vanderploeg et al., 2001). Screens and filters were
frozen and later extracted with N,N-dimethylformamide and analyzed fluorometrically
(Speziale et al. 1984) using a Turner Designs 10-AU fluorometer. Total chlorophyll was
obtained from the sum of the two size fractions. A benchtop spectrofluorometric
instrument (Fluoroprobe, BBE Moldaenke, Series 3) was used to identify algal group-
specific in vivo fluorescence of intact samples. The phytoplankton group concentrations
were allocated from the total fluorescent concentration to a spectral algal class due to its
fluorescence spectrum (Catherine et al., 2012, Chaffin et al., 2013). Class-specific
fluorometry data were collected at 9 am each day of the experiments. Particulate carbon
(C) and N were determined by flash combustion method using a Carlos Erba EA1110.
We estimated exponential growth rates during days 0-3 for both class-specific

fluorescence and extracted chlorophyll using the following equation:

(In(biomass;)—In(biomassy))
t3—to
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2.3 Particulate Microcystins (MCs)

Particulate MCs were determined from filtered mesocosm samples. Samples
underwent three freeze/thaw cycles, QuikLyse Cell Lysis (Abraxis #529911QL), and
were quantified using a microcystin-specific enzyme-linked immunosorbent assay
(ELISA) (Abraxis #520011; Fischer et al. 2001). Toxin concentration is the overall
concentration of particulate microcystins and was determined for all experiments except
for the October 1 experiment, when routine lake sampling had indicated that microcystin

was below detection.

2.4 Nutrient Concentrations

Concentrations of nitrate, ammonium, and dissolved reactive P were quantified
with a Seal AA3 continuous segmented flow analyzer (SEAL Analytical Inc., Mequon,
WI) using standard U.S. EPA methods (EPA 353.1, 354.1, 350.1, and 365.1,
respectively). Samples for particulate P were collected onto polycarbonate membrane
filters with a pore size of 0.2 um and the P content was determined by persulfate
digestion adapted from Menzel and Corwin (1965), followed by the ascorbic acid

molybdenum blue method (Strickland and Parsons, 1972).

2.5 gPCR (total cyanobacteria and toxin mcyE)

Estimates of total cyanobacterial cell concentrations and the proportion of mcyE
containing cyanobacteria within the mesocosms were determined using quantitative
polymerase chain reaction (qQPCR). We collected samples for gPCR on Millipore Isopore

membrane filters with a pore size of 3.0 um. These filters match those used for long-term



272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

14

monitoring of particulate MC by NOAA GLERL and CIGLR (Burtner et al. 2020). For
quantification, total cellular nucleic acids were extracted from filtered mesocosm samples
using the Qiagen DNeasy Blood and Tissue Kit, adding a lysate homogenization step
(QiaShredder spin-column) prior to DNA purification. DNA extract was frozen at -80 °C
until analysis. We performed qPCR using Phytoxigene CyanoDTec kits (Phytoxigene,
Inc., Akron, Ohio, US) using the manufacturer’s primers, cycling parameters, and copy
number estimation. Two cyanobacteria-specific genetic targets were used during this
study, the 16S-Cyano rRNA gene (16S rDNA) and the mcyE gene. Targeting the 16S
rRNA gene allows for the quantification of the abundance of total Microcystis population
within the mesocosm. The mcyE gene is found within the microcystin synthetase gene
cluster and is one of the genes responsible for the production of microcystin (Genuario et
al., 2010; Tillet et al., 2000). The mcyE target is only found in potentially-toxic strains of
Microcystis and allows for the quantification of toxin potential in the mesocosm. qPCR
was executed using an Applied Biosystems 7500 Fast Instrument using TagMan labeled
probes (Applied Biosystems) and genus-specific mcyE and 16S-Cyanobacteria rDNA
primers. For amplification of both the 16S and mcyE gene targets, the cycling conditions
were for 95 °C for 2 minutes for initial denaturation, followed by 40 cycles of 95 °C for
15 seconds for denaturation and 60 °C for 30 seconds for annealing-extension.

The proportion of mcyE containing cyanobacteria refers to the number of mcyE
gene copies normalized to 16S cyanobacteria abundance at Trina1 and was determined for
all experiments except for the June 26 and October 1 experiments. Biomass normalized

toxicity refers to particulate microcystins normalized to cyanobacterial fluorescence and
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was determined for all experiments except for the October 1 experiment. Toxin
concentration was normalized to cyanobacterial fluorescence in order to get a more

accurate prediction of potential toxin production within the cyanobacterial population.

