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Abstract 

The ability of the 5th phase of the Coupled Model Intercomparison Project (CMIP5) 

to reproduce 20th-century climate trends over the seven CONUS regions of the National 

Climate Assessment (NCA) is evaluated. This evaluation is carried out for summer and 

winter for three time periods, 1895-1939, 1940-1979, and 1980-2005. The evaluation 

includes all 206 CMIP5 historical simulations from 48 unique models and their multi-

model ensemble (MME), as well as a gridded in-situ dataset of surface air temperature and 

precipitation. Analysis is performed on both individual members and the MME, and 

considers reproducing the correct sign of the trends by the members as well as reproducing 

the trend values. While the MME exhibits some trend bias in most cases, it reproduces 

historical temperature trends with reasonable fidelity for summer for all time periods and 

all regions, including at the CONUS scale, except the Northern Great Plains from 1895-

1939 and Southeast during 1980-2005. Likewise, for DJF, the MME reproduces historical 

temperature trends across all time periods over all regions, including at the CONUS scale, 

except the Southeast from 1895-1939 and the Midwest during 1940-1979. Model skill was 

highest across all of the seven regions during JJA and DJF for the 1980-2005 period. The 

quantiatively best result is seen during DJF in the Southwest region with at least 74% of 

the ensemble members correctly reproducing the observed trend across all of the time 

periods. No clear trends in MME precipitation were identified at these scales due to high 

model precipitation variability. 

KEYWORDS: CMIP5, model evaluation, surface air temperature, multi-model ensemble 
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1. INTRODUCTION 

An emerging urgence in climate change studies is the investigation of regional–scale 

variability and trends of key climate variables such as surface air temperature and precipitation 

(IPCC, 2013; Melillo et al., 2014). Given that regional topography and surface characteristics 

are influential in how the regional climate responds to both global climate change influences as 

well as local projections of large-scale natural variability, it is essential that these features are 

examined in our global climate models (Kunkel and Liang 2005). Continued analysis of long-

term observed trends and low-frequency variability in key climate variables is instrumental to 

understanding the characteristics of the observed changes, and in combination with validated 

models, forcing data and model responses, better quantify attribution. 

The Intergovernmental Panel on Climate Change Fifth Assessment Report (IPCC AR5) 

concludes that much of the warming that is experienced globally since the 1950s is extremely 

likely to have been caused by an increase in anthropogenic greenhouse gas concentrations in the 

atmosphere. Future global climate projections, based on analysis of GCM projections suggest an 

increase in globally-averaged surface temperature by at least 2°C by 2100 (IPCC, 2013) with 

consequential implications. As just one example, the increased temperature will lead to 

substantial melting of glaciers and ice sheets in polar regions and a rise in sea level. Several 

studies have been conducted on global temperature changes (e.g. Crowley (2000), Knutson et al., 

(2006), Knutson et al., (2013)), all of which agree that a majority of regions across the globe 

have experienced warming over the last century that beyond their natural climate variability. 

The National Climate Assessment Climate Science Special Report (CSSR; Wuebbles et al. 

2017) states that the United States experienced an average warming of 1.2-1.8°F since 1895. 

However, this warming is not uniform over the entire country nor is it constant. Much of the 
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northern parts of the nation have experienced more warming whereas the Southeast has seen 

small increases in temperature. In addition, most of the warming has occurred since 1970. The 

NCA3 report further suggests that future climate projections, based on the results of 16 GCMs, 

show an additional increase in temperature of 2-4°F over the next few decades with 3-5°F 

increase by the end of this century under a lower emissions scenario and 5-10°F under a higher 

emissions scenario. 

The validity of these future climate projections weighs heavily on the accuracy of the 

historical simulations. There have been several studies which utilize GCMs to examine changes 

in the temperature and precipitation over a specific region in the U.S. (e.g. Kunkel and Liang 

(2005), Barnett et al., (2008), Cayan et al., (2013)) or to project regional climate change (e.g. 

Meehl and Tebaldi (2004), Kunkel et al., (2013), Wuebbles et al., (2014)). Similarly, another 

study has utilized Regional Climate Models (RCMs) to evaluate past climate trends in North 

America (e.g. Bukovsky, 2012). One key finding in the evaluations of observed change over the 

contiguous United States (CONUS) is the lack of warming in the Southeast over the second half 

of the twentieth century. This feature, termed the “warming hole,” is well studied (Kunkel et al., 

(2006), Meehl et al., (2012), Kumar et al., (2013)) and research suggests that models that are 

more skillful in simulating North Atlantic sea surface temperatures are better at reproducing the 

“warming hole,” but the number of models that actually do so are small. 

The purpose of this research study is to evaluate the ability of the CMIP5 simulations and 

their ensemble mean to reproduce, with regional fidelity, the recent historical near surface air 

temperature and precipitation trends over the continental US. This includes discriminating across 

the seven NCA regions across CONUS, considering 3 multi-decade periods, and considers model 

fidelity of trends both in terms of reproducing the correct sign as well as the magnitudes of the 
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trends.  Past studies have considered a subset of this objective using only a portion of the 

available simulations participating in the fifth phase of the Coupled Model Intercomparison 

Project (CMIP5, Taylor et al., 2012) against observed data. For example, Janssen et al., (2016) 

used 94 available simulations to examine regional extreme precipitation events in the United 

States. Kumar et al., (2013) analyzed 196 simulations to find a relationship between the 

“warming hole” and natural climate variability. 

Temperature and precipitation were chosen as the key climate variables for this study in part 

because an enhanced anthropogenic greenhouse effect will result in warming temperatures as a 

first order impact and a warmer atmosphere will alter precipitation intensity and patterns due to 

the thermodynamic relationship between temperature and precipitation. Secondly, temperature 

and precipitation change will have/are having profound impacts on society and the environment. 

While there are many other important variables that climate change will alter, temperature and 

precipitation are arguably the most important for impacts and therefore the most critical for 

climate models to capture trends in. 

This study goes beyond previous studies’ objectives and approaches by utilizing the entire 

CMIP5 historical suite available (up to 206 simulations), considering regional trends across all of 

CONUS, and considering fidelity of both signs and magnitudes of regional trends. Moreover, 

this study utilizes a new long-record in-situ based time series for its observational reference (See 

Section 2).  By performing a comprehensive analysis of the model fidelity in reproducing recent 

regional historical trends along the lines described above, we aim to yield additional quantitative 

information on the uncertainty associated with the multi-model ensemble projections of future 

U.S. climate, specifically tailored to the seven regions over CONUS defined by the United States 

Global Change Research Program (USGCRP) NCA. While the recent NCA Climate Science 
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Special Report (CSSR) highlights observed trends in and simulated future projections of 

temperature and precipitation over CONUS, a first order evaluation of the fidelity with which the 

climate models used in the report are able simulate historical temperature and precipitation 

trends is not included (Easterling et al. 2017). Therefore, this comprehensive evaluation of these 

trends gives context to the uncertainty associated with future projections of temperature and 

precipitation across CONUS as presented in the NCA CSSR. 

The remainder of this paper is structured as follows. Section 2 describes the data and 

methodology used in our evaluation of simulated trends. Section 3 presents comparisons between 

the observed and simulated trends in temperature and precipitation. Section 4 summarizes our 

key findings. Section 5 entails the conclusions of our study. 

2. DATA AND METHODOLOGY 

a. Data 

CMIP5 provides a state-of-the-art multi-model dataset produced by climate modeling groups 

in an effort to further our knowledge of climate variability and climate change (Taylor et al. 

