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Abstract

The ability of the 5" phase of the Coupled Model Intercomparison Project (CMIP5)
to reproduce 20"-century climate trends over the seven CONUS regions of the National
Climate Assessment (NCA) is evaluated. This evaluation is carried out for summer and
winter for three time periods, 1895-1939, 1940-1979, and 1980-2005. The evaluation
includes all 206 CMIPS5 historical simulations from 48 unique models and their multi-
model ensemble (MME), as well as a gridded in-situ dataset of surface air temperature and
precipitation. Analysis is performed on both individual members and the MME, and
considers reproducing the correct sign of the trends by the members as well as reproducing
the trend values. While the MME exhibits some trend bias in most cases, it reproduces
historical temperature trends with reasonable fidelity for summer for all time periods and
all regions, including at the CONUS scale, except the Northern Great Plains from 1895-
1939 and Southeast during 1980-2005. Likewise, for DJF, the MME reproduces historical
temperature trends across all time periods over all regions, including at the CONUS scale,
except the Southeast from 1895-1939 and the Midwest during 1940-1979. Model skill was
highest across all of the seven regions during JJA and DJF for the 1980-2005 period. The
quantiatively best result is seen during DJF in the Southwest region with at least 74% of
the ensemble members correctly reproducing the observed trend across all of the time
periods. No clear trends in MME precipitation were identified at these scales due to high

model precipitation variability.

KEYWORDS: CMIP5, model evaluation, surface air temperature, multi-model ensemble
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1. INTRODUCTION

An emerging urgence in climate change studies is the investigation of regional-scale
variability and trends of key climate variables such as surface air temperature and precipitation
(IPCC, 2013; Melillo et al., 2014). Given that regional topography and surface characteristics
are influential in how the regional climate responds to both global climate change influences as
well as local projections of large-scale natural variability, it is essential that these features are
examined in our global climate models (Kunkel and Liang 2005). Continued analysis of long-
term observed trends and low-frequency variability in key climate variables is instrumental to
understanding the characteristics of the observed changes, and in combination with validated
models, forcing data and model responses, better quantify attribution.

The Intergovernmental Panel on Climate Change Fifth Assessment Report (IPCC ARS)
concludes that much of the warming that is experienced globally since the 1950s is extremely
likely to have been caused by an increase in anthropogenic greenhouse gas concentrations in the
atmosphere. Future global climate projections, based on analysis of GCM projections suggest an
increase in globally-averaged surface temperature by at least 2°C by 2100 (IPCC, 2013) with
consequential implications. As just one example, the increased temperature will lead to
substantial melting of glaciers and ice sheets in polar regions and a rise in sea level. Several
studies have been conducted on global temperature changes (e.g. Crowley (2000), Knutson et al.,
(2006), Knutson et al., (2013)), all of which agree that a majority of regions across the globe
have experienced warming over the last century that beyond their natural climate variability.

The National Climate Assessment Climate Science Special Report (CSSR; Wuebbles et al.
2017) states that the United States experienced an average warming of 1.2-1.8°F since 1895.

However, this warming is not uniform over the entire country nor is it constant. Much of the
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northern parts of the nation have experienced more warming whereas the Southeast has seen
small increases in temperature. In addition, most of the warming has occurred since 1970. The
NCA3 report further suggests that future climate projections, based on the results of 16 GCMs,
show an additional increase in temperature of 2-4°F over the next few decades with 3-5°F
increase by the end of this century under a lower emissions scenario and 5-10°F under a higher
emissions scenario.

The validity of these future climate projections weighs heavily on the accuracy of the
historical simulations. There have been several studies which utilize GCMs to examine changes
in the temperature and precipitation over a specific region in the U.S. (e.g. Kunkel and Liang
(2005), Barnett et al., (2008), Cayan et al., (2013)) or to project regional climate change (e.g.
Meehl and Tebaldi (2004), Kunkel et al., (2013), Wuebbles et al., (2014)). Similarly, another
study has utilized Regional Climate Models (RCMs) to evaluate past climate trends in North
America (e.g. Bukovsky, 2012). One key finding in the evaluations of observed change over the
contiguous United States (CONUS) is the lack of warming in the Southeast over the second half
of the twentieth century. This feature, termed the “warming hole,” is well studied (Kunkel et al.,
(2006), Meehl et al., (2012), Kumar et al., (2013)) and research suggests that models that are
more skillful in simulating North Atlantic sea surface temperatures are better at reproducing the
“warming hole,” but the number of models that actually do so are small.

The purpose of this research study is to evaluate the ability of the CMIPS5 simulations and
their ensemble mean to reproduce, with regional fidelity, the recent historical near surface air
temperature and precipitation trends over the continental US. This includes discriminating across
the seven NCA regions across CONUS, considering 3 multi-decade periods, and considers model

fidelity of trends both in terms of reproducing the correct sign as well as the magnitudes of the
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trends. Past studies have considered a subset of this objective using only a portion of the
available simulations participating in the fifth phase of the Coupled Model Intercomparison
Project (CMIP5, Taylor et al., 2012) against observed data. For example, Janssen et al., (2016)
used 94 available simulations to examine regional extreme precipitation events in the United
States. Kumar et al., (2013) analyzed 196 simulations to find a relationship between the
“warming hole” and natural climate variability.

Temperature and precipitation were chosen as the key climate variables for this study in part
because an enhanced anthropogenic greenhouse effect will result in warming temperatures as a
first order impact and a warmer atmosphere will alter precipitation intensity and patterns due to
the thermodynamic relationship between temperature and precipitation. Secondly, temperature
and precipitation change will have/are having profound impacts on society and the environment.
While there are many other important variables that climate change will alter, temperature and
precipitation are arguably the most important for impacts and therefore the most critical for
climate models to capture trends in.

This study goes beyond previous studies’ objectives and approaches by utilizing the entire
CMIPS historical suite available (up to 206 simulations), considering regional trends across all of
CONUS, and considering fidelity of both signs and magnitudes of regional trends. Moreover,
this study utilizes a new long-record in-situ based time series for its observational reference (See
Section 2). By performing a comprehensive analysis of the model fidelity in reproducing recent
regional historical trends along the lines described above, we aim to yield additional quantitative
information on the uncertainty associated with the multi-model ensemble projections of future
U.S. climate, specifically tailored to the seven regions over CONUS defined by the United States

Global Change Research Program (USGCRP) NCA. While the recent NCA Climate Science
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Special Report (CSSR) highlights observed trends in and simulated future projections of
temperature and precipitation over CONUS, a first order evaluation of the fidelity with which the
climate models used in the report are able simulate historical temperature and precipitation
trends is not included (Easterling et al. 2017). Therefore, this comprehensive evaluation of these
trends gives context to the uncertainty associated with future projections of temperature and
precipitation across CONUS as presented in the NCA CSSR.

