

Evaluation of CMIP5 Ability to Reproduce 20th Century Regional Trends in Surface Air Temperature and Precipitation over CONUS

Jinny Lee¹, Duane Waliser², Huikyo Lee², Paul Loikith³, Kenneth E. Kunkel⁴

¹Department of Civil and Environmental Engineering, Center for Hydrometeorology and Remote Sensing, University of California, Irvine, CA

²Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA

³Department of Geography, Portland State University, Portland, OR

⁴Cooperative Institute for Climate and Satellites, NCSU and NOAA, Asheville, NC

May 8, 2019

Submitted to Climate Dynamics

Corresponding Author: Jinny Lee, jinny.lee@uci.edu.

28

Abstract

29 The ability of the 5th phase of the Coupled Model Intercomparison Project (CMIP5)
30 to reproduce 20th-century climate trends over the seven CONUS regions of the National
31 Climate Assessment (NCA) is evaluated. This evaluation is carried out for summer and
32 winter for three time periods, 1895-1939, 1940-1979, and 1980-2005. The evaluation
33 includes all 206 CMIP5 historical simulations from 48 unique models and their multi-
34 model ensemble (MME), as well as a gridded in-situ dataset of surface air temperature and
35 precipitation. Analysis is performed on both individual members and the MME, and
36 considers reproducing the correct sign of the trends by the members as well as reproducing
37 the trend values. While the MME exhibits some trend bias in most cases, it reproduces
38 historical temperature trends with reasonable fidelity for summer for all time periods and
39 all regions, including at the CONUS scale, except the Northern Great Plains from 1895-
40 1939 and Southeast during 1980-2005. Likewise, for DJF, the MME reproduces historical
41 temperature trends across all time periods over all regions, including at the CONUS scale,
42 except the Southeast from 1895-1939 and the Midwest during 1940-1979. Model skill was
43 highest across all of the seven regions during JJA and DJF for the 1980-2005 period. The
44 quantitatively best result is seen during DJF in the Southwest region with at least 74% of
45 the ensemble members correctly reproducing the observed trend across all of the time
46 periods. No clear trends in MME precipitation were identified at these scales due to high
47 model precipitation variability.

48

49 KEYWORDS: CMIP5, model evaluation, surface air temperature, multi-model ensemble

50

51

52 **1. INTRODUCTION**

53 An emerging urgency in climate change studies is the investigation of regional-scale
54 variability and trends of key climate variables such as surface air temperature and precipitation
55 (IPCC, 2013; Melillo et al., 2014). Given that regional topography and surface characteristics
56 are influential in how the regional climate responds to both global climate change influences as
57 well as local projections of large-scale natural variability, it is essential that these features are
58 examined in our global climate models (Kunkel and Liang 2005). Continued analysis of long-
59 term observed trends and low-frequency variability in key climate variables is instrumental to
60 understanding the characteristics of the observed changes, and in combination with validated
61 models, forcing data and model responses, better quantify attribution.

62 The Intergovernmental Panel on Climate Change Fifth Assessment Report (IPCC AR5)
63 concludes that much of the warming that is experienced globally since the 1950s is extremely
64 likely to have been caused by an increase in anthropogenic greenhouse gas concentrations in the
65 atmosphere. Future global climate projections, based on analysis of GCM projections suggest an
66 increase in globally-averaged surface temperature by at least 2°C by 2100 (IPCC, 2013) with
67 consequential implications. As just one example, the increased temperature will lead to
68 substantial melting of glaciers and ice sheets in polar regions and a rise in sea level. Several
69 studies have been conducted on global temperature changes (e.g. Crowley (2000), Knutson et al.,
70 (2006), Knutson et al., (2013)), all of which agree that a majority of regions across the globe
71 have experienced warming over the last century that beyond their natural climate variability.

72 The National Climate Assessment Climate Science Special Report (CSSR; Wuebbles et al.
73 2017) states that the United States experienced an average warming of 1.2-1.8°F since 1895.
74 However, this warming is not uniform over the entire country nor is it constant. Much of the

75 northern parts of the nation have experienced more warming whereas the Southeast has seen
76 small increases in temperature. In addition, most of the warming has occurred since 1970. The
77 NCA3 report further suggests that future climate projections, based on the results of 16 GCMs,
78 show an additional increase in temperature of 2-4°F over the next few decades with 3-5°F
79 increase by the end of this century under a lower emissions scenario and 5-10°F under a higher
80 emissions scenario.

81 The validity of these future climate projections weighs heavily on the accuracy of the
82 historical simulations. There have been several studies which utilize GCMs to examine changes
83 in the temperature and precipitation over a specific region in the U.S. (e.g. Kunkel and Liang
84 (2005), Barnett et al., (2008), Cayan et al., (2013)) or to project regional climate change (e.g.
85 Meehl and Tebaldi (2004), Kunkel et al., (2013), Wuebbles et al., (2014)). Similarly, another
86 study has utilized Regional Climate Models (RCMs) to evaluate past climate trends in North
87 America (e.g. Bukovsky, 2012). One key finding in the evaluations of observed change over the
88 contiguous United States (CONUS) is the lack of warming in the Southeast over the second half
89 of the twentieth century. This feature, termed the “warming hole,” is well studied (Kunkel et al.,
90 (2006), Meehl et al., (2012), Kumar et al., (2013)) and research suggests that models that are
91 more skillful in simulating North Atlantic sea surface temperatures are better at reproducing the
92 “warming hole,” but the number of models that actually do so are small.

93 The purpose of this research study is to evaluate the ability of the CMIP5 simulations and
94 their ensemble mean to reproduce, with regional fidelity, the recent historical near surface air
95 temperature and precipitation trends over the continental US. This includes discriminating across
96 the seven NCA regions across CONUS, considering 3 multi-decade periods, and considers model
97 fidelity of trends both in terms of reproducing the correct sign as well as the magnitudes of the

98 trends. Past studies have considered a subset of this objective using only a portion of the
99 available simulations participating in the fifth phase of the Coupled Model Intercomparison
100 Project (CMIP5, Taylor et al., 2012) against observed data. For example, Janssen et al., (2016)
101 used 94 available simulations to examine regional extreme precipitation events in the United
102 States. Kumar et al., (2013) analyzed 196 simulations to find a relationship between the
103 “warming hole” and natural climate variability.

104 Temperature and precipitation were chosen as the key climate variables for this study in part
105 because an enhanced anthropogenic greenhouse effect will result in warming temperatures as a
106 first order impact and a warmer atmosphere will alter precipitation intensity and patterns due to
107 the thermodynamic relationship between temperature and precipitation. Secondly, temperature
108 and precipitation change will have/are having profound impacts on society and the environment.
109 While there are many other important variables that climate change will alter, temperature and
110 precipitation are arguably the most important for impacts and therefore the most critical for
111 climate models to capture trends in.

112 This study goes beyond previous studies’ objectives and approaches by utilizing the entire
113 CMIP5 historical suite available (up to 206 simulations), considering regional trends across all of
114 CONUS, and considering fidelity of both signs and magnitudes of regional trends. Moreover,
115 this study utilizes a new long-record in-situ based time series for its observational reference (See
116 Section 2). By performing a comprehensive analysis of the model fidelity in reproducing recent
117 regional historical trends along the lines described above, we aim to yield additional quantitative
118 information on the uncertainty associated with the multi-model ensemble projections of future
119 U.S. climate, specifically tailored to the seven regions over CONUS defined by the United States
120 Global Change Research Program (USGCRP) NCA. While the recent NCA Climate Science

121 Special Report (CSSR) highlights observed trends in and simulated future projections of
122 temperature and precipitation over CONUS, a first order evaluation of the fidelity with which the
123 climate models used in the report are able simulate historical temperature and precipitation
124 trends is not included (Easterling et al. 2017). Therefore, this comprehensive evaluation of these
125 trends gives context to the uncertainty associated with future projections of temperature and
126 precipitation across CONUS as presented in the NCA CSSR.

127 The remainder of this paper is structured as follows. Section 2 describes the data and
128 methodology used in our evaluation of simulated trends. Section 3 presents comparisons between
129 the observed and simulated trends in temperature and precipitation. Section 4 summarizes our
130 key findings. Section 5 entails the conclusions of our study.