2012). The simulations of the CMIP5 GCMs estimate future climate change and provide a 

scientific basis for the IPCC AR5 (IPCC, 2013). To evaluate the models’ capability to reproduce 

observed trends in surface air temperature and precipitation, we analyzed the historical 

simulations of the 20th century with time-evolving external forcings. There are 21 different 

modeling centers from 14 different countries that have contributed a total of 206 historical 

simulations with spatial resolutions varying between 0.5° to 4° (Table 1). The specific simulation 

period varies across the models, but most of the models provide output for the 111 years between 

1895 and 2005. The 206 simulations are made up of contributions from 48 unique GCMs, with 
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some models contributing ensembles as small as one simulation or as large as 25 simulations that 

differ in initial conditions and/or parameterizations. The historical simulations are driven by 

various forcings that attempt to be, but are not entirely, identical across all modeling groups 

(Kunkel et al. 2006), and these differences may account for some differences in the model 

behavior. The multi-model mean temperature and precipitation trends of the CMIP5 suite are 

used to examine the ensemble as a whole, as previous research has shown that this approach can 

capture the observed temperature and precipitation trends well for some regions, time periods, 

and ensemble constructions (e.g. Kumaret al., 2013). In addition, in parts of the current study, 

each of the 206 simulations is treated as if they are independent as done in Kunkel et al.’s (2006) 

analysis of central United States temperature trends in the twentieth-century. The present study 

used monthly mean near-surface air temperature and monthly total precipitation from the 206 

historical simulations. Detailed information about the models used in this study is presented in 

the Appendix. 

This analysis uses observed monthly mean near-surface air temperature and monthly total 

precipitation data as reference data to compare to those of the GCM simulations. The reference 

dataset is a new National Center for Environmental Information (NCEI) climate monitoring 

product based on the Global Historical Climatology Network-Daily (GHCN-Daily) dataset 

(Menne et al., 2012), referred to as nClimGrid, hereafter. nClimGrid includes monthly averaged 

minimum, maximum, and mean near-surface air temperature, as well as total monthly 

precipitation data. Data availability spans from 1895 to present over CONUS and Alaska. 

nClimGrid primarily utilizes the Cooperative Observer (COOP) program to which area-weighted 

averages of grid points are used to interpolate latitude-longitude spacing of 5 km (Vose et al. 

2014; Kunkel et al. 2015). This new gridded dataset is distinct in two significant ways: it uses a 
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larger station network with greatly improved spatial coverage and density, particularly over the 

West; and the interpolation process accounts for topographic effects (e.g., from mountain ranges, 

temperature inversions, and coastal influences), meaning the resultant grids depict actual 

temperatures rather than climate anomalies. Bias adjustments were computed to account for 

historical changes in observation time as well as historical changes in station location, 

temperature instrumentation, and siting conditions. Because of these substantial changes to the 

official temperature record of the United States, a new evaluation of model simulation of 

historical trends is warranted. Considering the simulation period of the models, we used the 

reference data over CONUS for the three time periods, 1895-1939 (Period 1), 1940-1979 (Period 

2), and 1980-2005 (Period 3). 

b. Methodology 

Spatially-averaged regional means were calculated for the NCA regions over CONUS (Fig. 1a). 

To ensure that each NCA subregion is of equal size and comprised of the same number of grid 

points among member models, all data is first interpolated to a 2° latitude/longitude grid mesh.  

Performing the data interpolation before spatial averaging does not affect the results of the 

current study. The Great Plains region used in the NCA3 (Melillo et al., 2014) was divided into a 

northern and southern component, following expectations this will be formalized for the next 

NCA report, resulting in a total of seven regions (Table 2) as presented in Janssen et al. (2014): 

Northwest, Southwest, Northern Great Plains, Southern Great Plains, Midwest, Northeast, and 

Southeast. 

Trends in temperature and precipitation are computed for summer (June through August; 

JJA) and winter (December through February; DJF) applying the method of least squares to 
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regionally averaged temperature and precipitation data for the two seasons in the reference and 

the CMIP5 models. The linear trends are computed for the reference, the multi-model ensemble 

(MME), and ensemble members for three time blocks (1895-1939, 1940-1979, 1980-2005). The 

choice of the time blocks is based on the observed warming and cooling trends, and closely 

mimics those in Kunkel et. al (2006). These time periods were chosen as a result of observed 

increasing temperature trends during 1895-1939 and 1980-2005 in contrast to a decreasing 

temperature trend during 1940-1979 (Figure 1b). Four metrics are used to evaluate model 

performance: a trend bias of the MME, trend biases of ensemble members, percent of ensemble 

members producing trends of the same sign (+/-) as observations, and the percent of ensemble 

members with biases that are small in comparison to the standard errors of the observed and 

simulated trends. The standard errors in the observed and simulated trends are calculated based 

on the equation in Hogg and Tanis (2009). (The detailed methodology and equations can be 

found in Appendix A). 

MME trends may be influenced more strongly by some models that contribute more 

ensemble members than the others. For instance, there are models that provide as little as one 

simulation or as many as 25 different ensemble members. In the case of a model contributing a 

large number of ensemble members, this particular model will bear greater weight to the overall 

regional mean because each simulation is weighted equally when calculating MME (Appendix 

A, Equation 4). Considering the unequal number of simulations by the models, the standard error 

in MME’s trend was estimated by randomly selecting N (Table 1) ensemble members trends with 

replacement (i.e. bootstrapping) and computing the mean of that selection. This sampling was 

repeated 1000 times to obtain standard deviation across the 1000 random ensemble trends for use 
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as the standard error of the MME. The bias of the MME was then compared to the reference 

trend and the standard error (as calculated with the equation from Hogg and Tanis [2009]). 

3. RESULTS 

a. Near-surface air temperature 

i.  Evaluation of the multi-model ensemble trend 

Figure 1b shows the MME and individual ensemble member temperature timeseries over 

the entire evaluation period along with the nClimGrid timeseries over the CONUS for JJA and 

DJF. The MME qualitiatively resembles the general observed trend with some exceptions, such 

as the late part of the record for DJF. The model spread is considerable, however, as represented 

by the gray lines in both figure panels. Temperature trends for the Reference (i.e. nClimGrid) 

and MME, and the trend biases of MME, for the three time periods during JJA are shown in 

Figure 2. The trend biases are marked with an asterisk if they are large relative to the standard 

errors of trends in nClimGrid and MME (discussed further below). During Period 1 (1895-1939), 

warming occurred in all seven regions over the CONUS with the largest positive trend in the 

northern Great Plains region (Figure 2a). The MME also has an average warming trend (~0.085 

K/decade) over all of CONUS (Figure 2b), but with a lesser magnitude as indicated by the 

negative bias values in all but the Southeast (Figure 2c). Also, in the northern Great Plains, the 

difference between the MME and reference trends is larger than standard errors of the trends and 

is indicated with an asterisk (with the significance information based on results in Figure 3). 

