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Abstract 

Nitryl chloride (ClNO2) is a radical reservoir that forms and accumulates in the nocturnal 

atmospheric boundary layer influenced by combustion emissions and chloride (e.g., sea salt 

and/or road salt). Upon sunrise, ClNO2 rapidly photolyzes to generate highly reactive chlorine 

radicals (Cl×) that affect air quality by generating secondary air pollutants. Recent studies have 

shown road salt aerosols and the saline snowpack to be sources of ClNO2 in the wintertime urban 

environment, yet the quantitative contributions of each chloride source are not known. In this 

study, we examine the vertically-resolved contributions of aerosol particles and the saline 

snowpack as sources of ClNO2, using an observationally constrained snow-atmosphere coupled 

one-dimensional model applied to wintertime Kalamazoo, MI. Model simulations show that 

ClNO2 emitted from the urban snowpack can be vertically transported throughout the entire 

atmospheric boundary layer, and can be a significant source of ClNO2, contributing up to ~60 % 

of the ClNO2 budget near the surface. Modeled snowpack ClNO2 emission rates were 6 (±7) 

times higher than the observationally-derived emission rates, suggesting that not all snow 

chloride is available for reaction. ClNO2 production from both aerosol particles and snow 

emissions are required to best simulate the observed surface-level ClNO2. Using the bulk 

parameterization for ClNO2 produced from particles significantly overestimated ClNO2 

observations, due to the assumption of equivalent dinitrogen pentoxide (N2O5) uptake and 

chloride availability for the entire particle population. In comparison, the chemically-resolved 

surface area-based parameterization slightly underestimated the observations, with uncertainties 

deriving from ClNO2 production from residential wood burning particles. 

3 
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59 1.  Introduction  

Nitryl  chloride  (ClNO2) is  a radical  precursor that  is  formed and accumulates  in the  

nocturnal  stable  atmospheric  boundary layer due  to its  long lifetime  at  night  (tClNO2  > 30 h).1,2  

During the  day, ClNO2  rapidly photolyzes  (tClNO2  »  30 min, midday under summer-time mid-

latitude  conditions)3  to generate  chlorine  radicals  (Cl×) and NO ×2 . ClNO2  is  formed  through the  

heterogeneous  reaction of gas-phase  dinitrogen pentoxide  (N2O5) on chloride  (Cl-) containing 

surfaces (R1). 4   

61 

62 

63 

64 

(R1) 
66 

67 gN2O5  is  the  reactive  uptake  coefficient  of  N2O5 on surfaces, and FClNO2  is  the  branching ratio (yield) 

to produce  gas  phase  ClNO2. N2O5  is  produced from  the  reaction of nitrogen dioxide  (NO ×2 )  and 

the  nitrate  radical  (NO ×3 ). N2O5  formation  is  enhanced at  night, compared to daytime, when the  

lifetime  of NO × 3  is  short  (tNO3  < 5 s), and N2O5  accumulates  at  night, with photolysis  occurring 

upon sunrise.  This  is  a  reversible  reaction in  thermal  equilibrium  that  favors  N2O5  at lower  

temperatures, enabling greater accumulation during winter.5   

ClNO2  and its  subsequent  production of highly reactive  Cl  radicals  influences  tropospheric  

oxidation capacity by affecting the  lifetime  and chemistry of NO ,6 x  volatile  organic  compounds  

(VOCs),7  mercury,8  dimethyl  sulfide,9  and production of pollutants  including ozone  and secondary 

aerosols.10,11   For instance, reactivity of Cl  with alkanes  can be  up to two orders  of magnitude  

higher than that  of the  hydroxyl  radical  (×OH),12  which is  the  main  oxidant  in the  troposphere.13  

Chemical  transport  models  show  that  including  heterogeneous  formation of ClNO2  from  sea  salt  

aerosols  and biomass  burning in the  model  framework can result  in significant  increases  in 

modeled tropospheric O  17 , especially during wintertime.14–3  
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Field observations show that ClNO2 is ubiquitous in the boundary layer in both coastal18– 

20 and inland regions.21–28 Enhanced levels of ClNO2 are attributed to air masses affected by sea 

salt aerosols,19,23,29 biomass burning,30 and coal burning activities,26,31,32 with playa dust also found 

to be a ClNO2 source.33,34 While understudied, road salt can also be a significant source of chloride 

in the aerosol phase, as well as the urban snowpack.27,35–40 Large amounts of road salts are used 

globally in wintertime environments for deicing purposes. In 2019, ~18 million tons of road salt 

was used in the U.S.41 Road salts, which are mostly sodium chloride (NaCl),42 are deposited on icy 

roadways and mechanically aerosolized by vehicular traffic.43–46 Mielke et al.47 reported enhanced 

ClNO2 production following road salt application during snowfall in Calgary, Alberta, Canada. 

Similarly, McNamara et al.35 reported up to ~220 parts per trillion (ppt) of ClNO2, 12 m above the 

urban snowpack in Ann Arbor, Michigan, where they identified fresh and aged road salt aerosols. 

In Kalamazoo, Michigan, a maximum of ~ 90 ppt of ClNO2 was observed at 1.5 m over snow-

covered ground.28 

The snowpack consists of interstitial air and snow grains with brine patches containing 

solutes excluded from the ice.48 Therefore, snowpack is a highly porous media that serves as a 

unique matrix for multiphase reactions.49–52 Laboratory53–56 and field observations57–60 

demonstrate that snowpack reactions facilitate production of molecular halogen gases (Br2, Cl2, I2, 

BrCl). Physical loss of N2O5 on surfaces can also be enhanced in the presence of ice/snow61 and 

has been shown to be a significant (up to 25 %) chemical loss mechanism in the polluted 

wintertime boundary layer.62,63 McNamara et al. showed that the reaction of N2O5 on saline snow 

produced ClNO2. ClNO2 fluxes derived from in situ measurements were reported during the winter 

in Kalamazoo, MI, where the fluxes on average were positive (emission) over snow compared to 

negative (deposition) over bare ground.27 During the entire study, ClNO2 was enhanced during 

5 

https://ground.27
https://ground.28


  

       

  

        

       

      

        

       

           

       

        

      

      

      

          

  

        

          

         

        

         

         

          

       

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

periods with snowfall and snow-covered ground.28 However, the contributions of ClNO2 

production from the saline snowpack compared to aerosols is not known. 