2.6 Statistical Analyses

For each experiment, separate one-way analysis of variance (ANOVA) tests were
used to examine the effect of treatment on total fluorescence and cyanobacterial growth
rate, particulate toxins, particulate MCs normalized to cyanobacterial fluorescence, and
mcyE gene abundance normalized to cyanobacteria abundance. Phytoplankton
community composition was log transformed prior to analysis. A Tukey post-hoc test
was performed among treatment types. All statistical analyses were performed using R
version 3.4.3 (R Core Team 2017) and Figures were made using SigmaPlot version 14.0

(Systat Software).

3. Results

The initial physical and chemical water quality conditions for each experiment are
given in Table 1. Across the experimental sampling dates, ambient surface water
temperature ranged from 19.3 to 26.7° C, and the concentrations of phytoplankton
biomass (estimated by extracted chlorophyll-a and phycocyanin) indicate HAB
conditions were reached by the July 30 sampling event, persisted throughout August, and
then declined during September and October. Dissolved inorganic nutrient

concentrations (NHs , NOs3 , and SRP) showed a pattern of seasonal decline related to
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phytoplankton assimilation, biomass accrual, and dilution of river inputs (Table 1).
Elevated concentrations during the June 25 and September 11 experiments reflect a
response to rain events and higher discharge from the Maumee River, as noted by water
chemistry changes at the monitoring buoy (Table 1). At the time of collection of the June
25 experiment, ambient SRP was 24.4 ug-P L-! with a nitrate concentration of 1.376 mg-
N L-!, and the ambient SRP was 17.8 ug-P L-! at the September 11 experiment sample
collection (Table 1).

Figure 2 shows that fluorescence of the phytoplankton increased rapidly over the
first 3-4 days of each experiment, then decelerated or decreased. These time series of
fluorescence also indicate that the treatments had varying effects based on time of year
and initial ambient conditions. In the beginning of the season, all treatments except the
+N+P treatment shared similar trends, however; by the end of the season (August 27,
September 11, and October 1 experiments) the —-N—P treatment resulted in lower biomass
yields compared to the other treatments (p<<0.001 for August 27 and September 11
experiments and, p = 0.01 for October 1 experiments) (Figure 2). This pattern of lower
yields within the -N-P treatment coincides with minimum dissolved inorganic N (NH4*
and NOs-) concentrations in the lake (Figure 1). The +N+P treatment always resulted in
higher yields of biomass, except for the October 1 experiment where the +N+P, ambient,
and —P treatments trended similarly (Figure 1).

Figure 3 shows that the decreased nutrient treatments had variable effects on the
initial growth rates of total phytoplankton and cyanobacteria, depending on the time

within the season. The -P treatment in comparison to the ambient treatment resulted in
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decreased growth rates for total phytoplankton at multiple timepoints, but the largest
effects occurred on July 23 (0.055 d! reduction, 32.75% decrease), July 30 (0.042 d-!
reduction, 28.89% decrease) and August 13 (0.014 d-! reduction, 18.27% decrease). The -
P treatment in comparison to the ambient treatment had a similar effect on the growth
rate of cyanobacteria with the largest decreases on July 23 (0.031 d-! reduction, 31.85%
decrease) July 30 (0.047 d-! reduction, 67.39% decrease, and August 13 (0.036 d-!
reduction, 58.01% decrease). Compared to the ambient treatments, the -N-P treatment
had lower growth rates for total phytoplankton and cyanobacteria at multiple timepoints.
The largest decrease in growth rates occurred on August 13, August 27, September 11 for
both total phytoplankton and cyanobacteria. Growth rates were reduced 0.038 d!
(49.06% decrease), 0.110 (131.76% decrease) and 0.129 d-! (42.74% decrease)
respectively in total phytoplankton, and cyanobacteria growth rates were decreased by
0.0465 d-1, (75.93% decreased) 0.188 d!, (928.34% decrease) and 0.135 d-! (176.11%
decrease) for the respective dates. During August and September, the -N—P treatment
resulted in lower growth rates of cyanobacteria compared to the —P, ambient and elevated
nutrient treatments. In fact, dual nutrient decreases resulted in negative growth rates for
cyanobacteria in the August 30 (p<0.001) and September 14 (p<0.001) experiments, even
when the other treatments maintained positive growth rates. The largest effects occurred
on August 13 (0.024 d-!, 37.66% decrease), August 27 (0.126 d-!, 126.67% decrease) and
September 11 (0.110 d-!, 38.93% decrease) and growth rates for cyanobacteria on August
27 (0.204 d-1, 567.31% decrease) and September 11 (0.125 d-!, 187.75% decrease). This

pattern of reduced and even negative growth rates within the -N—P treatment coincides
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with low DIN concentration in the lake (Table 1). While the nutrient decrease treatments
had variable effects on growth rates, the +N+P nutrient treatment consistently resulted in
higher growth rates for both cyanobacteria and the total community (p<0.05) for the July
23, July 30, August 13, August 27, and September 11 experiments.