During Period 2 (1940-1979), reference data shows a warming trend over the western half of the 

CONUS, whereas the eastern half shows cooling (Figure 2d). In particular, the Southeast region 

displays the strongest cooling trend (-0.24 K/decade). In MME, the cooling trend is weaker than 

10 



  

   

    

  

  

      

  

   

 

    

   

   

  

   

    

    

  

   

 

  

  

   

     

  

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

the observed one in all four eastern half regions (~-0.03 K/decade). The negative (positive) 

biases in the western (eastern) half of CONUS (Figure 2f) indicate that MME underestimates 

both warming and cooling trends compared to nClimGrid. The difference between the observed 

and MME trends is largest in the Southeast region (0.22 K/decade). Kunkel et al. (2006) report 

the underestimated cooling trends in the Southeast region by GCMs and suggest that the large 

trend biases of models result from the North Atlantic sea surface temperature. Period 3 (1980-

2005) is characterized by an overall warming trend except for the Southeast region where a 

cooling trend is observed (Figure 2g). The warming is strongest in the Northwest region (0.50 

K/decade) with relatively weak warming trends in the three central regions. However, MME 

(Figure 2h) exhibits a strong warming trend of 0.4 K/decade averaged over CONUS, leading to a 

considerable positive trend bias in the Southeast (0.40 K/decade), and an overestimation of the 

warming trend over the remaining regions while still leaving an underestimation of the warming 

trend in the Northwest (Figure 2i). In the Southeast region, the trend bias is larger than standard 

errors thus indicated with an asterisk. 

Figure 3 shows the temperature trends in nClimGrid (blue square) and MME (red circle), 

each plotted with its standard error as whiskers (i.e. trends ± standard errors). There is overlap 

between the red and blue whiskers in all regions, including at the CONUS scale, except for the 

northern Great Plains region during Period 1 (Figure 3a) and the Southeast region during Period 

3 (Figure 3c). The non-overlapping whiskers indicate that the MME trends may not have much 

fidelity in representing the trends in these regions/periods with larger trend biases than the 

standard errors of trends in nClimGrid and MME. 

Figure 4 and 5 illustrate the trends from nClimGrid and MME for winter (DJF). During 

Period 1, a warming trend dominated the central and eastern regions (Figure 4a). However, the 
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Northwest experienced cooling while there was no apparent trend in the Southwest. MME 

displays a weak warming trend (~0.08 K/decade) over all of CONUS (Figure 4b). In the 

Southeast region, the difference between the MME and reference trends is larger than standard 

errors of the trends (Figure 4c). During Period 2, reference data shows a cooling trend over all of 

CONUS except for the Northwest region that shows a warming trend (Figure 4d). In particular, 

the Midwest region displays a strong cooling trend. MME displays a cooling trend in the western 

half of CONUS while the eastern half shows a warming trend (Figure 4e). However, the northern 

Great Plains region did not exhibit a trend. In the Midwest region, the difference between the 

MME and reference trends is larger than standard errors of the trends (Figure 4f). The latest 

period, Period 3, is characterized by warming trends over all of CONUS (Figure 4g). MME 

exhibits a similar warming trend over all of CONUS (Figure 4h) but underestimates the 

magnitude as indicated by the bias map displaying negative values (Figure 4i). Figure 5 shows 

trends and standard errors from nClimGrid and MME for DJF. The trend differences between 

nClimGrid and MME are smaller than their standard errors except for the Southeast regions 

during Period 1 (Figure 5a) and the Midwest region from Period 2 (Figure 5b). 

Overall, the MME reproduces the reference trends within their standard errors for both 

seasons over all regions except the four cases: Northern Great Plains in JJA during Period 1 

(1895-1939), the Southeast in JJA during Period 3 (1980-2005), the Southeast in DJF during 

Period 1 (1895-1939), and the Midwest in DJF during Period 2 (1940-1979). The greater model 

departures from the trends in nClimGrid suggest the applied external forcing and/or the modeled 

processes in those regions might lack the same fidelity as for the other regions that tend to be 

represented better. 
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ii.  Evaluation of the trends from ensemble members 

In an effort to understand the performance of ensemble members that comprise MME, the 

trend distribution from 206 ensemble members for JJA are plotted as a box and whiskers with the 

lower and higher ends of the whiskers representing the 5% and 95% of the N ensemble member 

trend values (Figure 3). The lower and upper boundaries of the box represent the lower and 

upper quartile with the middle line indicating the median of the N trends. 

For the JJA analysis (Figure 3), because MME’s trends are almost the same as the median 

of all the ensemble member trend and lengths of red and black whiskers are similar to each other, 

many of the same findings and discussion of the results from Section 3.i apply here. Figure 3a 

shows that both the reference trend and at least 75% of the ensemble member trends show a 

warming over all of CONUS during Period 1. During Period 2 (Figure 3b), the boxplot shows 

that only about half of the ensemble members show a warming trend in the three western regions 

for Period 2 and a cooling trend for the other regions. This indicates that roughly half of the 

ensemble members reproduce the same warming or cooling trend as the reference for this time 

period. For Period 3 (Figure 3c), the boxplot of the ensemble members exhibit warming over all 

of CONUS, although in some cases with considerably greater magnitude, and thus are consistent 

with the reference in regards to the sign of the warming. However, in the Southeast, at least 95% 

of the ensemble members indicates a warming rather than the cooling trend found in the 

reference (i.e. the bottom of the black whisker has almost the same value as the top of the blue 

whisker). 

The percentage of ensemble members whose mean temperature trends are not 

significantly different from the reference at the 90% confidence level are tabulated in Table 3 for 

JJA. For this table, a larger value indicates greater fidelity of the ensemble members to represent 
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the reference trend and vice versa for a smaller value. A large confidence level (in this case 90%) 

indicates that the hypothesis (Appendix A, Equation 7), which states the reference trend equals 

the ensemble member trend, can be accepted as true. For example, for JJA during Period 1 

(1895-1939), there are 184 ensemble members whose trend was compared to the reference trend. 

In the Southeast region, 11% of the simulation trends are not significantly different from the 

observed trend at the 90% confidence level. For the same region, during Period 2 (1940-1979), 

8% of the ensemble members have temperature trends that are not significantly different from 

the observed trend while only 4% during Period 3 (1980-2005) are not significantly different at 

the 90% confidence level. This shows that for the Southeast region, the fidelity of the ensemble 

members to represent the observed temperature trends diminishes with each successive time 

block. The region and time block best represented by the ensemble members is the Northwest 

region during Period 3, where 30% of the simulated trends are not significantly different from 

the observed trend at the 90% confidence level. At the CONUS analysis level, 1% of the 

simulation trends during Period 1 (1895-1939) are not significantly different from the observed 

trend at the 90% confidence level while Period 2 (1940-1979) and Period 3 (1980-2005) 

produced higher percentages of 16% and 17.5% respectively. This shows that at the CONUS 

level, the fidelity of the ensemble members to represent the observed temperature trends 

increases with each successive time block. 

For further analysis of the ensemble members, Figure 6(a-c) takes into account the 

percent of the GCMs that can correctly reproduce the same sign (+/-) of warming (cooling) as the 

temperature trends in nClimGrid. During Period 1 (Figure 6a), a large number of the ensemble 

members (76-83%) are capable of reproducing the same sign trend as nClimGrid. During Period 

2 (Figure 6b), roughly half (39-59%) of the ensemble members reproduce the same sign trend, 
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whereas an overwhelming number of ensemble members (91-97%) do so during Period 3 (Figure 

6c) except for the Southeast region where only 3.9% of ensemble members produce the same 

sign trend. Figure 6(d-f) is used to demonstrate the percent of the ensemble members whose 

trend biases are small relative to standard errors of nClimGrid and simulated trends (i.e. their 

trend values are comparable within the range of the standard errors of each). During Period 1 

(Figure 6d), about half (39-59%) of the ensemble members reproduce temperature trends similar 

to the observed trend except for the northern Great Plains (7.1%). During Period 2 (Figure 6e), 

only about a quarter (24-34%) of the ensemble members have smaller biases than standard 

errors. In the Southwest region, only 10% of the simulated trends show reasonable agreement 

with the observed trend. During Period 3 (Figure 6f), roughly half of the ensemble members over 

the Western regions along with the Northeast reproduce the reference trends (46-54%), whereas 

ensemble members perform poorly (10-22%) in the rest of the regions. 