Here we employ a one-dimensional (1D) model with a coupled snow-atmosphere 

framework that is required to quantify the vertically-resolved contributions of aerosols and the 

snowpack to boundary layer ClNO2. Previous snow and atmospheric boundary layer-coupled 1D 

models, developed by Toyota et al.64,65 and Thomas et al.,66,67 implemented snow chemistry 

modules to represent multiphase halogen recycling mechanisms in the Arctic boundary layer. In 

those studies, the snow module embedded 1D model simulations were able to explain the 

snowpack-initiated radical chemistry and ozone depletion events in the Arctic boundary layer. A 

recent study by Wang et al.40 implemented a similar chemical and physical framework for the 

midlatitude wintertime inland urban environment. By constraining the model with observations 

from Ann Arbor, Michigan, Wang et al.40 simulated significant deposition of N2O5 and 

temperature-dependent emission of ClNO2 from the urban snowpack. However, a comparison of 

ClNO2 fluxes from the snowpack between observations27 and model simulations has not been 

reported. 

Significant challenges also remain in the simulation of ClNO2 from aerosol particles.68,69 

Laboratory studies have shown that particle gN2O5 and FClNO2 are dependent on aerosol composition, 

including sulfate,70,71 chloride,72,73 nitrate,72,74 and organic75–80 content, as well as aerosol water 

content74,81 that also depends on relative humidity and temperature.82 However, discrepancies exist 

between these bulk-derived parameters and field-derived values.25,30,32,68,83–87 Note that gN2O5 and 

FClNO2 for snow/ice are even less known with only limited laboratory studies53,72,88,89 available that 

show these parameters vary with temperature and halide content at the ice surface. In order to 

estimate the production of ClNO2 in model simulations, the most commonly used parameterization 
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assumes a homogenous distribution of chemical composition across the aerosol population.72,90 A 

recent study by McNamara et al.35 in the wintertime inland environment showed that only road 

salt aerosol contained significant levels of chloride, and these aerosols comprised ~20 % of the 

total particulate surface area concentration. By weighting gN2O5 and FClNO2 by the surface area 

contributions of the different individual particle source types (e.g., road salt, biomass burning, soot, 

dust) through their new parametrization, McNamara et al.35 were able to reconcile the measured 

ClNO2. In the current work, we test this new parametrization35 with another observational dataset 

to examine its effectiveness compared to the traditional bulk approach.72 

In this study, we investigate the vertically-resolved contributions of ClNO2 emissions from 

an urban snowpack in Kalamazoo, MI during the SNow and Atmospheric Chemistry in Kalamazoo 

(SNACK) campaign using the 1D atmospheric boundary layer model coupled to a snow 

module.27,40 The ambient gas, particle, and snow measurements, reported by Kulju et al.28 and 

observationally derived ClNO2 and N2O5 fluxes, reported by McNamara et al.27, are constrained 

in the 1D model. To evaluate the coupled snow module, the modeled ClNO2 flux is compared to 

the measurement-derived fluxes reported by McNamara et al.27 In addition, ClNO2 production 

from aerosol particles is investigated by comparing the traditional bulk parametrization72 with the 

new chemically-resolved, surface area-based (single-particle) parametrization.35 The vertically-

resolved relative contributions of the snowpack and aerosols as sources of ClNO2 are quantified. 

2. Methods 

The SNACK campaign was carried out in Kalamazoo, MI (longitude: 85.6105° W latitude: 

42.2784° N) in the winter (Jan. 12 to Feb. 24) of 2018.28 We focus our modeling study here on two 

case periods: 1) the night of Jan. 31 (Jan. 31 12:00 – Feb. 1 12:00 Eastern Standard Time (EST)) 
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150 representing the  bare  ground case  and 2) the  night  of Jan 30  (Jan.  30 12:00 –  Jan.  31 12:00  EST)  

representing the  snow-covered ground case. Photographs  of the  site  on each case  day are  shown 

in Figure  1.  The  bare  ground case  corresponds  to no snow  on the  land but  areas  covered by  grass  

and dirt  and pavement  roads. Section  2.1  summarizes  the  observations  used in this  study, Section  

2.2 describes  the  1D  model  framework, and Section  2.3  describes  the  parameterizations  of N2O5  

uptake  and ClNO2  yield on aerosols  and snow  grains  used in the  model  simulations. Additional  

details can be found in the supporting information.  

151 
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Figure  1 ClNO2  and N2O5  fluxes  derived  from  vertical  profile  measurements  during the  two  representative  (a)  bare  
ground  and  (b)  snow  cover  days,  as  reported  by  McNamara  et  al.27  Photos  of  the  field  site  on  the  corresponding  
days  (Bare  ground:  Jan  31;  Snow  cover:  Jan 30)  are  shown.  Measurement  uncertainties  are  shown  as  error  bars,  and  
dashed  lines  show  zero values  for  N2O5  (blue)  and  ClNO2  (red)  fluxes  for  context.  Flux data  from  Feb 22 are  used  
in our  model  study as  vertical  profile  measurements  were  not  carried out  on  the  night  of  Jan 31,  which we  define  
as  the  bare  ground  case  day  for  the  subsequent  modeling.    

 157 

158 

159 2.1.Measurements and sampling during the SNACK campaign   

The  field site  was  situated ~ 90 m  from  a  heavy traffic  road, where  road salt  was  routinely 

applied in the  winter. A  comprehensive  suite  of gas  phase  and particle  phase  instruments  were  
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housed in a research trailer next to a field on the Western Michigan University (WMU) campus. 

Ambient ClNO2 and N2O5 were measured at 1.5 m above ground with a chemical ionization mass 

spectrometer (CIMS, THS instruments)91 using iodide water clusters (I×(H2O)-) as the reagent ion 

to form iodide adduct with ClNO2 (IClNO2-, m/z 208 and 210) and N2O5 (IN2O5-, m/z 235).92 

Details of the CIMS measurements during the SNACK campaign can be found in McNamara et 

al.,27 Kulju et al.,28 and in the supporting information (S1). 

Ambient O3 was measured with a dual beam ozone monitor (model 205, 2B Technologies, 

limit of detection (LOD) 2 parts per billion, ppb) on the CIMS inlet. Gas-phase hydrochloric acid 

(HCl) and PM2.5 (particles <2.5 µm in diameter) Cl- (LOD 0.004 µg m-3) and NO3- (LOD 0.05 µg 

m-3) were sampled at 3 h resolution and analyzed with an ambient ion monitor-ion chromatography 

(AIM-IC) system (model 9000D, URG Corp., Chapel Hill, NC) with a modified inlet, described 

by Markovic et al.,93,94 at 1.8 m above ground. Temporal variation of gas-phase HCl and PM2.5 Cl-

and NO3- for the two case days are shown in Figures S1 and S2, respectively. More details of the 

AIM-IC sampling method during the campaign are described by Chen et al.95 Size-resolved 

number concentrations of atmospheric aerosols were measured at ~3 m with a scanning mobility 

particle sizer (SMPS, model 3082, TSI Inc.) for 14 – 736 nm mobility diameters and with an 

aerodynamic particle sizer (APS, model 3321, TSI Inc.) for 0.542– 20 µm aerodynamic diameters 

(da). Total surface area of particles with da between 20 nm and 20 µm were derived by converting 

mobility diameters to aerodynamic diameters assuming a shape factor of 1 and density of 1.5 g 

cm-3.96 Temporal variations of the particle number densities and total surface areas for the two case 

days are shown in Figure S3, and the 24 h averaged size distribution is shown in Figure S4. 

