

1 **Quantifying the Contributions of Aerosol and Snow-produced ClNO₂ through**
2 **Observations and 1-D Modeling**

4 Daun Jeong^{1,a}, Stephen M. McNamara¹, Qianjie Chen^{1,b}, Jessica Mirrielees¹, Jacinta Edebeli^{1,2,c},
5 Kathryn D. Kulju¹, Siyuan Wang^{3,4}, Laila Hayani⁵, Rachel M. Kirpes¹, Nurun Nahar Lata⁶, Swarup
6 China⁶, Jose D. Fuentes⁷, Kerri A. Pratt^{1,8*}

8 ¹Department of Chemistry, University of Michigan, Ann Arbor, MI 48109 USA

9 ²Paul Scherrer Institut, Villigen 5232 Switzerland

10 ³Chemical Sciences Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO
11 80305 USA

12 ⁴Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado,
13 Boulder, CO, 80309 USA

14 ⁵Applied Physics Program, University of Michigan, Ann Arbor, MI 48109 USA

15 ⁶Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland,
16 WA 99354

17 ⁷Department of Meteorology and Atmospheric Science, Pennsylvania State University, University
18 Park, PA 16802 USA

19 ⁸Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109
20 USA

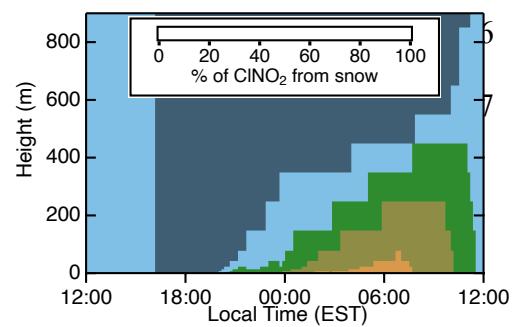
21 ^aCurrently at: Advanced Study Program, National Center for Atmospheric Research, Boulder, CO
22 80307 USA

23 ^bCurrently at: Department of Civil and Environmental Engineering, The Hong Kong Polytechnic
24 University, HongKong SAR, 999077 China

25 ^cCurrently at: Center for Aviation, School of Engineering, Zurich University of Applied Science,
26 Winterthur, 8401 Switzerland

28 *Corresponding Author: Kerri A. Pratt

29 Department of Chemistry, University of Michigan

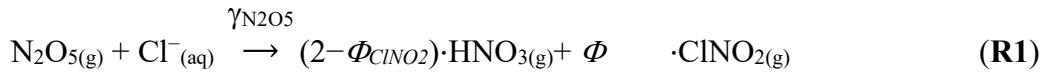

30 930 N. University Ave.

31 Ann Arbor, MI 48109

32 prattka@umich.edu

33 (734) 763-2871

35 TOC



38 **Abstract**

39 Nitryl chloride (ClNO_2) is a radical reservoir that forms and accumulates in the nocturnal
40 atmospheric boundary layer influenced by combustion emissions and chloride (e.g., sea salt
41 and/or road salt). Upon sunrise, ClNO_2 rapidly photolyses to generate highly reactive chlorine
42 radicals ($\text{Cl}\cdot$) that affect air quality by generating secondary air pollutants. Recent studies have
43 shown road salt aerosols and the saline snowpack to be sources of ClNO_2 in the wintertime urban
44 environment, yet the quantitative contributions of each chloride source are not known. In this
45 study, we examine the vertically-resolved contributions of aerosol particles and the saline
46 snowpack as sources of ClNO_2 , using an observationally constrained snow-atmosphere coupled
47 one-dimensional model applied to wintertime Kalamazoo, MI. Model simulations show that
48 ClNO_2 emitted from the urban snowpack can be vertically transported throughout the entire
49 atmospheric boundary layer, and can be a significant source of ClNO_2 , contributing up to $\sim 60\%$
50 of the ClNO_2 budget near the surface. Modeled snowpack ClNO_2 emission rates were 6 (± 7)
51 times higher than the observationally-derived emission rates, suggesting that not all snow
52 chloride is available for reaction. ClNO_2 production from both aerosol particles and snow
53 emissions are required to best simulate the observed surface-level ClNO_2 . Using the bulk
54 parameterization for ClNO_2 produced from particles significantly overestimated ClNO_2
55 observations, due to the assumption of equivalent dinitrogen pentoxide (N_2O_5) uptake and
56 chloride availability for the entire particle population. In comparison, the chemically-resolved
57 surface area-based parameterization slightly underestimated the observations, with uncertainties
58 deriving from ClNO_2 production from residential wood burning particles.

59 **1. Introduction**

60 Nitryl chloride (ClNO_2) is a radical precursor that is formed and accumulates in the
61 nocturnal stable atmospheric boundary layer due to its long lifetime at night ($\tau_{\text{ClNO}_2} > 30$ h).^{1,2}
62 During the day, ClNO_2 rapidly photolyses ($\tau_{\text{ClNO}_2} \approx 30$ min, midday under summer-time mid-
63 latitude conditions)³ to generate chlorine radicals ($\text{Cl}\cdot$) and $\text{NO}_2\cdot$. ClNO_2 is formed through the
64 heterogeneous reaction of gas-phase dinitrogen pentoxide (N_2O_5) on chloride (Cl^-) containing
65 surfaces (R1).⁴

66

67 $\gamma_{\text{N}_2\text{O}_5}$ is the reactive uptake coefficient of N_2O_5 on surfaces, and Φ_{ClNO_2} is the branching ratio (yield)
68 to produce gas phase ClNO_2 . N_2O_5 is produced from the reaction of nitrogen dioxide ($\text{NO}_2\cdot$) and
69 the nitrate radical ($\text{NO}_3\cdot$). N_2O_5 formation is enhanced at night, compared to daytime, when the
70 lifetime of $\text{NO}_3\cdot$ is short ($\tau_{\text{NO}_3} < 5$ s), and N_2O_5 accumulates at night, with photolysis occurring
71 upon sunrise. This is a reversible reaction in thermal equilibrium that favors N_2O_5 at lower
72 temperatures, enabling greater accumulation during winter.⁵

73 ClNO_2 and its subsequent production of highly reactive Cl radicals influences tropospheric
74 oxidation capacity by affecting the lifetime and chemistry of NO_x ,⁶ volatile organic compounds
75 (VOCs),⁷ mercury,⁸ dimethyl sulfide,⁹ and production of pollutants including ozone and secondary
76 aerosols.^{10,11} For instance, reactivity of Cl with alkanes can be up to two orders of magnitude
77 higher than that of the hydroxyl radical ($\cdot\text{OH}$),¹² which is the main oxidant in the troposphere.¹³
78 Chemical transport models show that including heterogeneous formation of ClNO_2 from sea salt
79 aerosols and biomass burning in the model framework can result in significant increases in
80 modeled tropospheric O_3 , especially during wintertime.¹⁴⁻¹⁷

81 Field observations show that ClNO₂ is ubiquitous in the boundary layer in both coastal^{18–}
82 ²⁰ and inland regions.^{21–28} Enhanced levels of ClNO₂ are attributed to air masses affected by sea
83 salt aerosols,^{19,23,29} biomass burning,³⁰ and coal burning activities,^{26,31,32} with playa dust also found
84 to be a ClNO₂ source.^{33,34} While understudied, road salt can also be a significant source of chloride
85 in the aerosol phase, as well as the urban snowpack.^{27,35–40} Large amounts of road salts are used
86 globally in wintertime environments for deicing purposes. In 2019, ~18 million tons of road salt
87 was used in the U.S.⁴¹ Road salts, which are mostly sodium chloride (NaCl),⁴² are deposited on icy
88 roadways and mechanically aerosolized by vehicular traffic.^{43–46} Mielke et al.⁴⁷ reported enhanced
89 ClNO₂ production following road salt application during snowfall in Calgary, Alberta, Canada.
90 Similarly, McNamara et al.³⁵ reported up to ~220 parts per trillion (ppt) of ClNO₂, 12 m above the
91 urban snowpack in Ann Arbor, Michigan, where they identified fresh and aged road salt aerosols.
92 In Kalamazoo, Michigan, a maximum of ~ 90 ppt of ClNO₂ was observed at 1.5 m over snow-
93 covered ground.²⁸

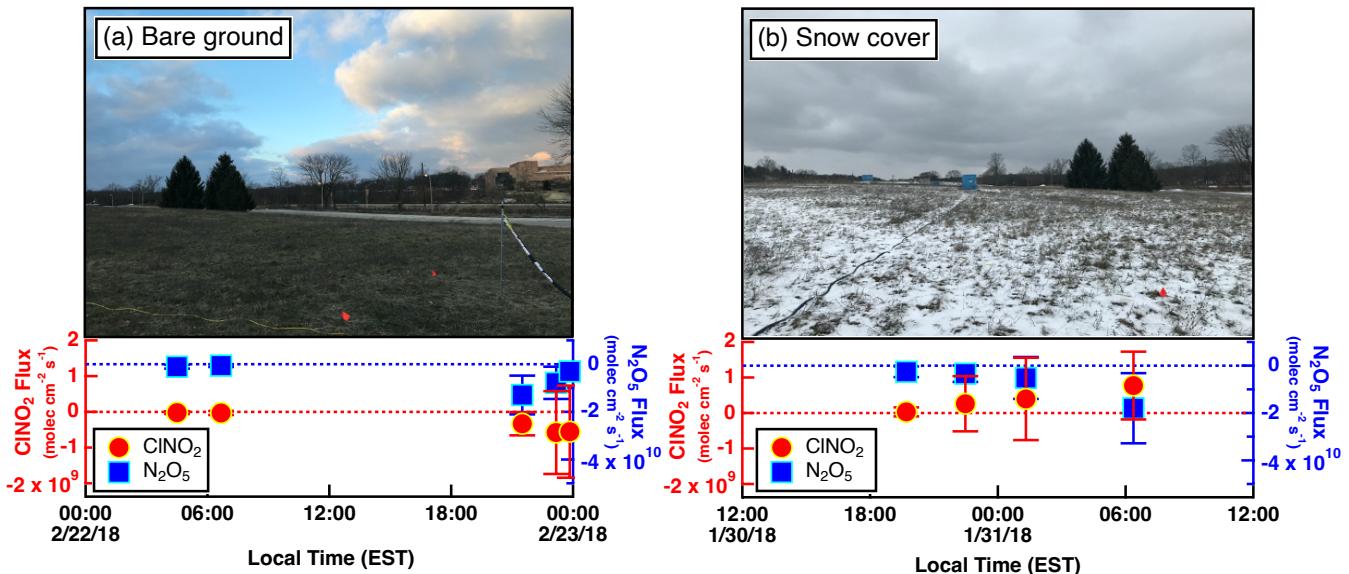
94 The snowpack consists of interstitial air and snow grains with brine patches containing
95 solutes excluded from the ice.⁴⁸ Therefore, snowpack is a highly porous media that serves as a
96 unique matrix for multiphase reactions.^{49–52} Laboratory^{53–56} and field observations^{57–60}
97 demonstrate that snowpack reactions facilitate production of molecular halogen gases (Br₂, Cl₂, I₂,
98 BrCl). Physical loss of N₂O₅ on surfaces can also be enhanced in the presence of ice/snow⁶¹ and
99 has been shown to be a significant (up to 25 %) chemical loss mechanism in the polluted
100 wintertime boundary layer.^{62,63} McNamara et al. showed that the reaction of N₂O₅ on saline snow
101 produced ClNO₂. ClNO₂ fluxes derived from *in situ* measurements were reported during the winter
102 in Kalamazoo, MI, where the fluxes on average were positive (emission) over snow compared to
103 negative (deposition) over bare ground.²⁷ During the entire study, ClNO₂ was enhanced during

104 periods with snowfall and snow-covered ground.²⁸ However, the contributions of ClNO₂
105 production from the saline snowpack compared to aerosols is not known.

106 Here we employ a one-dimensional (1D) model with a coupled snow-atmosphere
107 framework that is required to quantify the vertically-resolved contributions of aerosols and the
108 snowpack to boundary layer ClNO₂. Previous snow and atmospheric boundary layer-coupled 1D
109 models, developed by Toyota et al.^{64,65} and Thomas et al.,^{66,67} implemented snow chemistry
110 modules to represent multiphase halogen recycling mechanisms in the Arctic boundary layer. In
111 those studies, the snow module embedded 1D model simulations were able to explain the
112 snowpack-initiated radical chemistry and ozone depletion events in the Arctic boundary layer. A
113 recent study by Wang et al.⁴⁰ implemented a similar chemical and physical framework for the
114 midlatitude wintertime inland urban environment. By constraining the model with observations
115 from Ann Arbor, Michigan, Wang et al.⁴⁰ simulated significant deposition of N₂O₅ and
116 temperature-dependent emission of ClNO₂ from the urban snowpack. However, a comparison of
117 ClNO₂ fluxes from the snowpack between observations²⁷ and model simulations has not been
118 reported.

119 Significant challenges also remain in the simulation of ClNO₂ from aerosol particles.^{68,69}
120 Laboratory studies have shown that particle $\gamma_{\text{N}_2\text{O}_5}$ and Φ_{ClNO_2} are dependent on aerosol composition,
121 including sulfate,^{70,71} chloride,^{72,73} nitrate,^{72,74} and organic^{75–80} content, as well as aerosol water
122 content^{74,81} that also depends on relative humidity and temperature.⁸² However, discrepancies exist
123 between these bulk-derived parameters and field-derived values.^{25,30,32,68,83–87} Note that $\gamma_{\text{N}_2\text{O}_5}$ and
124 Φ_{ClNO_2} for snow/ice are even less known with only limited laboratory studies^{53,72,88,89} available that
125 show these parameters vary with temperature and halide content at the ice surface. In order to
126 estimate the production of ClNO₂ in model simulations, the most commonly used parameterization

127 assumes a homogenous distribution of chemical composition across the aerosol population.^{72,90} A
128 recent study by McNamara et al.³⁵ in the wintertime inland environment showed that only road
129 salt aerosol contained significant levels of chloride, and these aerosols comprised ~20 % of the
130 total particulate surface area concentration. By weighting $\gamma_{\text{N}_2\text{O}_5}$ and Φ_{ClNO_2} by the surface area
131 contributions of the different individual particle source types (e.g., road salt, biomass burning, soot,
132 dust) through their new parametrization, McNamara et al.³⁵ were able to reconcile the measured
133 ClNO_2 . In the current work, we test this new parametrization³⁵ with another observational dataset
134 to examine its effectiveness compared to the traditional bulk approach.⁷²


135 In this study, we investigate the vertically-resolved contributions of ClNO_2 emissions from
136 an urban snowpack in Kalamazoo, MI during the SNOW and Atmospheric Chemistry in Kalamazoo
137 (SNACK) campaign using the 1D atmospheric boundary layer model coupled to a snow
138 module.^{27,40} The ambient gas, particle, and snow measurements, reported by Kulju et al.²⁸ and
139 observationally derived ClNO_2 and N_2O_5 fluxes, reported by McNamara et al.²⁷, are constrained
140 in the 1D model. To evaluate the coupled snow module, the modeled ClNO_2 flux is compared to
141 the measurement-derived fluxes reported by McNamara et al.²⁷ In addition, ClNO_2 production
142 from aerosol particles is investigated by comparing the traditional bulk parametrization⁷² with the
143 new chemically-resolved, surface area-based (single-particle) parametrization.³⁵ The vertically-
144 resolved relative contributions of the snowpack and aerosols as sources of ClNO_2 are quantified.