For the corresponding analysis of DJF during Period 1 (i.e. Table 4, Figure 5 and Figure 

7), the reference mean trends in Figure 5 shows a period of warming in all regions except the 

Northwest whereas at least 75% of the ensemble member trends show a warming period over all 

of CONUS. Conversely, from 1940-1979, the reference data indicates a cooling trend in all 

regions except the Northwest. Only about half of the ensemble members show a cooling trend in 

all regions. The reference data between 1980-2005 show a warming trend for all regions and at 

least 90% of the ensemble members depict this warming trend. 

The percentage of ensemble members whose mean temperature trends are not 

significantly different from the reference at the 90% confidence level are tabulated in Table 4 

(see discussion of Table 3 above). As with Table 3, a large confidence level (in this case 90%) 

indicates that the hypothesis (Appendix A, Equation 7), which states the reference trend equals 
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the ensemble member trend, can be accepted as true. The overall fidelity of the ensemble 

members to represent the observed temperature trend increases with each successive time block 

in all regions except the northern Great Plains and the Northeast where the observed temperature 

trend diminishes with each successive time block. Similar to the JJA analysis over CONUS, the 

DJF percentages of simulation trends with mean temperature trends that are not significantly 

different from the observed trend increased with each successive time block with 7%, 17%, and 

26% of the simulations for Period 1 (1895-1939), Period 2 (1940-1979), and Period 3 (1980-

2005) at the 90% confidence level. 

Figure 7(a-c) illustrates the percent of the ensemble members that reproduce the same 

sign (+/-) as the reference temperature trend during winter. During 1895-1939 (Figure 7a), all 

regions except for the Northwest showed that more than half of the ensemble members (59-68%) 

can reproduce the same sign trend as the reference. From 1940-1979 (Figure 7b), roughly half 

(42-60%) of the ensemble members reproduce the same sign trend while a majority of ensemble 

members (72-81%) do so in 1980-2005 (Figure 7c). Figure 7(d-f) also displays the percent of the 

ensemble members that reproduce the values of temperature trend with overlapping standard 

error bars (with the overlap indicating that the difference between the reference and ensemble 

member trends are not statistically significant). During 1895-1939 (Figure 7d), a majority of the 

ensemble members (78-98%) in the western regions and a minority (7.1%) in the Southeast 

reproduce the reference trend with overlapping error bars. From 1940-1979 (Figure 7e), the 

ensemble members perform poorly (12-23%) over the Midwest and Southeastern region while 

performing better (>40%) in the other areas. However, between 1980-2005 (Figure 7f), the 

ensemble members show an outstanding reproduction of the reference trend (74%) over the 
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Southwest region while only about half of the ensemble members are able to reproduce the 

reference trend in the other regions. 

b. Precipitation 

The same regional trend analyses were performed using the same time periods and metrics 

for precipitation as described in Section 3.a for temperature. Graphs and maps analogous to 

Figures 3 and 6 were constructed for precipitation from this analysis for both JJA and DJF, and 

are included in the Supplementary Material for completeness. However, no statistically 

significant seasonal trends were found both in the reference and the MME for any region or time 

period for either season due to a large variability between the models. Despite this, a zoomed in 

version of Supplementary Figures 1 and 2 show that although the MME trends overlap 

completely with the reference trends, the large model variability reproduces the reference trends 

with no skill. However, while the results presented here are seasonal monthly mean values, it 

should be noted that other studies have found precipitation trends when examining extreme 

precipitation events in the U.S. (Janssen et al., 2016) where it was observed that the models 

overestimate the number of extreme events in the spring while underestimating in the summer. In 

examining the trend of extreme precipitation events, Karl et al., (1996) and Kunkel et al. (2003), 

amongst many others, report that frequencies of these events were high in the early twentieth 

century, followed by a period of low frequency in the 20-30s with a gradual increase in the 

extreme events thereafter. 

4. SUMMARIZING RESULTS 
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As a means of compactly summarizing aspects of the overall performance of the model suite 

for temperature, Figures 8a and 9a visualize simultaneously the bias in the MME temperature 

trends (Figure 3) and the percent of ensemble members reproducing the same sign as the 

nClimGrid trend (Figure 6a-c) for JJA (Figure 8a) and DJF (Figure 9a). Here, the different 

symbols, square (Period 1: 1895-1939), triangle (Period 2: 1940-1979), and circle (Period 3: 

1980-2005) indicate the three time periods, with the colors representing the different regions 

where the color code is based on Figure 1a. In these figures, ideal model fidelity is exhibited by 

symbols that fall in the area close to the center horizontally and to the top vertically. The small 

cluster of squares around a bias of -0.1 (K/decade) and at 80% indicates that the model 

performance in the time block 1895-1939 (square symbols) is relatively good, for the bias is 

small and most of simulated trends have the same sign as the observational reference (i.e. 

nClimGrid). The values for Period 2 (triangles) are clustered between 40-60% with a wide 

spread in the bias between -0.15 and 0.22 (K/decade). Most of the values for Period 3 (circles) 

are in the ~90% range. Overall, the ensemble members qualitatively reproduce the observed 

trends. The exception is the Southeast region (gray circle) that shows a large bias (0.38 

K/decade) and only 4% of the ensemble members reproduce the observed cooling trend. The 

Northern Great Plains region in Period 1 (green square) has a bias of -0.36 (K/decade) and 80% 

agreement, indicating that MME largely underestimates the trend, whereas 80% of ensemble 

members are capable of producing the same sign as the reference trend. 

Another aspect of the performance of the CMIP5 model suite for these regional temperature 

trends can be summarized compactly by replacing the y-axis in Figures 8a and 9a with the 

percent of ensemble members whose trend and standard error overlap with the observed 

reference trend and its standard error (Figures 8b and 9b). Here, the green square, the Northern 
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Great Plains region from 1895-1939, has the same bias of -0.36 (K/decade) however only 7% of 

the ensemble members showed a trend that fell within the reference trend and standard error 

(Figure 8b). 

Overall, for both Figure 8a and Figure 8b, the Northern Great Plains during Period 1, and the 

Northern and Southern Great Plains, Midwest, and the Southeast from Period 3 are outliers with 

relatively large warming and cooling biases, greater than 0.3 K/decade. However, the other 

ensembles during Period 1 generally replicate the sign (+/-) of the reference trend well, around 

80%, and exhibit a 40-60% replication of the reference trend when the trend value is compared 

within standard error. 

For DJF, Figure 9a shows that the values for Period 1 (squares) are largely scattered 

horizontally across the plot, exhibiting a large range in MME biases, between about -0.51 to 0.16 

(K/decade), and with only 37-68% of the ensemble members able to reproduce the sign of the 

observed trend. The values for Period 2 (triangles) are well clustered between 40-50% but also 

exhibit a wide spread in the bias between -0.10 and 0.47 (K/decade). The values for Period 3 

(circles) all exhibit agreements of 70-80% indicating that the sign reproduction of the ensemble 

members with the reference trend is relatively high compared to the two earlier periods.  For this 

period, the MME biases still exhibits a large range of  -0.37 to -0.02 (K/decade), and notably all 

underestimating the temperature trends. 