Size-resolved individual atmospheric particle composition was measured for the two case 

days. Atmospheric particles were collected on transmission electron microscopy (TEM) grids (Ted 

9 
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Pella, Inc.) using a micro-orifice uniform deposit impactor (MOUDI, model 110R, MSP Corp). 

The MOUDI sampled air at 11 L min-1, which was diluted with 19 L min-1 of particle-free (HEPA 

capsule, Pall Laboratory) air, for a total flow of 30 L min-1. On Jan 30 19:29-Jan 31 6:50 EST 

(snow cover case), particles were collected on the 0.10-0.18 μm da and 0.32-0.56 μm da stages. On 

Jan 31 17:18-Feb 1 8:00 EST (bare ground case), particles were collected on 0.18-0.32 μm, 0.32 

– 0.56 μm, and 1.0-1.8 μm da stages. The collected samples were stored in the laboratory in air-

tight clean plastic containers until they were analyzed with computer-controlled scanning electron 

microscopy with energy dispersive X-ray spectroscopy (CCSEM-EDX).38 In total, 22,223 

individual particles were analyzed for the case day samples. Representative SEM images and EDX 

spectra for the individual particle types observed are shown in Figure S5, and additional details 

of the CCSEM-EDX analysis and results are described in the supporting information (S5). 

Snow samples were collected from the top 2 cm of the surface of the snowpack in various 

locations near the trailer as shown in McNamara et al.27 Four snow samples, collected between 

20:00 of January 30 to 7:00 of January 31, were used in this study. The collected snow was put in 

sterile Whirl-pak bags, kept in the freezer (-20 to -30 oC), and thawed prior to analysis. Sodium, 

chloride, and nitrate content in the melted snow samples were analyzed with ion chromatography 

(IC) using a Dionex ICS-1100 for cations and an ICS-2100 for anions. The pH of the melted snow 

was measured with a pH meter (model AP110, Fisher Scientific). The density of the snow was 

measured with an aluminum density gauge (model Scientist200, Brooks-Range). Snow density 

was measured for nine snow samples collected between February 5 and 14. The average snow 

density of 0.36±0.06 g cm-3 was used in this study, because there was little variability and since 

the snow on the night of January 30 was not deep enough to use the snow density gauge. A 

summary of the observed snow parameters used in the model are shown in Table S2. 
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Ambient temperature (270 ± 5 K) (Figure S7) and three-dimensional wind speeds and wind 

directions (Figure S8) were measured with the sonic anemometer (model CSAT3, Campbell 

Scientific Inc.) at ~1.4 m above ground level to estimate the friction velocity (u*) and the 

atmospheric eddy diffusivity (Kz). Ultraviolet solar radiation (0.295 < � < 0.385 µm) was 

measured with a UV radiometer (model TUVR, Eppley Laboratory). Relative humidity (RH) was 

measured at the Kalamazoo Battle Creek International Airport (KAZO), which is ~ 7 km from the 

field site. The averaged RH values were 66 (±9) % for the bare ground case day (Jan. 31 12:00 

EST – Feb. 1 12:00) and 61 (±7) % for the snow cover day (Jan. 30 12:00 – Jan. 31 12:00). 

Therefore, for all the model runs, a RH of 65 % was used. 

2.2. 1-Dimensional model description 

A 1D atmospheric model with a coupled snow module, developed by Wang et al.,40 was 

used to simulate the temporal and vertical profiles of ClNO2 for the two case study scenarios (bare 

ground and snow cover). A simple schematic of the model framework is illustrated in Figure S9. 

The 1D model40 is an IGOR (WaveMetrics, Inc., Lake Oswego, OR) based framework with a 

similar concept of air-snow interactions as described by Thomas et al.66 and Toyota et al.64 Brief 

descriptions of the parameterizations of N2O5 uptake and ClNO2 yield values and snow module 

are described in Sections 2.2.1 and 2.2.2, respectively. For all model simulations, both bare ground 

and snow cases, the N2O5 surface deposition velocity was constrained to the measurement-derived 

averaged value (0.5 cm s-1) reported by McNamara et al.27 as it was shown to not be statistically 

different between snow covered and bare ground surfaces. Additional details of the model and how 

it is constrained can be found in Wang et al.40 and in the supporting documents (S2 and S3). 
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PM2.5 chloride and nitrate, ozone, and N2O5 levels measured during the campaign were 

constrained diurnally at every model time step (10 min) at the model height of 1 m. Total 

particulate surface area concentrations from observations were constrained to be the same for all 

model layers. Other trace gases including NO2 and VOCs were taken from nearby air quality 

observation stations or from previous literature and are summarized in Table S1. To enable proper 

model spin-up, we report the simulation results of the third model day. Photolysis rate constants 

(J) of gas-phase compounds were calculated using the clear sky Tropospheric Ultraviolet and 

Visible (TUV) model97 and scaled to the solar radiation measured during the two case days. 

2.2.1. N2O5 uptake and ClNO2 yield parameterization for aerosols 

We used two types of parameterizations of N2O5 uptake (g!"#$,& ) and ClNO2 yield 

(FClNO2,p) by aerosols. The first is the commonly used bulk parameterization from Bertram and 

Thornton,72 which assumes homogeneous composition of the aerosol population through 

calculations using bulk aerosol mass concentrations. Time-resolved PM2.5 NO3- and Cl-, measured 

by AIM-IC during the campaign, were used for the bulk parameterization calculations. More 

details can be found in the supporting information (S4). The second is the new chemically-resolved, 

surface area-based (‘single-particle’) parameterization method,35 which uses individual particle 

composition obtained from the CCSEM-EDX measurements. The particles collected on the nights 

of January 30 (Jan. 30 19:29 – Jan. 31 6:50) and on the night of January 31 (Jan. 31 17:18 – Feb. 