The remainder of this paper is structured as follows. Section 2 describes the data and
methodology used in our evaluation of simulated trends. Section 3 presents comparisons between
the observed and simulated trends in temperature and precipitation. Section 4 summarizes our

key findings. Section 5 entails the conclusions of our study.

2. DATA AND METHODOLOGY
a. Data

CMIPS provides a state-of-the-art multi-model dataset produced by climate modeling groups
in an effort to further our knowledge of climate variability and climate change (Taylor et al.
2012). The simulations of the CMIP5 GCMs estimate future climate change and provide a
scientific basis for the [IPCC ARS (IPCC, 2013). To evaluate the models’ capability to reproduce
observed trends in surface air temperature and precipitation, we analyzed the historical
simulations of the 20" century with time-evolving external forcings. There are 21 different
modeling centers from 14 different countries that have contributed a total of 206 historical
simulations with spatial resolutions varying between 0.5° to 4° (Table 1). The specific simulation
period varies across the models, but most of the models provide output for the 111 years between

1895 and 2005. The 206 simulations are made up of contributions from 48 unique GCMs, with
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some models contributing ensembles as small as one simulation or as large as 25 simulations that
differ in initial conditions and/or parameterizations. The historical simulations are driven by
various forcings that attempt to be, but are not entirely, identical across all modeling groups
(Kunkel et al. 2006), and these differences may account for some differences in the model
behavior. The multi-model mean temperature and precipitation trends of the CMIPS5 suite are
used to examine the ensemble as a whole, as previous research has shown that this approach can
capture the observed temperature and precipitation trends well for some regions, time periods,
and ensemble constructions (e.g. Kumaret al., 2013). In addition, in parts of the current study,
each of the 206 simulations is treated as if they are independent as done in Kunkel et al.’s (2006)
analysis of central United States temperature trends in the twentieth-century. The present study
used monthly mean near-surface air temperature and monthly total precipitation from the 206
historical simulations. Detailed information about the models used in this study is presented in
the Appendix.

This analysis uses observed monthly mean near-surface air temperature and monthly total
precipitation data as reference data to compare to those of the GCM simulations. The reference
dataset is a new National Center for Environmental Information (NCEI) climate monitoring
product based on the Global Historical Climatology Network-Daily (GHCN-Daily) dataset
(Menne et al., 2012), referred to as nClimGrid, hereafter. nClimGrid includes monthly averaged
minimum, maximum, and mean near-surface air temperature, as well as total monthly
precipitation data. Data availability spans from 1895 to present over CONUS and Alaska.
nClimGrid primarily utilizes the Cooperative Observer (COOP) program to which area-weighted
averages of grid points are used to interpolate latitude-longitude spacing of 5 km (Vose et al.

2014; Kunkel et al. 2015). This new gridded dataset is distinct in two significant ways: it uses a



167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

larger station network with greatly improved spatial coverage and density, particularly over the
West; and the interpolation process accounts for topographic effects (e.g., from mountain ranges,
temperature inversions, and coastal influences), meaning the resultant grids depict actual
temperatures rather than climate anomalies. Bias adjustments were computed to account for
historical changes in observation time as well as historical changes in station location,
temperature instrumentation, and siting conditions. Because of these substantial changes to the
official temperature record of the United States, a new evaluation of model simulation of
historical trends is warranted. Considering the simulation period of the models, we used the
reference data over CONUS for the three time periods, 1895-1939 (Period 1), 1940-1979 (Period

2), and 1980-2005 (Period 3).

b. Methodology
Spatially-averaged regional means were calculated for the NCA regions over CONUS (Fig. 1a).
To ensure that each NCA subregion is of equal size and comprised of the same number of grid
points among member models, all data is first interpolated to a 2° latitude/longitude grid mesh.
Performing the data interpolation before spatial averaging does not affect the results of the
current study. The Great Plains region used in the NCA3 (Melillo et al., 2014) was divided into a
northern and southern component, following expectations this will be formalized for the next
NCA report, resulting in a total of seven regions (Table 2) as presented in Janssen et al. (2014):
Northwest, Southwest, Northern Great Plains, Southern Great Plains, Midwest, Northeast, and
Southeast.

Trends in temperature and precipitation are computed for summer (June through August;

JJA) and winter (December through February; DJF) applying the method of least squares to
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regionally averaged temperature and precipitation data for the two seasons in the reference and
the CMIP5 models. The linear trends are computed for the reference, the multi-model ensemble
(MME), and ensemble members for three time blocks (1895-1939, 1940-1979, 1980-2005). The
choice of the time blocks is based on the observed warming and cooling trends, and closely
mimics those in Kunkel et. al (2006). These time periods were chosen as a result of observed
increasing temperature trends during 1895-1939 and 1980-2005 in contrast to a decreasing
temperature trend during 1940-1979 (Figure 1b). Four metrics are used to evaluate model
performance: a trend bias of the MME, trend biases of ensemble members, percent of ensemble
members producing trends of the same sign (+/-) as observations, and the percent of ensemble
members with biases that are small in comparison to the standard errors of the observed and
simulated trends. The standard errors in the observed and simulated trends are calculated based
on the equation in Hogg and Tanis (2009). (The detailed methodology and equations can be
found in Appendix A).

MME trends may be influenced more strongly by some models that contribute more
ensemble members than the others. For instance, there are models that provide as little as one
simulation or as many as 25 different ensemble members. In the case of a model contributing a
large number of ensemble members, this particular model will bear greater weight to the overall
regional mean because each simulation is weighted equally when calculating MME (Appendix
A, Equation 4). Considering the unequal number of simulations by the models, the standard error
in MME’s trend was estimated by randomly selecting N (Table 1) ensemble members trends with
replacement (i.e. bootstrapping) and computing the mean of that selection. This sampling was

repeated 1000 times to obtain standard deviation across the 1000 random ensemble trends for use
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as the standard error of the MME. The bias of the MME was then compared to the reference

trend and the standard error (as calculated with the equation from Hogg and Tanis [2009]).