145

146 2. Methods

147 The SNACK campaign was carried out in Kalamazoo, MI (longitude: 85.6105° W latitude:
148 42.2784° N) in the winter (Jan. 12 to Feb. 24) of 2018.²⁸ We focus our modeling study here on two
149 case periods: 1) the night of Jan. 31 (Jan. 31 12:00 – Feb. 1 12:00 Eastern Standard Time (EST))

150 representing the bare ground case and 2) the night of Jan 30 (Jan. 30 12:00 – Jan. 31 12:00 EST)
 151 representing the snow-covered ground case. Photographs of the site on each case day are shown
 152 in **Figure 1**. The bare ground case corresponds to no snow on the land but areas covered by grass
 153 and dirt and pavement roads. **Section 2.1** summarizes the observations used in this study, **Section**
 154 **2.2** describes the 1D model framework, and **Section 2.3** describes the parameterizations of N_2O_5
 155 uptake and ClNO_2 yield on aerosols and snow grains used in the model simulations. Additional
 156 details can be found in the supporting information.

Figure 1 ClNO_2 and N_2O_5 fluxes derived from vertical profile measurements during the two representative (a) bare ground and (b) snow cover days, as reported by McNamara et al.²⁷ Photos of the field site on the corresponding days (Bare ground: Jan 31; Snow cover: Jan 30) are shown. Measurement uncertainties are shown as error bars, and dashed lines show zero values for N_2O_5 (blue) and ClNO_2 (red) fluxes for context. Flux data from Feb 22 are used in our model study as vertical profile measurements were not carried out on the night of Jan 31, which we define as the bare ground case day for the subsequent modeling.

157
 158
 159 **2.1. Measurements and sampling during the SNACK campaign**
 160 The field site was situated ~ 90 m from a heavy traffic road, where road salt was routinely
 161 applied in the winter. A comprehensive suite of gas phase and particle phase instruments were

162 housed in a research trailer next to a field on the Western Michigan University (WMU) campus.
163 Ambient ClNO₂ and N₂O₅ were measured at 1.5 m above ground with a chemical ionization mass
164 spectrometer (CIMS, THS instruments)⁹¹ using iodide water clusters (I·(H₂O)⁻) as the reagent ion
165 to form iodide adduct with ClNO₂ (ClNO₂⁻, *m/z* 208 and 210) and N₂O₅ (N₂O₅⁻, *m/z* 235).⁹²
166 Details of the CIMS measurements during the SNACK campaign can be found in McNamara et
167 al.,²⁷ Kulju et al.,²⁸ and in the supporting information (S1).

168 Ambient O₃ was measured with a dual beam ozone monitor (model 205, 2B Technologies,
169 limit of detection (LOD) 2 parts per billion, ppb) on the CIMS inlet. Gas-phase hydrochloric acid
170 (HCl) and PM_{2.5} (particles <2.5 μm in diameter) Cl⁻ (LOD 0.004 μg m⁻³) and NO₃⁻ (LOD 0.05 μg
171 m⁻³) were sampled at 3 h resolution and analyzed with an ambient ion monitor-ion chromatography
172 (AIM-IC) system (model 9000D, URG Corp., Chapel Hill, NC) with a modified inlet, described
173 by Markovic et al.,^{93,94} at 1.8 m above ground. Temporal variation of gas-phase HCl and PM_{2.5} Cl⁻
174 and NO₃⁻ for the two case days are shown in **Figures S1** and **S2**, respectively. More details of the
175 AIM-IC sampling method during the campaign are described by Chen et al.⁹⁵ Size-resolved
176 number concentrations of atmospheric aerosols were measured at ~3 m with a scanning mobility
177 particle sizer (SMPS, model 3082, TSI Inc.) for 14 – 736 nm mobility diameters and with an
178 aerodynamic particle sizer (APS, model 3321, TSI Inc.) for 0.542– 20 μm aerodynamic diameters
179 (d_a). Total surface area of particles with d_a between 20 nm and 20 μm were derived by converting
180 mobility diameters to aerodynamic diameters assuming a shape factor of 1 and density of 1.5 g
181 cm⁻³.⁹⁶ Temporal variations of the particle number densities and total surface areas for the two case
182 days are shown in **Figure S3**, and the 24 h averaged size distribution is shown in **Figure S4**.

183 Size-resolved individual atmospheric particle composition was measured for the two case
184 days. Atmospheric particles were collected on transmission electron microscopy (TEM) grids (Ted

185 Pella, Inc.) using a micro-orifice uniform deposit impactor (MOUDI, model 110R, MSP Corp).
186 The MOUDI sampled air at 11 L min^{-1} , which was diluted with 19 L min^{-1} of particle-free (HEPA
187 capsule, Pall Laboratory) air, for a total flow of 30 L min^{-1} . On Jan 30 19:29-Jan 31 6:50 EST
188 (snow cover case), particles were collected on the $0.10\text{--}0.18 \mu\text{m}$ d_a and $0.32\text{--}0.56 \mu\text{m}$ d_a stages. On
189 Jan 31 17:18-Feb 1 8:00 EST (bare ground case), particles were collected on $0.18\text{--}0.32 \mu\text{m}$, 0.32
190 $\text{--} 0.56 \mu\text{m}$, and $1.0\text{--}1.8 \mu\text{m}$ d_a stages. The collected samples were stored in the laboratory in air-
191 tight clean plastic containers until they were analyzed with computer-controlled scanning electron
192 microscopy with energy dispersive X-ray spectroscopy (CCSEM-EDX).³⁸ In total, 22,223
193 individual particles were analyzed for the case day samples. Representative SEM images and EDX
194 spectra for the individual particle types observed are shown in **Figure S5**, and additional details
195 of the CCSEM-EDX analysis and results are described in the supporting information (S5).

196 Snow samples were collected from the top 2 cm of the surface of the snowpack in various
197 locations near the trailer as shown in McNamara et al.²⁷ Four snow samples, collected between
198 20:00 of January 30 to 7:00 of January 31, were used in this study. The collected snow was put in
199 sterile Whirl-pak bags, kept in the freezer (-20 to -30 °C), and thawed prior to analysis. Sodium,
200 chloride, and nitrate content in the melted snow samples were analyzed with ion chromatography
201 (IC) using a Dionex ICS-1100 for cations and an ICS-2100 for anions. The pH of the melted snow
202 was measured with a pH meter (model AP110, Fisher Scientific). The density of the snow was
203 measured with an aluminum density gauge (model Scientist200, Brooks-Range). Snow density
204 was measured for nine snow samples collected between February 5 and 14. The average snow
205 density of $0.36 \pm 0.06 \text{ g cm}^{-3}$ was used in this study, because there was little variability and since
206 the snow on the night of January 30 was not deep enough to use the snow density gauge. A
207 summary of the observed snow parameters used in the model are shown in **Table S2**.

208 Ambient temperature (270 ± 5 K) (**Figure S7**) and three-dimensional wind speeds and wind
209 directions (**Figure S8**) were measured with the sonic anemometer (model CSAT3, Campbell
210 Scientific Inc.) at ~ 1.4 m above ground level to estimate the friction velocity (u^*) and the
211 atmospheric eddy diffusivity (K_z). Ultraviolet solar radiation ($0.295 < \lambda < 0.385$ μm) was
212 measured with a UV radiometer (model TUVR, Eppley Laboratory). Relative humidity (RH) was
213 measured at the Kalamazoo Battle Creek International Airport (KAZO), which is ~ 7 km from the
214 field site. The averaged RH values were 66 (± 9) % for the bare ground case day (Jan. 31 12:00
215 EST – Feb. 1 12:00) and 61 (± 7) % for the snow cover day (Jan. 30 12:00 – Jan. 31 12:00).
216 Therefore, for all the model runs, a RH of 65 % was used.

217

218 **2.2. 1-Dimensional model description**

219 A 1D atmospheric model with a coupled snow module, developed by Wang et al.⁴⁰ was
220 used to simulate the temporal and vertical profiles of ClNO₂ for the two case study scenarios (bare
221 ground and snow cover). A simple schematic of the model framework is illustrated in **Figure S9**.
222 The 1D model⁴⁰ is an IGOR (WaveMetrics, Inc., Lake Oswego, OR) based framework with a
223 similar concept of air-snow interactions as described by Thomas et al.⁶⁶ and Toyota et al.⁶⁴ Brief
224 descriptions of the parameterizations of N₂O₅ uptake and ClNO₂ yield values and snow module
225 are described in Sections 2.2.1 and 2.2.2, respectively. For all model simulations, both bare ground
226 and snow cases, the N₂O₅ surface deposition velocity was constrained to the measurement-derived
227 averaged value (0.5 cm s^{-1}) reported by McNamara et al.²⁷ as it was shown to not be statistically
228 different between snow covered and bare ground surfaces. Additional details of the model and how
229 it is constrained can be found in Wang et al.⁴⁰ and in the supporting documents (**S2** and **S3**).

230 PM_{2.5} chloride and nitrate, ozone, and N₂O₅ levels measured during the campaign were
231 constrained diurnally at every model time step (10 min) at the model height of 1 m. Total
232 particulate surface area concentrations from observations were constrained to be the same for all
233 model layers. Other trace gases including NO₂ and VOCs were taken from nearby air quality
234 observation stations or from previous literature and are summarized in **Table S1**. To enable proper
235 model spin-up, we report the simulation results of the third model day. Photolysis rate constants
236 (J) of gas-phase compounds were calculated using the clear sky Tropospheric Ultraviolet and
237 Visible (TUV) model⁹⁷ and scaled to the solar radiation measured during the two case days.

238

239 **2.2.1. N₂O₅ uptake and ClNO₂ yield parameterization for aerosols**

240 We used two types of parameterizations of N₂O₅ uptake ($\gamma_{N2O5,p}$) and ClNO₂ yield
241 ($\Phi_{ClNO2,p}$) by aerosols. The first is the commonly used bulk parameterization from Bertram and
242 Thornton,⁷² which assumes homogeneous composition of the aerosol population through
243 calculations using bulk aerosol mass concentrations. Time-resolved PM_{2.5} NO₃⁻ and Cl⁻, measured
244 by AIM-IC during the campaign, were used for the bulk parameterization calculations. More
245 details can be found in the supporting information (**S4**). The second is the new chemically-resolved,
246 surface area-based ('single-particle') parameterization method,³⁵ which uses individual particle
247 composition obtained from the CCSEM-EDX measurements. The particles collected on the nights
248 of January 30 (Jan. 30 19:29 – Jan. 31 6:50) and on the night of January 31 (Jan. 31 17:18 – Feb.
249 1 8:00) were grouped into four categories: organic (biomass burning), soot, aged road salt, and
250 mineral dust particles. The size-resolved number fractions of each particle type, determined by
251 CCSEM-EDX analysis, are shown in **Figure S6**, and more details of the analysis are in the
252 supporting information (**S5**). $\gamma_{N2O5,p}$ and $\Phi_{ClNO2,p}$ corresponding to each particle type were based

253 on proxies from previous laboratory studies (**Table S3**) and then weighted by the surface area
254 concentration contribution of each particle type. For particle size bins below and above which
255 single-particle composition was measured (Figure S6), the particles were assumed to have the
256 same particle composition as the lowest and largest bin sizes, respectively. The surface area of
257 these particles accounted for 6.5 % (5.9 % for smaller and 0.6 % for higher particles) for the bare
258 ground case and 15.4 % (4.7 % for smaller and 10.7 % for higher particles) for the snow cover
259 case day.

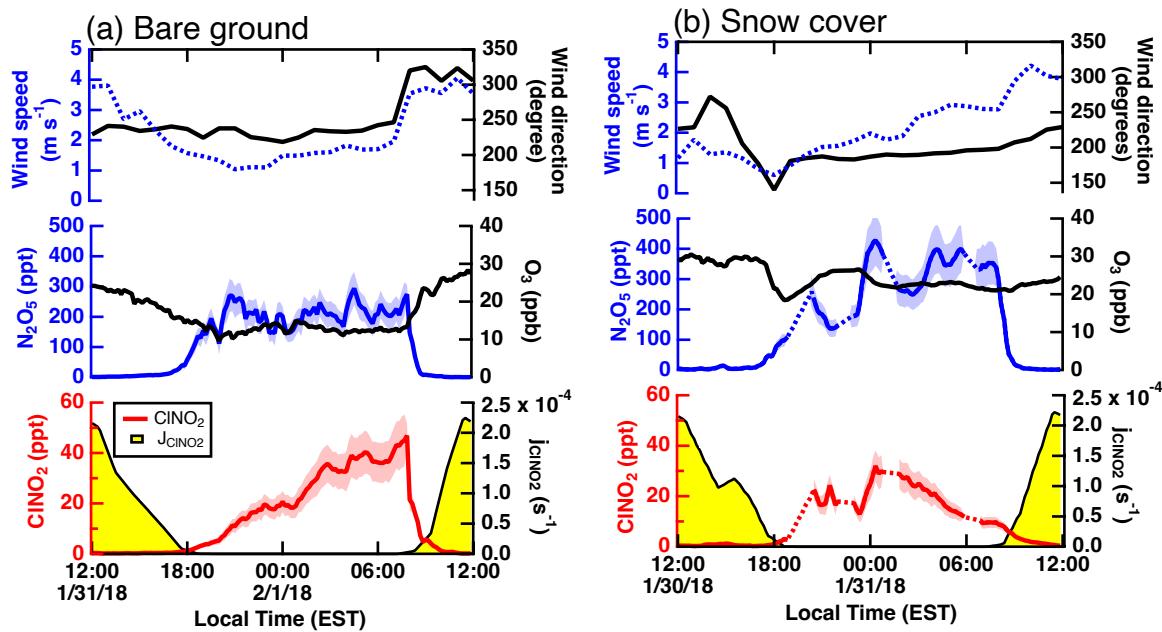
260

261 **2.2.2 Model snow ClNO₂ production**

262 For the snow case, snowpack ClNO₂ emissions were incorporated in two ways: 1) constraining by measurement-derived fluxes²⁷ and 2) calculating emissions within the snow
263 module.⁴⁰ For model simulations constrained by measurement-derived ClNO₂ fluxes, the time-
264 dependent ClNO₂ emission rate from the snow was constrained based on the ClNO₂ fluxes derived
265 from gradient profile measurements that occurred every 3-5 hours for 30- 58 mins for each profile
266 during the night of the snow cover day (Jan. 30 12:00 – Jan. 31 12:00).²⁷ Fluxes were interpolated
267 for periods between profiles. Snowpack ClNO₂ emissions were assumed to be zero during the day
268 when the model was constrained by measurement-derived ClNO₂ fluxes in the model. Sensitivity
269 of the simulations to the upper and lower bounds of the uncertainties in the measurement-derived
270 ClNO₂ fluxes were carried out by constraining the model accordingly. For the lower bound, the
271 snowpack ClNO₂ emission rate was set to zero as the uncertainties in the measurement-derived
272 ClNO₂ fluxes resulted in deposition of ClNO₂.