131

132 **2. DATA AND METHODOLOGY**

133 **a. Data**

134 CMIP5 provides a state-of-the-art multi-model dataset produced by climate modeling groups
135 in an effort to further our knowledge of climate variability and climate change (Taylor et al.
136 2012). The simulations of the CMIP5 GCMs estimate future climate change and provide a
137 scientific basis for the IPCC AR5 (IPCC, 2013). To evaluate the models' capability to reproduce
138 observed trends in surface air temperature and precipitation, we analyzed the historical
139 simulations of the 20th century with time-evolving external forcings. There are 21 different
140 modeling centers from 14 different countries that have contributed a total of 206 historical
141 simulations with spatial resolutions varying between 0.5° to 4° (Table 1). The specific simulation
142 period varies across the models, but most of the models provide output for the 111 years between
143 1895 and 2005. The 206 simulations are made up of contributions from 48 unique GCMs, with

144 some models contributing ensembles as small as one simulation or as large as 25 simulations that
145 differ in initial conditions and/or parameterizations. The historical simulations are driven by
146 various forcings that attempt to be, but are not entirely, identical across all modeling groups
147 (Kunkel et al. 2006), and these differences may account for some differences in the model
148 behavior. The multi-model mean temperature and precipitation trends of the CMIP5 suite are
149 used to examine the ensemble as a whole, as previous research has shown that this approach can
150 capture the observed temperature and precipitation trends well for some regions, time periods,
151 and ensemble constructions (e.g. Kumaret al., 2013). In addition, in parts of the current study,
152 each of the 206 simulations is treated as if they are independent as done in Kunkel et al.'s (2006)
153 analysis of central United States temperature trends in the twentieth-century. The present study
154 used monthly mean near-surface air temperature and monthly total precipitation from the 206
155 historical simulations. Detailed information about the models used in this study is presented in
156 the Appendix.

157 This analysis uses observed monthly mean near-surface air temperature and monthly total
158 precipitation data as reference data to compare to those of the GCM simulations. The reference
159 dataset is a new National Center for Environmental Information (NCEI) climate monitoring
160 product based on the Global Historical Climatology Network-Daily (GHCN-Daily) dataset
161 (Menne et al., 2012), referred to as nClimGrid, hereafter. nClimGrid includes monthly averaged
162 minimum, maximum, and mean near-surface air temperature, as well as total monthly
163 precipitation data. Data availability spans from 1895 to present over CONUS and Alaska.
164 nClimGrid primarily utilizes the Cooperative Observer (COOP) program to which area-weighted
165 averages of grid points are used to interpolate latitude-longitude spacing of 5 km (Vose et al.
166 2014; Kunkel et al. 2015). This new gridded dataset is distinct in two significant ways: it uses a

167 larger station network with greatly improved spatial coverage and density, particularly over the
168 West; and the interpolation process accounts for topographic effects (e.g., from mountain ranges,
169 temperature inversions, and coastal influences), meaning the resultant grids depict actual
170 temperatures rather than climate anomalies. Bias adjustments were computed to account for
171 historical changes in observation time as well as historical changes in station location,
172 temperature instrumentation, and siting conditions. Because of these substantial changes to the
173 official temperature record of the United States, a new evaluation of model simulation of
174 historical trends is warranted. Considering the simulation period of the models, we used the
175 reference data over CONUS for the three time periods, 1895-1939 (Period 1), 1940-1979 (Period
176 2), and 1980-2005 (Period 3).

177

178 **b. Methodology**

179 Spatially-averaged regional means were calculated for the NCA regions over CONUS (Fig. 1a).
180 To ensure that each NCA subregion is of equal size and comprised of the same number of grid
181 points among member models, all data is first interpolated to a 2° latitude/longitude grid mesh.
182 Performing the data interpolation before spatial averaging does not affect the results of the
183 current study. The Great Plains region used in the NCA3 (Melillo et al., 2014) was divided into a
184 northern and southern component, following expectations this will be formalized for the next
185 NCA report, resulting in a total of seven regions (Table 2) as presented in Janssen et al. (2014):
186 Northwest, Southwest, Northern Great Plains, Southern Great Plains, Midwest, Northeast, and
187 Southeast.

188 Trends in temperature and precipitation are computed for summer (June through August;
189 JJA) and winter (December through February; DJF) applying the method of least squares to

190 regionally averaged temperature and precipitation data for the two seasons in the reference and
191 the CMIP5 models. The linear trends are computed for the reference, the multi-model ensemble
192 (MME), and ensemble members for three time blocks (1895-1939, 1940-1979, 1980-2005). The
193 choice of the time blocks is based on the observed warming and cooling trends, and closely
194 mimics those in Kunkel et. al (2006). These time periods were chosen as a result of observed
195 increasing temperature trends during 1895-1939 and 1980-2005 in contrast to a decreasing
196 temperature trend during 1940-1979 (Figure 1b). Four metrics are used to evaluate model
197 performance: a trend bias of the MME, trend biases of ensemble members, percent of ensemble
198 members producing trends of the same sign (+/-) as observations, and the percent of ensemble
199 members with biases that are small in comparison to the standard errors of the observed and
200 simulated trends. The standard errors in the observed and simulated trends are calculated based
201 on the equation in Hogg and Tanis (2009). (The detailed methodology and equations can be
202 found in Appendix A).

203 MME trends may be influenced more strongly by some models that contribute more
204 ensemble members than the others. For instance, there are models that provide as little as one
205 simulation or as many as 25 different ensemble members. In the case of a model contributing a
206 large number of ensemble members, this particular model will bear greater weight to the overall
207 regional mean because each simulation is weighted equally when calculating MME (Appendix
208 A, Equation 4). Considering the unequal number of simulations by the models, the standard error
209 in MME's trend was estimated by randomly selecting N (Table 1) ensemble members trends with
210 replacement (i.e. bootstrapping) and computing the mean of that selection. This sampling was
211 repeated 1000 times to obtain standard deviation across the 1000 random ensemble trends for use

212 as the standard error of the MME. The bias of the MME was then compared to the reference
213 trend and the standard error (as calculated with the equation from Hogg and Tanis [2009]).

214

215 **3. RESULTS**

216 **a. Near-surface air temperature**

217 i. Evaluation of the multi-model ensemble trend

218 Figure 1b shows the MME and individual ensemble member temperature timeseries over
219 the entire evaluation period along with the nClimGrid timeseries over the CONUS for JJA and
220 DJF. The MME qualitatively resembles the general observed trend with some exceptions, such
221 as the late part of the record for DJF. The model spread is considerable, however, as represented
222 by the gray lines in both figure panels. Temperature trends for the Reference (i.e. nClimGrid)
223 and MME, and the trend biases of MME, for the three time periods during JJA are shown in
224 Figure 2. The trend biases are marked with an asterisk if they are large relative to the standard
225 errors of trends in nClimGrid and MME (discussed further below). During Period 1 (1895-1939),
226 warming occurred in all seven regions over the CONUS with the largest positive trend in the
227 northern Great Plains region (Figure 2a). The MME also has an average warming trend (~0.085
228 K/decade) over all of CONUS (Figure 2b), but with a lesser magnitude as indicated by the
229 negative bias values in all but the Southeast (Figure 2c). Also, in the northern Great Plains, the
230 difference between the MME and reference trends is larger than standard errors of the trends and
231 is indicated with an asterisk (with the significance information based on results in Figure 3).
232 During Period 2 (1940-1979), reference data shows a warming trend over the western half of the
233 CONUS, whereas the eastern half shows cooling (Figure 2d). In particular, the Southeast region
234 displays the strongest cooling trend (-0.24 K/decade). In MME, the cooling trend is weaker than

235 the observed one in all four eastern half regions (~ 0.03 K/decade). The negative (positive)
236 biases in the western (eastern) half of CONUS (Figure 2f) indicate that MME underestimates
237 both warming and cooling trends compared to nClimGrid. The difference between the observed
238 and MME trends is largest in the Southeast region (0.22 K/decade). Kunkel et al. (2006) report
239 the underestimated cooling trends in the Southeast region by GCMs and suggest that the large
240 trend biases of models result from the North Atlantic sea surface temperature. Period 3 (1980-
241 2005) is characterized by an overall warming trend except for the Southeast region where a
242 cooling trend is observed (Figure 2g). The warming is strongest in the Northwest region (0.50
243 K/decade) with relatively weak warming trends in the three central regions. However, MME
244 (Figure 2h) exhibits a strong warming trend of 0.4 K/decade averaged over CONUS, leading to a
245 considerable positive trend bias in the Southeast (0.40 K/decade), and an overestimation of the
246 warming trend over the remaining regions while still leaving an underestimation of the warming
247 trend in the Northwest (Figure 2i). In the Southeast region, the trend bias is larger than standard
248 errors thus indicated with an asterisk.