1 8:00) were grouped into four categories: organic (biomass burning), soot, aged road salt, and 

mineral dust particles. The size-resolved number fractions of each particle type, determined by 

CCSEM-EDX analysis, are shown in Figure S6, and more details of the analysis are in the 

supporting information (S5). g!"#$,& and FClNO2,p corresponding to each particle type were based 

12 



  

         

       

         

          

     

       

  

  

    

       

     

      

           

          

         

       

       

        

         

          

   

          

           

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

on proxies from previous laboratory studies (Table S3) and then weighted by the surface area 

concentration contribution of each particle type. For particle size bins below and above which 

single-particle composition was measured (Figure S6), the particles were assumed to have the 

same particle composition as the lowest and largest bin sizes, respectively. The surface area of 

these particles accounted for 6.5 % (5.9 % for smaller and 0.6 % for higher particles) for the bare 

ground case and 15.4 % (4.7 % for smaller and 10.7 % for higher particles) for the snow cover 

case day. 

2.2.2 Model snow ClNO2 production 

For the snow case, snowpack ClNO2 emissions were incorporated in two ways: 1) 

constraining by measurement-derived fluxes27 and 2) calculating emissions within the snow 

module.40 For model simulations constrained by measurement-derived ClNO2 fluxes, the time-

dependent ClNO2 emission rate from the snow was constrained based on the ClNO2 fluxes derived 

from gradient profile measurements that occurred every 3-5 hours for 30- 58 mins for each profile 

during the night of the snow cover day (Jan. 30 12:00 – Jan. 31 12:00).27 Fluxes were interpolated 

for periods between profiles. Snowpack ClNO2 emissions were assumed to be zero during the day 

when the model was constrained by measurement-derived ClNO2 fluxes in the model. Sensitivity 

of the simulations to the upper and lower bounds of the uncertainties in the measurement-derived 

ClNO2 fluxes were carried out by constraining the model accordingly. For the lower bound, the 

snowpack ClNO2 emission rate was set to zero as the uncertainties in the measurement-derived 

ClNO2 fluxes resulted in deposition of ClNO2. 

As described by Wang et al.,40 the snowpack, consisting of snow grains and interstitial air, 

is the bottom layer of the model framework (Figure S9). The snow parameters were constrained 
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in the model based on measurements described in Section 2.1 and are summarized in Table S2. 

The snowpack depth at the field site during the snow case day was variable (< 5 cm) but was often 

close to ~ 1 cm, to which the snow depth value was constrained in the model snow module (Table 

S2). The snow grain diameter and density were constrained in the snow module based on our best 

measurement estimates as outlined in Section 2.1. Snow grains were assumed to be spherical with 

a liquid brine layer on the surface, following Thomas et al.66 The liquid brine layer fraction (fbrine) 

was calculated based on Cho et al.98 using snow meltwater Na+ and Cl- concentrations. All snow 

grains in the model snowpack are assumed to be available for reaction. Heterogeneous uptake of 

N2O5 on snow grains was derived based on a resistor analogue model following Wang et al.40 The 

snow ClNO2 yield was calculated based on Bertram and Thornton72 in the same manner as for 

aerosol particles (Section 2.2.1). Additional details can be found in the supporting information 

(S4). 

3. Results and Discussion 

3.1. N2O5 and ClNO2 observations during the bare ground and snow cover case studies. 

N2O5 and ClNO2 observations for the full SNACK campaign were previously reported by 

Kulju et al.28 Over the full campaign, N2O5 mole ratios were not statistically significantly different 

between snow-covered and bare ground periods.28 In contrast, on average over the full campaign, 

ClNO2 mole ratios were higher over snow-covered compared to bare ground due to snowpack 

ClNO2 production.28Here we focus this modeling study on two case studies – the nights of Jan 31 

and Jan 30 – chosen to represent bare ground and snow cover periods, respectively (Figure 1). 

The ratio of snowmelt Na+ to Cl- (Table S2) was close to 1 showing that the snowpack Cl- was 

mostly from road salt. Measurements of O3, N2O5, and ClNO2 at 1.5 m above ground, as well as 

14 

https://periods.28


299 calculated ClNO2  photolysis  rate  coefficients, are  shown in Figure  2  for the  two case  days, with 

meteorological  data  shown in Figures 2  and  S8. McNamara  et  al.27  quantified ClNO2  and N2O5  

fluxes  over both bare  ground and snow  cover, enabling investigation of the  roles  of these  surface  

fluxes in the current modeling study (Figure 1).  
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Figure  2 One  h averaged wind directions  and  10 min averaged diel  variations  of  O3, N2O5, ClNO2,  and ClNO2  
photolysis  rate  coefficients  (JClNO2)  during the  (a)  bare  ground  and  (b)  snow  cover  case  days.  Time-dependent  
measurement  uncertainties  of  N2O5  and  ClNO2  are  shown  as  shades.  Gaps  in  ambient  data  in  Fig. 2b   (dashed  
lines  showing interpolation) occurred  when vertical  profile  measurements  were  carried  out.  
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305 The  bare  ground case  night  (Jan.  31 –  Feb.  1)  had stable  atmospheric  conditions  with  

constant  wind direction and speed (average  of 1.4 ±  0.3 m  s-1) resulting in a  friction velocity of 

0.1 –  0.2 m  s-1  and eddy diffusivity of ~0.05 m2  s-1  (Figure  S8a). During the  night, average  O3  

levels  were  12 ±  1 ppb (range  of  10 to 15  ppb).  This  shows  that  ozone  was  not  completely titrated 

by NO  from  local  vehicular emissions.99–101  N2O5  levels  showed stable  sustained levels  of 150 - 

250 ppt, while  ClNO2  steadily increased through the  night  to ~ 50 ppt, then started declining upon 
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sunrise (7:56 am local time) (Figure 2a). The lifetime of ClNO2 in the early morning (9:00 – 10:00 

local time, EST) was calculated to be ~6 h, and ~80 min at midday (11:00 – 13:00). 

Vertical profile measurements to calculate ClNO2 fluxes were not carried out on the night 

of the bare ground case (Jan. 31 – Feb. 1). Therefore, for this modeling study, ClNO2 fluxes from 

vertical profiles measured on the bare ground night of Feb 22-23 are used (Figure 1). The friction 

velocity during the night of Feb 22 was an average of 0.18 ± 0.03 m s-1 and during the night of 

Jan 31 was 0.3 ± 0.1 m s-1. Figure 1a shows that the average ClNO2 flux on Feb 22-23 was -

3.0´108 (± 2.7´108) molec cm-2 s-1, showing that there was net deposition of ClNO2 to the surface. 

For context, the bare ground ClNO2 flux averaged over the entire field study was -2.4´108 (± 

2.3´108) molec cm-2 s-1.27 The calculated average ClNO2 deposition velocity on the night of Feb. 