274 As described by Wang et al.,⁴⁰ the snowpack, consisting of snow grains and interstitial air,
275 is the bottom layer of the model framework (**Figure S9**). The snow parameters were constrained

276 in the model based on measurements described in **Section 2.1** and are summarized in **Table S2**.
277 The snowpack depth at the field site during the snow case day was variable (< 5 cm) but was often
278 close to ~ 1 cm, to which the snow depth value was constrained in the model snow module (**Table**
279 **S2**). The snow grain diameter and density were constrained in the snow module based on our best
280 measurement estimates as outlined in Section 2.1. Snow grains were assumed to be spherical with
281 a liquid brine layer on the surface, following Thomas et al.⁶⁶ The liquid brine layer fraction (f_{brine})
282 was calculated based on Cho et al.⁹⁸ using snow meltwater Na^+ and Cl^- concentrations. All snow
283 grains in the model snowpack are assumed to be available for reaction. Heterogeneous uptake of
284 N_2O_5 on snow grains was derived based on a resistor analogue model following Wang et al.⁴⁰ The
285 snow ClNO_2 yield was calculated based on Bertram and Thornton⁷² in the same manner as for
286 aerosol particles (Section 2.2.1). Additional details can be found in the supporting information
287 (**S4**).
288


289 **3. Results and Discussion**

290 **3.1. N_2O_5 and ClNO_2 observations during the bare ground and snow cover case studies.**

291 N_2O_5 and ClNO_2 observations for the full SNACK campaign were previously reported by
292 Kulju et al.²⁸ Over the full campaign, N_2O_5 mole ratios were not statistically significantly different
293 between snow-covered and bare ground periods.²⁸ In contrast, on average over the full campaign,
294 ClNO_2 mole ratios were higher over snow-covered compared to bare ground due to snowpack
295 ClNO_2 production.²⁸ Here we focus this modeling study on two case studies – the nights of Jan 31
296 and Jan 30 – chosen to represent bare ground and snow cover periods, respectively (**Figure 1**).
297 The ratio of snowmelt Na^+ to Cl^- (**Table S2**) was close to 1 showing that the snowpack Cl^- was
298 mostly from road salt. Measurements of O_3 , N_2O_5 , and ClNO_2 at 1.5 m above ground, as well as

299 calculated ClNO_2 photolysis rate coefficients, are shown in **Figure 2** for the two case days, with
 300 meteorological data shown in **Figures 2** and **S8**. McNamara et al.²⁷ quantified ClNO_2 and N_2O_5
 301 fluxes over both bare ground and snow cover, enabling investigation of the roles of these surface
 302 fluxes in the current modeling study (**Figure 1**).

303

Figure 2 One h averaged wind directions and 10 min averaged diel variations of O_3 , N_2O_5 , ClNO_2 , and ClNO_2 photolysis rate coefficients (J_{ClNO_2}) during the (a) bare ground and (b) snow cover case days. Time-dependent measurement uncertainties of N_2O_5 and ClNO_2 are shown as shades. Gaps in ambient data in Fig. 2b (dashed lines showing interpolation) occurred when vertical profile measurements were carried out.

304

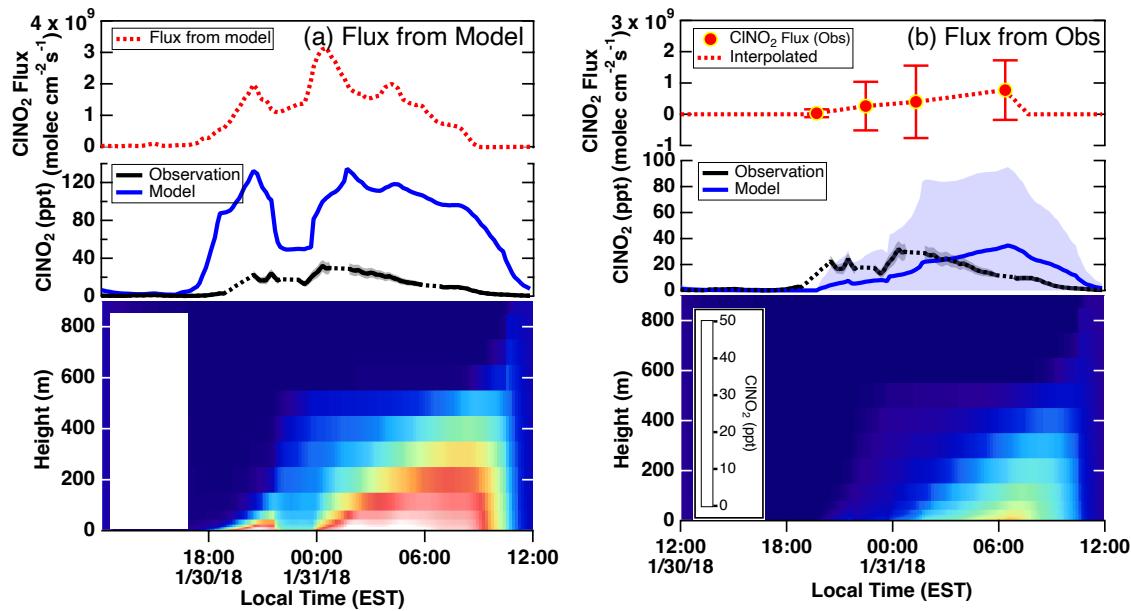
305 The bare ground case night (Jan. 31 – Feb. 1) had stable atmospheric conditions with
 306 constant wind direction and speed (average of $1.4 \pm 0.3 \text{ m s}^{-1}$) resulting in a friction velocity of
 307 $0.1 - 0.2 \text{ m s}^{-1}$ and eddy diffusivity of $\sim 0.05 \text{ m}^2 \text{ s}^{-1}$ (**Figure S8a**). During the night, average O_3
 308 levels were $12 \pm 1 \text{ ppb}$ (range of 10 to 15 ppb). This shows that ozone was not completely titrated
 309 by NO from local vehicular emissions.^{99–101} N_2O_5 levels showed stable sustained levels of 150 -
 310 250 ppt, while ClNO_2 steadily increased through the night to $\sim 50 \text{ ppt}$, then started declining upon

311 sunrise (7:56 am local time) (**Figure 2a**). The lifetime of ClNO₂ in the early morning (9:00 – 10:00
312 local time, EST) was calculated to be ~6 h, and ~80 min at midday (11:00 – 13:00).

313 Vertical profile measurements to calculate ClNO₂ fluxes were not carried out on the night
314 of the bare ground case (Jan. 31 – Feb. 1). Therefore, for this modeling study, ClNO₂ fluxes from
315 vertical profiles measured on the bare ground night of Feb 22-23 are used (Figure 1). The friction
316 velocity during the night of Feb 22 was an average of $0.18 \pm 0.03 \text{ m s}^{-1}$ and during the night of
317 Jan 31 was $0.3 \pm 0.1 \text{ m s}^{-1}$. **Figure 1a** shows that the average ClNO₂ flux on Feb 22-23 was -
318 $3.0 \times 10^8 (\pm 2.7 \times 10^8) \text{ molec cm}^{-2} \text{ s}^{-1}$, showing that there was net deposition of ClNO₂ to the surface.
319 For context, the bare ground ClNO₂ flux averaged over the entire field study was $-2.4 \times 10^8 (\pm$
320 $2.3 \times 10^8) \text{ molec cm}^{-2} \text{ s}^{-1}$.²⁷ The calculated average ClNO₂ deposition velocity on the night of Feb.
321 22 was $0.5 \pm 0.3 \text{ cm s}^{-1}$, which is not statistically different from the campaign averaged ClNO₂
322 deposition velocity, during bare ground days that showed negative ClNO₂ fluxes, of $0.2 \pm 0.3 \text{ cm}$
323 s^{-1} ($p=0.9$).²⁷ For N₂O₅, the flux was not statistically significantly different between the snow cover
324 and bare ground nights, with a campaign average of $-2.8 \times 10^9 (\pm 0.9 \times 10^9) \text{ molec cm}^{-2} \text{ s}^{-1}$.²⁷

325 During the snow cover case night, wind speeds were ~1.7 m s⁻¹ prior to ~1:00 – 2:00 local
326 time, and increased afterwards (**Figure 2**). Following this wind speed transition, the friction
327 velocity was $> 0.25 \text{ m s}^{-1}$, and eddy diffusivity were $> 0.05 \text{ m}^2 \text{ s}^{-1}$ (**Figure S8b**). As a result, the
328 snow cover case (**Figure 2b**) showed greater fluctuations in the trace gas levels compared to the
329 bare ground case. During the night, O₃ showed an average of $23 \pm 2 \text{ ppb}$ (range 21 to 26 ppb).
330 Nighttime N₂O₅ varied between 100 and 400 ppt. ClNO₂ reached a maximum of ~40 ppt at 1:00 –
331 2:00 and then steadily decreased for the remainder of the night. For the full SNACK field campaign,
332 Kulju et al.²⁸ showed that nighttime ClNO₂ levels over snow covered ground were ~3 times higher
333 on average compared to over bare ground. Nighttime ClNO₂ levels during the two case days, used

334 in this study, averaged over 18:00 to 8:00 local time, were 24 ± 13 ppt for the bare ground case
335 night and 17 ± 8 ppt for the snow cover night. However, when averaged from 18:00 to 1:00 local
336 time (to account for the mixing event on the snow case night), averaged ClNO_2 was 17 ± 9 ppt for
337 the snow cover night and 12 ± 7 ppt for the bare ground night, showing that the ClNO_2 levels over
338 snow cover were indeed significantly higher ($p=0.017$). The increased atmospheric turbulence at
339 around 1:00-2:00 corresponded to an air mass shift that resulted in decreases in both O_3 and N_2O_5
340 at $\sim 1:00$ (**Figure 2b**). Total particle (14 nm – 20 μm in diameter) surface area concentration
341 (**Figure S3b**) and $\text{PM}_{2.5}$ chloride mass concentration (**Figure S2b**) also decreased at $\sim 1:00$. For
342 the remainder of the night after $\sim 3:00$, N_2O_5 and $\text{PM}_{2.5}$ chloride remained approximately constant
343 (350 ppt and $0.06 \mu\text{g m}^{-3}$, respectively), while friction velocity continued to increase and ClNO_2
344 and particle surface area concentrations continued to decrease.


345 Four vertical profile measurements were carried out on the night of the snow case (Jan. 30-
346 31) (**Figure 1(b)**). As reported by McNamara et al.,²⁷ the N_2O_5 deposition velocity averaged over
347 the snow cover days throughout the entire study was $0.5 \pm 0.2 \text{ cm s}^{-1}$, with the snow case night
348 average being $1.0 \pm 0.8 \text{ cm s}^{-1}$. On the snow case night, a positive ClNO_2 flux was calculated, with
349 an average of $3.7 \times 10^8 (\pm 3.1 \times 10^8) \text{ molec cm}^{-2} \text{ s}^{-1}$, showing net emission from the snowpack. This
350 result is in line with the campaign average ClNO_2 flux over snow of $3 \times 10^7 (\pm 14 \times 10^7) \text{ molec cm}^{-2} \text{ s}^{-1}$.²⁷

352

353 **3.2. Model overestimates observed snowpack ClNO_2 flux**

354 Simulations of atmospheric ClNO_2 were carried out using a coupled atmosphere-snow 1D
355 model.⁴⁰ To examine only snowpack-produced ClNO_2 , ClNO_2 production from aerosols was
356 turned off for the first model scenario. **Figure 3** shows the model results of the time-resolved

357 vertical distribution of ClNO₂ when (a) the snow module was used to calculate ClNO₂ production,
358 compared to when (b) the model was instead constrained by the observationally derived fluxes²⁷
359 (**Figure 1b**). The model simulated snowpack ClNO₂ flux averaged $1.6 \times 10^9 (\pm 0.6 \times 10^9)$ molec
360 cm⁻² s⁻¹, with a range of $0.7 - 3.1 \times 10^9$ molec cm⁻² s⁻¹ during the snow cover case night, representing
361 net emission of ClNO₂ from the snowpack (**Figure 3a**). This ClNO₂ snowpack flux is a factor of
362 6 (± 7) higher than what was derived from measurements (**Figure 3b**), as reported by McNamara
363 et al.²⁷ As a result, the snow module simulated near-surface (1.4 m) ClNO₂ (**Figure 3a**) was on
364 average 100 (± 25) ppt (range 50 – 135 ppt) at night; this corresponds to up to ~ 10 times (average
365 6 times) higher than the observations, representing a significant overestimate. In contrast, the
366 simulations constrained with the observationally driven fluxes (**Figure 3b**) underestimated the
367 observation mole ratios at 1.4 m until 2-3 am EST. For the remainder of the night, the measured
368 ClNO₂ declined, as discussed in Sec. 3.1, and the flux-constrained model simulations
369 overestimated the observations up to ~ 3 times. However, the uncertainties in the measurement-
370 derived ClNO₂ fluxes resulted in a wide range of simulated ClNO₂ (near zero to ~ 100 ppt near the
371 surface) (**Figure 3b**). Within this wide range of uncertainty in ClNO₂ fluxes, the observations were
372 within the uncertainty of model simulations. However, this does not imply that the measured
373 ClNO₂ could be solely explained by snow emissions. Rather, this result further shows that the
374 model is sensitive to the snowpack ClNO₂ flux demonstrating its important and yet highly
375 uncertain role in producing near-surface ClNO₂.