Table 2 shows that early in the season (from June 25 experiment to the August 13
experiment), all the treatments except the +N+P treatment had similar yield responses.
Specifically in the July 24 through September 11 experiments, cyanobacteria accounted
for the majority (54.9% to 73.5%) of the phytoplankton community at Tinitiat. By Tmia of
those experiments, cyanobacteria accounted for less than half of the community on
average (7.40% to 50.91%) and by Trna1 cyanobacteria accounted for approximately
28.77% of the community. Differences among treatments on biomass became more
obvious by the end of the season and the greatest reduction in cyanobacterial abundance
was observed in the -N—P treatment (Table 2). This pattern of reduced cyanobacteria
abundance within the -N-P treatment coincides with the lowest DIN concentration in the
lake (Figure 1). Dual nutrient control reduced the abundance of cyanobacteria within the
entire phytoplankton community compared to the other treatments (Table 2). For
example, the August 30 experiment (p < 0.001) had an initial cyanobacterial abundance
of 8.26 (ug L") and dual nutrient control (-N-P) reduced the final cyanobacterial yield to
4.84 (ug L) compared to a final concentration of 9.127 (ug L-!) in the ambient treatment
(Table 2). This trend was also observed in the September 14 experiment (p < 0.001),
where dual nutrient decreases reduced cyanobacterial abundance to 5.53 pg L-! in the -N-

P treatment compared to 8.66 pug L-! in the ambient treatment (Table 2).
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Figure 3 shows that dual nutrient control decreased toxins (Panel A) in the July 30
(p<0.001) and August 27 (p<0.001) experiments and decreased the amount of biomass-
normalized toxin (Panel B) in the July 26 experiment (p < 0.001). Microcystin
concentration and potential (mcyE copies / 16S copies) trended with overall biomass
concentration. Toxin production declined over the bloom season from mid-July to
October. This pattern is seen in Figure 3, where an increase in nutrients increased toxins
(panel A) in the July 26 (p<0.001), August 3, (p =.0107) and August 30 (p<0.001)

experiments.

4. Discussion

In the western basin of Lake Erie, nitrogen availability is higher during bloom
initiation in early July and declines throughout the summer, reaching minimum
concentration in September or October (Chaffin et al., 2011, 2013; Gobler et al., 2016).
Studies suggest that microcystin concentrations increase when nitrate concentration and
other environmental conditions such as water temperature are conducive to
cyanobacterial growth, thus higher concentrations of cyanotoxins are expected during the
mid-summer (i.e. higher production) during a period of high nitrogen availability and
warm water temperatures (Chaffin et al., 2018; Gobler et al., 2016; Horst et al., 2014;
Obenour et al., 2014). Decreasing the availability of both nitrogen and phosphorus could
lead to a faster decline in the internal pool of nutrients within the phytoplankton cell
(Saxton et al., 2012), and limit the amount of intracellular nutrients available to be
allocated to processes by which toxins are produced, which may lead to a reduction in

toxicity of a bloom. The peak in available N in the lake is preceded by high loading in
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spring from the watershed (Song et al. 2022), suggesting that targeting N load decreases
throughout the spring and summer is an effective strategy.

We hypothesized that decreasing phosphorus would reduce growth rates of
cyanobacteria and that decreasing N and P would result in lower growth rates than just
decreased P alone. The results presented here suggest that dual nutrient control has the
capability to decrease toxicity, production, and toxin potential within blooms faster than
with single nutrient (P) control alone, this is supported by previous studies (Chaffin et al.,
2018; Barnard et al., 2021; Davis et al. 2009; Davis et al. 2015). While that has been
reported previously, this study was directly tied to ambient concentrations in lake water
and shows the seasonal progression of this co-limitation effect. In June through mid-
August of the Lake Erie HAB season, when DIN was elevated in the ambient lake water
(0.3to 1.3 mg N L"!, Table 1), all treatments except the +N+P treatment produced only
small impacts on biomass, growth rates, and toxin. This lack of effect in the nutrient
decrease treatments can be attributed to availability of nutrients within the lake water
(Table 1, Figure 1). The exact timing and magnitude of response to treatment is
dependent on the status of the internal pools of N and P and should reflect this seasonal
exposure history (Millie et al., 2009; Kane et al., 2014). By the end of the season
treatment effects became stronger, with the -N-P treatment yielding less biomass and MC
than the -P only or ambient treatments. In our experiments, this response occurred when
ambient nitrate concentration was low, reaching 0.06 mg-N L-! (Table 1, Figure 1).