22 was 0.5 ± 0.3 cm s-1, which is not statistically different from the campaign averaged ClNO2 

deposition velocity, during bare ground days that showed negative ClNO2 fluxes, of 0.2 ± 0.3 cm 

s-1 (p=0.9).27 For N2O5, the flux was not statistically significantly different between the snow cover 

and bare ground nights, with a campaign average of -2.8´109 (± 0.9´109) molec cm-2 s-1. 27 

During the snow cover case night, wind speeds were ~1.7 m s-1 prior to ~1:00 – 2:00 local 

time, and increased afterwards (Figure 2). Following this wind speed transition, the friction 

velocity was > 0.25 m s-1, and eddy diffusivity were > 0.05 m2 s-1 (Figure S8b). As a result, the 

snow cover case (Figure 2b) showed greater fluctuations in the trace gas levels compared to the 

bare ground case. During the night, O3 showed an average of 23 ± 2 ppb (range 21 to 26 ppb). 

Nighttime N2O5 varied between 100 and 400 ppt. ClNO2 reached a maximum of ~40 ppt at 1:00 – 

2:00 and then steadily decreased for the remainder of the night. For the full SNACK field campaign, 

Kulju et al.28 showed that nighttime ClNO2 levels over snow covered ground were ~ 3 times higher 

on average compared to over bare ground. Nighttime ClNO2 levels during the two case days, used 
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in this study, averaged over 18:00 to 8:00 local time, were 24 ± 13 ppt for the bare ground case 

night and 17 ± 8 ppt for the snow cover night. However, when averaged from 18:00 to 1:00 local 

time (to account for the mixing event on the snow case night), averaged ClNO2 was 17 ± 9 ppt for 

the snow cover night and 12 ± 7 ppt for the bare ground night, showing that the ClNO2 levels over 

snow cover were indeed significantly higher (p=0.017). The increased atmospheric turbulence at 

around 1:00-2:00 corresponded to an air mass shift that resulted in decreases in both O3 and N2O5 

at ~1:00 (Figure 2b). Total particle (14 nm – 20 µm in diameter) surface area concentration 

(Figure S3b) and PM2.5 chloride mass concentration (Figure S2b) also decreased at ~1:00. For 

the remainder of the night after ~ 3:00, N2O5 and PM2.5 chloride remained approximately constant 

(350 ppt and 0.06 µg m-3, respectively), while friction velocity continued to increase and ClNO2 

and particle surface area concentrations continued to decrease. 

Four vertical profile measurements were carried out on the night of the snow case (Jan. 30-

31) (Figure 1(b)). As reported by McNamara et al.,27 the N2O5 deposition velocity averaged over 

the snow cover days throughout the entire study was 0.5 ± 0.2 cm s-1, with the snow case night 

average being 1.0 ± 0.8 cm s-1. On the snow case night, a positive ClNO2 flux was calculated, with 

an average of 3.7´108 (± 3.1´108) molec cm-2 s-1, showing net emission from the snowpack. This 

result is in line with the campaign average ClNO2 flux over snow of 3´107 (± 14´107) molec cm-

2 s-1 27. 

3.2. Model overestimates observed snowpack ClNO2 flux 

Simulations of atmospheric ClNO2 were carried out using a coupled atmosphere-snow 1D 

model.40 To examine only snowpack-produced ClNO2, ClNO2 production from aerosols was 

turned off for the first model scenario. Figure 3 shows the model results of the time-resolved 
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vertical distribution of ClNO2 when (a) the snow module was used to calculate ClNO2 production, 

compared to when (b) the model was instead constrained by the observationally derived fluxes27 

(Figure 1b). The model simulated snowpack ClNO2 flux averaged 1.6 ´ 109 (± 0.6 ´ 109) molec 

cm-2 s-1, with a range of 0.7 – 3.1´109 molec cm-2 s-1 during the snow cover case night, representing 

net emission of ClNO2 from the snowpack (Figure 3a). This ClNO2 snowpack flux is a factor of 

6 (± 7) higher than what was derived from measurements (Figure 3b), as reported by McNamara 

et al.27 As a result, the snow module simulated near-surface (1.4 m) ClNO2 (Figure 3a) was on 

average 100 (± 25) ppt (range 50 – 135 ppt) at night; this corresponds to up to ~ 10 times (average 

6 times) higher than the observations, representing a significant overestimate. In contrast, the 

simulations constrained with the observationally driven fluxes (Figure 3b) underestimated the 

observation mole ratios at 1.4 m until 2-3 am EST. For the remainder of the night, the measured 

ClNO2 declined, as discussed in Sec. 3.1, and the flux-constrained model simulations 

overestimated the observations up to ~3 times. However, the uncertainties in the measurement-

derived ClNO2 fluxes resulted in a wide range of simulated ClNO2 (near zero to ~100 ppt near the 

surface) (Figure 3b). Within this wide range of uncertainty in ClNO2 fluxes, the observations were 

within the uncertainty of model simulations. However, this does not imply that the measured 

ClNO2 could be solely explained by snow emissions. Rather, this result further shows that the 

model is sensitive to the snowpack ClNO2 flux demonstrating its important and yet highly 

uncertain role in producing near-surface ClNO2. 
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Figure  3  ClNO2  model  simulation  results  when  (a)  using  the  model  snow  module  and  (b)  constraining  the  model  
with observationally derived ClNO2  flux reported by McNamara  et  al.  (2021)  and also shown in Figure  1b. (top) 
Diel  variation of  model  simulated and observationally derived ClNO2  fluxes,  which  were  interpolated (dashed  
line,  flux set  to zero between sunrise  and sunset)  and constrained in the  model.  Error  bars  are  shown  for  
measurement  uncertainties.  (middle) ClNO2  measurements  (black,  uncertainty  in  shade)  compared  to  model  

resolved vertical  profiles  of  model  simulated ClNO2.  

377 

378 The  significant  difference  in the  ClNO2  fluxes  calculated by  the  snow  module  and derived 

from  observations  shows  that  uncertainties  remain in simulating snowpack production of trace  

gases.  In this  model40  and following other snow  models,66,67  we  assumed that  spherical  snow  grains 

are  entirely  covered with brine  and are  available  to react  with N2O5  to release  ClNO2.  This  

assumption means  that  all  chloride  measured in the  snow  melt  is  assumed to be  at  the  snow  grain 

surface  in the  brine.40,98  However, this  is  unrealistic  and an upper limit  as  additional  unknown 

physical  or chemical  factors  that  limit  the  formation and subsequent  transport  within the  snowpack 

may exist.102  For example, within a  likely non-spherical  snow  grain, chemical  species  are  not  

homogeneously distributed, with spatial  variation between  brine  patches, grain boundaries,  and  ice 

crystal  surfaces, which is  not  currently represented in  model  frameworks.102–104  Not  all  snow  
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chloride is expected to be available for reaction to generate ClNO2, and this is one of many 

uncertainties likely leading to the snow module overestimating the observed ClNO2 in Figure 3. 