249 Figure 3 shows the temperature trends in nClimGrid (blue square) and MME (red circle),
250 each plotted with its standard error as whiskers (i.e. trends \pm standard errors). There is overlap
251 between the red and blue whiskers in all regions, including at the CONUS scale, except for the
252 northern Great Plains region during Period 1 (Figure 3a) and the Southeast region during Period
253 3 (Figure 3c). The non-overlapping whiskers indicate that the MME trends may not have much
254 fidelity in representing the trends in these regions/periods with larger trend biases than the
255 standard errors of trends in nClimGrid and MME.

256 Figure 4 and 5 illustrate the trends from nClimGrid and MME for winter (DJF). During
257 Period 1, a warming trend dominated the central and eastern regions (Figure 4a). However, the

258 Northwest experienced cooling while there was no apparent trend in the Southwest. MME
259 displays a weak warming trend (~0.08 K/decade) over all of CONUS (Figure 4b). In the
260 Southeast region, the difference between the MME and reference trends is larger than standard
261 errors of the trends (Figure 4c). During Period 2, reference data shows a cooling trend over all of
262 CONUS except for the Northwest region that shows a warming trend (Figure 4d). In particular,
263 the Midwest region displays a strong cooling trend. MME displays a cooling trend in the western
264 half of CONUS while the eastern half shows a warming trend (Figure 4e). However, the northern
265 Great Plains region did not exhibit a trend. In the Midwest region, the difference between the
266 MME and reference trends is larger than standard errors of the trends (Figure 4f). The latest
267 period, Period 3, is characterized by warming trends over all of CONUS (Figure 4g). MME
268 exhibits a similar warming trend over all of CONUS (Figure 4h) but underestimates the
269 magnitude as indicated by the bias map displaying negative values (Figure 4i). Figure 5 shows
270 trends and standard errors from nClimGrid and MME for DJF. The trend differences between
271 nClimGrid and MME are smaller than their standard errors except for the Southeast regions
272 during Period 1 (Figure 5a) and the Midwest region from Period 2 (Figure 5b).

273 Overall, the MME reproduces the reference trends within their standard errors for both
274 seasons over all regions except the four cases: Northern Great Plains in JJA during Period 1
275 (1895-1939), the Southeast in JJA during Period 3 (1980-2005), the Southeast in DJF during
276 Period 1 (1895-1939), and the Midwest in DJF during Period 2 (1940-1979). The greater model
277 departures from the trends in nClimGrid suggest the applied external forcing and/or the modeled
278 processes in those regions might lack the same fidelity as for the other regions that tend to be
279 represented better.

280

281 ii. Evaluation of the trends from ensemble members

282 In an effort to understand the performance of ensemble members that comprise MME, the
283 trend distribution from 206 ensemble members for JJA are plotted as a box and whiskers with the
284 lower and higher ends of the whiskers representing the 5% and 95% of the N ensemble member
285 trend values (Figure 3). The lower and upper boundaries of the box represent the lower and
286 upper quartile with the middle line indicating the median of the N trends.

287 For the JJA analysis (Figure 3), because MME's trends are almost the same as the median
288 of all the ensemble member trend and lengths of red and black whiskers are similar to each other,
289 many of the same findings and discussion of the results from Section 3.i apply here. Figure 3a
290 shows that both the reference trend and at least 75% of the ensemble member trends show a
291 warming over all of CONUS during Period 1. During Period 2 (Figure 3b), the boxplot shows
292 that only about half of the ensemble members show a warming trend in the three western regions
293 for Period 2 and a cooling trend for the other regions. This indicates that roughly half of the
294 ensemble members reproduce the same warming or cooling trend as the reference for this time
295 period. For Period 3 (Figure 3c), the boxplot of the ensemble members exhibit warming over all
296 of CONUS, although in some cases with considerably greater magnitude, and thus are consistent
297 with the reference in regards to the sign of the warming. However, in the Southeast, at least 95%
298 of the ensemble members indicates a warming rather than the cooling trend found in the
299 reference (i.e. the bottom of the black whisker has almost the same value as the top of the blue
300 whisker).

301 The percentage of ensemble members whose mean temperature trends are not
302 significantly different from the reference at the 90% confidence level are tabulated in Table 3 for
303 JJA. For this table, a larger value indicates greater fidelity of the ensemble members to represent

304 the reference trend and vice versa for a smaller value. A large confidence level (in this case 90%)
305 indicates that the hypothesis (Appendix A, Equation 7), which states the reference trend equals
306 the ensemble member trend, can be accepted as true. For example, for JJA during Period 1
307 (1895-1939), there are 184 ensemble members whose trend was compared to the reference trend.
308 In the Southeast region, 11% of the simulation trends are not significantly different from the
309 observed trend at the 90% confidence level. For the same region, during Period 2 (1940-1979),
310 8% of the ensemble members have temperature trends that are not significantly different from
311 the observed trend while only 4% during Period 3 (1980-2005) are not significantly different at
312 the 90% confidence level. This shows that for the Southeast region, the fidelity of the ensemble
313 members to represent the observed temperature trends diminishes with each successive time
314 block. The region and time block best represented by the ensemble members is the Northwest
315 region during Period 3, where 30% of the simulated trends are not significantly different from
316 the observed trend at the 90% confidence level. At the CONUS analysis level, 1% of the
317 simulation trends during Period 1 (1895-1939) are not significantly different from the observed
318 trend at the 90% confidence level while Period 2 (1940-1979) and Period 3 (1980-2005)
319 produced higher percentages of 16% and 17.5% respectively. This shows that at the CONUS
320 level, the fidelity of the ensemble members to represent the observed temperature trends
321 increases with each successive time block.

322 For further analysis of the ensemble members, Figure 6(a-c) takes into account the
323 percent of the GCMs that can correctly reproduce the same sign (+/-) of warming (cooling) as the
324 temperature trends in nClimGrid. During Period 1 (Figure 6a), a large number of the ensemble
325 members (76-83%) are capable of reproducing the same sign trend as nClimGrid. During Period
326 2 (Figure 6b), roughly half (39-59%) of the ensemble members reproduce the same sign trend,

327 whereas an overwhelming number of ensemble members (91-97%) do so during Period 3 (Figure
328 6c) except for the Southeast region where only 3.9% of ensemble members produce the same
329 sign trend. Figure 6(d-f) is used to demonstrate the percent of the ensemble members whose
330 trend biases are small relative to standard errors of nClimGrid and simulated trends (i.e. their
331 trend values are comparable within the range of the standard errors of each). During Period 1
332 (Figure 6d), about half (39-59%) of the ensemble members reproduce temperature trends similar
333 to the observed trend except for the northern Great Plains (7.1%). During Period 2 (Figure 6e),
334 only about a quarter (24-34%) of the ensemble members have smaller biases than standard
335 errors. In the Southwest region, only 10% of the simulated trends show reasonable agreement
336 with the observed trend. During Period 3 (Figure 6f), roughly half of the ensemble members over
337 the Western regions along with the Northeast reproduce the reference trends (46-54%), whereas
338 ensemble members perform poorly (10-22%) in the rest of the regions.

339 For the corresponding analysis of DJF during Period 1 (i.e. Table 4, Figure 5 and Figure
340 7), the reference mean trends in Figure 5 shows a period of warming in all regions except the
341 Northwest whereas at least 75% of the ensemble member trends show a warming period over all
342 of CONUS. Conversely, from 1940-1979, the reference data indicates a cooling trend in all
343 regions except the Northwest. Only about half of the ensemble members show a cooling trend in
344 all regions. The reference data between 1980-2005 show a warming trend for all regions and at
345 least 90% of the ensemble members depict this warming trend.