In Figure 9b, the bias values for all periods each range over about 0.5 (K/decade), although 

Period 1 (squares) and Period 3 (circles) tend to be biased negative, while that for Period 2 

(triangles) tends to be biased positive.  However, in the case of the agreements exhibited with the 

observed temperature trends, Period 1 and 2 exhibit a wide variation of values (nearly over the 

whole range), while Period 3 exhibits a more consistent level of agreement across members 

19 



  

  

  

  

  

 

  

 

  

 

  

  

   

 

 

     

    

   

   

 

    

  

  

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

(~40-70%).  Comparing DJF values (Figure 9b) to those for JJA (Figure 8b), the results suggest 

that MME exhibits greater biases during DJF (wide spread of the data along the bias axis) but 

ensemble members can better capture the reference trend within the standard error (i.e. there are 

more points in the upper half of the plot). 

Overall, for both Figure 9a and Figure 9b, the Midwest from 1940-1979 (yellow triangle) 

represents a large outlier, with a large bias of 0.47 K/decade and only 12% of the ensemble 

members reproducing a trend that is within the standard error of the reference trend. 

Contrastingly, the Southwest region in 1895-1939 (red square) shows the best individual model 

performance (compared to the other periods and regions) with a small bias (0.05 K/decade) with 

98% of the models producing a trend that is within the standard error of the reference trend. 

5. CONCLUSIONS 

The ability of CMIP5 GCMs to reproduce near-surface air temperature and precipitation 

trends over CONUS is quantified and characterized in this study. The novelty of this study, in 

contrast to similar past studies, is the utilization of nClimGrid, a new observational reference 

dataset that exhibits a number of improvements over other similar datasets in ways that are 

pertinent to this analysis (see Section 2a).  In addition, this evaluation includes all the available 

historical simulations and thus has an element of comprehensiveness compared to past studies 

and the model contributions to CMIP5. The analysis framework involves comparing simulated 

trends, both as an MME and all 206 individual members, to the reference trends considering the 

values averaged over the 7 NCA regions and for three time periods (1895-1939, 1940-1979, 

1980-2005). Most of the study’s results are summarized compactly in Section 4 and in Figures 8 
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and 9.  A few of the key results are highlighted below, with remarks and interpretations provided 

where possible. 

For summer (JJA), MME mean trends in near-surface air temperature exhibit some degree of 

bias in most regions in all time periods relative to the observations (Period 1: 1895-1939, Period 

2: 1940-1979, Period 3: 1980-2005). However, only the Northern Great Plains during Period 1 

and Southeast during Period 3 (Figures 2, 3, and 8) exhibit significant biases. At the CONUS 

scale, the trend in nClimGrid is about 0.15 K/dec higher than MME for the earliest period 

while the two have roughly comparable trends for 1940-1979. The nClimGrid trend is about 

0.2 K/dec lower than MME for 1980-2015. Differences are slightly larger for winter; in 

particular, the trend in nClimGrid is about 0.2 K/dec higher than MME for 1895-1939 and 

1980-2015, and about 0.2 K/dec lower for 1940-1979. While a full explanation of the causes of 

such difference in the Southeast region is beyond the scope of this study, this is considered to be 

due to the fact that forcings may not be entirely accurate and/or the internal variability that 

contributes to the “warming hole” in this region is much larger than the simulations exhibit 

(Kunkel et al. 2006). The inability of the MME to capture the “warming hole” is corroborated 

with several previous studies (Kunkel et al., (2006), Meehl et al., (2012), Kumar et al., (2013)) 

and brings to attention the need for inquiry by the scientific and model development 

communities. Similarly, for the winter period, the MME shows varying degrees of bias, however 

only the Southeast during Period 1 and the Midwest during Period 2 (Figures 4, 5, and 9) have 

significant biases. 

Considering the performance of the collective of ensemble members, for JJA, no region for 

any time block had more than about half of the ensemble members that are able to capture the 

value of the reference trend within the overlapping standard error (Figure 6d-f). For example, 
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during Period 3, roughly half of the ensemble members over the western and eastern regions 

captured the observed trend whereas less than 22% of the ensemble members are capable of 

doing so over the central regions. For winter, the performance of the collective of ensemble 

members produced different results. For example, during Period 1, more than half of the 

ensemble members reproduced the observed trend (defined here as within the standard error of 

the reference) over the western regions, and as high as 98% of the ensemble members did so for 

the Southwest region (Figure 9b). 

The results highlighted above, and outlined in more detail in Sections 3 and 4, show that the 

CMIP5 MME (Figures 3 and 5) can reproduce historical surface air temperature trends for both 

summer and winter seasons across all periods over the Northwest, Southwest, Southern Great 

Plains, and Northeast regions but not the Northern Great Plans, Midwest and Southeast. When 

considering the 206 individual CMIP5 model ensemble member simulations of the historical 

surface air temperature, at least 76% of them correctly reproduced a positive (warming) trend 

during Period 1 and Period 3 for both JJA and DJF over all regions except the Northwest and 

Southeast regions. In contrast, the fidelity of the model ensemble member simulations of the 

historical surface air temperature trends is not skillful for Period 2. It should also be noted that 

experimentation with a shift of plus or minus 5 years in the three time periods did not change the 

overall qualitative results. Finally, precipitation trends were not found to be skillfully replicated 

over either season, during any period, and over any region because the CMIP5 GCMs exhibit 

large variability and the reference trends for the mean monthly values examined here are 

relatively small or near zero.  

The results of this study point to the specific regions over CONUS that warrant further 

investigation on the fidelity of the historical forcing data utilized for these simulations and/or on 
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the fidelity of the model in representing the processes key to determining near surface 

temperature and precipitation. Focus on improving the performance of the simulations and 

realism of the forcing data such that model bias is reduced over these regions would be a 

productive investment in reducing uncertainty in future model projections. 
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Appendix A 

Methodology Equations 

For each NCA region, the seasonal mean time series from the reference data is represented 

as: 

�(�), (� = 1, 2, … , �) (1) 

where 

t: the year from the starting year in each time block 

m: number of years in the time block 

The regionally-averaged time series from ensemble member i is defined as: 

�!(�), (� = 1, 2, … ,�) (2) 

In addition, the regionally-averaged time series from the MME is represented as: 

�(�), (� = 1, 2, … , �) (3) 

where, the ensemble average of N simulations is calculated using the following equation: 

" #�(�) = 
#
∑$%" �!(�) (4) 

See Table 2 for the number of simulations (N) used to calculate Y(t) in each time block. 

The seasonal mean trend for the reference data, �&'( [K year-1], is defined as the least square fit 

for a linear regression model: 

� = �&'( × � + �&'( (5) 
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The linear trend, �)!  [K year-1], for ensemble members, �!(�), and the ensemble linear trend, 

�*, for MME, �(�), is calculated in the same manner for three time blocks (1895-1939, 1940-

1979, 1980-2005). The choice of the time blocks is based on the observed warming and cooling 

trends, and closely mimics those in Kunkel et. al (2006).  

The performance metric of the simulated trends in each region are:   

a)  trend bias of the MME, �* − �&'(,  

b)  trend biases of ensemble members, �)! − �&'(,  

c)  percentage of the ensemble members reproducing the same sign (+/-) trend as the    

observed trend, and  

d)  percentage of the ensemble members whose trend biases are small relative to standard   

errors of the observed and simulated trends  

For a) and b), the following null hypothesis is tested per time block per region.  