We hypothesized that dual nutrient decreases would decrease the abundance of

cyanobacteria among the phytoplankton community. Dual nutrient decreases limited the
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abundance of cyanobacteria among the phytoplankton community. For the majority of the
experiments (July 23 through September 11), cyanobacteria accounted for the majority
(54.94% to 73.49%) of the initial phytoplankton community. Our biomass data shows
that green algae dominated (>95%) in the June 25 and July 16 experiments, and the algal
groups were roughly in the same proportions (no obvious dominant group) in the October
1 experiment (Supplemental Figure S1) and these compositional differences can help
explain the different yield responses between treatments. Overall, cyanobacterial
abundance in the -N-P treatment was often lower than in any of the other treatments,
with +N+P yielding the greatest abundance. In the August 27 and September 11
experiments, dual nutrient control (—N—P) reduced the final cyanobacterial abundance
when compared to the initial biomass, while all other treatments saw increased
abundance when compared to Tiitia1 (1nitial abundance). These reductions in abundance
could potentially be explained by allowing for algal species that are more efficient at
nutrient uptake or have higher growth rates, such as green algae, to outcompete
cyanobacteria under nutrient replete conditions.

Moreover, our results showed that dual nutrient decreases (—-N—P) resulted in
negative growth rates (i.e. net mortality) for cyanobacteria in multiple experiments, even
when the other treatments maintained positive growth rates. This finding suggests that
dual nutrient decreases are, in fact, required to reduce growth rates in comparison to
single or no nutrient control under given conditions. Excess nutrients seen in short-term
pulse events, as depicted by the +N+P treatment, often resulted in high growth rates for

both cyanobacteria and other algal groups. Though cyanobacteria demonstrated a greater
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proportional response in growth rate of the +N+P treatment and supports the capability of
cyanobacteria to exploit excess nutrients seen in storm events. Previous experimental
studies in Lake Erie have demonstrated the potential for dual nutrient effects (Chaffin et
al. 2018; Barnard et al. 2021), although at concentrations of N and P greater than the
ambient levels in the lake. Our results support those findings, but go further to show

that dual nutrient decreases below ambient concentrations have the capability to decrease
toxicity, production, and toxin potential within blooms faster than with single nutrient
control alone. Although our results show an effect of nitrogen concentration, it is critical
to note that available N cycles rapidly in Lake Erie (Hampel et al. 2019) and so the
magnitude of response to changes in concentration is hard to anticipate. However, it is
likely that by decreasing both N and P concentrations in the lake when DIN are low in
ambient lake conditions (which will require limiting loads earlier in the year),
cyanobacterial abundance can be further limited. Eutrophication thresholds in large lakes
range from 0.50 to 1.20 mg L-! for total nitrogen and 0.03 to 0.10 mg L-! for total
phosphorus (Smith et al, 1999; Xu et al., 2014) and decreased nutrient contractions below
these thresholds may explain the negative growth rate associated with the —-N—P treatment
in the August 27 experiment. This finding indicates that decreasing nutrient
concentrations well below these thresholds may decrease the impacts of HABs. The
+N+P treatment almost always resulted in higher yields of biomass, toxin concentration,
and increased biomass concentration of phytoplankton across all experiments. This

finding was expected and provides a meaningful reminder of the negative outcome of
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having nutrient concentrations present at these high spring-time levels when
cyanobacterial species are likely to be dominant.

We hypothesized that dual nutrient decreases would reduce toxin concentration,
through both a reduction in the proportion of potential toxin producing cells containing
the mcyE marker when compared to single or no nutrient control and how much toxin
was made for a given amount of cyanobacterial biomass. Biomass normalized toxin
concentrations (concentration of particulate microcystins normalized to cyanobacterial
fluorescence) (Table 2) declined over the course of the season, suggesting that non-toxic
strains of Microcystis seemed to grow better than toxin-capable strains during low
nutrient conditions. A shift from toxic to non-toxic strains is not uncommon and has been
seen in previous studies within Lake Erie (Davis et al., 2015) and within other eutrophic
bodies of water (Briand et al., 2009, 2008; Davis et al., 2009; Sabart et al., 2010). A
previous study by Chaffin et al. (2018) suggests the shift to non-toxic strains of
Microcystis from toxic strains is based on the ability to efficiently grow with decreasing
nutrients, while toxic strains were likely to become nutrient limited. The results of this
study indicate that cyanobacterial blooms biomass and toxin concentration might be
responding to dual nutrient limitation when ambient levels of N are low.