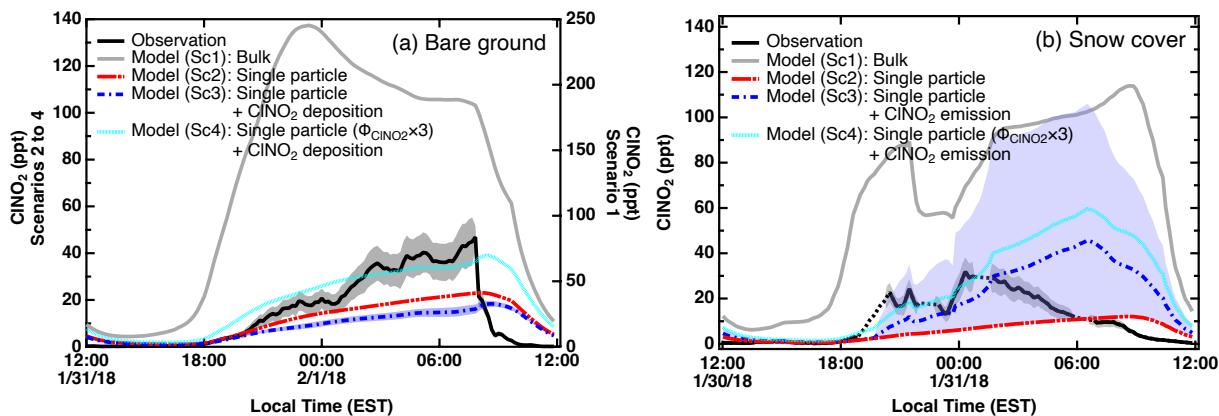
Figure 3 CINO₂ model simulation results when (a) using the model snow module and (b) constraining the model with observationally derived CINO₂ flux reported by McNamara et al. (2021) and also shown in Figure 1b. (top) Diel variation of model simulated and observationally derived CINO₂ fluxes, which were interpolated (dashed line, flux set to zero between sunrise and sunset) and constrained in the model. Error bars are shown for measurement uncertainties. (middle) CINO₂ measurements (black, uncertainty in shade) compared to model resolved vertical profiles of model simulated CINO₂.

378 The significant difference in the CINO₂ fluxes calculated by the snow module and derived
 379 from observations shows that uncertainties remain in simulating snowpack production of trace
 380 gases. In this model⁴⁰ and following other snow models,^{66,67} we assumed that spherical snow grains
 381 are entirely covered with brine and are available to react with N₂O₅ to release CINO₂. This
 382 assumption means that all chloride measured in the snow melt is assumed to be at the snow grain
 383 surface in the brine.^{40,98} However, this is unrealistic and an upper limit as additional unknown
 384 physical or chemical factors that limit the formation and subsequent transport within the snowpack
 385 may exist.¹⁰² For example, within a likely non-spherical snow grain, chemical species are not
 386 homogeneously distributed, with spatial variation between brine patches, grain boundaries, and ice
 387 crystal surfaces, which is not currently represented in model frameworks.^{102–104} Not all snow

388 chloride is expected to be available for reaction to generate ClNO_2 , and this is one of many
389 uncertainties likely leading to the snow module overestimating the observed ClNO_2 in **Figure 3**.

390 An additional uncertainty is the N_2O_5 uptake and ClNO_2 yield values on snow grains, for
391 which laboratory studies are lacking. A qualitative snow chamber study by McNamara et al.²⁷
392 exposed local snow to synthesized N_2O_5 during the SNACK campaign. The results showed that
393 snowpack physical structure characteristics, which are influenced by temperature and the use of
394 deicing materials, control the availability of snow Cl^- and reactive surface area.²⁷ In our modeling
395 study, the snowpack temperature was assumed to be the same as the near-surface air, which is an
396 upper limit that affects the calculated N_2O_5 uptake and ClNO_2 yield values and model simulated
397 ClNO_2 .⁴⁰ Due to latent heat of fusion for phase transition and radiational cooling, the snowpack
398 temperature is likely lower than the overlying air since snow patches remained when the air
399 temperature was above freezing in the early morning of Feb. 1 (**Figure S7**). This overestimated
400 temperature in the model drives the snow grain brine fraction (f_{brine}) to be higher, which dilutes the
401 chloride content and therefore results in lower yields. The snow f_{brine} was calculated to be 0.1 - 1 %
402 during the night and reach 100 % in the early morning as the temperature constrained in the model
403 increased to over the freezing point, set as 273 K (**Figure S7**). Based on the fraction of the liquid
404 brine layer and the resulting ion concentration of snow grains, $\gamma_{\text{N}_2\text{O}_5,s}$ ranged between 0.023-0.027,
405 within the wide range ($10^{-4} - 0.1$) of $\gamma_{\text{N}_2\text{O}_5}$, reported by laboratory and field studies on particles.⁶⁹
406 The calculated $\Phi_{\text{ClNO}_2,s}$ was sensitive to temperature and ranged from 0.4 to 1 during the night and
407 dropped to near zero when the snow f_{brine} was calculated to be 1 (i.e. complete snowmelt, which
408 was not observed), leading to significant dilution of chloride. This is consistent with the previous
409 discussion by Wang et al.,⁴⁰ in which the model calculated $\Phi_{\text{ClNO}_2,s}$ was found to be highly sensitive
410 to temperature. Further, both $\gamma_{\text{N}_2\text{O}_5,s}$ and $\Phi_{\text{ClNO}_2,s}$ of snow grains are a function of chloride in the

411 model.⁴⁰ The nitrate effect that can suppress ClNO₂ formation⁷² is expected to be insignificant
412 considering the low levels ($29 \pm 3 \mu\text{M}$, ~15 times less than Cl⁻ or Na⁺) measured from the snow
413 samples collected on the snow case day.²⁷ Overall, further studies are needed to characterize the
414 efficiency of ClNO₂ generation and release from the snowpack.⁵³


415 As expected, **Figure 3** shows that simulated ClNO₂ levels were highest near the ground for
416 the snowpack-produced ClNO₂ model scenarios. However, the model results also show that the
417 snowpack-produced ClNO₂ was vertically transported throughout the nocturnal stable boundary
418 layer, the depth of which was estimated to be ~ 450 m (**Figure S10b**). The drop in ClNO₂ mole
419 ratios between 21:00 and 23:00 EST, observed in both in the model simulations and observations,
420 is likely due to enhanced atmospheric mixing as evidenced by the increase in the vertical eddy
421 diffusivity (**Figure S3b**) during this time period. The modeled ClNO₂ was confined to the
422 nocturnal stable boundary layer with no significant levels in the residual layer aloft as the
423 production from aerosol particles were turned off in the model and therefore the snow-covered
424 ground was the only source of ClNO₂.

425

426 **3.3. Single-particle (chemically-resolved surface area) parameterization improves ClNO₂**
427 **simulation**

428 In this section, we compare ground level (1.4 m) ClNO₂ observations to model simulations
429 with various scenarios of aerosol particles and/or snowpack as sources of ClNO₂ (**Figure 4**). As
430 described in section 2.3, we use two parameterization methods for deriving $\gamma_{N2O5,p}$ and $\Phi_{ClNO2,p}$
431 in simulating ClNO₂ generation from aerosol particles: 1) bulk method⁷² and 2) single-particle
432 (chemically-resolved surface area) parameterization.³⁵ The bulk parameterization assumes that all
433 particles have identical composition, while the single-particle parameterization is based on

434 measurement-derived chemically resolved surface area concentrations. This new parameterization
 435 accounts for variations between particle types (e.g. soot vs. road salt) in N_2O_5 uptake and ClNO_2
 436 production, enabling only a subset of aerosol particles to produce ClNO_2 . For the single-particle
 437 method, calculated surface-area weighted $\gamma_{\text{N}_2\text{O}_5,p}$ and $\Phi_{\text{ClNO}_2,p}$ values reported in the literature
 438 were applied for different particle types (Table S3). In Figure 4, model scenario 1 (Sc1) uses the
 439 bulk method⁷² and scenario 2 (Sc2) uses the single-particle parameterization for ClNO_2
 440 production.³⁵ For both scenarios (Sc1 and Sc2), snowpack ClNO_2 production was turned off in the
 441 model, and therefore aerosol particles were the only source of simulated ClNO_2 . For scenario 3
 442 (Sc3), ClNO_2 was produced from aerosols through the single particle method; in addition, the
 443 measured ClNO_2 surface flux (depositing over bare ground, Figure 4a, or emitting over snow cover,
 444 Figure 4b) was constrained.²⁷ Scenario 4 (Sc4) was similar to Sc3, with the ClNO_2 yield from
 445 particles increased by a factor of 3.

Figure 4 Comparison between measured and modeled ClNO_2 during (a) bare ground and (b) snow cover case days. Model results from the atmospheric layer corresponding to the measurement height (1.4 m) are shown. Scenario 1 (Sc1), scenario 2 (Sc2), and scenario 3 (Sc3) show modeled ClNO_2 using the particle bulk parameterization, single particle parameterization, and single particle parameterization with measured ClNO_2 emission/deposition constrained, respectively. Scenario 4 (Sc4) was similar to Sc3, with the ClNO_2 yield increased by three times. For observations (black), grey shades are uncertainties, and the black dashed line shows interpolated points from when vertical profile measurements were conducted. For S3, blue shades correspond to when the model is constrained with upper and lower bounds of deposition (a, bare ground) and emission (b, snow cover). Emissions during the snow case day were set to zero for the lower bound.

447

448 The results of the ground level ClNO₂ model simulations show that the bulk method (Sc1)
449 overestimates the ClNO₂ levels, while the single-particle parameterization (Sc2) underestimates
450 them (**Figure 4b**). For the bare ground case (**Figure 4a**), Sc1 overestimated ClNO₂ mole ratios by
451 an average factor of 10 (range 4 - 27 times), while Sc2 underestimated on average by 40 %. For
452 the snow cover case (**Figure 4b**), Sc1 overestimated by an average factor of 5 (range 2-11 times),
453 while Sc2 underestimated on average by a factor of 3 (range 0.8 – 7). In the bulk parameterization,
454 calculated $\gamma_{N2O5,p}$ and $\Phi_{ClNO2,p}$ are driven by particle liquid water content and measured particulate
455 chloride and nitrate mass concentrations (**Figure S2**). The bulk method gives $\gamma_{N2O5,p}$ values
456 ranging from 0.019 to 0.031 (average 0.0252 ± 0.004) and $\Phi_{ClNO2,p}$ values ranging from 0.815 to
457 0.983 (average 0.92 ± 0.07) for the bare ground case, and $\gamma_{N2O5,p}$ values ranging from 0.025 to
458 0.036 (average 0.029 ± 0.004) and $\Phi_{ClNO2,p}$ values ranging from 0.944 to 0.993 (average $0.98 \pm$
459 0.02) for the snow cover case (**Figure S2**). For the single-particle parameterization, $\gamma_{N2O5,p}$ values
460 were 0.0048 and 0.0045 for the bare ground and snow case periods, respectively, with calculated
461 $\Phi_{ClNO2,p}$ of 0.138 and 0.121, respectively. For both methods, both parameters were within the wide
462 range ($\gamma_{N2O5,p}$: $10^{-4} – 0.1$ and $\Phi_{ClNO2,p}$: 0-1) reported by previous laboratory and field studies.^{68,69}
463 However, the calculated $\gamma_{N2O5,p}$ and $\Phi_{ClNO2,p}$ values from the bulk method (Sc1) were roughly
464 factors of 6-8 higher than the single-particle parameterization (Sc2), thus explaining the large
465 difference in simulated ClNO₂ between the two scenarios. Notably, the differences in $\gamma_{N2O5,p}$ and
466 $\Phi_{ClNO2,p}$ between the two methods are higher than in McNamara et al.,³⁵ who reported 2-3 times
467 higher $\gamma_{N2O5,p}$ and $\Phi_{ClNO2,p}$ using the bulk method compared to the single-particle
468 parameterization for wintertime Ann Arbor, MI.

469 Scenario 3 (Sc3) was constrained with observationally derived ClNO₂ surface flux,
470 reported previously by McNamara et al.²⁷, in addition to ClNO₂ production from particles using
471 the single-particle parameterization (Sc2). These fluxes describe ClNO₂ surface deposition to the
472 bare ground and emission from the snow cover. When the observationally derived ClNO₂ flux was
473 constrained in the model, the bare ground case simulation (**Figure 4a**, Sc3) further underestimated
474 the observed ClNO₂ mole ratios and only explained on average $53 \pm 12\%$ of the observed ClNO₂.
475 Adjusting the simulation based on the uncertainty in the measurement-derived ClNO₂ deposition
476 velocity did not make a significant difference. For the snow cover case (**Figure 4b**, Sc3),
477 constraining the ClNO₂ surface flux from snow²⁷ resulted in lower ClNO₂ mole ratios (average
478 2 ± 1 times range 1-5 times) than observations during the night until 1:00 EST. Therefore, for the
479 snow case, adding the snowpack ClNO₂ emission flux improved the ClNO₂ agreement compared
480 to Sc2, which included only aerosol particle-produced ClNO₂. The large measurement
481 uncertainties in the snowpack ClNO₂ emission fluxes resulted in a significant range of modeled
482 ClNO₂ (**Figure 4b**), indicating that the ClNO₂ simulations were highly sensitive to the snowpack
483 emissions. The important role of snowpack ClNO₂ production in the simulations is consistent with
484 the whole-campaign observations by Kulju et al.,²⁸ who found higher ClNO₂ mole ratios when
485 snow-covered ground was present, which could not be explained by air turbulence, N₂O₅, or
486 several other variables, and attributed this finding to the snowpack ClNO₂ flux. The NO₂ level
487 does not have a significant impact on the simulated ground level ClNO₂, as shown in **Figure S12**,
488 since the corresponding model layer was constrained with the measured N₂O₅ at the field site.