3. RESULTS
a. Near-surface air temperature

1. Evaluation of the multi-model ensemble trend

Figure 1b shows the MME and individual ensemble member temperature timeseries over
the entire evaluation period along with the nClimGrid timeseries over the CONUS for JJA and
DJF. The MME qualitiatively resembles the general observed trend with some exceptions, such
as the late part of the record for DJF. The model spread is considerable, however, as represented
by the gray lines in both figure panels. Temperature trends for the Reference (i.e. nClimGrid)
and MME, and the trend biases of MME, for the three time periods during JJA are shown in
Figure 2. The trend biases are marked with an asterisk if they are large relative to the standard
errors of trends in nClimGrid and MME (discussed further below). During Period 1 (1895-1939),
warming occurred in all seven regions over the CONUS with the largest positive trend in the
northern Great Plains region (Figure 2a). The MME also has an average warming trend (~0.085
K/decade) over all of CONUS (Figure 2b), but with a lesser magnitude as indicated by the
negative bias values in all but the Southeast (Figure 2c¢). Also, in the northern Great Plains, the
difference between the MME and reference trends is larger than standard errors of the trends and
is indicated with an asterisk (with the significance information based on results in Figure 3).
During Period 2 (1940-1979), reference data shows a warming trend over the western half of the
CONUS, whereas the eastern half shows cooling (Figure 2d). In particular, the Southeast region

displays the strongest cooling trend (-0.24 K/decade). In MME, the cooling trend is weaker than
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the observed one in all four eastern half regions (~-0.03 K/decade). The negative (positive)
biases in the western (eastern) half of CONUS (Figure 2f) indicate that MME underestimates
both warming and cooling trends compared to nClimGrid. The difference between the observed
and MME trends is largest in the Southeast region (0.22 K/decade). Kunkel et al. (2006) report
the underestimated cooling trends in the Southeast region by GCMs and suggest that the large
trend biases of models result from the North Atlantic sea surface temperature. Period 3 (1980-
2005) is characterized by an overall warming trend except for the Southeast region where a
cooling trend is observed (Figure 2g). The warming is strongest in the Northwest region (0.50
K/decade) with relatively weak warming trends in the three central regions. However, MME
(Figure 2h) exhibits a strong warming trend of 0.4 K/decade averaged over CONUS, leading to a
considerable positive trend bias in the Southeast (0.40 K/decade), and an overestimation of the
warming trend over the remaining regions while still leaving an underestimation of the warming
trend in the Northwest (Figure 21). In the Southeast region, the trend bias is larger than standard
errors thus indicated with an asterisk.

Figure 3 shows the temperature trends in nClimGrid (blue square) and MME (red circle),
each plotted with its standard error as whiskers (i.e. trends + standard errors). There is overlap
between the red and blue whiskers in all regions, including at the CONUS scale, except for the
northern Great Plains region during Period 1 (Figure 3a) and the Southeast region during Period
3 (Figure 3c¢). The non-overlapping whiskers indicate that the MME trends may not have much
fidelity in representing the trends in these regions/periods with larger trend biases than the
standard errors of trends in nClimGrid and MME.

Figure 4 and 5 illustrate the trends from nClimGrid and MME for winter (DJF). During

Period 1, a warming trend dominated the central and eastern regions (Figure 4a). However, the
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Northwest experienced cooling while there was no apparent trend in the Southwest. MME
displays a weak warming trend (~0.08 K/decade) over all of CONUS (Figure 4b). In the
Southeast region, the difference between the MME and reference trends is larger than standard
errors of the trends (Figure 4c). During Period 2, reference data shows a cooling trend over all of
CONUS except for the Northwest region that shows a warming trend (Figure 4d). In particular,
the Midwest region displays a strong cooling trend. MME displays a cooling trend in the western
half of CONUS while the eastern half shows a warming trend (Figure 4¢). However, the northern
Great Plains region did not exhibit a trend. In the Midwest region, the difference between the
MME and reference trends is larger than standard errors of the trends (Figure 4f). The latest
period, Period 3, is characterized by warming trends over all of CONUS (Figure 4g). MME
exhibits a similar warming trend over all of CONUS (Figure 4h) but underestimates the
magnitude as indicated by the bias map displaying negative values (Figure 41). Figure 5 shows
trends and standard errors from nClimGrid and MME for DJF. The trend differences between
nClimGrid and MME are smaller than their standard errors except for the Southeast regions
during Period 1 (Figure 5a) and the Midwest region from Period 2 (Figure 5b).

Overall, the MME reproduces the reference trends within their standard errors for both
seasons over all regions except the four cases: Northern Great Plains in JJA during Period 1
(1895-1939), the Southeast in JJA during Period 3 (1980-2005), the Southeast in DJF during
Period 1 (1895-1939), and the Midwest in DJF during Period 2 (1940-1979). The greater model
departures from the trends in nClimGrid suggest the applied external forcing and/or the modeled
processes in those regions might lack the same fidelity as for the other regions that tend to be

represented better.

12



281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

1i. Evaluation of the trends from ensemble members

In an effort to understand the performance of ensemble members that comprise MME, the
trend distribution from 206 ensemble members for JJA are plotted as a box and whiskers with the
lower and higher ends of the whiskers representing the 5% and 95% of the N ensemble member
trend values (Figure 3). The lower and upper boundaries of the box represent the lower and
upper quartile with the middle line indicating the median of the N trends.

For the JJA analysis (Figure 3), because MME’s trends are almost the same as the median
of all the ensemble member trend and lengths of red and black whiskers are similar to each other,
many of the same findings and discussion of the results from Section 3.1 apply here. Figure 3a
shows that both the reference trend and at least 75% of the ensemble member trends show a
warming over all of CONUS during Period 1. During Period 2 (Figure 3b), the boxplot shows
that only about half of the ensemble members show a warming trend in the three western regions
for Period 2 and a cooling trend for the other regions. This indicates that roughly half of the
ensemble members reproduce the same warming or cooling trend as the reference for this time
period. For Period 3 (Figure 3c), the boxplot of the ensemble members exhibit warming over all
of CONUS, although in some cases with considerably greater magnitude, and thus are consistent
with the reference in regards to the sign of the warming. However, in the Southeast, at least 95%
of the ensemble members indicates a warming rather than the cooling trend found in the
reference (i.e. the bottom of the black whisker has almost the same value as the top of the blue
whisker).

The percentage of ensemble members whose mean temperature trends are not
significantly different from the reference at the 90% confidence level are tabulated in Table 3 for

JJA. For this table, a larger value indicates greater fidelity of the ensemble members to represent
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304 the reference trend and vice versa for a smaller value. A large confidence level (in this case 90%)
305 indicates that the hypothesis (Appendix A, Equation 7), which states the reference trend equals
306 the ensemble member trend, can be accepted as true. For example, for JJA during Period 1

307  (1895-1939), there are 184 ensemble members whose trend was compared to the reference trend.
308 In the Southeast region, 11% of the simulation trends are not significantly different from the

309 observed trend at the 90% confidence level. For the same region, during Period 2 (1940-1979),
310 8% of the ensemble members have temperature trends that are not significantly different from
311  the observed trend while only 4% during Period 3 (1980-2005) are not significantly different at
312 the 90% confidence level. This shows that for the Southeast region, the fidelity of the ensemble
313  members to represent the observed temperature trends diminishes with each successive time

314  block. The region and time block best represented by the ensemble members is the Northwest
315 region during Period 3, where 30% of the simulated trends are not significantly different from
316  the observed trend at the 90% confidence level. At the CONUS analysis level, 1% of the

317  simulation trends during Period 1 (1895-1939) are not significantly different from the observed
318 trend at the 90% confidence level while Period 2 (1940-1979) and Period 3 (1980-2005)

319  produced higher percentages of 16% and 17.5% respectively. This shows that at the CONUS
320 level, the fidelity of the ensemble members to represent the observed temperature trends

321  increases with each successive time block.