An additional uncertainty is the N2O5 uptake and ClNO2 yield values on snow grains, for 

which laboratory studies are lacking. A qualitative snow chamber study by McNamara et al.27 

exposed local snow to synthesized N2O5 during the SNACK campaign. The results showed that 

snowpack physical structure characteristics, which are influenced by temperature and the use of 

deicing materials, control the availability of snow Cl- and reactive surface area. 27 In our modeling 

study, the snowpack temperature was assumed to be the same as the near-surface air, which is an 

upper limit that affects the calculated N2O5 uptake and ClNO2 yield values and model simulated 

ClNO2. 40 Due to latent heat of fusion for phase transition and radiational cooling, the snowpack 

temperature is likely lower than the overlying air since snow patches remained when the air 

temperature was above freezing in the early morning of Feb. 1 (Figure S7). This overestimated 

temperature in the model drives the snow grain brine fraction (fbrine) to be higher, which dilutes the 

chloride content and therefore results in lower yields. The snow fbrine was calculated to be 0.1 - 1 % 

during the night and reach 100 % in the early morning as the temperature constrained in the model 

increased to over the freezing point, set as 273 K (Figure S7). Based on the fraction of the liquid 

brine layer and the resulting ion concentration of snow grains, g!"#$,' ranged between 0.023-0.027, 

within the wide range (10-4 – 0.1) of g!"#$, reported by laboratory and field studies on particles.69 

The calculated FClNO2,s was sensitive to temperature and ranged from 0.4 to 1 during the night and 

dropped to near zero when the snow fbrine was calculated to be 1 (i.e. complete snowmelt, which 

was not observed), leading to significant dilution of chloride. This is consistent with the previous 

discussion by Wang et al.,40 in which the model calculated FClNO2,s was found to be highly sensitive 

to temperature. Further, both g!"#$,' and FClNO2,s of snow grains are a function of chloride in the 
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model.40 The nitrate effect that can suppress ClNO2 formation72 is expected to be insignificant 

considering the low levels (29 ± 3 µM, ~15 times less than Cl- or Na+) measured from the snow 

samples collected on the snow case day.27 Overall, further studies are needed to characterize the 

efficiency of ClNO2 generation and release from the snowpack.53 

As expected, Figure 3 shows that simulated ClNO2 levels were highest near the ground for 

the snowpack-produced ClNO2 model scenarios. However, the model results also show that the 

snowpack-produced ClNO2 was vertically transported throughout the nocturnal stable boundary 

layer, the depth of which was estimated to be ~ 450 m (Figure S10b). The drop in ClNO2 mole 

ratios between 21:00 and 23:00 EST, observed in both in the model simulations and observations, 

is likely due to enhanced atmospheric mixing as evidenced by the increase in the vertical eddy 

diffusivity (Figure S3b) during this time period. The modeled ClNO2 was confined to the 

nocturnal stable boundary layer with no significant levels in the residual layer aloft as the 

production from aerosol particles were turned off in the model and therefore the snow-covered 

ground was the only source of ClNO2. 

3.3. Single-particle (chemically-resolved surface area) parameterization improves ClNO2 

simulation 

In this section, we compare ground level (1.4 m) ClNO2 observations to model simulations 

with various scenarios of aerosol particles and/or snowpack as sources of ClNO2 (Figure 4). As 

described in section 2.3, we use two parameterization methods for deriving g!"#$,& and FClNO2,p 

in simulating ClNO2 generation from aerosol particles: 1) bulk method72 and 2) single-particle 

(chemically-resolved surface area) parameterization.35 The bulk parameterization assumes that all 

particles have identical composition, while the single-particle parameterization is based on 
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434 measurement-derived chemically resolved surface  area  concentrations. This  new  parameterization 

accounts  for variations  between particle  types  (e.g. soot  vs. road salt) in N2O5  uptake  and ClNO2  

production, enabling only a  subset  of aerosol  particles  to produce  ClNO2. For the  single-particle  

method, calculated surface-area  weighted g  and FClNO2,p !"#$,&  values  reported in the  literature  

were  applied  for different  particle  types  (Table  S3).  In Figure  4,  model  scenario 1 (Sc1) uses  the  

bulk method72  and scenario 2 (Sc2) uses  the  single-particle  parameterization for ClNO2  

production.35  For both scenarios  (Sc1 and Sc2), snowpack ClNO2  production was  turned off in the  

model,  and therefore  aerosol  particles  were  the  only source  of simulated ClNO2.  For scenario 3 

(Sc3), ClNO2  was  produced from  aerosols  through the  single  particle  method;  in addition, the  

measured ClNO2  surface  flux  (depositing over  bare  ground, Figure  4a, or emitting over  snow  cover, 

Figure  4b) was  constrained.27  Scenario 4 (Sc4)  was  similar to Sc3,  with the  ClNO2  yield from  

particles increased by a factor of 3.     
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Figure  4  Comparison between measured and modeled ClNO2 during (a) bare  ground and (b) snow cover case  
days. M odel  results  from  the  atmospheric  layer  corresponding to the  measurement  height  (1.4  m)  are  shown.  
Scenario  1  (Sc1),  scenario 2  (Sc2),  and scenario 3  (Sc3)  show  modeled  ClNO2  using  the  particle  bulk  
parameterization,  single  particle  parameterization,  and single  particle  parameterization with  measured  ClNO2  
emission/deposition constrained,  respectively.  Scenario  4 (Sc4)  was  similar  to Sc3,  with the  ClNO2  yield 
increased  by  three  times.  For  observations  (black),  grey  shades  are  uncertainties,  and  the  black  dashed  line  
shows  interpolated points  from  when  vertical  profile  measurements  were  conducted.  For  S3,  blue  shades  
correspond  to  when the  model  is  constrained  with upper  and  lower  bounds  of  deposition  (a,  bare  ground)  and  
emission (b, s now  cover). E missions  during the  snow  case  day were  set  to  zero  for  the  lower  bound.   
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The results of the ground level ClNO2 model simulations show that the bulk method (Sc1) 

overestimates the ClNO2 levels, while the single-particle parameterization (Sc2) underestimates 

them (Figure 4b). For the bare ground case (Figure 4a), Sc1 overestimated ClNO2 mole ratios by 

an average factor of 10 (range 4 - 27 times), while Sc2 underestimated on average by 40 %. For 

the snow cover case (Figure 4b), Sc1 overestimated by an average factor of 5 (range 2-11 times), 

while Sc2 underestimated on average by a factor of 3 (range 0.8 – 7). In the bulk parameterization, 

calculated g!"#$,& and FClNO2,p are driven by particle liquid water content and measured particulate 

chloride and nitrate mass concentrations (Figure S2). The bulk method gives g!"#$,& values 

ranging from 0.019 to 0.031 (average 0.0252 ± 0.004) and FClNO2,p values ranging from 0.815 to 