     �+:	 �&'( = �*  for a).      (6)  

     �+:	 �&'( = �)!  for b).      (7)  

For the reference, linear trend calculation, the standard error of �&'(is defined as (Hogg and  

Tanis, 2009)):  

#
     ∑ (. /.0 )"/(3/4)�&'( = <

 !$% ! !
∑ # "      (8) 

(  )!$% 5!/5

where  

     �=$ = �&'( 	× 	� 	 + 	�&'(     (9)  

and  

     � = " 
 ∑ 3$%" �        (10) 
3  

̅

̅
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758 It should be noted that a), the trend bias of the MME, has high dependence on some  

models that contribute many ensemble members. For instance, there are models that contribute  

as little as one simulation or as many as 25 different ensemble members. In the case of a model   

contributing large ensemble simulations, this particular model will bear greater weight to the  

overall regional mean because each simulation is weighted equally when calculating a MME  

(Equation 4). Considering the unequal weights of models in �* , 	the standard error of  �*  was 

computed by randomly selecting N  individual model trends with replacement (called 

bootstrapping) and computing the mean of that selection. We repeated this sampling 1000 times  

to obtain standard deviation across the 1000 random ensemble trends and use it as  �*’s standard 

error (�*). We compared �′�  bias (�* − �&'()  with �&'(  and �&'(  to test the null hypothesis (6).  

To assess the statistical significance of b), the trend bias for simulation i,  (�)! − �&'(), it  

is reasonable to assume that  �&'(and �)!  likely have unequal variances. Therefore, the Welch’s  

t-test statistic  (�!)	 is used to estimate the statistical significance of (�)! − �&'(). �!  is defined as  

(Hogg and Tanis 2009):  

     7&'/7� ()*
! =       (11) 

" "+ ,+  
8 ()* &' 

#-" 

Using the Welch-Satterthwaite equation, the degrees of freedom, �!, for �!  can be approximated 

by:  

"" "   + ,+()* &'9 : 

     �! ≈
#-"

 . .+ ,+        (12) 
()* &' 

(#-")"(#-1)" 

Let �('  be the cumulative density function of a student’s t-distribution with �!  be the number of 

degrees of freedom. Then,  

     �! = �('(�!)        (12)  
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and using �!, the confidence level (�!) of �)! − �&'( can be calculated and used as a metric: 

when �! < 0.5, �! = (1 − 2 × �!) ∗ 100[%] 

(13) 

when �! > 0.5, �! = (2 × �! − 1) ∗ 100[%] 

(14) 

when �! = 0.5, �&'( = �)!, therefore �! = 0% (15) 

The null hypothesis (�+) is rejected if �! and �! are too small (indicating �)! ≪ �&'(), or too 

large (indicating �)! ≫ �&'(). In this case, �)! is statistically different from �&'( at a confidence 

level of �!. We calculated �! of the 206 simulations for each period and region, and show a 

fraction of simulations whose trend biases are not statistically significant with 90% confidence 

level. In other words, the fraction represents how many simulations reproduce observed trends 

considering standard errors of the trends. 

Part c) calculated the total percentage of N simulations in which the �)! and �&'( have 

the same sign. If the product of the two trends are greater than 0, than the two carry the same 

warming (cooling) trend. The total tally count is divided by the number of simulations and 

multiplied by 100 to produce a percentage as follows: 

∑2 ;' 1 if  �)! ∙ �&'( ≥ 0
� = '$% *100 where Χ! = S (16)

# 0 if  �)! ∙ �&'( < 0 

In a similar manner, part d) also produces a fraction examines the magnitude of the 

warming (cooling) trend. If a trend of a given simulation and its standard deviation ranges 

intersects with the reference and its standard error (as calculated with the equation from Hogg 

and Tanis [2009]), a tally is given. The total tally count is divided by the number of simulations 

and multiplied by 100 to produce a percentage as follows: 
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  Modeling Center 
 (Country)  Model  Simulations  Reference 

     Commonwealth Scientific and Industrial Research 
    Organization Bureau of Meteorology 

 (Australia) 

 ACCESS1-0  r1i1p1 
 r2i1p1 

    (Collier and Uhe 2012) 
 ACCESS1-3 

 r1i1p1 
 r2i1p1 
 r3i1p1 

   Beijing Climate Center 
 (China) 

 bcc-csm1-1 
 r1i1p1 
 r2i1p1 
 r3i1p1     (Wu et al. 2014) 

 bcc-csm1-1-m 
 r1i1p1 
 r2i1p1 
 r3i1p1 

   Beijing Normal University 
 (China) BNU-ESM   r1i1p1     (Ji et al. 2014) 

       Canadian Center for Climate Modeling and Analysis 
 (Canada) 

 CanCM4 

 r1i1p1 
 r2i1p1 
 r3i1p1 
 r4i1p1 
 r5i1p1 
 r6i1p1 
 r7i1p1 
 r8i1p1 
 r9i1p1 
 r10i1p1 

    (Chylek et al. 2011) 

 CanESM2 

 r1i1p1 
 r2i1p1 
 r3i1p1 
 r4i1p1 
 r5i1p1 

     National Center for Atmospheric Research 
 (USA) 

 CCSM4 

 r1i1p1 
 r2i1p1 
 r3i1p1 
 r4i1p1 
 r5i1p1 
 r6i1p1 

    (Collins et al. 2004)  CESM1-BGC  r1i1p1 

 CESM1-CAM5 
 r1i1p1 
 r2i1p1 
 r3i1p1 

 CESM1-FASTCHEM 
 r1i1p1 
 r2i1p1 
 r3i1p1 

CESM1-WACCM  

 r1i1p1 

    (Marsh et al. 2013)  r2i1p1 
 r3i1p1 
 r4i1p1 

     Centro Euro-Mediterraneo sui Cambiamenti Climatici 
 (Italy) 

 CMCC-CESM  r1i1p1     (Folgi and Iovino 2014) 
 CMCC-CM  r1i1p1     (Scoccimarro et al., 2011)  CMCC-CMS  r1i1p1 

     Center National de Recherches Meteorologiques 
         Center Europeen de Recherche et de Formation Avancee en 
  Calcul Scientifique 

 (France) 

 CNRM-CM5 

 r1i1p1 
 r2i1p1 
 r3i1p1 
 r4i1p1 
 r5i1p1 
 r6i1p1 
 r7i1p1 

    (Voldoire et al., 2013) 

∑2 
'$% ;' 0	 if  (�)! ± 1�) 	∩ (� ± ��) = ∅� = ∗ 100   where  Χ = S &'( 

!  (17) 
# 1	 ��ℎ������ 
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 r8i1p1 
 r9i1p1 

 CNRM-CM5-2 
  

 r10i1p1 
 r1i1p1 

  
   

 r1i1p1 
 r2i1p1 
 r3i1p1 

 

     Commonwealth Scientific and Industrial Research 
 Organization 

      Queensland Climate Change Center of Excellence  CSIRO-Mk3-6-0 

 r4i1p1 
 r5i1p1 
 r6i1p1     (Gordon et al., 2010) 

 (Australia)  r7i1p1 
 r8i1p1 
 r9i1p1 

        EC-EARTH Consortium published at Irish Center of High-End 
 Computing  EC-EARTH 

 (Netherlands/Ireland) 