This study suggests that effective management strategies for reducing the
intensity, duration, and toxicity of HABs in Lake Erie might include both nitrogen and
phosphorus loading goals. Our conclusions suggest that both P and N decreases would be
more effective to mitigate HABs in Lake Erie. While current best management practices

are focused on P mitigation to control HABs in Lake Erie, managers must be aware of the
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short-term implications that N inputs may have for bloom growth, composition, and

toxicity.
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Tables

Table 1. Ambient conditions at sampling site WE?2 at the time of initial collection.

Temperature SRP NH, NO; Extracted Extracted
Experiment
(°0) (rgPLY) | (gNLY) | (mgNL) | PC(ugL?) | Chl-a(ugL?)
1] June2s 22.1 24.4 1311 1.3760 0.2 4.9
2| July16 26.7 33 25.0 0.6515 4.4 6.9
3] July23 24.0 37 7.6 0.6765 3.1 9.4
4| July30 24.4 2.1 3.0 0.7030 18.9 25.6
5| Augl3 26.0 2.1 38 0.3715 157 19.4
6| Aug27 24.4 22 3.6 0.0565 185 25.6
7] Sept1l 21.8 17.8 33.0 0.0645 5.4 17.0
8| Octl 193 13.6 9.2 0.1850 2.4 135




830

831

832

833

834

Table 2. The yield of cyanobacterial biomass determined by fluorescence (ug L-!) at initial collection following dilution

(Tinitiar) and Tmig averaged by treatment.

Cyanobacterial biomass as chlorophyll (ug/L), = denotes one standard error

Experiment
Initial (T.) Ambient (T..) -P (T..) -N-P (T..) +N+P (T..)

1 | June 25 1.09 +0.21 4.13 +0.30 4.22 +0.28 4.29 +0.38

2| July 16 2.32 +0.06 2.98 +0.28 3.08 +0.15 2.81 +0.10

3| July 23 3.17 +0.18 4.54 +0.35 4.07 +0.12 4.1 +0.10 8.43 +0.18
4| July 30 5.83 +0.10 7.25 +0.49 6.67 +0.42 6.38 +0.29 16.1 +2.14
5| Aug 13 6.53 +0.19 7.97 +0.17 7.1 +0.33 7.19 +0.33 16.25 +0.85
6| Aug?27 8.26 +0.18 9.13 +0.20 9.44 +0.39 4.84 +0.11 18.63 +0.85
71 Sept 11 6.97 +0.18 8.66 +0.21 8.87 +0.26 5.53 +0.17 9.17 +0.32
8| Octl 1.83 +0.18 2.95 +0.01 3.18 +0.04 2.86 +0.06 3.06 +0.23
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Figure Legends

Figure 1. Total fluorescence (ug L-!) on a log scale over the course of the experiments
(June — October) separated by treatment type. Each grouping of lines represents a
different experiment. Experiments on June 25 (Exp 1) and July 16 (Exp 2) did not have a

+N+P treatment.

Figure 2. Fluorescence growth rate from day 0 to day 3 (exponential growth phase) for
the experiments, separated by cyanobacteria (panel A) and total phytoplankton

fluorescence (panel B).

Figure 3. Panel A depicts toxin concentration, as determined by the concentration of
particulate microcystins (ug L-!) at Tmig for the June 25 through September 11 over the
course of the 2018 experimental field season. Panel B depicts biomass normalized
toxicity, as determined by the concentration of particulate microcystins (pug L")
normalized to cyanobacterial fluorescence (ug L-!) at day 3 for each experiment over the
course of the 2018 experimental field season. Panel C depicts proportion of mcyE
bearing cyanobacteria, as determined by the number of mcyE gene (copies/mL)
normalized to Cyanobacterial-16S gene (copies/mL) at day 7 for each experiment over
the course of the 2018 experimental field season. Toxin concentration and biomass
normalized toxicity data were not determined for the October 1 experiment. The

proportion of mcyE bearing cyanobacteria data was not determined for the June 25 or
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Figure S1. Dissolved inorganic nitrogen (DIN, sum of nitrate, nitrite, and ammonium)

during the 2019 bloom season at station WE2 in western Lake Erie.
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