0.983 (average 0.92 ± 0.07) for the bare ground case, and g!"#$,& values ranging from 0.025 to 

0.036 (average 0.029 ± 0.004) and FClNO2,p values ranging from 0.944 to 0.993 (average 0.98 ± 

0.02) for the snow cover case (Figure S2). For the single-particle parameterization, g!"#$,& values 

were 0.0048 and 0.0045 for the bare ground and snow case periods, respectively, with calculated 

FClNO2,p of 0.138 and 0.121, respectively. For both methods, both parameters were within the wide 

range (g!"#$,&: 10-4 – 0.1 and FClNO2,p: 0-1) reported by previous laboratory and field studies.68,69 

However, the calculated g!"#$,& and FClNO2,p values from the bulk method (Sc1) were roughly 

factors of 6-8 higher than the single-particle parameterization (Sc2), thus explaining the large 

difference in simulated ClNO2 between the two scenarios. Notably, the differences in g!"#$,& and 

FClNO2,p between the two methods are higher than in McNamara et al.,35 who reported 2-3 times 

higher and FClNO2,p using the bulk method compared to the single-particle g!"#$,& 

parameterization for wintertime Ann Arbor, MI. 
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Scenario 3 (Sc3) was constrained with observationally derived ClNO2 surface flux, 

reported previously by McNamara et al.27, in addition to ClNO2 production from particles using 

the single-particle parameterization (Sc2). These fluxes describe ClNO2 surface deposition to the 

bare ground and emission from the snow cover. When the observationally derived ClNO2 flux was 

constrained in the model, the bare ground case simulation (Figure 4a, Sc3) further underestimated 

the observed ClNO2 mole ratios and only explained on average 53 ± 12 % of the observed ClNO2. 

Adjusting the simulation based on the uncertainty in the measurement-derived ClNO2 deposition 

velocity did not make a significant difference. For the snow cover case (Figure 4b, Sc3), 

constraining the ClNO2 surface flux from snow27 resulted in lower ClNO2 mole ratios (average 

2±1 times range 1-5 times) than observations during the night until 1:00 EST. Therefore, for the 

snow case, adding the snowpack ClNO2 emission flux improved the ClNO2 agreement compared 

to Sc2, which included only aerosol particle-produced ClNO2. The large measurement 

uncertainties in the snowpack ClNO2 emission fluxes resulted in a significant range of modeled 

ClNO2 (Figure 4b), indicating that the ClNO2 simulations were highly sensitive to the snowpack 

emissions. The important role of snowpack ClNO2 production in the simulations is consistent with 

the whole-campaign observations by Kulju et al.,28 who found higher ClNO2 mole ratios when 

snow-covered ground was present, which could not be explained by air turbulence, N2O5, or 

several other variables, and attributed this finding to the snowpack ClNO2 flux. The NO2 level 

does not have a significant impact on the simulated ground level ClNO2, as shown in Figure S12, 

since the corresponding model layer was constrained with the measured N2O5 at the field site. 

The simulated ClNO2 mole ratios were typically lower than observations for Sc2 and Sc3, 

which both used the single-particle parameterization (Figure 4). The weighted g!"#$,& and 

FClNO2,p values depend on the laboratory-derived quantities chosen for each ambient particle type 
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as summarized in Table S3. Therefore, uncertainties derive from limited laboratory studies of 

realistic particle types and matching these to the ambient particles. During the two case days, the 

majority of the particles, by number, corresponded to residential wood burning (Figure S6). To 

our knowledge, only one laboratory study has reported g!"#$,& and FClNO2,p values for biomass 

burning aerosols.105 Goldberger et al.105 reported g!"#$,& values ranging from 2 × 10-3 to 6 × 10-3 

and FClNO2,p ranging from non-detectable to 50 % from burning various types of vegetation, 

depending on fuel chloride content. For the single particle parameterization, we applied the g!"#$,& 

value from Goldberger et al.105 for aerosols produced from burning longleaf pine needles (0.003). 

The FClNO2,p value from the same study for aerosols produced from burning saw palmetto (0.03) 

was used,105 even though this fuel has a chloride content higher than expected for residential wood 

burning fuels in Michigan. As the modeled ClNO2 from the single-particle parameterization (Sc2 

and Sc3) underestimated the observations, the overall ClNO2 yield was increased by a factor of 3 

(FClNO2,p = 0.36) for Sc4, which improved agreement with the observed ClNO2 mole ratios (Figure 

4). For the bare ground case, average ClNO2 during the night was measured to be 22 ± 13 ppt, 

compared to 24 ± 10 ppt for Sc4. For the snow cover case, average ClNO2 was measured to be 20 

± 5 ppt from sunset to 1:00, compared to 19 ± 6 ppt for Sc4. This is equivalent to increasing the 

FClNO2,p from biomass burning aerosols by ~10 times (FClNO2,p = ~ 0.3). While this increased 

FClNO2,p was similar to previous field estimates of biomass burning influenced air masses (FClNO2,p 

of 0.06 – 0.2),30 this is surprising as the chloride content of the particles was below the EDX 

detection limit, suggesting trace chloride levels. This low level of particulate chloride is expected 

for residential fuels likely to be dominated by wood with low chloride content. The ClNO2 yield 

from biomass burning aerosols can be affected by various factors including organic coating and 
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chloride content, which are impacted by the type of vegetation and aging during atmospheric 

transport.105–107 Therefore, further laboratory studies deriving N2O5 uptake and ClNO2 yield values 

with varying burn conditions and different types of vegetation are required to improve 

understanding and constraint of ClNO2 production from biomass burning aerosols, especially 

residential wood burning aerosols. 

3.4. Vertically-resolved ClNO2 from aerosol particles and snow 

While both aerosol particles and snow contribute to ClNO2 formation (Sections 3.2 and 

3.3), the relative contributions of each to the simulated vertical distributions of ClNO2 were 

compared for the best model scenario (Sc4). To isolate the aerosol particle production only, a 

modified Sc4 simulation was run in which the snow ClNO2 flux was not included (Figure 5a). 