489 The simulated ClNO₂ mole ratios were typically lower than observations for Sc2 and Sc3,
490 which both used the single-particle parameterization (**Figure 4**). The weighted $\gamma_{N2O5,p}$ and
491 $\Phi_{ClNO2,p}$ values depend on the laboratory-derived quantities chosen for each ambient particle type

492 as summarized in **Table S3**. Therefore, uncertainties derive from limited laboratory studies of
493 realistic particle types and matching these to the ambient particles. During the two case days, the
494 majority of the particles, by number, corresponded to residential wood burning (**Figure S6**). To
495 our knowledge, only one laboratory study has reported $\gamma_{N2O5,p}$ and $\Phi_{ClNO2,p}$ values for biomass
496 burning aerosols.¹⁰⁵ Goldberger et al.¹⁰⁵ reported $\gamma_{N2O5,p}$ values ranging from 2×10^{-3} to 6×10^{-3}
497 and $\Phi_{ClNO2,p}$ ranging from non-detectable to 50 % from burning various types of vegetation,
498 depending on fuel chloride content. For the single particle parameterization, we applied the $\gamma_{N2O5,p}$
499 value from Goldberger et al.¹⁰⁵ for aerosols produced from burning longleaf pine needles (0.003).
500 The $\Phi_{ClNO2,p}$ value from the same study for aerosols produced from burning saw palmetto (0.03)
501 was used,¹⁰⁵ even though this fuel has a chloride content higher than expected for residential wood
502 burning fuels in Michigan. As the modeled ClNO₂ from the single-particle parameterization (Sc2
503 and Sc3) underestimated the observations, the overall ClNO₂ yield was increased by a factor of 3
504 ($\Phi_{ClNO2,p} = 0.36$) for Sc4, which improved agreement with the observed ClNO₂ mole ratios (**Figure**
505 **4**). For the bare ground case, average ClNO₂ during the night was measured to be 22 ± 13 ppt,
506 compared to 24 ± 10 ppt for Sc4. For the snow cover case, average ClNO₂ was measured to be 20
507 ± 5 ppt from sunset to 1:00, compared to 19 ± 6 ppt for Sc4. This is equivalent to increasing the
508 $\Phi_{ClNO2,p}$ from biomass burning aerosols by \sim 10 times ($\Phi_{ClNO2,p} = \sim 0.3$). While this increased
509 $\Phi_{ClNO2,p}$ was similar to previous field estimates of biomass burning influenced air masses ($\Phi_{ClNO2,p}$
510 of $0.06 - 0.2$),³⁰ this is surprising as the chloride content of the particles was below the EDX
511 detection limit, suggesting trace chloride levels. This low level of particulate chloride is expected
512 for residential fuels likely to be dominated by wood with low chloride content. The ClNO₂ yield
513 from biomass burning aerosols can be affected by various factors including organic coating and

514 chloride content, which are impacted by the type of vegetation and aging during atmospheric
515 transport.^{105–107} Therefore, further laboratory studies deriving N_2O_5 uptake and ClNO_2 yield values
516 with varying burn conditions and different types of vegetation are required to improve
517 understanding and constraint of ClNO_2 production from biomass burning aerosols, especially
518 residential wood burning aerosols.

519

520 **3.4. Vertically-resolved ClNO_2 from aerosol particles and snow**

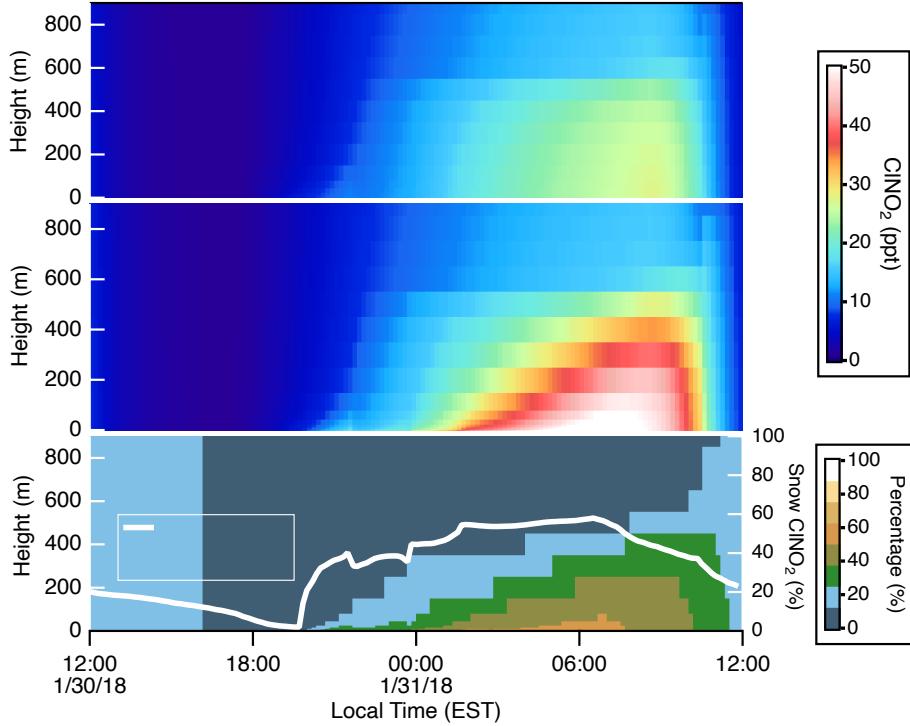
521 While both aerosol particles and snow contribute to ClNO_2 formation (Sections 3.2 and
522 3.3), the relative contributions of each to the simulated vertical distributions of ClNO_2 were
523 compared for the best model scenario (Sc4). To isolate the aerosol particle production only, a
524 modified Sc4 simulation was run in which the snow ClNO_2 flux was not included (**Figure 5a**).
525 This was compared to the simulation results of Sc4 with ClNO_2 production from both aerosol
526 particles and surface snow, with the snow constrained by the measurement-derived flux (**Figure**
527 **5b**). This scenario agrees best with the observations until 1:00 local time when measured ClNO_2
528 started declining due to atmospheric mixing (Section 3.1).

529

530

531

532


533

534

535

536

537
538
539
540
541
542
543
544
545
546

Figure 5 Vertical and diel distributions of simulated ClNO₂ mole ratios with formation from: (a) particles and (b) particles + snow emission. The ClNO₂ yield was multiplied by three for the single particle parameterization (model scenario Sc4 in Figure 4). Observationally driven ClNO₂ emission fluxes from snow, reported by McNamara et al. (2021), were used for snow emissions (see Figure 1). (c) Vertically resolved percentage of the modeled ClNO₂ from the difference between *b* (particles + snow) and *a* (particles) are shown as a function of time, with the percentage at ground level (1.4 m) from snow emissions. Nocturnal stable boundary layer height was estimated to be ~ 450 m (**Figure S10**).

547
548
549
550
551
552
553
554
555
556

For both aerosol only and aerosol + snow scenarios, modeled ClNO₂ in the nocturnal boundary layer steadily increased throughout the night. For the aerosol particle only simulations (Figure 5a) the highest levels were simulated to be at around 8:30 and ranged 23 – 27 ppt of ClNO₂ throughout the boundary layer. When both aerosol particles and surface snow were sources of ClNO₂ (Figure 5b), the maximum ClNO₂ levels reached 65 ppt at 6:30 for the lowest atmospheric model layer (i.e., the layer right above the snowpack). The maximum percentage of ClNO₂ from snow emissions (Figure 5c) was up to 61 % at 6:30 local time in the lowest atmospheric model layer. During the nighttime (sunset to 1 pm), the average contribution of snowpack-produced ClNO₂ was 36 ± 9 % (range 2 - 47 %) in the surface model layer corresponding to the observation

557 height (1.4 m). It should be noted that the modeled turbulent transport is uncertain (supporting
558 information, **S3**), and reduced model-measurement agreement was found after 1:00. However,
559 despite uncertainties, it is clear that the saline snowpack can be a significant source of ClNO₂ in
560 the wintertime urban environment.

561

562 **4. Conclusion**

563 In this study, we examined the contributions of ClNO₂ production from aerosol particles
564 and the urban wintertime snowpack in Kalamazoo, MI, using an observationally constrained
565 atmosphere and snow coupled 1D model. The modeling study was motivated by the work of
566 McNamara et al.²⁷ who showed net ClNO₂ surface deposition over bare ground and net ClNO₂
567 emission over snow covered ground, with no significant difference in N₂O₅ deposition velocities.
568 Kulju et al.²⁸ reported higher ClNO₂ levels over snow covered ground compared to bare ground
569 across the entire field campaign. Therefore, two case periods, over bare ground and snow cover,
570 were simulated to examine vertically-resolved contributions of ClNO₂ produced from aerosol
571 particles and saline snow, both impacted by road salt application for deicing.

572 The model was constrained with snow parameters and surface observations, including
573 observationally driven ClNO₂ surface flux reported by McNamara et al.²⁷ The snowpack ClNO₂
574 emission flux from the snow module was ~6 times higher than the measurement-derived flux. This
575 overestimation of the snow module in simulating the observed surface ClNO₂ flux is due to the
576 many model uncertainties, including the unknown availability of chloride in the snowpack for
577 reaction, which is influenced by the physical characteristics of the snow grains. The chemical and
578 physical complexity of the snowpack as a reactive media is yet to be fully represented in models.¹⁰²

579 Further laboratory and field studies investigating the various factors controlling snow trace gas
580 (including ClNO₂) production are needed.

581 When comparing different parameterization methods of ClNO₂ production from aerosol
582 particles, model results show that assuming a homogenous aerosol composition (i.e. the “bulk”
583 method)³⁵ overestimated the surface level measurements. This overestimation in simulated ClNO₂
584 when using the bulk method was also reported by McNamara et al.²⁷ for a previous wintertime
585 study in Ann Arbor, MI. This demonstrates that the assumption of homogenous aerosol particle
586 composition leads to an unrealistic representation of ClNO₂ production, since not all particles have
587 equivalent N₂O₅ uptake values and not all particles contain chloride. However, model results of
588 the single-particle (chemically-resolved surface area) parameterization explained only 30-40 % of
589 the measured surface ClNO₂ for both case days. Including measurement-derived ClNO₂ emissions
590 from surface snow improved agreement with measured ground level ClNO₂ for the snow case,
591 underestimating by ~50 %. Model sensitivity studies showed that the observed ClNO₂ levels were
592 within the model simulations, given the large uncertainty in the measurement-derived ClNO₂
593 emissions. Constraining the measured ClNO₂ surface deposition for the bare ground case further
594 reduced the simulated ClNO₂. This result demonstrates the need for additional studies of ClNO₂
595 surface deposition velocities and comparison to results from numerical models. To improve the
596 simulations for both case days, the overall single-particle parameterization ClNO₂ yield was
597 increased by a factor of three, which led to agreement with the observations. However, limited
598 information is available on the efficiency of ClNO₂ generation from authentic particle types, and
599 more laboratory studies are needed to constrain the parametrization and reduce this uncertainty. In
600 particular, there is high uncertainty from using N₂O₅ uptake and ClNO₂ yield values from only one
601 study of biomass burning particles¹⁰⁵ from vegetation that are not representative of the field site.

602 The results in this study show the significant contribution of ClNO₂ production from an
603 urban wintertime snowpack. The snowpack-emitted ClNO₂ was simulated to be vertically
604 transported throughout the nocturnal stable boundary layer. Vertical profiles of modeled ClNO₂
605 show that the contribution of snowpack ClNO₂ can be up to ~60 % near the surface, decreasing to
606 ~9 % near the top of the boundary layer. This highlights how reactions on the surface snowpack
607 likely have a significant influence on atmospheric oxidation and composition upon ClNO₂
608 photolysis during the following day. Vertically-resolved observations are needed to improve
609 understanding of ClNO₂ over the saline snowpack and enable further evaluation and quantitation
610 of the vertically-resolved contributions of ClNO₂ production from aerosol particles and the saline
611 snowpack. The results of this study can be extended to other saline snowpacks, such as coastal
612 regions, where significant levels of chloride can accumulate in snow through sea salt aerosol
613 deposition.¹⁰⁸

614
615 **Supporting Information**

616 Further details on CIMS measurements (S1); 1D-model set-up (S2); turbulent transport
617 calculations in model (S3); heterogeneous reactions on aerosols and snowpack (S4); CCSEM-
618 EDX analysis of particles (S5); ClNO₂ model simulations in residual layer (S6); additional model
619 constraints (Table S1); snow parameter inputs in model (Table S2); N₂O₅ uptakes and ClNO₂
620 yields of different particle (Table S3); observed HCl (Figure S1); parameters used in calculating
621 N₂O₅ uptake and ClNO₂ yield (Figure S2); particle number concentration and total surface area
622 (Figure S3); size distributions of particles (Figure S4); SEM images and EDX spectra of particles
623 (Figure S5); size distribution of particles from CCSEM-EDX (Figure S6); snow N₂O₅ uptake and
624 ClNO₂ yield (Figure S7); diel friction velocity and eddy diffusivity (Figure S8); 1D model
625 schematic (Figure S9); vertical absolute humidity, potential temperature, and eddy diffusivity

626 (Figure S10); estimated boundary layer height and eddy diffusivity (Figure S11); and modeled
627 NO₂ (Figure S12).

628
629
630

631 **Acknowledgements**

632

633 Financial support was provided by the National Science Foundation (AGS-1738588 and PLR-
634 1417914) and the University of Michigan (U-M) College of Literature, Science, and the Arts and
635 Department of Chemistry. D.J. was supported by the National Center for Atmospheric Research
636 Advanced Study Program for efforts during manuscript revisions. Q.C. was supported by the
637 National Natural Science Foundation of China (42205115) during manuscript revisions. J.E. was
638 supported by the Schweizerischer Nationalfonds zur Forderung der Wissenschaftlichen Forschung
639 (155999). S.W. was partially supported by NOAA cooperative agreements NA17OAR4320101
640 and NA22OAR4320151. We thank Andrew Ault, Nicholas Ellsworth, and Matthew McNamara
641 for assistance in preparing the mobile laboratory, Jasmine Mumpfield for snow ion
642 chromatography analysis, Katheryn Kolesar for field campaign planning assistance, Angela Raso,
643 Peter Peterson, Guy Burke, and Alexa Watson for fieldwork assistance, and James Brunemann for
644 CCSEM-EDX data collection assistance. Steven B. Bertman and the Facilities Management
645 Department at Western Michigan University are thanked for providing field site access and
646 electrical support.

647

648

649

650

651

652

653

654 **References**

655

656 (1) Frenzel, A.; Scheer, V.; Sikorski, R.; George, Ch.; Behnke, W.; Zetzsch, C.
657 Heterogeneous Interconversion Reactions of BrNO₂, ClNO₂, Br₂, and Cl₂. *J. Phys.*
658 *Chem. A* **1998**, *102* (8), 1329–1337. <https://doi.org/10.1021/jp973044b>.

659 (2) George, Ch.; Behnke, W.; Scheer, V.; Zetzsch, C.; Magi, L.; Ponche, J. L.; Mirabel, Ph.
660 Fate of ClNO₂ Over Aqueous Solutions Containing Iodide. *Geophys Res Lett* **1995**, *22*
661 (12), 1505. <https://doi.org/10.1029/95GL01417>.