346 The percentage of ensemble members whose mean temperature trends are not
347 significantly different from the reference at the 90% confidence level are tabulated in Table 4
348 (see discussion of Table 3 above). As with Table 3, a large confidence level (in this case 90%)
349 indicates that the hypothesis (Appendix A, Equation 7), which states the reference trend equals

350 the ensemble member trend, can be accepted as true. The overall fidelity of the ensemble
351 members to represent the observed temperature trend increases with each successive time block
352 in all regions except the northern Great Plains and the Northeast where the observed temperature
353 trend diminishes with each successive time block. Similar to the JJA analysis over CONUS, the
354 DJF percentages of simulation trends with mean temperature trends that are not significantly
355 different from the observed trend increased with each successive time block with 7%, 17%, and
356 26% of the simulations for Period 1 (1895-1939), Period 2 (1940-1979), and Period 3 (1980-
357 2005) at the 90% confidence level.

358 Figure 7(a-c) illustrates the percent of the ensemble members that reproduce the same
359 sign (+/-) as the reference temperature trend during winter. During 1895-1939 (Figure 7a), all
360 regions except for the Northwest showed that more than half of the ensemble members (59-68%)
361 can reproduce the same sign trend as the reference. From 1940-1979 (Figure 7b), roughly half
362 (42-60%) of the ensemble members reproduce the same sign trend while a majority of ensemble
363 members (72-81%) do so in 1980-2005 (Figure 7c). Figure 7(d-f) also displays the percent of the
364 ensemble members that reproduce the values of temperature trend with overlapping standard
365 error bars (with the overlap indicating that the difference between the reference and ensemble
366 member trends are not statistically significant). During 1895-1939 (Figure 7d), a majority of the
367 ensemble members (78-98%) in the western regions and a minority (7.1%) in the Southeast
368 reproduce the reference trend with overlapping error bars. From 1940-1979 (Figure 7e), the
369 ensemble members perform poorly (12-23%) over the Midwest and Southeastern region while
370 performing better (>40%) in the other areas. However, between 1980-2005 (Figure 7f), the
371 ensemble members show an outstanding reproduction of the reference trend (74%) over the

372 Southwest region while only about half of the ensemble members are able to reproduce the
373 reference trend in the other regions.

374

375 ***b. Precipitation***

376 The same regional trend analyses were performed using the same time periods and metrics
377 for precipitation as described in Section 3.a for temperature. Graphs and maps analogous to
378 Figures 3 and 6 were constructed for precipitation from this analysis for both JJA and DJF, and
379 are included in the Supplementary Material for completeness. However, no statistically
380 significant seasonal trends were found both in the reference and the MME for any region or time
381 period for either season due to a large variability between the models. Despite this, a zoomed in
382 version of Supplementary Figures 1 and 2 show that although the MME trends overlap
383 completely with the reference trends, the large model variability reproduces the reference trends
384 with no skill. However, while the results presented here are seasonal monthly mean values, it
385 should be noted that other studies have found precipitation trends when examining extreme
386 precipitation events in the U.S. (Janssen et al., 2016) where it was observed that the models
387 overestimate the number of extreme events in the spring while underestimating in the summer. In
388 examining the trend of extreme precipitation events, Karl et al., (1996) and Kunkel et al. (2003),
389 amongst many others, report that frequencies of these events were high in the early twentieth
390 century, followed by a period of low frequency in the 20-30s with a gradual increase in the
391 extreme events thereafter.

392

393 **4. SUMMARIZING RESULTS**

394 As a means of compactly summarizing aspects of the overall performance of the model suite
395 for temperature, Figures 8a and 9a visualize simultaneously the bias in the MME temperature
396 trends (Figure 3) and the percent of ensemble members reproducing the same sign as the
397 nClimGrid trend (Figure 6a-c) for JJA (Figure 8a) and DJF (Figure 9a). Here, the different
398 symbols, square (Period 1: 1895-1939), triangle (Period 2: 1940-1979), and circle (Period 3:
399 1980-2005) indicate the three time periods, with the colors representing the different regions
400 where the color code is based on Figure 1a. In these figures, ideal model fidelity is exhibited by
401 symbols that fall in the area close to the center horizontally and to the top vertically. The small
402 cluster of squares around a bias of -0.1 (K/decade) and at 80% indicates that the model
403 performance in the time block 1895-1939 (square symbols) is relatively good, for the bias is
404 small and most of simulated trends have the same sign as the observational reference (i.e.
405 nClimGrid). The values for Period 2 (triangles) are clustered between 40-60% with a wide
406 spread in the bias between -0.15 and 0.22 (K/decade). Most of the values for Period 3 (circles)
407 are in the ~90% range. Overall, the ensemble members qualitatively reproduce the observed
408 trends. The exception is the Southeast region (gray circle) that shows a large bias (0.38
409 K/decade) and only 4% of the ensemble members reproduce the observed cooling trend. The
410 Northern Great Plains region in Period 1 (green square) has a bias of -0.36 (K/decade) and 80%
411 agreement, indicating that MME largely underestimates the trend, whereas 80% of ensemble
412 members are capable of producing the same sign as the reference trend.

413 Another aspect of the performance of the CMIP5 model suite for these regional temperature
414 trends can be summarized compactly by replacing the y-axis in Figures 8a and 9a with the
415 percent of ensemble members whose trend and standard error overlap with the observed
416 reference trend and its standard error (Figures 8b and 9b). Here, the green square, the Northern

417 Great Plains region from 1895-1939, has the same bias of -0.36 (K/decade) however only 7% of
418 the ensemble members showed a trend that fell within the reference trend and standard error
419 (Figure 8b).

420 Overall, for both Figure 8a and Figure 8b, the Northern Great Plains during Period 1, and the
421 Northern and Southern Great Plains, Midwest, and the Southeast from Period 3 are outliers with
422 relatively large warming and cooling biases, greater than 0.3 K/decade. However, the other
423 ensembles during Period 1 generally replicate the sign (+/-) of the reference trend well, around
424 80%, and exhibit a 40-60% replication of the reference trend when the trend value is compared
425 within standard error.

426 For DJF, Figure 9a shows that the values for Period 1 (squares) are largely scattered
427 horizontally across the plot, exhibiting a large range in MME biases, between about -0.51 to 0.16
428 (K/decade), and with only 37-68% of the ensemble members able to reproduce the sign of the
429 observed trend. The values for Period 2 (triangles) are well clustered between 40-50% but also
430 exhibit a wide spread in the bias between -0.10 and 0.47 (K/decade). The values for Period 3
431 (circles) all exhibit agreements of 70-80% indicating that the sign reproduction of the ensemble
432 members with the reference trend is relatively high compared to the two earlier periods. For this
433 period, the MME biases still exhibits a large range of -0.37 to -0.02 (K/decade), and notably all
434 underestimating the temperature trends.

435 In Figure 9b, the bias values for all periods each range over about 0.5 (K/decade), although
436 Period 1 (squares) and Period 3 (circles) tend to be biased negative, while that for Period 2
437 (triangles) tends to be biased positive. However, in the case of the agreements exhibited with the
438 observed temperature trends, Period 1 and 2 exhibit a wide variation of values (nearly over the
439 whole range), while Period 3 exhibits a more consistent level of agreement across members

440 (~40-70%). Comparing DJF values (Figure 9b) to those for JJA (Figure 8b), the results suggest
441 that MME exhibits greater biases during DJF (wide spread of the data along the bias axis) but
442 ensemble members can better capture the reference trend within the standard error (i.e. there are
443 more points in the upper half of the plot).

444 Overall, for both Figure 9a and Figure 9b, the Midwest from 1940-1979 (yellow triangle)
445 represents a large outlier, with a large bias of 0.47 K/decade and only 12% of the ensemble
446 members reproducing a trend that is within the standard error of the reference trend.
447 Contrastingly, the Southwest region in 1895-1939 (red square) shows the best individual model
448 performance (compared to the other periods and regions) with a small bias (0.05 K/decade) with
449 98% of the models producing a trend that is within the standard error of the reference trend.

450

451 **5. CONCLUSIONS**

452 The ability of CMIP5 GCMs to reproduce near-surface air temperature and precipitation
453 trends over CONUS is quantified and characterized in this study. The novelty of this study, in
454 contrast to similar past studies, is the utilization of nClimGrid, a new observational reference
455 dataset that exhibits a number of improvements over other similar datasets in ways that are
456 pertinent to this analysis (see Section 2a). In addition, this evaluation includes all the available
457 historical simulations and thus has an element of comprehensiveness compared to past studies
458 and the model contributions to CMIP5. The analysis framework involves comparing simulated
459 trends, both as an MME and all 206 individual members, to the reference trends considering the
460 values averaged over the 7 NCA regions and for three time periods (1895-1939, 1940-1979,
461 1980-2005). Most of the study's results are summarized compactly in Section 4 and in Figures 8

462 and 9. A few of the key results are highlighted below, with remarks and interpretations provided
463 where possible.