322 For further analysis of the ensemble members, Figure 6(a-c) takes into account the

323  percent of the GCMs that can correctly reproduce the same sign (+/-) of warming (cooling) as the
324  temperature trends in nClimGrid. During Period 1 (Figure 6a), a large number of the ensemble
325 members (76-83%) are capable of reproducing the same sign trend as nClimGrid. During Period

326 2 (Figure 6b), roughly half (39-59%) of the ensemble members reproduce the same sign trend,
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whereas an overwhelming number of ensemble members (91-97%) do so during Period 3 (Figure
6¢) except for the Southeast region where only 3.9% of ensemble members produce the same
sign trend. Figure 6(d-f) is used to demonstrate the percent of the ensemble members whose
trend biases are small relative to standard errors of nClimGrid and simulated trends (i.e. their
trend values are comparable within the range of the standard errors of each). During Period 1
(Figure 6d), about half (39-59%) of the ensemble members reproduce temperature trends similar
to the observed trend except for the northern Great Plains (7.1%). During Period 2 (Figure 6¢),
only about a quarter (24-34%) of the ensemble members have smaller biases than standard
errors. In the Southwest region, only 10% of the simulated trends show reasonable agreement
with the observed trend. During Period 3 (Figure 6f), roughly half of the ensemble members over
the Western regions along with the Northeast reproduce the reference trends (46-54%), whereas
ensemble members perform poorly (10-22%) in the rest of the regions.

For the corresponding analysis of DJF during Period 1 (i.e. Table 4, Figure 5 and Figure
7), the reference mean trends in Figure 5 shows a period of warming in all regions except the
Northwest whereas at least 75% of the ensemble member trends show a warming period over all
of CONUS. Conversely, from 1940-1979, the reference data indicates a cooling trend in all
regions except the Northwest. Only about half of the ensemble members show a cooling trend in
all regions. The reference data between 1980-2005 show a warming trend for all regions and at
least 90% of the ensemble members depict this warming trend.

The percentage of ensemble members whose mean temperature trends are not
significantly different from the reference at the 90% confidence level are tabulated in Table 4
(see discussion of Table 3 above). As with Table 3, a large confidence level (in this case 90%)

indicates that the hypothesis (Appendix A, Equation 7), which states the reference trend equals
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the ensemble member trend, can be accepted as true. The overall fidelity of the ensemble
members to represent the observed temperature trend increases with each successive time block
in all regions except the northern Great Plains and the Northeast where the observed temperature
trend diminishes with each successive time block. Similar to the JJA analysis over CONUS, the
DIJF percentages of simulation trends with mean temperature trends that are not significantly
different from the observed trend increased with each successive time block with 7%, 17%, and
26% of the simulations for Period 1 (1895-1939), Period 2 (1940-1979), and Period 3 (1980-
2005) at the 90% confidence level.

Figure 7(a-c) illustrates the percent of the ensemble members that reproduce the same
sign (+/-) as the reference temperature trend during winter. During 1895-1939 (Figure 7a), all
regions except for the Northwest showed that more than half of the ensemble members (59-68%)
can reproduce the same sign trend as the reference. From 1940-1979 (Figure 7b), roughly half
(42-60%) of the ensemble members reproduce the same sign trend while a majority of ensemble
members (72-81%) do so in 1980-2005 (Figure 7c). Figure 7(d-f) also displays the percent of the
ensemble members that reproduce the values of temperature trend with overlapping standard
error bars (with the overlap indicating that the difference between the reference and ensemble
member trends are not statistically significant). During 1895-1939 (Figure 7d), a majority of the
ensemble members (78-98%) in the western regions and a minority (7.1%) in the Southeast
reproduce the reference trend with overlapping error bars. From 1940-1979 (Figure 7e), the
ensemble members perform poorly (12-23%) over the Midwest and Southeastern region while
performing better (>40%) in the other areas. However, between 1980-2005 (Figure 7f), the

ensemble members show an outstanding reproduction of the reference trend (74%) over the
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Southwest region while only about half of the ensemble members are able to reproduce the

reference trend in the other regions.

b. Precipitation

The same regional trend analyses were performed using the same time periods and metrics
for precipitation as described in Section 3.a for temperature. Graphs and maps analogous to
Figures 3 and 6 were constructed for precipitation from this analysis for both JJA and DJF, and
are included in the Supplementary Material for completeness. However, no statistically
significant seasonal trends were found both in the reference and the MME for any region or time
period for either season due to a large variability between the models. Despite this, a zoomed in
version of Supplementary Figures 1 and 2 show that although the MME trends overlap
completely with the reference trends, the large model variability reproduces the reference trends
with no skill. However, while the results presented here are seasonal monthly mean values, it
should be noted that other studies have found precipitation trends when examining extreme
precipitation events in the U.S. (Janssen et al., 2016) where it was observed that the models
overestimate the number of extreme events in the spring while underestimating in the summer. In
examining the trend of extreme precipitation events, Karl et al., (1996) and Kunkel et al. (2003),
amongst many others, report that frequencies of these events were high in the early twentieth
century, followed by a period of low frequency in the 20-30s with a gradual increase in the

extreme events thereafter.

4. SUMMARIZING RESULTS
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As a means of compactly summarizing aspects of the overall performance of the model suite
for temperature, Figures 8a and 9a visualize simultaneously the bias in the MME temperature
trends (Figure 3) and the percent of ensemble members reproducing the same sign as the
nClimGrid trend (Figure 6a-c) for JJA (Figure 8a) and DJF (Figure 9a). Here, the different
symbols, square (Period 1: 1895-1939), triangle (Period 2: 1940-1979), and circle (Period 3:
1980-2005) indicate the three time periods, with the colors representing the different regions
where the color code is based on Figure 1a. In these figures, ideal model fidelity is exhibited by
symbols that fall in the area close to the center horizontally and to the top vertically. The small
cluster of squares around a bias of -0.1 (K/decade) and at 80% indicates that the model
performance in the time block 1895-1939 (square symbols) is relatively good, for the bias is
small and most of simulated trends have the same sign as the observational reference (i.e.
nClimGrid). The values for Period 2 (triangles) are clustered between 40-60% with a wide
spread in the bias between -0.15 and 0.22 (K/decade). Most of the values for Period 3 (circles)
are in the ~90% range. Overall, the ensemble members qualitatively reproduce the observed
trends. The exception is the Southeast region (gray circle) that shows a large bias (0.38
K/decade) and only 4% of the ensemble members reproduce the observed cooling trend. The
Northern Great Plains region in Period 1 (green square) has a bias of -0.36 (K/decade) and 80%
agreement, indicating that MME largely underestimates the trend, whereas 80% of ensemble
members are capable of producing the same sign as the reference trend.