662 (3) Madronich, S.; Flocke, S. Handbook of Environmental Chemistry. In *Handbook of*
663 *Environmental Chemistry*; Springer_Verlag: Heidelberg, 1998; pp 1–26.

664 (4) Finlayson-Pitts, B. J.; M.J., E.; J.N., P. J. Formation of Chemically Active Chlorine
665 Compounds by Reactions of Atmospheric NaCl Particles with Gaseous N₂O₅ and
666 ClONO₂. *Nature* **1989**, *337* (19).

667 (5) Asaf, D.; Tas, E.; Pedersen, D.; Peleg, M.; Luria, M. Long-Term Measurements of NO₃
668 Radical at a Semiarid Urban Site: 2. Seasonal Trends and Loss Mechanisms. *Environ Sci*
669 *Technol* **2010**, *44* (15), 5901–5907. <https://doi.org/10.1021/es100967z>.

670 (6) Dentener, F. J.; Crutzen, P. J. Reaction of N₂O₅ on Tropospheric Aerosols: Impact on the
671 Global Distributions of NO_x, O₃, and OH. *Journal of Geophysical Research: Atmospheres* **1993**, *98* (D4), 7149–7163. <https://doi.org/10.1029/92JD02979>.

672 (7) Hossaini, R.; Chipperfield, M. P.; Saiz-Lopez, A.; Fernandez, R.; Monks, S.; Feng, W.;
673 Brauer, P.; Von Glasow, R. A Global Model of Tropospheric Chlorine Chemistry:
674 Organic versus Inorganic Sources and Impact on Methane Oxidation. *J Geophys Res*
675 **2016**, *121* (23), 14,271–14,297. <https://doi.org/10.1002/2016JD025756>.

676 (8) Horowitz, H. M.; Jacob, D. J.; Zhang, Y.; Dlbble, T. S.; Slemr, F.; Amos, H. M.; Schmidt,
677 J. A.; Corbitt, E. S.; Marais, E. A.; Sunderland, E. M. A New Mechanism for Atmospheric
678 Mercury Redox Chemistry: Implications for the Global Mercury Budget. *Atmos Chem*
679 *Phys* **2017**, *17* (10), 6353–6371. <https://doi.org/10.5194/acp-17-6353-2017>.

680 (9) Hoffmann, E. H.; Tilgner, A.; Schrödner, R.; Bräuer, P.; Wolke, R.; Herrmann, H. An
681 Advanced Modeling Study on the Impacts and Atmospheric Implications of Multiphase
682 Dimethyl Sulfide Chemistry. *Proc Natl Acad Sci U S A* **2016**, *113* (42), 11776–11781.
683 <https://doi.org/10.1073/pnas.1606320113>.

684 (10) Cai, X.; Ziomba, L. D.; Griffin, R. J. Secondary Aerosol Formation from the Oxidation of
685 Toluene by Chlorine Atoms. *Atmos Environ* **2008**, *42* (32), 7348–7359.
686 <https://doi.org/10.1016/j.atmosenv.2008.07.014>.

687 (11) Riva, M.; Healy, R. M.; Flaud, P. M.; Perraudin, E.; Wenger, J. C.; Villenave, E. Gas- and
688 Particle-Phase Products from the Chlorine-Initiated Oxidation of Polycyclic Aromatic
689 Hydrocarbons. *Journal of Physical Chemistry A* **2015**, *119* (45), 11170–11181.
690 <https://doi.org/10.1021/acs.jpca.5b04610>.

691 (12) Atkinson, R. Gas-Phase Tropospheric Chemistry of Volatile Organic Compounds: 1.
692 Alkanes and Alkenes. *J Phys Chem Ref Data* **1997**, *26* (2), 215–290.
693 <https://doi.org/10.1063/1.556012>.

694 (13) Levy, H. Normal Atmosphere: Large Radical and Formaldehyde Concentrations
695 Predicted. *Science (1979)* **1971**, *173* (3992), 141–143.
696 <https://doi.org/10.1126/science.173.3992.141>.

697 (14) Sherwen, T.; Evans, M. J.; Sommariva, R.; Hollis, L. D. J.; Ball, S. M.; Monks, P. S.;
698 Reed, C.; Carpenter, L. J.; Lee, J. D.; Forster, G.; Bandy, B.; Reeves, C. E.; Bloss, W. J.
699 Effects of Halogens on European Air-Quality. *Faraday Discuss* **2017**, *200*, 75–100.
700 <https://doi.org/10.1039/c7fd00026j>.

701

702 (15) Li, Q.; Zhang, L.; Wang, T.; Tham, Y. J.; Ahmadov, R.; Xue, L.; Zhang, Q.; Zheng, J.
703 Impacts of Heterogeneous Uptake of Dinitrogen Pentoxide and Chlorine Activation on
704 Ozone and Reactive Nitrogen Partitioning: Improvement and Application of the WRF-
705 Chem Model in Southern China. *Atmos Chem Phys* **2016**, *16* (23), 14875–14890.
706 <https://doi.org/10.5194/acp-16-14875-2016>.

707 (16) Wang, X.; Jacob, D. J.; Eastham, S. D.; Sulprizio, M. P.; Zhu, L.; Chen, Q.; Alexander,
708 B.; Sherwen, T.; Evans, M. J.; Lee, B. H.; Haskins, J. D.; Lopez-Hilfiker, F. D.; Thornton,
709 J. A.; Huey, G. L.; Liao, H. The Role of Chlorine in Global Tropospheric Chemistry.
710 *Atmos. Chem. Phys* **2019**, *19*, 3981–4003. <https://doi.org/10.5194/acp-2018-1088>.

711 (17) Sarwar, G.; Simon, H.; Xing, J.; Mathur, R. Importance of Tropospheric ClNO₂
712 Chemistry across the Northern Hemisphere. *Geophys Res Lett* **2014**, *41* (11), 4050–4058.
713 <https://doi.org/10.1002/2014GL059962>.

714 (18) Osthoff, H. D.; Roberts, J. M.; Ravishankara, A. R.; Williams, E. J.; Lerner, B. M.;
715 Sommariva, R.; Bates, T. S.; Coffman, D.; Quinn, P. K.; Dibb, J. E.; Stark, H.;
716 Burkholder, J. B.; Talukdar, R. K.; Meagher, J.; Fehsenfeld, F. C.; Brown, S. S. High
717 Levels of Nitryl Chloride in the Polluted Subtropical Marine Boundary Layer. *Nat Geosci*
718 **2008**, *1* (5), 324–328. <https://doi.org/10.1038/ngeo177>.

719 (19) Riedel, T. P.; Bertram, T. H.; Crisp, T. A.; Williams, E. J.; Lerner, B. M.; Vlasenko, A.;
720 Li, S. M.; Gilman, J.; De Gouw, J.; Bon, D. M.; Wagner, N. L.; Brown, S. S.; Thornton, J.
721 A. Nitryl Chloride and Molecular Chlorine in the Coastal Marine Boundary Layer.
722 *Environ Sci Technol* **2012**, *46* (19), 10463–10470. <https://doi.org/10.1021/es204632r>.

723 (20) McNamara, S. M.; W. Raso, A. R.; Wang, S.; Thanekar, S.; Boone, E. J.; Kolesar, K. R.;
724 Peterson, P. K.; Simpson, W. R.; Fuentes, J. D.; Shepson, P. B.; Pratt, K. A. Springtime
725 Nitrogen Oxide-Influenced Chlorine Chemistry in the Coastal Arctic. *Environ Sci Technol*
726 **2019**, *53* (14), 8057–8067. <https://doi.org/10.1021/acs.est.9b01797>.

727 (21) Thornton, J. A.; Kercher, J. P.; Riedel, T. P.; Wagner, N. L.; Cozic, J.; Holloway, J. S.;
728 Dubé, W. P.; Wolfe, G. M.; Quinn, P. K.; Middlebrook, A. M.; Alexander, B.; Brown, S.
729 S. A Large Atomic Chlorine Source Inferred from Mid-Continental Reactive Nitrogen
730 Chemistry. *Nature* **2010**, *464* (7286), 271–274. <https://doi.org/10.1038/nature08905>.

731 (22) Mielke, L. H.; Furgeson, A.; Osthoff, H. D. Observation of ClNO₂ in a Mid-Continental
732 Urban Environment. *Environ Sci Technol* **2011**, *45*, 8889–8896.
733 <https://doi.org/10.1021/es201955u>.

734 (23) Phillips, G. J.; Tang, M. J.; Thieser, J.; Brickwedde, B.; Schuster, G.; Bohn, B.; Lelieveld,
735 J.; Crowley, J. N. Significant Concentrations of Nitryl Chloride Observed in Rural
736 Continental Europe Associated with the Influence of Sea Salt Chloride and Anthropogenic
737 Emissions. *Geophys Res Lett* **2012**, *39* (10), 1–5. <https://doi.org/10.1029/2012GL051912>.

738 (24) Yun, H.; Wang, T.; Wang, W.; Tham, Y. J.; Li, Q.; Wang, Z.; Poon, S. C. N. Nighttime
739 NO_x Loss and ClNO₂ Formation in the Residual Layer of a Polluted Region: Insights
740 from Field Measurements and an Iterative Box Model. *Science of the Total Environment*
741 **2018**, *622–623* (x), 727–734. <https://doi.org/10.1016/j.scitotenv.2017.11.352>.

742 (25) Wang, X.; Wang, H.; Xue, L.; Wang, T.; Wang, L.; Gu, R.; Wang, W.; Tham, Y. J.;
743 Wang, Z.; Yang, L.; Chen, J.; Wang, W. Observations of N₂O₅ and ClNO₂ at a Polluted
744 Urban Surface Site in North China: High N₂O₅ Uptake Coefficients and Low ClNO₂
745 Product Yields. *Atmos Environ* **2017**, *156* (3), 125–134.
746 <https://doi.org/10.1016/j.atmosenv.2017.02.035>.

747 (26) Wang, Z.; Wang, W.; Tham, Y. J.; Li, Q.; Wang, H.; Wen, L.; Wang, X.; Wang, T. Fast
748 Heterogeneous N₂O₅ Uptake and ClNO₂ Production in Power Plant and Industrial
749 Plumes Observed in the Nocturnal Residual Layer over the North China Plain. *Atmos.*
750 *Chem. Phys.* **2017**, *175194* (3), 12361–12378. <https://doi.org/10.5194/acp-17-12361-2017>.

751 (27) McNamara, S. M.; Chen, Q.; Edebeli, J.; Kulju, K. D.; Mumpfield, J.; Fuentes, J. D.;
752 Bertman, S. B.; Pratt, K. A. Observation of N₂O₅Deposition and ClNO₂Production on the
753 Saline Snowpack. *ACS Earth Space Chem.* **2021**, *5* (5), 1020–1031.
754 <https://doi.org/10.1021/acsearthspacechem.0c00317>.

755 (28) Kulju, K. D.; McNamara, S. M.; Chen, Q.; Kenagy, H. S.; Edebeli, J.; Fuentes, J. D.;
756 Bertman, S. B.; Pratt, K. A. Urban Inland Wintertime N₂O₅ and ClNO₂ Influenced by
757 Snow-Covered Ground, Air Turbulence, and Precipitation. *Atmos Chem Phys* **2022**, *22*
758 (4), 2553–2568. <https://doi.org/10.5194/acp-22-2553-2022>.

759 (29) Wagner, N. L.; Riedel, T. P.; Roberts, J. M.; Thornton, J. A.; Angevine, W. M.; Williams,
760 E. J.; Lerner, B. M.; Vlasenko, A.; Li, S. M.; Dub??, W. P.; Coffman, D. J.; Bon, D. M.;
761 De Gouw, J. A.; Kuster, W. C.; Gilman, J. B.; Brown, S. S. The Sea Breeze/Land Breeze
762 Circulation in Los Angeles and Its Influence on Nitryl Chloride Production in This
763 Region. *Journal of Geophysical Research Atmospheres* **2012**, *117* (22), 1–15.
764 <https://doi.org/10.1029/2012JD017810>.

765 (30) Tham, Y. J.; Wang, Z.; Li, Q.; Wang, W.; Wang, X.; Lu, K.; Ma, N.; Yan, C.; Kecorius,
766 S.; Wiedensohler, A.; Zhang, Y.; Wang, T. Heterogeneous N₂O₅ Uptake Coefficient and
767 Production Yield of ClNO₂ in Polluted Northern China: Roles of Aerosol Water Content
768 and Chemical Composition. *Atmos Chem Phys* **2018**, *18* (17), 13155–13171.
769 <https://doi.org/10.5194/acp-18-13155-2018>.

770 (31) Tham, Y. J.; Wang, Z.; Li, Q.; Yun, H.; Wang, W.; Wang, X.; Xue, L.; Lu, K.; Ma, N.;
771 Bohn, B.; Li, X.; Kecorius, S.; Größ, J.; Shao, M.; Wiedensohler, A.; Zhang, Y.; Wang, T.
772 Significant Concentrations of Nitryl Chloride Sustained in the Morning: Investigations of
773 the Causes and Impacts on Ozone Production in a Polluted Region of Northern China.
774 *Atmos Chem Phys* **2016**, *16* (23), 14959–14977. <https://doi.org/10.5194/acp-16-14959-2016>.

775 (32) Riedel, T. P.; Wagner, N. L.; Dubé, W. P.; Middlebrook, A. M.; Young, C. J.; Öztürk, F.;
776 Bahreini, R.; Vandenboer, T. C.; Wolfe, D. E.; Williams, E. J.; Roberts, J. M.; Brown, S.
777 S.; Thornton, J. A. Chlorine Activation within Urban or Power Plant Plumes: Vertically
778 Resolved ClNO₂ and Cl₂ Measurements from a Tall Tower in a Polluted Continental
779 Setting. *Journal of Geophysical Research Atmospheres* **2013**, *118* (15), 8702–8715.
780 <https://doi.org/10.1002/jgrd.50637>.

781 (33) Mitroo, D.; Gill, T. E.; Haas, S.; Pratt, K. A.; Gaston, C. J. ClNO₂ Production from N₂O₅
782 Uptake on Saline Playa Dusts: New Insights into Potential Inland Sources of ClNO₂.
783 *Environ Sci Technol* **2019**, *53* (13), 7442–7452. <https://doi.org/10.1021/acs.est.9b01112>.

784 (34) Royer, H. M.; Mitroo, D.; Hayes, S. M.; Haas, S. M.; Pratt, K. A.; Blackwelder, P. L.;
785 Gill, T. E.; Gaston, C. J. The Role of Hydrates, Competing Chemical Constituents, and
786 Surface Composition on ClNO₂formation. *Environ Sci Technol* **2021**, *55* (5), 2869–2877.
787 <https://doi.org/10.1021/acs.est.0c06067>.