   Institute of Atmospheric Physics 
    Chinese Academy of Sciences  FGOALS-g2 
 (China) 

 r10i1p1 
 r1i1p1 
 r2i1p1 
 r6i1p1 
 r7i1p1 
 r8i1p1 
 r9i1p1 
 r11i1p1 
 r12i1p1 
 r13i1p1 
 r14i1p1 

 r1i1p1 
 r2i1p1 
 r3i1p1 
 r4i1p1 

   (Hazeleger et al., 2012) 

 

    (Li et al., 2013) 

      The First Institute of Oceanography, SOA 
 (China)  FIO 

 r5i1p1 
 r1i1p1 
 r2i1p1 
 r3i1p1 
 r1i1p1 
 r2i1p1 

    (Qiao et al., 2013) 

    Geophysical Fluid Dynamics Laboratory 
 (USA) 

 GFDL-CM2p1 

 r3i1p1 
 r4i1p1 
 r5i1p1 
 r6i1p1 
 r7i1p1 
 r8i1p1 
 r9i1p1 
 r10i1p1 

 r1i1p1 

    (Delworth et al., 2006) 

 GFDL-CM3 
 r2i1p1 
 r3i1p1 
 r4i1p1 

   (Donner et al., 2011) 
 

 GFDL-ESM2G 
GFDL-ESM2M  

 r5i1p1 
 r1i1p1 
 r1i1p1 
 r1i1p1 
 r2i1p1 

    (Dunne et al., 2013) 

 NASA/GISS 
 (USA) 

 GISS-E2-H 

 GISS-E2-H-CC 

 r3i1p1 
 r4i1p1 
 r5i1p1 
 r6i1p1 
 r1i1p1 
 r1i1p1 
 r2i1p1 
 r3i1p1 
 r4i1p1 

    (Schmidt et al., 2014) 

 GISS-E2-R 
 r5i1p1 
 r6i1p1 
 r1i1p2 
 r2i1p2 
 r3i1p2 
 r4i1p2 
 r5i1p2 
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 NASA/GISS 
 (USA) 

 GISS-E2-R 

 r6i1p2 

    (Schmidt et al., 2014) 

 r1i1p3 
 r2i1p3 
 r3i1p3 
 r4i1p3 
 r5i1p3 
 r6i1p3 

 r1i1p121 
 r1i1p122 
 r1i1p124 
 r1i1p125 
 r1i1p126 
 r1i1p127 
 r1i1p128 

 GISS-E2-R-CC  r1i1p2 

   Met Office Hadley Center  
 (UK) 

 HadCM3 

 r1i1p1 
 r2i1p1 
 r3i1p1 
 r4i1p1 
 r5i1p1 
 r6i1p1 
 r7i1p1 
 r8i1p1 
 r9i1p1 
 r10i1p1 

    (Pope, Gallani, Rowntree, & 
  Stratton, 2000) 

 HadGEM2-CC  r1i1p1 

      (W. J. Collins et al., 2011)  HadGEM2-ES 

 r1i1p1 
 r2i1p1 
 r3i1p1 
 r4i1p1 
 r5i1p1 

     National Institute of Meteorological Research 
   Korea Meteorological Administration 
  (South Korea) 

 HadGEM2-AO  r1i1p1     (Baek et al., 2013) 

    Russian Academy of Sciences 
   Institute of Numerical Mathematics 
 (Russia) 

 inmcm4  r1i1p1     (Volodin et al. 2010) 

    Institut Pierre Simon Laplace 
 (France) 

IPSL-CM5A-LR  

 r1i1p1 
 r2i1p1 
 r3i1p1 
 r4i1p1 
 r5i1p1 
 r6i1p1     (Dufresne et al., 2013) 

IPSL-CM5A-MR  
 r1i1p1 
 r2i1p1 
 r3i1p1 

 IPSL-CM5B-LR  r1i1p1 

     Atmosphere and Ocean Research Institute  
   (The University of Tokyo) 

 
     National Institute for Environmental Studies 

       Japan Agency for Marine-Earth Science and Technology 
 (Japan) 

 MIROC-ESM 
 r1i1p1 
 r2i1p1 
 r3i1p1     (Watanabe et al. 2011) 

 MIROC-ESM-CHEM  r1i1p1 

MIROC4h  
 r1i1p1 
 r2i1p1 
 r3i1p1 

    (Sakamoto et al. 2012) 

MIROC5  

 r1i1p1 
 r2i1p1 
 r3i1p1 
 r4i1p1 
 r5i1p1 

    (Watanabe et al. 2010) 

    Max Planck Institute for Meteorology  
 (Germany) 

 MPI-ESM-LR 
 r1i1p1 
 r2i1p1 
 r3i1p1 

    (Stevens et al., 2013)  MPI-ESM-MR 
 r1i1p1 
 r2i1p1 
 r3i1p1 

 MPI-ESM-P  r1i1p1 
 r2i1p1 

  Meteorological Research Institute  
 (Japan)  MRI-CGCM3  r1i1p1 

 r2i1p1     (Yukimoto et al. 2012) 
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r3i1p1 

MRI-ESM1 r4i1p2 
r5i1p2 (Yukimoto et al. 2011) 

Bjerknes Center for Climate Research 
Norwegian Meteorological Institute 
(Norway) 

NorESM1-M 

NorESM1-ME 

r1i1p1 
r2i1p1 
r3i1p1 
r1i1p1 

(Bentsen et al., 2013) 

805 
806 
807 Figures 

808 

809 Figure 1a. Regions of analysis in this study, adapted from Janssen et al. 2014. 

810 
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811 

812 Figure  1b.   Decadal  moving average time series  for  mean near-surface a ir temperature o f nClimGrid,  MME,  and a ll  

model  ensembles  for  JJA  (left)  and  DJF  (right)  from 1895-2005 separated by three distinct  time periods  (1895-1939,  

1940-1979,  1980-2005)  by a black vertical  line.  

813 

814 

815 

816 Figure  2.   JJA  mean n ear-surface a ir temperature d ecadal  trends for reference (l eft  column),  MME  (center column),  

and bias  (right  column)  for  1895-1939 (top row),  1940-1979 (middle row),  and 1980-2005 (bottom r ow)  in 

K/decade.  In  the  bias  column,  an  asterisk  in  a  region  indicates  that  the  difference  between  the  MME  and the 

observed trends  is  larger  than their  errors  (See F igure 3 ).  

817 

818 

819 
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820

821

822

823

824

825

Figure 3. JJA mean near-surface air temperature decadal trend and standard error of reference (blue square), 

bootstrap multi-model ensemble (red circle) and standard error, and box plot of individual model simulation 

decadal mean trend by regions and over CONUS for 1895-1939 (top row), 1940-1979 (middle row), and 1980-

2005 (bottom row) in K/decade. The line in the box represents the median ensemble member trend, the lower 

and upper boundary represents the 25th and 75th percentiles while the whiskers are the 5th and 95th percentiles. 
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826 

827 Figure 4. As in Figure 2, but for DJF. 

828 

829 Figure 5. As in Fig. 3, but for DJF. 

42 



  

  

             

        

        

   

830

831

832

833

834

Figure 6. Percentage of JJA CMIP5 models reproducing the same sign (+/-) of mean temperature trends as the 

reference (left column), and percentage of JJA CMIP5 models reproducing mean temperature trend values with 

overlap of reference error (right column) for 1895-1939 (top row), 1940-1979 (middle row), and 1980-2005 

(bottom row). 
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835 

836 Figure 7. As in Fig. 6, but for DJF. 
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837 

Period 1 
1895-1939 

Period 2 
1940-1979 

Period 3 
1980-2005 

(a) 

(b) 

838 Figure  8.   The  top  plot  (Figure  8a)  shows  JJA  mean  near-surface a ir temperature d ecadal  trend re ference a nd  MME  

bias  [K/decade]  (horizontal  axis)  and percent  of  CMIP5 models  reproducing the same sign (+/-) of mean n ear-

surface a ir temperature t rends as the re ference (v ertical  axis) for time p eriods 1895-1939 (square),  1940-1979 

(triangle),  and 1 980-2005 (circle)  of  NCA-defined regions:  Northwest  (blue),  Southwest  (red),  Northern Great  

Plains  (green),  Southern Great  Plains  (orange),  Midwest  (yellow),  Northeast  (purple),  and Southeast  (gray).  The  

plot  on the bottom ( Figure 8b)  is  the same as  the top except  that  the vertical  axis  is  the percent  of  CMIP 5 
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844 models reproducing the mean near-surface air temperature decadal trend with overlapping standard error. The 

845 color of the data points correlates to regions represented in Figure 1a. 