464 For summer (JJA), MME mean trends in near-surface air temperature exhibit some degree of
465 bias in most regions in all time periods relative to the observations (Period 1: 1895-1939, Period
466 2: 1940-1979, Period 3: 1980-2005). However, only the Northern Great Plains during Period 1
467 and Southeast during Period 3 (Figures 2, 3, and 8) exhibit significant biases. At the CONUS
468 scale, the trend in nClimGrid is about 0.15 K/dec higher than MME for the earliest period
469 while the two have roughly comparable trends for 1940-1979. The nClimGrid trend is about
470 0.2 K/dec lower than MME for 1980-2015. Differences are slightly larger for winter; in
471 particular, the trend in nClimGrid is about 0.2 K/dec higher than MME for 1895-1939 and
472 1980-2015, and about 0.2 K/dec lower for 1940-1979. While a full explanation of the causes of
473 such difference in the Southeast region is beyond the scope of this study, this is considered to be
474 due to the fact that forcings may not be entirely accurate and/or the internal variability that
475 contributes to the “warming hole” in this region is much larger than the simulations exhibit
476 (Kunkel et al. 2006). The inability of the MME to capture the “warming hole” is corroborated
477 with several previous studies (Kunkel et al., (2006), Meehl et al., (2012), Kumar et al., (2013))
478 and brings to attention the need for inquiry by the scientific and model development
479 communities. Similarly, for the winter period, the MME shows varying degrees of bias, however
480 only the Southeast during Period 1 and the Midwest during Period 2 (Figures 4, 5, and 9) have
481 significant biases.

482 Considering the performance of the collective of ensemble members, for JJA, no region for
483 any time block had more than about half of the ensemble members that are able to capture the
484 value of the reference trend within the overlapping standard error (Figure 6d-f). For example,

485 During Period 3, roughly half of the ensemble members over the western and eastern regions
486 captured the observed trend whereas less than 22% of the ensemble members are capable of
487 doing so over the central regions. For winter, the performance of the collective of ensemble
488 members produced different results. For example, during Period 1, more than half of the
489 ensemble members reproduced the observed trend (defined here as within the standard error of
490 the reference) over the western regions, and as high as 98% of the ensemble members did so for
491 the Southwest region (Figure 9b).

492 The results highlighted above, and outlined in more detail in Sections 3 and 4, show that the
493 CMIP5 MME (Figures 3 and 5) can reproduce historical surface air temperature trends for both
494 summer and winter seasons across all periods over the Northwest, Southwest, Southern Great
495 Plains, and Northeast regions but not the Northern Great Plains, Midwest and Southeast. When
496 considering the 206 individual CMIP5 model ensemble member simulations of the historical
497 surface air temperature, at least 76% of them correctly reproduced a positive (warming) trend
498 during Period 1 and Period 3 for both JJA and DJF over all regions except the Northwest and
499 Southeast regions. In contrast, the fidelity of the model ensemble member simulations of the
500 historical surface air temperature trends is not skillful for Period 2. It should also be noted that
501 experimentation with a shift of plus or minus 5 years in the three time periods did not change the
502 overall qualitative results. Finally, precipitation trends were not found to be skillfully replicated
503 over either season, during any period, and over any region because the CMIP5 GCMs exhibit
504 large variability and the reference trends for the mean monthly values examined here are
505 relatively small or near zero.

506 The results of this study point to the specific regions over CONUS that warrant further
507 investigation on the fidelity of the historical forcing data utilized for these simulations and/or on

508 the fidelity of the model in representing the processes key to determining near surface
509 temperature and precipitation. Focus on improving the performance of the simulations and
510 realism of the forcing data such that model bias is reduced over these regions would be a
511 productive investment in reducing uncertainty in future model projections.

512 **Acknowledgements**

513 We would like to acknowledge the World Climate Research Programme's Working Group on
514 Coupled Modelling, which is responsible for CMIP, and we thank the climate modeling groups
515 (listed in Appendix B of this paper) for producing and making available their model output. For
516 CMIP the U.S. Department of Energy's Program for Climate Model Diagnosis and
517 Intercomparison provides coordinating support and led development of software infrastructure in
518 partnership with the Global Organization for Earth System Science Portals.

519 The primary author would also like to acknowledge California State University, Los Angeles
520 NASA DIRECT-STEM program and director, Dr. Hengchun Ye for funding and support.

521 This research was carried out at the Jet Propulsion Laboratory, California Institute of
522 Technology, under a contract with the National Aeronautics and Space Administration. Support
523 for this project was provided by NASA National Climate Assessment 11-NCA 11-0028. Kenneth
524 Kunkel was supported by NOAA through the Cooperative Institute for Climate and Satellites —
525 North Carolina under Cooperative Agreement NA14NES432003.

526

527 **6. References**

528 Baek, H.-J., Lee, J., Lee, H.-S., Hyun, Y.-K., Cho, C., Kwon, W.-T., ... Byun, Y.-H. (2013).
529 Climate change in the 21st century simulated by HadGEM2-AO under representative
530 concentration pathways. *Asia-Pacific Journal of Atmospheric Sciences*, 49(5), 603–618.

531 <https://doi.org/10.1007/s13143-013-0053-7>

532 Barnett, T. P., Pierce, D. W., Hidalgo, H. G., Bonfils, C., Santer, B. D., Das, T., ... Dettinger, M.

533 D. (2008). Human-Induced Changes in the Hydrology of the Western United States.

534 *Science*, 319(5866), 1080 LP-1083. Retrieved from

535 <http://science.sciencemag.org/content/319/5866/1080.abstract>

536 Bentsen, M., Bethke, I., Debernard, J. B., Iversen, T., Kirkevåg, A., Seland, Ø., ... Kristjánsson,

537 J. E. (2013). The Norwegian Earth System Model, NorESM1-M – Part 1: Description and

538 basic evaluation of the physical climate. *Geoscientific Model Development*, 6(3), 687–720.

539 <https://doi.org/10.5194/gmd-6-687-2013>

540 Bukovsky, M. S. (2012). Temperature trends in the NARCCAP regional climate models. *Journal*

541 *of Climate*, 25(11), 3985–3991. <https://doi.org/10.1175/JCLI-D-11-00588.1>

542 Cayan, D. R., Tyree, M., Kunkel, K. E., Castro, C., Gershunov, A., Barsugli, J., ... Barlow, M.

543 (2013). Future Climate: Projected Average. In G. Garfin, A. Jardine, R. Merideth, M. Black,

544 & S. LeRoy (Eds.), *Assessment of Climate Change in the Southwest United States: A Report*

545 *Prepared for the National Climate Assessment* (pp. 101–125). Washington, DC: Island

546 Press/Center for Resource Economics. https://doi.org/10.5822/978-1-61091-484-0_6

547 Chylek, P., Li, J., Dubey, M. K., Wang, M., & Lesins, G. (2011). Observed and model simulated

548 20th century Arctic temperature variability: Canadian Earth System Model CanESM2.

549 *Atmospheric Chemistry and Physics Discussions*, 11(8), 22893–22907.

550 <https://doi.org/10.5194/acpd-11-22893-2011>

551 Collier, M., & Uhe, P. (2012). *CMIP5 datasets from the ACCESS1.0 and ACCESS1.3 coupled*

552 *climate models. CAWCR Technical Report No. 059*. <https://doi.org/ISBN: 20978-1-922173->

553 29-4

554 Collins, W. D., Rasch, P. J., Boville, B. A., Hack, J. J., Williamson, D. L., Kiehl, J. T., ... Dai,
555 Y. (2004). Description of the NCAR Community Atmosphere Model (CAM 3.0). *Ncar/Tn-*
556 *464+Str*, (June), 214.