Another aspect of the performance of the CMIP5 model suite for these regional temperature
trends can be summarized compactly by replacing the y-axis in Figures 8a and 9a with the
percent of ensemble members whose trend and standard error overlap with the observed

reference trend and its standard error (Figures 8b and 9b). Here, the green square, the Northern
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Great Plains region from 1895-1939, has the same bias of -0.36 (K/decade) however only 7% of
the ensemble members showed a trend that fell within the reference trend and standard error
(Figure 8b).

Overall, for both Figure 8a and Figure 8b, the Northern Great Plains during Period 1, and the
Northern and Southern Great Plains, Midwest, and the Southeast from Period 3 are outliers with
relatively large warming and cooling biases, greater than 0.3 K/decade. However, the other
ensembles during Period 1 generally replicate the sign (+/-) of the reference trend well, around
80%, and exhibit a 40-60% replication of the reference trend when the trend value is compared
within standard error.

For DJF, Figure 9a shows that the values for Period 1 (squares) are largely scattered
horizontally across the plot, exhibiting a large range in MME biases, between about -0.51 to 0.16
(K/decade), and with only 37-68% of the ensemble members able to reproduce the sign of the
observed trend. The values for Period 2 (triangles) are well clustered between 40-50% but also
exhibit a wide spread in the bias between -0.10 and 0.47 (K/decade). The values for Period 3
(circles) all exhibit agreements of 70-80% indicating that the sign reproduction of the ensemble
members with the reference trend is relatively high compared to the two earlier periods. For this
period, the MME biases still exhibits a large range of -0.37 to -0.02 (K/decade), and notably all
underestimating the temperature trends.

In Figure 9b, the bias values for all periods each range over about 0.5 (K/decade), although
Period 1 (squares) and Period 3 (circles) tend to be biased negative, while that for Period 2
(triangles) tends to be biased positive. However, in the case of the agreements exhibited with the
observed temperature trends, Period 1 and 2 exhibit a wide variation of values (nearly over the

whole range), while Period 3 exhibits a more consistent level of agreement across members
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(~40-70%). Comparing DJF values (Figure 9b) to those for JJA (Figure 8b), the results suggest
that MME exhibits greater biases during DJF (wide spread of the data along the bias axis) but
ensemble members can better capture the reference trend within the standard error (i.e. there are
more points in the upper half of the plot).

Overall, for both Figure 9a and Figure 9b, the Midwest from 1940-1979 (yellow triangle)
represents a large outlier, with a large bias of 0.47 K/decade and only 12% of the ensemble
members reproducing a trend that is within the standard error of the reference trend.
Contrastingly, the Southwest region in 1895-1939 (red square) shows the best individual model
performance (compared to the other periods and regions) with a small bias (0.05 K/decade) with

98% of the models producing a trend that is within the standard error of the reference trend.

5. CONCLUSIONS

The ability of CMIP5 GCMs to reproduce near-surface air temperature and precipitation
trends over CONUS is quantified and characterized in this study. The novelty of this study, in
contrast to similar past studies, is the utilization of nClimGrid, a new observational reference
dataset that exhibits a number of improvements over other similar datasets in ways that are
pertinent to this analysis (see Section 2a). In addition, this evaluation includes all the available
historical simulations and thus has an element of comprehensiveness compared to past studies
and the model contributions to CMIP5. The analysis framework involves comparing simulated
trends, both as an MME and all 206 individual members, to the reference trends considering the
values averaged over the 7 NCA regions and for three time periods (1895-1939, 1940-1979,

1980-2005). Most of the study’s results are summarized compactly in Section 4 and in Figures 8
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and 9. A few of the key results are highlighted below, with remarks and interpretations provided
where possible.

For summer (JJA), MME mean trends in near-surface air temperature exhibit some degree of
bias in most regions in all time periods relative to the observations (Period 1: 1895-1939, Period
2: 1940-1979, Period 3: 1980-2005). However, only the Northern Great Plains during Period 1

and Southeast during Period 3 (Figures 2, 3, and 8) exhibit significant biases. At the CONUS
scale, the trend in nClimGrid is about 0.15 K/dec higher than MME for the earliest period
while the two have roughly comparable trends for 1940-1979. The nClimGrid trend is about
0.2 K/dec lower than MME for 1980-2015. Differences are slightly larger for winter; in
particular, the trend in nClimGrid is about 0.2 K/dec higher than MME for 1895-1939 and
1980-2015, and about 0.2 K/dec lower for 1940-1979. While a full explanation of the causes of

such difference in the Southeast region is beyond the scope of this study, this is considered to be
due to the fact that forcings may not be entirely accurate and/or the internal variability that
contributes to the “warming hole” in this region is much larger than the simulations exhibit
(Kunkel et al. 2006). The inability of the MME to capture the “warming hole” is corroborated
with several previous studies (Kunkel et al., (2006), Meehl et al., (2012), Kumar et al., (2013))
and brings to attention the need for inquiry by the scientific and model development
communities. Similarly, for the winter period, the MME shows varying degrees of bias, however
only the Southeast during Period 1 and the Midwest during Period 2 (Figures 4, 5, and 9) have
significant biases.

Considering the performance of the collective of ensemble members, for JJA, no region for
any time block had more than about half of the ensemble members that are able to capture the

value of the reference trend within the overlapping standard error (Figure 6d-f). For example,
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during Period 3, roughly half of the ensemble members over the western and eastern regions
captured the observed trend whereas less than 22% of the ensemble members are capable of
doing so over the central regions. For winter, the performance of the collective of ensemble
members produced different results. For example, during Period 1, more than half of the
ensemble members reproduced the observed trend (defined here as within the standard error of
the reference) over the western regions, and as high as 98% of the ensemble members did so for
the Southwest region (Figure 9b).

The results highlighted above, and outlined in more detail in Sections 3 and 4, show that the
CMIP5 MME (Figures 3 and 5) can reproduce historical surface air temperature trends for both
summer and winter seasons across all periods over the Northwest, Southwest, Southern Great
Plains, and Northeast regions but not the Northern Great Plans, Midwest and Southeast. When
considering the 206 individual CMIP5 model ensemble member simulations of the historical
surface air temperature, at least 76% of them correctly reproduced a positive (warming) trend
during Period 1 and Period 3 for both JJA and DJF over all regions except the Northwest and
Southeast regions. In contrast, the fidelity of the model ensemble member simulations of the
historical surface air temperature trends is not skillful for Period 2. It should also be noted that
experimentation with a shift of plus or minus 5 years in the three time periods did not change the
overall qualitative results. Finally, precipitation trends were not found to be skillfully replicated
over either season, during any period, and over any region because the CMIP5 GCMs exhibit
large variability and the reference trends for the mean monthly values examined here are
relatively small or near zero.