788 (35) McNamara, S. M.; Kolesar, K. R.; Wang, S.; Kirpes, R. M.; May, N. W.; Gunsch, M. J.;
789 Cook, R. D.; Fuentes, J. D.; Hornbrook, R. S.; Apel, E. C.; Laskin, A.; Pratt, K. A.
790 Observation of Road Salt Aerosol Driving Inland Wintertime Atmospheric Chlorine
791

792 Chemistry. *ACS Cent. Sci.* **2020**, *6* (5), 684–694.
793 <https://doi.org/10.1021/acscentsci.9b00994>.

794 (36) Owega, S.; Khan, B. U. Z.; D’Souza, R.; Evans, G. J.; Fila, M.; Jervis, R. E. Receptor
795 Modeling of Toronto PM2.5 Characterized by Aerosol Laser Ablation Mass Spectrometry.
796 *Environ Sci Technol* **2004**, *38* (21), 5712–5720. <https://doi.org/10.1021/es035177i>.

797 (37) Kumar, P.; Hopke, P. K.; Raja, S.; Casuccio, G.; Lersch, T. L.; West, R. R.
798 Characterization and Heterogeneity of Coarse Particles across an Urban Area. *Atmos*
799 *Environ* **2012**, *46*, 449–459. <https://doi.org/10.1016/j.atmosenv.2011.09.018>.

800 (38) Ault, A. P.; Peters, T. M.; Sawvel, E. J.; Casuccio, G. S.; Willis, R. D.; Norris, G. A.;
801 Grassian, V. H. Single-Particle SEM-EDX Analysis of Iron-Containing Coarse Particulate
802 Matter in an Urban Environment: Sources and Distribution of Iron within Cleveland,
803 Ohio. *Environ Sci Technol* **2012**, *46* (8), 4331–4339. <https://doi.org/10.1021/es204006k>.

804 (39) Bari, M. A.; Kindzierski, W. B. Eight-Year (2007–2014) Trends in Ambient Fine
805 Particulate Matter (PM2.5) and Its Chemical Components in the Capital Region of
806 Alberta, Canada. *Environ Int* **2016**, *91*, 122–132.
807 <https://doi.org/10.1016/j.envint.2016.02.033>.

808 (40) Wang, S.; McNamara, S. M.; Kolesar, K. R.; May, N. W.; Fuentes, J. D.; Cook, R. D.;
809 Gunsch, M. J.; Mattson, C. N.; Hornbrook, R. S.; Apel, E. C.; Pratt, K. A. Urban
810 Snowpack ClNO₂ Production and Fate: A One-Dimensional Modeling Study. *ACS Earth*
811 *Space Chem* **2020**, *4* (7), 1140–1148. <https://doi.org/10.1021/acsearthspacechem.0c00116>.

812 (41) Mineral Commodity Summaries 2020. *United States Geological Survey* **2020**, 200.

813 (42) Kelly, V. R.; Findlay, S. E. G.; Schlesinger, W. H.; Menking, K.; Chatrchyan, A. M. *Road*
814 *Salt: Moving Toward the Solution*; 2010.

815 (43) Kolesar, K. R.; Mattson, C. N.; Peterson, P. K.; May, N. W.; Prendergast, R. K.; Pratt, K.
816 A. Increases in Wintertime PM2.5 Sodium and Chloride Linked to Snowfall and Road
817 Salt Application. *Atmos Environ* **2018**, *177* (May 2017), 195–202.
818 <https://doi.org/10.1016/j.atmosenv.2018.01.008>.

819 (44) Patra, A.; Colvile, R.; Arnold, S.; Bowen, E.; Shallcross, D.; Martin, D.; Price, C.; Tate,
820 J.; ApSimon, H.; Robins, A. On Street Observations of Particulate Matter Movement and
821 Dispersion Due to Traffic on an Urban Road. *Atmos Environ* **2008**, *42* (17), 3911–3926.
822 <https://doi.org/10.1016/j.atmosenv.2006.10.070>.

823 (45) Mihailović, A.; Vučinić Vasić, M.; Ninkov, J.; Erić, S.; Ralević, N. M.; Nemeš, T.; Antić,
824 A. Multivariate Analysis of the Contents of Metals in Urban Snow near Traffic Lanes in
825 Novi Sad, Serbia. *Journal of the Serbian Chemical Society* **2014**, *79* (2), 265–276.
826 <https://doi.org/10.2298/JSC130311052M>.

827 (46) Denby, B. R.; Ketzel, M.; Ellermann, T.; Stojiljkovic, A.; Kupiainen, K.; Niemi, J. V.;
828 Norman, M.; Johansson, C.; Gustafsson, M.; Blomqvist, G.; Janhäll, S.; Sundvor, I. Road
829 Salt Emissions: A Comparison of Measurements and Modelling Using the NORTRIP
830 Road Dust Emission Model. *Atmos Environ* **2016**, *141*, 508–522.
831 <https://doi.org/10.1016/j.atmosenv.2016.07.027>.

832 (47) Mielke, L. H.; Furgeson, A.; Odame-Ankrah, C. A.; Osthoff, H. D. Ubiquity of ClNO₂ in
833 the Urban Boundary Layer of Calgary, Alberta, Canada. *Can J Chem* **2016**, *94* (4), 414–
834 423. <https://doi.org/10.1139/cjc-2015-0426>.

835 (48) Bartels-Rausch, T.; Jacobi, H. W.; Kahan, T. F.; Thomas, J. L.; Thomson, E. S.; Abbatt, J.
836 P. D.; Ammann, M.; Blackford, J. R.; Bluhm, H.; Boxe, C.; Domine, F.; Frey, M. M.;
837 Gladich, I.; Guzmán, M. I.; Heger, D.; Huthwelker, T.; Klán, P.; Kuhs, W. F.; Kuo, M. H.;

838 Maus, S.; Moussa, S. G.; McNeill, V. F.; Newberg, J. T.; Pettersson, J. B. C.; Roeselová,
839 M.; Sodeau, J. R. A Review of Air-Ice Chemical and Physical Interactions (AICI):
840 Liquids, Quasi-Liquids, and Solids in Snow. *Atmos Chem Phys* **2014**, *14* (3), 1587–1633.
841 <https://doi.org/10.5194/acp-14-1587-2014>.

842 (49) Abbatt, J.; Thomas, J. L.; Abrahamsson, K.; Boxe, C.; Granfors, A.; Jones, A. E.; King,
843 M. D.; Saiz-Lopez, A.; Shepson, P. B.; Sodeau, J.; Toohey, D. W.; Toubin, C.; Von
844 Glasow, R.; Wren, S. N.; Yang, X. Halogen Activation via Interactions with
845 Environmental Ice and Snow in the Polar Lower Troposphere and Other Regions. *Atmos*
846 *Chem Phys* **2012**, *12* (14), 6237–6271. <https://doi.org/10.5194/acp-12-6237-2012>.

847 (50) Grannas, A. M.; Jones, A. E.; Dibb, J.; Ammann, M.; Anastasio, C.; Beine, H. J.; Bergin,
848 M.; Bottenheim, J.; Boxe, C. S.; Carver, G.; Chen, G.; Crawford, J. H.; Dominé, F.; Frey,
849 M. M.; Guzmán, M. I.; Heard, D. E.; Helmig, D.; Hoffmann, M. R.; Honrath, R. E.; Huey,
850 L. G.; Hutterli, M.; Jacobi, H. W.; Klán, P.; Lefer, B.; McConnell, J.; Plane, J.; Sander, R.;
851 Savarino, J.; Shepson, P. B.; Simpson, W. R.; Sodeau, J. R.; von Glasow, R.; Weller, R.;
852 Wolff, E. W.; Zhu, T. An Overview of Snow Photochemistry: Evidence, Mechanisms and
853 Impacts. *Atmos Chem Phys* **2007**, No. 7, 4329–4373. <https://doi.org/10.5194/acpd-7-4165-2007>.

855 (51) Abbatt, J. Interactions of Atmospheric Trace Gases with Ice Surfaces: Adsorption and
856 Reaction. *Chem Rev* **2003**, *103* (12), 4783–4800. <https://doi.org/10.1021/cr0206418>.

857 (52) Domine, F.; Albert, M.; Huthwelker, T.; Jacobi, H. W.; Kokhanovsky, A. A.; Lehning,
858 M.; Picard, G.; Simpson, W. R. Snow Physics as Relevant to Snow Photochemistry.
859 *Atmos Chem Phys* **2008**, *8* (2), 171–208. <https://doi.org/10.5194/acp-8-171-2008>.

860 (53) Lopez-Hilfiker, F. D.; Constantin, K.; Kercher, J. P.; Thornton, J. A. Temperature
861 Dependent Halogen Activation by N₂O₅ Reactions on Halide-Doped Ice Surfaces.
862 *Atmos Chem Phys* **2012**, *12* (11), 5237–5247. <https://doi.org/10.5194/acp-12-5237-2012>.

863 (54) Halfacre, J. W.; Shepson, P. B.; Pratt, K. A. PH-Dependent Production of Molecular
864 Chlorine, Bromine, and Iodine from Frozen Saline Surfaces. *Atmos Chem Phys* **2019**, *19*
865 (7), 4917–4931. <https://doi.org/10.5194/acp-19-4917-2019>.

866 (55) Abbatt, J.; Oldridge, N.; Symington, A.; Chukalovskiy, V.; McWhinney, R. D.; Sjostedt,
867 S.; Cox, R. A. Release of Gas-Phase Halogens by Photolytic Generation of OH in Frozen
868 Halide-Nitrate Solutions: An Active Halogen Formation Mechanism? *Journal of Physical*
869 *Chemistry A* **2010**, *114* (23), 6527–6533. <https://doi.org/10.1021/jp102072t>.

870 (56) Wren, S. N.; Donaldson, D. J.; Abbatt, J. P. D. Photochemical Chlorine and Bromine
871 Activation from Artificial Saline Snow. *Atmos Chem Phys* **2013**, *13* (19), 9789–9800.
872 <https://doi.org/10.5194/acp-13-9789-2013>.

873 (57) Pratt, K. A.; Custard, K. D.; Shepson, P. B.; Douglas, T. A.; Pöhler, D.; General, S.;
874 Zielcke, J.; Simpson, W. R.; Platt, U.; Tanner, D. J.; Gregory Huey, L.; Carlsen, M.;
875 Stirm, B. H. Photochemical Production of Molecular Bromine in Arctic Surface
876 Snowpacks. *Nat Geosci* **2013**, *6* (5), 351–356. <https://doi.org/10.1038/ngeo1779>.

877 (58) Raso, A. R. W.; Custard, K. D.; May, N. W.; Tanner, D.; Newburn, M. K.; Walker, L.;
878 Moore, R. J.; Huey, L. G.; Alexander, L.; Shepson, P. B.; Pratt, K. A. Active Molecular
879 Iodine Photochemistry in the Arctic. *Proceedings of the National Academy of Sciences*
880 **2017**, *114* (38), 10053–10058. <https://doi.org/10.1073/pnas.1702803114>.

881 (59) Wang, S.; McNamara, S. M.; Moore, C. W.; Obrist, D.; Steffen, A.; Shepson, P. B.;
882 Staebler, R. M.; Raso, A. R. W.; Pratt, K. A. Direct Detection of Atmospheric Atomic

883 Bromine Leading to Mercury and Ozone Depletion. *Proc Natl Acad Sci U S A* **2019**, *116*
884 (29), 14479–14484. <https://doi.org/10.1073/pnas.1900613116>.

885 (60) Custard, K. D.; Raso, A. R. W.; Shepson, P. B.; Staebler, R. M.; Pratt, K. A. Production
886 and Release of Molecular Bromine and Chlorine from the Arctic Coastal Snowpack. *ACS*
887 *Earth Space Chem* **2017**, *1* (3), 142–151.
888 <https://doi.org/10.1021/acsearthspacechem.7b00014>.

889 (61) Apodaca, R. L.; Huff, D. M.; Simpson, W. R. The Role of Ice in N₂O₅ Heterogeneous
890 Hydrolysis at High Latitudes. *Atmos Chem Phys* **2008**, *8* (24), 7451–7463.
891 <https://doi.org/10.5194/acp-8-7451-2008>.

892 (62) Huff, D. M.; Joyce, P. L.; Fochesatto, G. J.; Simpson, W. R. Deposition of Dinitrogen
893 Pentoxide, N₂O₅, to the Snowpack at High Latitudes. *Atmos Chem Phys* **2011**, *11* (10),
894 4929–4938. <https://doi.org/10.5194/acp-11-4929-2011>.

895 (63) Joyce, P. L.; Von Glasow, R.; Simpson, W. R. The Fate of NO_x Emissions Due to
896 Nocturnal Oxidation at High Latitudes: 1-D Simulations and Sensitivity Experiments.
897 *Atmos Chem Phys* **2014**, *14* (14), 7601–7616. <https://doi.org/10.5194/acp-14-7601-2014>.

898 (64) Toyota, K.; McConnell, J. C.; Staebler, R. M.; Dastoor, A. P. Air-Snowpack Exchange of
899 Bromine, Ozone and Mercury in the Springtime Arctic Simulated by the 1-D Model
900 PHANTAS - Part 1: In-Snow Bromine Activation and Its Impact on Ozone. *Atmos Chem*
901 *Phys* **2014**, *14* (8), 4101–4133. <https://doi.org/10.5194/acp-14-4101-2014>.

902 (65) Toyota, K.; Dastoor, A. P.; Ryzhkov, A. Air-Snowpack Exchange of Bromine, Ozone and
903 Mercury in the Springtime Arctic Simulated by the 1-D Model PHANTAS - Part 2:
904 Mercury and Its Speciation. *Atmos Chem Phys* **2014**, *14* (8), 4135–4167.
905 <https://doi.org/10.5194/acp-14-4135-2014>.

906 (66) Thomas, J. L.; Stutz, J.; Lefer, B.; Huey, L. G.; Toyota, K.; Dibb, J. E.; Von Glasow, R.
907 Modeling Chemistry in and above Snow at Summit, Greenland - Part 1: Model
908 Description and Results. *Atmos Chem Phys* **2011**, *11* (10), 4899–4914.
909 <https://doi.org/10.5194/acp-11-4899-2011>.