557 Collins, W. J., Bellouin, N., Doutriaux-Boucher, M., Gedney, N., Halloran, P., Hinton, T., ...
558 Woodward, S. (2011). Development and evaluation of an Earth-System model –
559 HadGEM2. *Geoscientific Model Development*, 4(4), 1051–1075.
560 <https://doi.org/10.5194/gmd-4-1051-2011>

561 Crowley, T. J. (2000). Causes of Climate Change Over the Past 1000 Years. *Science*, 289(5477),
562 270 LP-277. Retrieved from <http://science.sciencemag.org/content/289/5477/270.abstract>

563 Delworth, T. L., Broccoli, A. J., Rosati, A., Stouffer, R. J., Balaji, V., Beesley, J. A., ... Zhang,
564 R. (2006). GFDL's CM2 Global Coupled Climate Models. Part I: Formulation and
565 Simulation Characteristics. *Journal of Climate*, 19(5), 643–674.
566 <https://doi.org/10.1175/JCLI3629.1>

567 Donner, L. J., Wyman, B. L., Hemler, R. S., Horowitz, L. W., Ming, Y., Zhao, M., ... Zeng, F.
568 (2011). The Dynamical Core, Physical Parameterizations, and Basic Simulation
569 Characteristics of the Atmospheric Component AM3 of the GFDL Global Coupled Model
570 CM3. *Journal of Climate*, 24(13), 3484–3519. <https://doi.org/10.1175/2011JCLI3955.1>

571 Dufresne, J.-L., Foujols, M.-A., Denvil, S., Caubel, A., Marti, O., Aumont, O., ... Vuichard, N.
572 (2013). Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3
573 to CMIP5. *Climate Dynamics*, 40(9), 2123–2165. <https://doi.org/10.1007/s00382-012-1636-1>

575 Dunne, J. P., John, J. G., Shevliakova, E., Stouffer, R. J., Krasting, J. P., Malyshev, S. L., ...
576 Zadeh, N. (2013). GFDL's ESM2 Global Coupled Climate–Carbon Earth System Models.

577 Part II: Carbon System Formulation and Baseline Simulation Characteristics. *Journal of*
578 *Climate*, 26(7), 2247–2267. <https://doi.org/10.1175/JCLI-D-12-00150.1>

579 Easterling, D.R., K.E. Kunkel, J.R. Arnold, T. Knutson, A.N. LeGrande, L.R. Leung, R.S. Vose,
580 D.E. Waliser, and M.F. Wehner, 2017: Precipitation change in the United States. In *Climate*
581 *Science Special Report: Fourth National Climate Assessment, Volume I*. D.J. Wuebbles,
582 D.W. Fahey, K.A. Hibbard, D.J. Dokken, B.C. Stewart, and T.K. Maycock, Eds. U.S.
583 Global Change Research Program, pp. 207-230, doi:10.7930/J0H993CC

584 Gordon, H., Farrell, S. O., Collier, M., Dix, M., Rotstayn, L., Kowalczyk, E., ... Watterson, I.
585 (2010). *The CSIRO Mk3 . 5 Climate Model*.

586 Hazeleger, W., Wang, X., Severijns, C., Ţtefănescu, S., Bintanja, R., Sterl, A., ... Van den Hurk,
587 B. (2012). EC-Earth V2. 2: description and validation of a new seamless earth system
588 prediction model. *Climate Dynamics*, 39(11), 2611–2629.

589 Hogg, Robert V, and Elliot A. Tanis. (2009) *Probability and Statistical Inference*. Pearson
590 Educational International.

591 IPCC. (2013). *Climate Change 2013: The Physical Science Basis. Contribution of Working*
592 *Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate*
593 *Change*. Cambridge University Press, Cambridge, United Kingdom and New York, NY,
594 USA.

595 Janssen, E., Sriver, R. L., Wuebbles, D. J., & Kunkel, K. E. (2016). Seasonal and regional
596 variations in extreme precipitation event frequency using CMIP5. *Geophysical Research*
597 *Letters*, 43(10), 5385–5393. <https://doi.org/10.1002/2016GL069151>

598 Janssen, E., Wuebbles, D., & Kunkel, K. (2014). Observational and Model based Trends and
599 Projections of Extreme Precipitation over the Contiguous United States. *Earth's Future*, 1–

600 15. <https://doi.org/10.1002/2013EF000185>.Received

601 Ji, D., Wang, L., Feng, J., Wu, Q., Cheng, H., Zhang, Q., ... Zhou, M. (2014). Description and
602 basic evaluation of Beijing Normal University Earth System Model (BNU-ESM) version 1.
603 *Geoscientific Model Development*, 7(5), 2039–2064. <https://doi.org/10.5194/gmd-7-2039-2014>

604 2014

605 Karl, T. R., Knight, R. W., Easterling, D. R., & Quayle, R. G. (1996). Indices of Climate Change
606 for the United States. *Bulletin of the American Meteorological Society*, 77(2), 279–292.
607 [https://doi.org/10.1175/1520-0477\(1996\)077<0279:IOCCFT>2.0.CO;2](https://doi.org/10.1175/1520-0477(1996)077<0279:IOCCFT>2.0.CO;2)

608 Knutson, T. R., Delworth, T. L., Dixon, K. W., Held, I. M., Lu, J., Ramaswamy, V., ... Stouffer,
609 R. J. (2006). Assessment of Twentieth-Century Regional Surface Temperature Trends
610 Using the GFDL CM2 Coupled Models. *Journal of Climate*, 19(9), 1624–1651.
611 <https://doi.org/10.1175/JCLI3709.1>

612 Knutson, T. R., Zeng, F., & Wittenberg, A. T. (2013). Multimodel Assessment of Regional
613 Surface Temperature Trends: CMIP3 and CMIP5 Twentieth-Century Simulations. *Journal
614 of Climate*, 26(22), 8709–8743. <https://doi.org/10.1175/JCLI-D-12-00567.1>

615 Kumar, S., III, J. K., Dirmeyer, P. A., Pan, Z., & Adams, J. (2013). Multidecadal Climate
616 Variability and the “Warming Hole” in North America: Results from CMIP5 Twentieth-
617 and Twenty-First-Century Climate Simulations. *Journal of Climate*, 26(11), 3511–3527.
618 <https://doi.org/10.1175/JCLI-D-12-00535.1>

619 Kumar, S., Merwade, V., Kinter, J. L., & Niyogi, D. (2013). Evaluation of temperature and
620 precipitation trends and long-term persistence in CMIP5 twentieth-century climate
621 simulations. *Journal of Climate*, 26(12), 4168–4185. <https://doi.org/10.1175/JCLI-D-12-00259.1>

623 Kunkel, K. ., Stevens, L. E., Stevens, S. E., Sun, L., Janssen, E., Wuebbles, D., & Dobson, J. G.

624 (2013). Regional Climate Trends and Scenarios for the U . S . National Climate Assessment

625 Part 9 . Climate of the Contiguous United States, (January), 77. Retrieved from

626 http://www.nesdis.noaa.gov/technical_reports/149_Climate_Scenarios.html

627 Kunkel, K. E., Easterling, D. R., Redmond, K., & Hubbard, K. (2003). Temporal variations of

628 extreme precipitation events in the United States: 1895–2000. *Geophysical Research*

629 *Letters*, 30(17), n/a-n/a. <https://doi.org/10.1029/2003GL018052>

630 Kunkel, K. E., Liang, X.-Z., Zhu, J., & Lin, Y. (2006). Can CGCMs simulate the twentieth-

631 century “warming hole” in the central United States? *Journal of Climate*, 19(17), 4137–

632 4153. <https://doi.org/10.1175/JCLI3848.1>

633 Kunkel, K. E., & Liang, X. Z. (2005). GCM simulations of the climate in the central United

634 States. *Journal of Climate*, 18(7), 1016–1031. <https://doi.org/10.1175/JCLI-3309.1>

635 Kunkel, K. E., Vose, R. S., Stevens, L. E., & Knight, R. W. (2015). Is the monthly temperature

636 climate of the United States becoming more extreme? *Geophysical Research Letters*, 42(2),

637 629–636. <https://doi.org/10.1002/2014GL062035>

638 Li, L., Lin, P., Yu, Y., Wang, B., Zhou, T., Liu, L., ... Qiao, F. (2013). The flexible global

639 ocean-atmosphere-land system model, Grid-point Version 2: FGOALS-g2. *Advances in*

640 *Atmospheric Sciences*, 30(3), 543–560. <https://doi.org/10.1007/s00376-012-2140-6>