The results of this study point to the specific regions over CONUS that warrant further

investigation on the fidelity of the historical forcing data utilized for these simulations and/or on
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the fidelity of the model in representing the processes key to determining near surface
temperature and precipitation. Focus on improving the performance of the simulations and
realism of the forcing data such that model bias is reduced over these regions would be a
productive investment in reducing uncertainty in future model projections.
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Appendix A

Methodology Equations

For each NCA region, the seasonal mean time series from the reference data is represented
as:
x(t),(t=1,2,..,m) (1)
where
t: the year from the starting year in each time block

m: number of years in the time block

The regionally-averaged time series from ensemble member i is defined as:
y;(0),(t=1,2,..,m) (2)
In addition, the regionally-averaged time series from the MME is represented as:
Y(),(t=12,..,m) (3)
where, the ensemble average of N simulations is calculated using the following equation:
V() = - Zk-1 i(0) 4)
See Table 2 for the number of simulations (N) used to calculate Y(?) in each time block.
The seasonal mean trend for the reference data, a,..r [K year'], is defined as the least square fit

for a linear regression model:

X = Oyef X t+ Bref (5)
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The linear trend, a,,; [K year'], for ensemble members, y;(t), and the ensemble linear trend,

ay, for MME, Y (t), is calculated in the same manner for three time blocks (1895-1939, 1940-
1979, 1980-2005). The choice of the time blocks is based on the observed warming and cooling
trends, and closely mimics those in Kunkel et. al (2006).
The performance metric of the simulated trends in each region are:
a) trend bias of the MME, ay — @,
b) trend biases of ensemble members, a,; — dyef,
c) percentage of the ensemble members reproducing the same sign (+/-) trend as the
observed trend, and
d) percentage of the ensemble members whose trend biases are small relative to standard
errors of the observed and simulated trends
For a) and b), the following null hypothesis is tested per time block per region.
Hy: ayep = ay for a). (6)
Hy: @y = @y, forb). (7)
For the reference, linear trend calculation, the standard error of a,..fis defined as (Hogg and

Tanis, 2009)):

| ZRe (%) 2/ (m—2)
Sref = \/ YT (tg—D)2 (®)
where
x\k = aref X k + lgref (9)
and
r_ l m
f=lym k (10)
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It should be noted that a), the trend bias of the MME, has high dependence on some
models that contribute many ensemble members. For instance, there are models that contribute
as little as one simulation or as many as 25 different ensemble members. In the case of a model
contributing large ensemble simulations, this particular model will bear greater weight to the
overall regional mean because each simulation is weighted equally when calculating a MME
(Equation 4). Considering the unequal weights of models in ay, the standard error of ay, was
computed by randomly selecting N individual model trends with replacement (called
bootstrapping) and computing the mean of that selection. We repeated this sampling 1000 times
to obtain standard deviation across the 1000 random ensemble trends and use it as ay’s standard
error (sy). We compared Y's bias (ay — @) With 5, and s,.¢ to test the null hypothesis (6).

To assess the statistical significance of b), the trend bias for simulation 7, (a,; — @yef), it
is reasonable to assume that a,..rand a,,; likely have unequal variances. Therefore, the Welch’s
t-test statistic (T;) is used to estimate the statistical significance of (ay; — @y¢r). T; is defined as
(Hogg and Tanis 2009):

T, = 2Lt (11)
/52 +s2.
ref yi
m-—2
Using the Welch-Satterthwaite equation, the degrees of freedom, f;, for T; can be approximated
by:
2
(S%ef"'sjzzi)
m-—2
fir—G—a— (12)

4 4
Sref"'syi
(m-2)%(m-3)2

Let C/i be the cumulative density function of a student’s t-distribution with f; be the number of
degrees of freedom. Then,

p; = CTi(Ty) (12)
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and using p;, the confidence level (d;) of @,; — ;.5 can be calculated and used as a metric:
when p; < 0.5, d; = (1 — 2 X p;) * 100[%]
(13)
whenp; > 0.5,d; = (2 X p; — 1) * 100[%]
(14)
when p; = 0.5, a,.of = @, therefore d; = 0% (15)
The null hypothesis (H,) is rejected if T; and p; are too small (indicating @,,; < @f), Or t00

large (indicating ay; > a,r). In this case, @, is statistically different from a,..; at a confidence

yi
level of d;. We calculated d; of the 206 simulations for each period and region, and show a
fraction of simulations whose trend biases are not statistically significant with 90% confidence
level. In other words, the fraction represents how many simulations reproduce observed trends
considering standard errors of the trends.

Part ¢) calculated the total percentage of N simulations in which the a,,; and a,. have
the same sign. If the product of the two trends are greater than 0, than the two carry the same
warming (cooling) trend. The total tally count is divided by the number of simulations and

multiplied by 100 to produce a percentage as follows:

N . 1if ay; " e =0
_ 4i=1D % = yi ref
f= = 100 where X; {0 if ay; - ey <0 (16)

In a similar manner, part d) also produces a fraction examines the magnitude of the
warming (cooling) trend. If a trend of a given simulation and its standard deviation ranges
intersects with the reference and its standard error (as calculated with the equation from Hogg
and Tanis [2009]), a tally is given. The total tally count is divided by the number of simulations

and multiplied by 100 to produce a percentage as follows:
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Appendix B

Summary of CMIP5 Historical Simulation Dataset

0if (ay;+10) N (trer +SE) = @

1 otherwise

(17)

Modeling Center
(Country)

Model

Simulations

Reference

Commonwealth Scientific and Industrial Research
Organization Bureau of Meteorology
(Australia)

ACCESS1-0

rlilpl
r2ilpl

ACCESSI-3

rlilpl
r2ilpl
r3ilpl

(Collier and Uhe 2012)

Beijing Climate Center
(China)

bee-csml-1

rlilpl
r2ilpl
r3ilpl

bce-csml-1-m

rlilpl
r2ilpl
r3ilpl

(Wu et al. 2014)

Beijing Normal University
(China)

BNU-ESM

rlilpl

(Jietal. 2014)

Canadian Center for Climate Modeling and Analysis
(Canada)

CanCM4

rlilpl
r2ilpl
r3ilpl
rdilpl
rSilpl
r6ilpl
r7ilpl
r8ilpl
r9ilpl
rl0ilpl

CanESM2

rlilpl
r2ilpl
r3ilpl
rdilpl
rSilpl

(Chylek et al. 2011)

National Center for Atmospheric Research
(USA)