910 (67) Thomas, J. L.; Dibb, J. E.; Huey, L. G.; Liao, J.; Tanner, D.; Lefer, B.; Von Glasow, R.;
911 Stutz, J. Modeling Chemistry in and above Snow at Summit, Greenland-Part 2: Impact of
912 Snowpack Chemistry on the Oxidation Capacity of the Boundary Layer. *Atmos Chem*
913 *Phys* **2012**, *12* (14), 6537–6554. <https://doi.org/10.5194/acp-12-6537-2012>.

914 (68) McDuffie, E. E.; Fibiger, D. L.; Dubé, W. P.; Lopez Hilfiker, F.; Lee, B. H.; Jaeglé, L.;
915 Guo, H.; Weber, R. J.; Reeves, J. M.; Weinheimer, A. J.; Schroder, J. C.; Campuzano-
916 Jost, P.; Jimenez, J. L.; Dibb, J. E.; Veres, P.; Ebben, C.; Sparks, T. L.; Wooldridge, P. J.;
917 Cohen, R. C.; Campos, T.; Hall, S. R.; Ullmann, K.; Roberts, J. M.; Thornton, J. A.;
918 Brown, S. S. ClNO₂ Yields From Aircraft Measurements During the 2015 WINTER
919 Campaign and Critical Evaluation of the Current Parameterization. *Journal of*
920 *Geophysical Research: Atmospheres* **2018**, *123* (22), 12,994–13,015.
921 <https://doi.org/10.1029/2018JD029358>.

922 (69) McDuffie, E. E.; Fibiger, D. L.; Dubé, W. P.; Lopez-Hilfiker, F.; Lee, B. H.; Thornton, J.
923 A.; Shah, V.; Jaeglé, L.; Guo, H.; Weber, R. J.; Michael Reeves, J.; Weinheimer, A. J.;
924 Schroder, J. C.; Campuzano-Jost, P.; Jimenez, J. L.; Dibb, J. E.; Veres, P.; Ebben, C.;
925 Sparks, T. L.; Wooldridge, P. J.; Cohen, R. C.; Hornbrook, R. S.; Apel, E. C.; Campos, T.;
926 Hall, S. R.; Ullmann, K.; Brown, S. S. Heterogeneous N₂O₅ Uptake during Winter:
927 Aircraft Measurements during the 2015 WINTER Campaign and Critical Evaluation of

928 Current Parameterizations. *Journal of Geophysical Research: Atmospheres* **2018**, 4345–
 929 4372. <https://doi.org/10.1002/2018JD028336>.

930 (70) Staudt, S.; Gord, J. R.; Karimova, N. V.; McDuffie, E. E.; Brown, S. S.; Gerber, R. B.;
 931 Nathanson, G. M.; Bertram, T. H. Sulfate and Carboxylate Suppress the Formation of
 932 ClNO₂ at Atmospheric Interfaces. *ACS Earth Space Chem* **2019**, 3 (9), 1987–1997.
 933 <https://doi.org/10.1021/acsearthspacechem.9b00177>.

934 (71) Gaston, C. J.; Thornton, J. A. Reacto-Diffusive Length of N₂O₅ in Aqueous Sulfate- and
 935 Chloride-Containing Aerosol Particles. *Journal of Physical Chemistry A* **2016**, 120 (7),
 936 1039–1045. <https://doi.org/10.1021/acs.jpca.5b11914>.

937 (72) Bertram, T. H.; Thornton, J. A. Toward a General Parameterization of N₂O₅ Reactivity
 938 on Aqueous Particles: The Competing Effects of Particle Liquid Water, Nitrate and
 939 Chloride. *Atmos Chem Phys* **2009**, 9 (21), 8351–8363. <https://doi.org/10.5194/acp-9-8351-2009>.

940 (73) Behnke, W.; George, C.; Scheer, V.; Zetzs, C. Production and Decay of ClNO₂ from
 941 the Reaction of Gaseous N₂O₅ with NaCl Solution: Bulk and Aerosol Experiments.
 942 *Journal of Geophysical Research: Atmospheres* **1997**, 102 (D3), 3795–3804.
 943 <https://doi.org/10.1029/96JD03057>.

944 (74) Hallquist, M.; Stewart, D. J.; Stephenson, S. K.; Cox, R. A. Hydrolysis of N₂O₅ on Sub-
 945 Micron Sulfate Aerosols. *Physical Chemistry Chemical Physics* **2003**, 5 (16), 3453–3463.
 946 <https://doi.org/10.1039/b301827j>.

947 (75) Folkers, M.; Mentel, T. F.; Wahner, A. Influence of an Organic Coating on the Reactivity
 948 of Aqueous Aerosols Probed by the Heterogeneous Hydrolysis of N₂O₅. *Geophys Res Lett* **2003**, 30 (12), 2–5. <https://doi.org/10.1029/2003GL017168>.

949 (76) Anttila, T.; Kiendler-Scharr, A.; Mentel, T. F.; Tillmann, R. Size Dependent Partitioning
 950 of Organic Material: Evidence for the Formation of Organic Coatings on Aqueous
 951 Aerosols. *J Atmos Chem* **2007**, 57 (3), 215–237. <https://doi.org/10.1007/s10874-007-9067-9>.

952 (77) Cosman, L. M.; Knopf, D. A.; Bertram, A. K. N₂O₅ Reactive Uptake on Aqueous
 953 Sulfuric Acid Solutions Coated with Branched and Straight-Chain Insoluble Organic
 954 Surfactants. *Journal of Physical Chemistry A* **2008**, 112 (11), 2386–2396.
 955 <https://doi.org/10.1021/jp710685r>.

956 (78) Thornton, J. A.; Abbatt, J. P. D. N₂O₅ Reaction on Submicron Sea Salt Aerosol: Kinetics,
 957 Products, and the Effect of Surface Active Organics. *Journal of Physical Chemistry A*
 958 **2005**, 109 (44), 10004–10012. <https://doi.org/10.1021/jp054183t>.

959 (79) McNeill, V. F.; Patterson, J.; Wolfe, G. M.; Thornton, J. A. The Effect of Varying Levels
 960 of Surfactant on the Reactive Uptake of N₂O₅ to Aqueous Aerosol. *Atmos Chem Phys*
 961 **2006**, 6 (6), 1635–1644. <https://doi.org/10.5194/acp-6-1635-2006>.

962 (80) Gaston, C. J.; Thornton, J. A.; Ng, N. L. Reactive Uptake of N₂O₅ to Internally Mixed
 963 Inorganic and Organic Particles: The Role of Organic Carbon Oxidation State and Inferred
 964 Organic Phase Separations. *Atmos Chem Phys* **2014**, 14 (11), 5693–5707.
 965 <https://doi.org/10.5194/acp-14-5693-2014>.

966 (81) Thornton, J. A.; Braban, C. F.; Abbatt, J. P. D. N₂O₅ Hydrolysis on Sub-Micron Organic
 967 Aerosols: The Effect of Relative Humidity, Particle Phase, and Particle Size. *Physical
 968 Chemistry Chemical Physics* **2003**, 5 (20), 4593. <https://doi.org/10.1039/b307498f>.

972 (82) Griffiths, P. T.; Cox, R. A. Temperature Dependence of Heterogeneous Uptake of N₂O₅
973 by Ammonium Sulfate Aerosol. *Atmospheric Science Letters* **2009**, *10*, 159–163.
974 <https://doi.org/10.1002/asl.225>.

975 (83) Brown, S. S.; Dubé, W. P.; Fuchs, H.; Ryerson, T. B.; Wollny, A. G.; Brock, C. A.;
976 Bahreini, R.; Middlebrook, A. M.; Neuman, T. A.; Atlas, E.; Roberts, J. M.; Osthoff, H.
977 D.; Trainer, M.; Fehsenfeld, F. C.; Ravishankara, A. R. Reactive Uptake Coefficients for
978 N₂O₅ Determined from Aircraft Measurements during the Second Texas Air Quality
979 Study: Comparison to Current Model Parameterizations. *Journal of Geophysical Research
Atmospheres* **2009**, *114* (11), 1–16. <https://doi.org/10.1029/2008JD011679>.

980 (84) Chang, W. L.; Brown, S. S.; Stutz, J.; Middlebrook, A. M.; R., B.; Wagner, N. L.; Dubé, W. P.;
981 Pollack, I. B.; Ryerson, T. B.; Riemer, N. Evaluating N₂O₅ Heterogeneous
982 Hydrolysis Parameterizations for CalNex 2010. *J. Geophys. Res.* **2016**, *121*, 5051–5070.
983 <https://doi.org/10.1002/2015JD024737.Nighttime>.

984 (85) Phillips, G. J.; Thieser, J.; Tang, M.; Sobanski, N.; Schuster, G.; Fachinger, J.; Drewnick,
985 F.; Borrmann, S.; Bingemer, H.; Lelieveld, J.; Crowley, J. N. Estimating N₂O₅ Uptake
986 Coefficients Using Ambient Measurements of NO₃, N₂O₅, ClNO₂ and Particle-Phase
987 Nitrate. *Atmos Chem Phys* **2016**, *16* (20), 13231–13249. <https://doi.org/10.5194/acp-16-13231-2016>.

988 (86) Wagner, N. L.; Riedel, T. P.; Young, C. J.; Bahreini, R.; Brock, C. A.; Dubé, W. P.; Kim,
989 S.; Middlebrook, A. M.; Öztürk, F.; Roberts, J. M.; Russo, R.; Sive, B.; Swarthout, R.;
990 Thornton, J. A.; VandenBoer, T. C.; Zhou, Y.; Brown, S. S. N₂O₅ Uptake Coefficients
991 and Nocturnal NO₂ Removal Rates Determined from Ambient Wintertime
992 Measurements. *Journal of Geophysical Research: Atmospheres* **2013**, *118* (16), 9331–
993 9350. <https://doi.org/10.1002/jgrd.50653>.

994 (87) McDuffie, E. E.; Edwards, P. M.; Gilman, J. B.; Lerner, B. M.; Dubé, W. P.; Trainer, M.;
995 Wolfe, D. E.; Angevine, W. M.; DeGouw, J.; Williams, E. J.; Tevlin, A. G.; Murphy, J. G.;
996 Fischer, E. v.; McKeen, S.; Ryerson, T. B.; Peischl, J.; Holloway, J. S.; Aikin, K.;
997 Langford, A. O.; Senff, C. J.; Alvarez, R. J.; Hall, S. R.; Ullmann, K.; Lantz, K. O.;
998 Brown, S. S. Influence of Oil and Gas Emissions on Summertime Ozone in the Colorado
999 Northern Front Range. *J Geophys Res* **2016**, *121* (14), 8712–8729.
1000 <https://doi.org/10.1002/2016JD025265>.

1001 (88) Hanson, D. R.; Ravishankara, A. R. The Reaction Probabilities of ClONO₂ and N₂O₅ on
1002 Polar Stratospheric Cloud Materials. *J Geophys Res* **1991**, *96* (D3), 5081–5090.
1003 <https://doi.org/10.1029/90JD02613>.

1004 (89) George, C.; Ponche, J. L.; Mirabel, P.; Behnke, W.; Scheer, V.; Zetzs, C. Study of the
1005 Uptake of N₂O₅ by Water and NaCl Solutions. *Journal of Physical Chemistry* **1994**, *98*
1006 (35), 8780–8784. <https://doi.org/10.1021/j100086a031>.

1007 (90) Davis, J. M.; Bhave, P. V.; Foley, K. M. Parameterization of N₂O₅ Reaction Probabilities
1008 on the Surface of Particles Containing Ammonium, Sulfate, and Nitrate. *Atmos Chem
1009 Phys* **2008**, *8* (17), 5295–5311. <https://doi.org/10.5194/acp-8-5295-2008>.

1010 (91) Liao, J.; Sihler, H.; Huey, L. G.; Neuman, J. A.; Tanner, D. J.; Friess, U.; Platt, U.;
1011 Flocke, F. M.; Orlando, J. J.; Shepson, P. B.; Beine, H. J.; Weinheimer, A. J.; Sjostedt, S.
1012 J.; Nowak, J. B.; Knapp, D. J.; Staebler, R. M.; Zheng, W.; Sander, R.; Hall, S. R.;
1013 Ullmann, K. A Comparison of Arctic BrO Measurements by Chemical Ionization Mass
1014 Spectrometry and Long Path-Differential Optical Absorption Spectroscopy. *Journal of
1015*

1016

1061 (103) Malley, P. P. A.; Chakraborty, S.; Kahan, T. F. Physical Characterization of Frozen
1062 Saltwater Solutions Using Raman Microscopy. *ACS Earth Space Chem* **2018**, *2* (7), 702–
1063 710. <https://doi.org/10.1021/acsearthspacechem.8b00045>.

1064 (104) Chakraborty, S.; Kahan, T. F. Physical Characterization of Frozen Aqueous Solutions
1065 Containing Sodium Chloride and Humic Acid at Environmentally Relevant Temperatures.
1066 *ACS Earth Space Chem* **2020**, *4* (2), 305–310.
1067 <https://doi.org/10.1021/acsearthspacechem.9b00319>.

1068 (105) Goldberger, L. A.; Jahl, L. G.; Thornton, J. A.; Sullivan, R. C. N₂O₅ Reactive Uptake
1069 Kinetics and Chlorine Activation on Authentic Biomass-Burning Aerosol. *Environ Sci
1070 Process Impacts* **2019**, *21* (10), 1684–1698. <https://doi.org/10.1039/c9em00330d>.

1071 (106) Ahern, A.; Goldberger, L.; Jahl, L.; Thornton, J.; Sullivan, R. C. Production of N₂O₅ and
1072 ClNO₂ through Nocturnal Processing of Biomass-Burning Aerosol. *Environ Sci Technol*
1073 **2017**, *acs.est.7b04386*. <https://doi.org/10.1021/acs.est.7b04386>.

1074 (107) Ahern, A. T.; Robinson, E. S.; Tkacik, D. S.; Saleh, R.; Hatch, L. E.; Barsanti, K. C.;
1075 Stockwell, C. E.; Yokelson, R. J.; Presto, A. A.; Robinson, A. L.; Sullivan, R. C.;
1076 Donahue, N. M. Production of Secondary Organic Aerosol During Aging of Biomass
1077 Burning Smoke From Fresh Fuels and Its Relationship to VOC Precursors. *Journal of
1078 Geophysical Research: Atmospheres* **2019**, *124* (6), 3583–3606.
1079 <https://doi.org/10.1029/2018JD029068>.

1080 (108) Domine, F.; Sparapani, R.; Ianniello, A.; Beine, H. J. The Origin of Sea Salt in Snow on
1081 Arctic Sea Ice and in Coastal Regions. *Atmos. Chem. Phys* **2004**, *4*, 2259–2271.

1082