641 Marsh, D. R., Mills, M. J., Kinnison, D. E., Lamarque, J.-F., Calvo, N., & Polvani, L. M. (2013).

642 Climate Change from 1850 to 2005 Simulated in CESM1(WACCM). *Journal of Climate*,

643 26(19), 7372–7391. <https://doi.org/10.1175/JCLI-D-12-00558.1>

644 Meehl, G. A., Arblaster, J. M., & Branstator, G. (2012). Mechanisms Contributing to the

645 Warming Hole and the Consequent U.S. East–West Differential of Heat Extremes. *Journal*

646 *of Climate*, 25(18), 6394–6408. <https://doi.org/10.1175/JCLI-D-11-00655.1>

647 Meehl, G. A., & Tebaldi, C. (2004). More Intense, More Frequent, and Longer Lasting Heat

648 Waves in the 21st Century. *Science*, 305(5686), 994 LP-997. Retrieved from

649 <http://science.sciencemag.org/content/305/5686/994.abstract>

650 Melillo, J. M., Richmond, T. C., Yohe, G. W., & US National Climate Assessment. (2014).

651 *Climate change impacts in the United States: the third national climate assessment. US*

652 *Global change research program* (Vol. 841). <https://doi.org/10.7930/j0z31WJ2>

653 Menne, M. J., Durre, I., Vose, R. S., Gleason, B. E., & Houston, T. G. (2012). An overview of

654 the global historical climatology network-daily database. *Journal of Atmospheric and*

655 *Oceanic Technology*, 29(7), 897–910. <https://doi.org/10.1175/JTECH-D-11-00103.1>

656 Pope, V. D., Gallani, M. L., Rowntree, P. R., & Stratton, R. A. (2000). The impact of new

657 physical parametrizations in the Hadley Centre climate model: HadAM3. *Climate*

658 *Dynamics*, 16(2), 123–146. <https://doi.org/10.1007/s003820050009>

659 Qiao, F., Song, Z., Bao, Y., Song, Y., Shu, Q., Huang, C., & Zhao, W. (2013). Development and

660 evaluation of an Earth System Model with surface gravity waves. *Journal of Geophysical*

661 *Research: Oceans*, 118(9), 4514–4524.

662 Schmidt, G. A., Kelley, M., Nazarenko, L., Ruedy, R., Russell, G. L., Aleinov, I., ... Zhang, J.

663 (2014). Configuration and assessment of the GISS ModelE2 contributions to the CMIP5

664 archive. *Journal of Advances in Modeling Earth Systems*, 6(1), 141–184.

665 <https://doi.org/10.1002/2013MS000265>

666 Scoccimarro, E., Gualdi, S., Bellucci, A., Sanna, A., Fogli, P. G., Manzini, E., ... Navarra, A.

667 (2011). Effects of Tropical Cyclones on Ocean Heat Transport in a High-Resolution

668 Coupled General Circulation Model. *Journal of Climate*, 24(16), 4368–4384.

669 <https://doi.org/10.1175/2011JCLI4104.1>

670 Stevens, B., Giorgetta, M., Esch, M., Mauritsen, T., Crueger, T., Rast, S., ... Roeckner, E.

671 (2013). Atmospheric component of the MPI-M Earth System Model: ECHAM6. *Journal of*

672 *Advances in Modeling Earth Systems*, 5(2), 146–172. <https://doi.org/10.1002/jame.20015>

673 T. SAKAMOTO, T., KOMURO, Y., NISHIMURA, T., ISHII, M., TATEBE, H., SHIOGAMA,

674 H., ... KIMOTO, M. (2012). MIROC4h-A New High-Resolution Atmosphere-Ocean

675 Coupled General Circulation Model. *Journal of the Meteorological Society of Japan. Ser.*

676 *II*, 90(3), 325–359. <https://doi.org/10.2151/jmsj.2012-301>

677 Taylor, K. E., Stouffer, R. J., & Meehl, G. A. (2012). An overview of CMIP5 and the experiment

678 design. *Bulletin of the American Meteorological Society*, 93(4), 485–498.

679 <https://doi.org/10.1175/BAMS-D-11-00094.1>

680 Volodire, A., Sanchez-Gomez, E., y Mélia, D., Decharme, B., Cassou, C., Sénési, S., ...

681 Chauvin, F. (2013). The CNRM-CM5.1 global climate model: description and basic

682 evaluation. *Climate Dynamics*, 40(9), 2091–2121. <https://doi.org/10.1007/s00382-011-1259-y>

684 Volodin, E. M., Dianskii, N. A., & Gusev, A. V. (2010). Simulating present-day climate with the

685 INMCM4.0 coupled model of the atmospheric and oceanic general circulations. *Izvestiya,*

686 *Atmospheric and Oceanic Physics*, 46(4), 414–431.

687 <https://doi.org/10.1134/S000143381004002X>

688 Vose, R. S., Applequist, S., Squires, M., Durre, I., Menne, C. J., Williams, C. N., ... Arndt, D.

689 (2014). Improved historical temperature and precipitation time series for U.S. climate

690 divisions. *Journal of Applied Meteorology and Climatology*, 53(5), 1232–1251.

691 <https://doi.org/10.1175/JAMC-D-13-0248.1>

692 Watanabe, M., Suzuki, T., O'ishi, R., Komuro, Y., Watanabe, S., Emori, S., ... Kimoto, M.

693 (2010). Improved Climate Simulation by MIROC5: Mean States, Variability, and Climate

694 Sensitivity. *Journal of Climate*, 23(23), 6312–6335.

695 <https://doi.org/10.1175/2010JCLI3679.1>

696 Watanabe, S., Hajima, T., Sudo, K., Nagashima, T., Takemura, T., Okajima, H., ... Kawamiya,

697 M. (2011). MIROC-ESM 2010: model description and basic results of CMIP5-20c3m

698 experiments. *Geoscientific Model Development*, 4(4), 845–872.

699 <https://doi.org/10.5194/gmd-4-845-2011>

700 Wu, T., Song, L., Li, W., Wang, Z., Zhang, H., Xin, X., ... Zhou, M. (2014). An overview of

701 BCC climate system model development and application for climate change studies.

702 *Journal of Meteorological Research*, 28(1), 34–56. <https://doi.org/10.1007/s13351-014-3041-7>

703

704 Wuebbles, D. J., Kunkel, K., Wehner, M., & Zobel, Z. (2014). Severe Weather in United States

705 Under a Changing Climate. *Eos, Transactions American Geophysical Union*, 95(18), 149–

706 150. <https://doi.org/10.1002/2014EO180001>

707 Wuebbles, D. J., D. W. Fahey, K. A. Hibbard, D. J. Dokken, B. C. Stewart, and T. K. Maycock

708 (eds.). US Global Change Research Program, Washington, DC, USA, 470 pp, doi:

709 10.7930/J0J964J6.

710 Yukimoto, S. (2011). *Meteorological research institute earth system model version 1 (MRI-ESM1): model description*.

711

712 YUKIMOTO, S., ADACHI, Y., HOSAKA, M., SAKAMI, T., YOSHIMURA, H., HIRABARA,

713 M., ... KITOH, A. (2012). A New Global Climate Model of the Meteorological Research

714 Institute: MRI-CGCM3 -Model Description and Basic Performance. *Journal of the*

715 *Meteorological Society of Japan. Ser. II, 90A, 23–64. https://doi.org/10.2151/jmsj.2012-*

716 A02

717

718 **Appendix A**

719 Methodology Equations

720 For each NCA region, the seasonal mean time series from the reference data is represented

721 as:

722 $x(t), (t = 1, 2, \dots, m)$ (1)

723 where

724 t : the year from the starting year in each time block

725 m : number of years in the time block

726

727 The regionally-averaged time series from ensemble member i is defined as:

728 $y_i(t), (t = 1, 2, \dots, m)$ (2)

729 In addition, the regionally-averaged time series from the MME is represented as:

730 $Y(t), (t = 1, 2, \dots, m)$ (3)

731 where, the ensemble average of N simulations is calculated using the following equation:

732 $Y(t) = \frac{1}{N} \sum_{k=1}^N y_i(t)$ (4)

733 See Table 2 for the number of simulations (N) used to calculate $Y(t)$ in each time block.

734 The seasonal mean trend for the reference data, α_{ref} [K year⁻¹], is defined as the least square fit
735 for a linear regression model:

736 $x = \alpha_{ref} \times t + \beta_{ref}$ (5)

737 The linear trend, α_{yi} [K year⁻¹], for ensemble members, $y_i(t)$, and the ensemble linear trend,
738 α_Y , for MME, $Y(t)$, is calculated in the same manner for three time blocks (1895-1939, 1940-
739 1979, 1980-2005). The choice of the time blocks is based on the observed warming and cooling
740 trends, and closely mimics those in Kunkel et. al (2006).