CCSM4

rlilpl
r2ilpl
r3ilpl
rdilpl
rSilpl
r6ilpl

CESM1-BGC

rlilpl

CESM1-CAM5

rlilpl
r2ilpl
r3ilpl

CESM1-FASTCHEM

rlilpl
r2ilpl
r3ilpl

(Collins et al. 2004)

CESMI1-WACCM

rlilpl
r2ilpl
r3ilpl
rdilpl

(Marsh et al. 2013)

Centro Euro-Mediterraneo sui Cambiamenti Climatici
(Italy)

CMCC-CESM

rlilpl

(Folgi and Tovino 2014)

CMCC-CM

rlilpl

CMCC-CMS

rlilpl

(Scoccimarro et al., 2011)

Center National de Recherches Meteorologiques

Center Europeen de Recherche et de Formation Avancee en
Calcul Scientifique

(France)

CNRM-CM5

rlilpl
r2ilpl
r3ilpl
rdilpl
rSilpl
r6ilpl
r7ilpl
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r8ilpl
r9ilpl
rl0ilpl
CNRM-CMS5-2 rlilpl

rlilpl
r2ilpl
r3ilpl
Commonwealth Scientific and Industrial Research rdilpl
Organization rSilpl
Queensland Climate Change Center of Excellence CSIRO-MK3-6-0 r6ilpl
(Australia) r7ilpl
r8ilpl
r9ilpl
rl0ilpl

(Gordon et al., 2010)

__ rlilpl
_ n2ilpl
__ t6ilpl
EC-EARTH Consortium published at Irish Center of High-End r7ilpl
Computing EC-EARTH % (Hazeleger et al., 2012)
. lpl
(Netherlands/Ireland) T
_ rlailpl
r13ilpl
rl4ilpl

rlilpl
Institute of Atmospheric Physics r2ilpl
Chinese Academy of Sciences FGOALS-g2 r3ilpl (Lietal., 2013)
(China) rdilpl

rSilpl

rlilpl
FIO r2ilpl (Qiao et al., 2013)
r3ilpl

The First Institute of Oceanography, SOA
(China)

rlilpl
r2ilpl
r3ilpl
rdilpl
rSilpl
r6ilpl
r7ilpl
r8ilpl
r9ilpl
rl0ilpl

GFDL-CM2pl (Delworth et al., 2006)

Geophysical Fluid Dynamics Laboratory
(USA)

rlilpl
r2ilpl
GFDL-CM3 r3ilpl
rdilpl
rSilpl

(Donner et al., 2011)

GFDL-ESM2G rlilpl
GFDL-ESM2M rlilpl

(Dunne et al., 2013)

rlilpl
r2ilpl
r3ilpl
rdilpl
rSilpl
r6ilpl
GISS-E2-H-CC rlilpl
rlilpl
NASA/GISS r2ilpl
(USA) r3ilpl
rdilpl
rSilpl

GISS-E2-R _ r6ilpl
rlilp2
r2ilp2
r3ilp2
rdilp2
r5ilp2

GISS-E2-H

(Schmidt et al., 2014)
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NASA/GISS GISS-E2-R
(USA)

r6ilp2
rlilp3
r2ilp3
r3ilp3
rdilp3
r5ilp3
r6ilp3
rlilp121
rlilp122
rlilpl124
rlilp125
rlilpl126

rlilpl27
rlilp128

GISS-E2-R-CC

rlilp2

(Schmidt et al., 2014)

HadCM3

Met Office Hadley Center
(UK)

rlilpl
r2ilpl
r3ilpl
rdilpl
rSilpl
r6ilpl
r7ilpl
r8ilpl
9ilpl
rl0ilpl

(Pope, Gallani, Rowntree, &
Stratton, 2000)

HadGEM2-CC

rlilpl

HadGEM2-ES

rlilpl
r2ilpl
r3ilpl
rdilpl
rSilpl

(W.J. Collins et al., 2011)

National Institute of Meteorological Research
Korea Meteorological Administration HadGEM2-AO
(South Korea)

rlilpl

(Bacek et al., 2013)

Russian Academy of Sciences
Institute of Numerical Mathematics inmcmé4
(Russia)

rlilpl

(Volodin et al. 2010)

IPSL-CM5A-LR

Institut Pierre Simon Laplace
(France)

rlilpl
r2ilpl
r3ilpl
rdilpl
rSilpl
r6ilpl

IPSL-CM5A-MR

rlilpl
r2ilpl
r3ilpl

IPSL-CM5B-LR

rlilpl

(Dufresne et al., 2013)

MIROC-ESM

rlilpl
r2ilpl
r3ilpl

Atmosphere and Ocean Research Institute MIROC-ESM-CHEM

rlilpl

(Watanabe et al. 2011)

(The University of Tokyo)
MIROC4h
National Institute for Environmental Studies

rlilpl
r2ilpl
r3ilpl

(Sakamoto et al. 2012)

Japan Agency for Marine-Earth Science and Technology
(Japan)
MIROCS

rlilpl
r2ilpl
r3ilpl
rdilpl
rSilpl

(Watanabe et al. 2010)

MPI-ESM-LR

rlilpl
r2ilpl
r3ilpl

Max Planck Institute for Meteorology
(Germany) MPI-ESM-MR

rlilpl
r2ilpl
r3ilpl

MPI-ESM-P

rlilpl
r2ilpl

(Stevens et al., 2013)

Meteorological Research Institute

(Japan) MRI-CGCM3

rlilpl
r2ilpl

(Yukimoto et al. 2012)
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r3ilpl

MRI-ESM1 r4ilp2 (Yukimoto et al. 2011)
r5ilp2
Bjerknes Center for Climate Research rlilpl
Norwegian Meteorological Institute NorESM1-M gi }g} (Bentsen et al., 2013)
(Norway) NorESM1-ME rlilpl
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Figure 1b. Decadal moving average time series for mean near-surface air temperature of nClimGrid, MME, and all
model ensembles for JJA (left) and DJF (right) from 1895-2005 separated by three distinct time periods (1895-1939,

1940-1979, 1980-2005) by a black vertical line.