Period 1 
1895-1939 

Period 2 
1940-1979 

Period 3 
1980-2005 

846 

847 Figure 9. As in Fig. 8, but for DJF. 
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 Region   Period 1 
 1895-1939 

  Period 2 
 1940-1979 

  Period 3   1980-2005 

 Northwest  9  10  30  
 Southwest  14  8  27  

  Northern Great Plains   0  11  17  
 Southern Great Plains   14  8  27  

Midwest   17  15  13  
 Northeast  0  11  17  
 Southeast  11  8  4  
 CONUS  1  16  17.5  

  

 Region  States 

 Northwest    Idaho, Oregon, Washington 

 Southwest       Arizona, California, Colorado, Nevada, New Mexico, Utah 

   Northern Great Plains        Montana, Nebraska, North Dakota, South Dakota, Wyoming 

  Southern Great Plains    Kansas, Oklahoma, Texas 

 Midwest         Illinois, Indiana, Iowa, Michigan, Minnesota, Missouri, Ohio, Wisconsin 

 Northeast        Connecticut, Delaware, Maine, Maryland, Massachusetts, New Hampshire, New Jersey, 
          New York, Pennsylvania, Rhode Island, Vermont, West Virginia, District of Columbia 

 Southeast          Alabama, Arkansas, Florida, Georgia, Kentucky, Louisiana, Mississippi, North Carolina, 
   South Carolina, Tennessee, Virginia 

849 TABLE 1. CMIP5 analysis parameters 

Variable Time Block m Season N Variable Time Block m Season N 

tas 1895-1939 45 
JJA 

DJF 

184 

184 
pr 1895-1939 45 

JJA 

DJF 

185 

185 

tas 1940-1979 40 
JJA 

DJF 

186 

186 
pr 1940-1979 40 

JJA 

DJF 

186 

186 

tas 1980-2005 
26 

25 

JJA 

DJF 

206 

203 
pr 1980-2005 

26 

25 

JJA 

DJF 

206 

203 

850 Note:  m  denotes  the number  of  years  while N  indicates the number of ensemble members  

 
TABLE  2. Regions of analysis  

851 
852 

853 
854 
855 TABLE  3. Percentage of JJA  ensemble members  whose  temperature  trends  are  not  significantly  different  from  the  

observed one at  the 90%  confidence level  856 
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 Region   Period 1 
 1895-1939 

  Period 2 
 1940-1979 

  Period 3   1980-2005 

 Northwest  13.5  16  25  
 Southwest  17  16.5  24  

  Northern Great Plains   35.5  29  22  
 Southern Great Plains   17  16.5  24  

Midwest   4  4  19  
 Northeast  35.5  29  22  
 Southeast  0  10  22  
 CONUS  7  17  26  

   861 

859 TABLE  4. Percentage of DJF  ensemble members  whose  temperature  trends  are  not  significantly  different  from  the  
observed one at  the 90%  confidence level  860 
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Model   Simulation  JJA  DJF 
 ACCESS1-0  r2i1p1 •  •

 ACCESS1-3  r2i1p1 •  •

 bcc-csm1-1-m  r3i1p1 •  

 CanESM2  r1i1p1 
 r3i1p1   •

 •

 CCSM4  r1i1p1 
 r5i1p1   •

 •
 CESM1-FASTCHEM  r1i1p1   •

 CMCC-CM  r1i1p1   •
 r1i1p1 
 r2i1p1 

 •
 •

 CNRM-CM5  r5i1p1 
 r9i1p1 

r10i1p1  

  •
 •
 •

 r1i1p1 
 r2i1p1 

 
 

 •
 •

CSIRO-Mk3-6-0   r3i1p1 
 r6i1p1 
 r8i1p1 

• 
 
• 

 
 •
 •

 FGOALS-g2  r5i1p1 •  •

 GFDL-CM2p1 
 r2i1p1 
 r7i1p1  

 •
 •

 r8i1p1  •

 GFDL-CM3 
 r1i1p1 
 r4i1p1 

• 
•  

 r5i1p1 • 
 GFDL-ESM2M  r1i1p1   •

 r1i1p1   •

 GISS-E2-H  r2i1p1 
 r5i1p3 
 r6i1p3 

 
• 
• 

 •
 •

 
 r1i1p1 
 r2i1p1 
 r2i1p3 

 
 
 

 •
 •
 •

 GISS-E2-R  r4i1p1 
 r4i1p2 
 r6i1p1 
 r6i1p2 

 
 
 
• 

 •
 •
 •
 •

 HadCM3  r3i1p1 
 r4i1p1   •

 •

 HadGEM2-ES 

 r1i1p1 
 r2i1p1 
 r3i1p1 

• 
• 
 

 •
 
 •

 r5i1p1 •  •

IPSL-CM5A-MR   r1i1p1 
 r3i1p1 

 
• 

 •
 

MIROC-ESM   r3i1p1   •
 MIROC-ESM-CHEM  r1i1p1 •  •

MIROC5   r2i1p1 
 r5i1p1 

• 
•  

 MRI-CGCM3  r4i1p2   •
NorESM1-M  

 
 r2i1p1   •

 

  

862 Supplementary Material  

Supplementary Table  1.   List  of  ensemble  members  that  capture  the  Southeast  “warming hole”  during Period 2 
(1940-1979)  for  JJA and  DJF.  
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864 

865 

866 
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867

868

869

870

871

872

Supplementary Figure 1. JJA mean precipitation decadal trend and standard error of reference (blue square), 

bootstrap multi-model ensemble (red circle) and standard error, and box plot of individual model simulation 

decadal mean trend by regions for 1895-1939 (top row), 1940-1979 (middle row), and 1980-2005 (bottom row) 

in K/decade. The line in the box represents the median ensemble member trend, the lower and upper boundary 

represents the 25th and 75th percentiles while the whiskers are the 5th and 95th percentiles. 
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873 

874 Supplementary Figure 2. As in Supplementary Figure 1, but for DJF. 
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875

876

877

878

879

Supplementary Figure 3. Percentage of JJA CMIP5 models reproducing the same sign (+/-) of mean precipitation 

trends as the reference (left column), and percentage of JJA CMIP5 models reproducing mean precipitation 

trend values with overlap of reference error (right column) for 1895-1939 (top row), 1940-1979 (middle row), 

and 1980-2005 (bottom row). 
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880 

881 Supplementary Figure 4. As in Supplementary Figure 2, but for DJF. 

882 
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