This was compared to the simulation results of Sc4 with ClNO2 production from both aerosol 

particles and surface snow, with the snow constrained by the measurement-derived flux (Figure 

5b). This scenario agrees best with the observations until 1:00 local time when measured ClNO2 

started declining due to atmospheric mixing (Section 3.1). 
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Figure  5 Vertical  and  diel  distributions  of  simulated  ClNO2  mole  ratios  with  formation  from:  (a)  
particles  and (b)  particles  +  snow  emission.  The  ClNO2  yield was  multiplied by  three  for  the  single  
particle  parameterization  (model  scenario  Sc4  in  Figure  4).  Observationally driven  ClNO2  emission  
fluxes  from  snow,  reported  by  McNamara  et  al.  (2021),  were  used for  snow  emissions  (see  Figure  1). 
(c)  Vertically  resolved  percentage  of  the  modeled  ClNO2  from  the  difference  between  b  (particles  +  
snow)  and  a  (particles)  are  shown  as  a  function of  time,  with  the  percentage  at  ground  level  (1.4  m)  
from  snow  emissions.  Nocturnal  stable  boundary layer  height  was  estimated  to  be  ~  450  m  (Figure  
S10).   
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547 

548 For both aerosol  only and aerosol  + snow  scenarios, modeled ClNO2  in the  nocturnal  

boundary layer steadily increased throughout  the  night. For the  aerosol  particle  only simulations  

(Figure  5a) the  highest  levels  were  simulated to be  at  around 8:30 and ranged 23 –  27 ppt  of ClNO2  

throughout  the  boundary layer. When both  aerosol  particles  and surface  snow  were  sources  of 

ClNO2  (Figure  5b), the  maximum  ClNO2  levels  reached 65 ppt  at  6:30 for the  lowest  atmospheric  

model  layer (i.e., the  layer right  above  the  snowpack). The  maximum  percentage  of ClNO2  from  

snow  emissions  (Figure  5c) was  up to 61 % at  6:30 local  time  in  the  lowest  atmospheric  model  

layer. During the  nighttime  (sunset  to 1 pm), the  average  contribution of snowpack-produced 

ClNO2  was  36 ±  9 % (range  2 - 47 %) in the  surface  model  layer corresponding to the  observation 
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height (1.4 m). It should be noted that the modeled turbulent transport is uncertain (supporting 

information, S3), and reduced model-measurement agreement was found after 1:00. However, 

despite uncertainties, it is clear that the saline snowpack can be a significant source of ClNO2 in 

the wintertime urban environment. 

4. Conclusion 

In this study, we examined the contributions of ClNO2 production from aerosol particles 

and the urban wintertime snowpack in Kalamazoo, MI, using an observationally constrained 

atmosphere and snow coupled 1D model. The modeling study was motivated by the work of 

McNamara et al.27 who showed net ClNO2 surface deposition over bare ground and net ClNO2 

emission over snow covered ground, with no significant difference in N2O5 deposition velocities. 

Kulju et al.28 reported higher ClNO2 levels over snow covered ground compared to bare ground 

across the entire field campaign. Therefore, two case periods, over bare ground and snow cover, 

were simulated to examine vertically-resolved contributions of ClNO2 produced from aerosol 

particles and saline snow, both impacted by road salt application for deicing. 

The model was constrained with snow parameters and surface observations, including 

observationally driven ClNO2 surface flux reported by McNamara et al.27 The snowpack ClNO2 

emission flux from the snow module was ~6 times higher than the measurement-derived flux. This 

overestimation of the snow module in simulating the observed surface ClNO2 flux is due to the 

many model uncertainties, including the unknown availability of chloride in the snowpack for 

reaction, which is influenced by the physical characteristics of the snow grains. The chemical and 

physical complexity of the snowpack as a reactive media is yet to be fully represented in models.102 
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Further laboratory and field studies investigating the various factors controlling snow trace gas 

(including ClNO2) production are needed. 

When comparing different parameterization methods of ClNO2 production from aerosol 

particles, model results show that assuming a homogenous aerosol composition (i.e. the “bulk” 

method)35 overestimated the surface level measurements. This overestimation in simulated ClNO2 

when using the bulk method was also reported by McNamara et al.27 for a previous wintertime 

study in Ann Arbor, MI. This demonstrates that the assumption of homogenous aerosol particle 

composition leads to an unrealistic representation of ClNO2 production, since not all particles have 

equivalent N2O5 uptake values and not all particles contain chloride. However, model results of 

the single-particle (chemically-resolved surface area) parameterization explained only 30-40 % of 

the measured surface ClNO2 for both case days. Including measurement-derived ClNO2 emissions 

from surface snow improved agreement with measured ground level ClNO2 for the snow case, 

underestimating by ~50 %. Model sensitivity studies showed that the observed ClNO2 levels were 

within the model simulations, given the large uncertainty in the measurement-derived ClNO2 

emissions. Constraining the measured ClNO2 surface deposition for the bare ground case further 

reduced the simulated ClNO2. This result demonstrates the need for additional studies of ClNO2 

surface deposition velocities and comparison to results from numerical models. To improve the 

simulations for both case days, the overall single-particle parameterization ClNO2 yield was 

increased by a factor of three, which led to agreement with the observations. However, limited 

information is available on the efficiency of ClNO2 generation from authentic particle types, and 

more laboratory studies are needed to constrain the parametrization and reduce this uncertainty. In 

particular, there is high uncertainty from using N2O5 uptake and ClNO2 yield values from only one 

study of biomass burning particles105 from vegetation that are not representative of the field site. 

29 



  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

605

610

615

620

625

602 The  results  in this  study show  the  significant  contribution of ClNO2  production from  an 

urban wintertime  snowpack. The  snowpack-emitted ClNO2  was  simulated to be  vertically 

transported throughout  the  nocturnal  stable  boundary layer. Vertical  profiles  of modeled ClNO2  

show  that  the  contribution of snowpack ClNO2  can be  up to ~60  % near the  surface, decreasing to 

~9 %  near the  top of the  boundary layer. This  highlights  how  reactions  on the  surface  snowpack 

likely have  a  significant  influence  on  atmospheric  oxidation and composition upon ClNO2  

photolysis  during the  following day. Vertically-resolved observations  are  needed to improve  

understanding of ClNO2  over the  saline  snowpack  and enable  further evaluation  and quantitation  

of the  vertically-resolved contributions  of ClNO2  production from  aerosol  particles  and the  saline  

snowpack.  The  results  of this  study can be  extended to other saline  snowpacks, such as  coastal  

regions, where  significant  levels  of chloride  can accumulate  in snow  through sea  salt  aerosol  

deposition.108     
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626 (Figure  S10);  estimated boundary layer height  and eddy diffusivity (Figure  S11);  and modeled 

NO2  (Figure S12).  
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