Reference MME Bias

Period 1
1895-1939

Period 2
1940-1979

Period 3
1980-2005

04 -03 -02 -01 0 01 02 03 04 04 03 -02 -01 0 01 02 03 04
K/decade K/decade

Figure 2. JJA mean near-surface air temperature decadal trends for reference (left column), MME (center column),
and bias (right column) for 1895-1939 (top row), 1940-1979 (middle row), and 1980-2005 (bottom row) in
K/decade. In the bias column, an asterisk in a region indicates that the difference between the MME and the

observed trends is larger than their errors (See Figure 3).
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Figure 3. JJA mean near-surface air temperature decadal trend and standard error of reference (blue square),

bootstrap multi-model ensemble (red circle) and standard error, and box plot of individual model simulation

decadal mean trend by regions and over CONUS for 1895-1939 (top row), 1940-1979 (middle row), and 1980-

2005 (bottom row) in K/decade. The line in the box represents the median ensemble member trend, the lower

and upper boundary represents the 25" and 75" percentiles while the whiskers are the 5™ and 95" percentiles.
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Figure 4. As in Figure 2, but for DJF.
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Figure 6. Percentage of JJA CMIP5 models reproducing the same sign (+/-) of mean temperature trends as the
reference (left column), and percentage of JJA CMIP5 models reproducing mean temperature trend values with
overlap of reference error (right column) for 1895-1939 (top row), 1940-1979 (middle row), and 1980-2005

(bottom row).
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836  Figure 7. Asin Fig. 6, but for DJF.
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838 Figure 8. The top plot (Figure 8a) shows JJA mean near-surface air temperature decadal trend reference and MME

839 bias [K/decade] (horizontal axis) and percent of CMIP5 models reproducing the same sign (+/-) of mean near-
840 surface air temperature trends as the reference (vertical axis) for time periods 1895-1939 (square), 1940-1979
841 (triangle), and 1980-2005 (circle) of NCA-defined regions: Northwest (blue), Southwest (red), Northern Great
842 Plains (green), Southern Great Plains (orange), Midwest (yellow), Northeast (purple), and Southeast (gray). The
843 plot on the bottom (Figure 8b) is the same as the top except that the vertical axis is the percent of CMIP 5
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844 models reproducing the mean near-surface air temperature decadal trend with overlapping standard error. The

845 color of the data points correlates to regions represented in Figure 1a.
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847  Figure 9. Asin Fig. 8, but for DJF.
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849

TABLE 1. CMIPS5 analysis parameters

Variable Time Block m Season N Variable TimeBlock m Season N
JJA 184 JJA 185
tas 1895-1939 45 pr 1895-1939 45
DIJF 184 DJF 185
JJA 186 JJA 186
tas 1940-1979 40 pr 1940-1979 40
DIJF 186 DJF 186
JJA 206 26 JJA 206
tas 1980-2005 pr 1980-2005
DIJF 203 25 DJF 203
850  Note: m denotes the number of years while N indicates the number of ensemble members
851
852  TAaBLE2. Regions of analysis
Region States
Northwest Idaho, Oregon, Washington
Southwest Arizona, California, Colorado, Nevada, New Mexico, Utah
Northern Great Plains ~ Montana, Nebraska, North Dakota, South Dakota, Wyoming
Southern Great Plains  Kansas, Oklahoma, Texas
Midwest linois, Indiana, Towa, Michigan, Minnesota, Missouri, Ohio, Wisconsin
Northeast Connecticut, Delaware, Maine, Maryland, Massachusetts, New Hampshire, New Jersey,
ortheas New York, Pennsylvania, Rhode Island, Vermont, West Virginia, District of Columbia
Alabama, Arkansas, Florida, Georgia, Kentucky, Louisiana, Mississippi, North Carolina,
Southeast . oS
South Carolina, Tennessee, Virginia
853
854
855 TABLE 3. Percentage of JJA ensemble members whose temperature trends are not significantly different from the
856  observed one at the 90% confidence level
Resion Period 1 Period 2 Period 3
g 1895-1939 1940-1979 1980-2005
Northwest 9 10 30
Southwest 14 8 27
Northern Great Plains 0 11 17
Southern Great Plains 14 8 27
Midwest 17 15 13
Northeast 0 11 17
Southeast 11 8 4
CONUS 1 16 17.5
857
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859 TABLE 4. Percentage of DJF ensemble members whose temperature trends are not significantly different from the
860  observed one at the 90% confidence level

Period 1 Period 2 Period 3

Region 1895-1939  1940-1979  1980-2005

Northwest 13.5 16 25
Southwest 17 16.5 24
Northern Great Plains 35.5 29 22
Southern Great Plains 17 16.5 24
Midwest 4 4 19
Northeast 35.5 29 22
Southeast 0 10 22

CONUS 7 17 26
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862  Supplementary Material

863 Supplementary Table 1. List of ensemble members that capture the Southeast “warming hole” during Period 2
864  (1940-1979) for JJA and DJF.

Model Simulation JJIA DJF

ACCESSI1-0 2ilpl v v
ACCESSI1-3 2ilpl v 4
bee-csml-1-m 13ilpl v
rlilpl
CanESM2 ilpl
rlilpl
CCSM4 rSilpl
CESM1-FASTCHEM rlilpl
CMCC-CM rlilpl
rlilpl
r2ilpl
CNRM-CM5 r5ilpl
9ilpl
rl0ilpl
rlilpl
r2ilpl
CSIRO-Mk3-6-0 r3ilpl v
r6ilpl
18ilpl v
FGOALS-g2 r5ilpl v
r2ilpl
GFDL-CM2pl r7ilpl
r8ilpl
rlilpl
GFDL-CM3 rdilpl
rSilpl
GFDL-ESM2M rlilpl
rlilpl
r2ilpl
r5ilp3
r6ilp3
rlilpl
r2ilpl
r2ilp3
GISS-E2-R rdilpl
rdilp2
r6ilpl
r6ilp2 v
r3ilpl
rdilpl
rlilpl
r2ilpl
r3ilpl
r5ilpl v
rlilpl
IPSL-CM5A-MR Bilpl v
MIROC-ESM r3ilpl v
MIROC-ESM-CHEM rlilpl
r2ilpl
MIROCS5 rSilpl
MRI-CGCM3 r4ilp2 v
NorESM1-M 2ilpl v

NN N N ANENENANENEN

NENENANENEN

AANEN

AENENEN
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N R NN NN NN
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Supplementary Figure 1. JJA mean precipitation decadal trend and standard error of reference (blue square),
bootstrap multi-model ensemble (red circle) and standard error, and box plot of individual model simulation
decadal mean trend by regions for 1895-1939 (top row), 1940-1979 (middle row), and 1980-2005 (bottom row)
in K/decade. The line in the box represents the median ensemble member trend, the lower and upper boundary

represents the 25" and 75" percentiles while the whiskers are the 5™ and 95" percentiles.
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874  Supplementary Figure 2. As in Supplementary Figure 1, but for DJF.
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Supplementary Figure 3. Percentage of JJA CMIP5 models reproducing the same sign (+/-) of mean precipitation
trends as the reference (left column), and percentage of JJA CMIPS models reproducing mean precipitation
trend values with overlap of reference error (right column) for 1895-1939 (top row), 1940-1979 (middle row),

and 1980-2005 (bottom row).

53



Simulations Reproducing Sign Simulations Reproducing Trend

Period 1
1895-1939

Period 2
1940-1979

Period 3
1980-2005

60 70 80 % 100 0

ﬁercént [%]

Percent [%]

880

881  Supplementary Figure 4. As in Supplementary Figure 2, but for DJF.
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