741 The performance metric of the simulated trends in each region are:

742 a) trend bias of the MME, $\alpha_Y - \alpha_{ref}$,
743 b) trend biases of ensemble members, $\alpha_{yi} - \alpha_{ref}$,
744 c) percentage of the ensemble members reproducing the same sign (+/-) trend as the
745 observed trend, and
746 d) percentage of the ensemble members whose trend biases are small relative to standard
747 errors of the observed and simulated trends

748 For a) and b), the following null hypothesis is tested per time block per region.

749 $H_o: \alpha_{ref} = \alpha_Y$ for a). (6)

750 $H_o: \alpha_{ref} = \alpha_{yi}$ for b). (7)

751 For the reference, linear trend calculation, the standard error of α_{ref} is defined as (Hogg and
752 Tanis, 2009)):

753 $s_{ref} = \sqrt{\frac{\sum_{k=1}^m (x_k - \hat{x}_k)^2 / (m-2)}{\sum_{k=1}^m (t_k - \bar{t})^2}}$ (8)

754 where

755 $\hat{x}_k = \alpha_{ref} \times k + \beta_{ref}$ (9)

756 and

757 $\bar{t} = \frac{1}{m} \sum_{k=1}^m k$ (10)

758 It should be noted that a), the trend bias of the MME, has high dependence on some
 759 models that contribute many ensemble members. For instance, there are models that contribute
 760 as little as one simulation or as many as 25 different ensemble members. In the case of a model
 761 contributing large ensemble simulations, this particular model will bear greater weight to the
 762 overall regional mean because each simulation is weighted equally when calculating a MME
 763 (Equation 4). Considering the unequal weights of models in α_Y , the standard error of α_Y was
 764 computed by randomly selecting N individual model trends with replacement (called
 765 bootstrapping) and computing the mean of that selection. We repeated this sampling 1000 times
 766 to obtain standard deviation across the 1000 random ensemble trends and use it as α_Y 's standard
 767 error (s_Y). We compared Y 's bias ($\alpha_Y - \alpha_{ref}$) with s_{ref} and s_{ref} to test the null hypothesis (6).

768 To assess the statistical significance of b), the trend bias for simulation i , $(\alpha_{yi} - \alpha_{ref})$, it
 769 is reasonable to assume that α_{ref} and α_{yi} likely have unequal variances. Therefore, the Welch's
 770 t-test statistic (T_i) is used to estimate the statistical significance of $(\alpha_{yi} - \alpha_{ref})$. T_i is defined as
 771 (Hogg and Tanis 2009):

$$772 \quad T_i = \frac{\alpha_{yi} - \alpha_{ref}}{\sqrt{\frac{s_{ref}^2 + s_{yi}^2}{m-2}}} \quad (11)$$

773 Using the Welch-Satterthwaite equation, the degrees of freedom, f_i , for T_i can be approximated
 774 by:

$$775 \quad f_i \approx \frac{\left(\frac{s_{ref}^2 + s_{yi}^2}{m-2}\right)^2}{\frac{s_{ref}^4 + s_{yi}^4}{(m-2)^2(m-3)^2}} \quad (12)$$

776 Let C^{f_i} be the cumulative density function of a student's t-distribution with f_i be the number of
 777 degrees of freedom. Then,

$$778 \quad p_i = C^{f_i}(T_i) \quad (12)$$

779 and using p_i , the confidence level (d_i) of $\alpha_{yi} - \alpha_{ref}$ can be calculated and used as a metric:

780
$$\text{when } p_i < 0.5, d_i = (1 - 2 \times p_i) * 100[\%]$$

781 (13)

782
$$\text{when } p_i > 0.5, d_i = (2 \times p_i - 1) * 100[\%]$$

783 (14)

784
$$\text{when } p_i = 0.5, \alpha_{ref} = \alpha_{yi}, \text{ therefore } d_i = 0\%$$
 (15)

785 The null hypothesis (H_0) is rejected if T_i and p_i are too small (indicating $\alpha_{yi} \ll \alpha_{ref}$), or too
786 large (indicating $\alpha_{yi} \gg \alpha_{ref}$). In this case, α_{yi} is statistically different from α_{ref} at a confidence
787 level of d_i . We calculated d_i of the 206 simulations for each period and region, and show a
788 fraction of simulations whose trend biases are not statistically significant with 90% confidence
789 level. In other words, the fraction represents how many simulations reproduce observed trends
790 considering standard errors of the trends.

791 Part c) calculated the total percentage of N simulations in which the α_{yi} and α_{ref} have
792 the same sign. If the product of the two trends are greater than 0, than the two carry the same
793 warming (cooling) trend. The total tally count is divided by the number of simulations and
794 multiplied by 100 to produce a percentage as follows:

795
$$f = \frac{\sum_{i=1}^N X_i}{N} * 100 \text{ where } X_i = \begin{cases} 1 & \text{if } \alpha_{yi} \cdot \alpha_{ref} \geq 0 \\ 0 & \text{if } \alpha_{yi} \cdot \alpha_{ref} < 0 \end{cases}$$
 (16)

796 In a similar manner, part d) also produces a fraction examines the magnitude of the
797 warming (cooling) trend. If a trend of a given simulation and its standard deviation ranges
798 intersects with the reference and its standard error (as calculated with the equation from Hogg
799 and Tanis [2009]), a tally is given. The total tally count is divided by the number of simulations
800 and multiplied by 100 to produce a percentage as follows:

801

$$f = \frac{\sum_{i=1}^N X_i}{N} * 100 \text{ where } X_i = \begin{cases} 0 & \text{if } (\alpha_{yi} \pm 1\sigma) \cap (\alpha_{ref} \pm SE) = \emptyset \\ 1 & \text{otherwise} \end{cases} \quad (17)$$

802

803 **Appendix B**
804 Summary of CMIP5 Historical Simulation Dataset

Modeling Center (Country)	Model	Simulations	Reference
Commonwealth Scientific and Industrial Research Organization Bureau of Meteorology (Australia)	ACCESS1-0	r1i1p1 r2i1p1	(Collier and Uhe 2012)
	ACCESS1-3	r1i1p1 r2i1p1 r3i1p1	
Beijing Climate Center (China)	bcc-csm1-1	r1i1p1 r2i1p1 r3i1p1	(Wu et al. 2014)
	bcc-csm1-1-m	r1i1p1 r2i1p1 r3i1p1	
Beijing Normal University (China)	BNU-ESM	r1i1p1	(Ji et al. 2014)
Canadian Center for Climate Modeling and Analysis (Canada)	CanCM4	r1i1p1 r2i1p1 r3i1p1 r4i1p1 r5i1p1 r6i1p1	(Chylek et al. 2011)
		r7i1p1 r8i1p1 r9i1p1 r10i1p1	
		r1i1p1 r2i1p1	
		r3i1p1 r4i1p1 r5i1p1	
		r1i1p1 r2i1p1 r3i1p1 r4i1p1 r5i1p1	
		r6i1p1	
	CESM1-BGC	r1i1p1	(Collins et al. 2004)
	CESM1-CAM5	r1i1p1 r2i1p1 r3i1p1	
	CESM1-FASTCHEM	r1i1p1 r2i1p1 r3i1p1	
National Center for Atmospheric Research (USA)	CESM1-WACCM	r1i1p1 r2i1p1 r3i1p1 r4i1p1	(Marsh et al. 2013)
	CMCC-CESM	r1i1p1	
	CMCC-CM	r1i1p1	
	CMCC-CMS	r1i1p1	
		r1i1p1 r2i1p1 r3i1p1 r4i1p1	
Centro Euro-Mediterraneo sui Cambiamenti Climatici (Italy)	CNRM-CM5	r1i1p1 r2i1p1 r3i1p1 r4i1p1 r5i1p1 r6i1p1 r7i1p1	(Volodire et al., 2013)

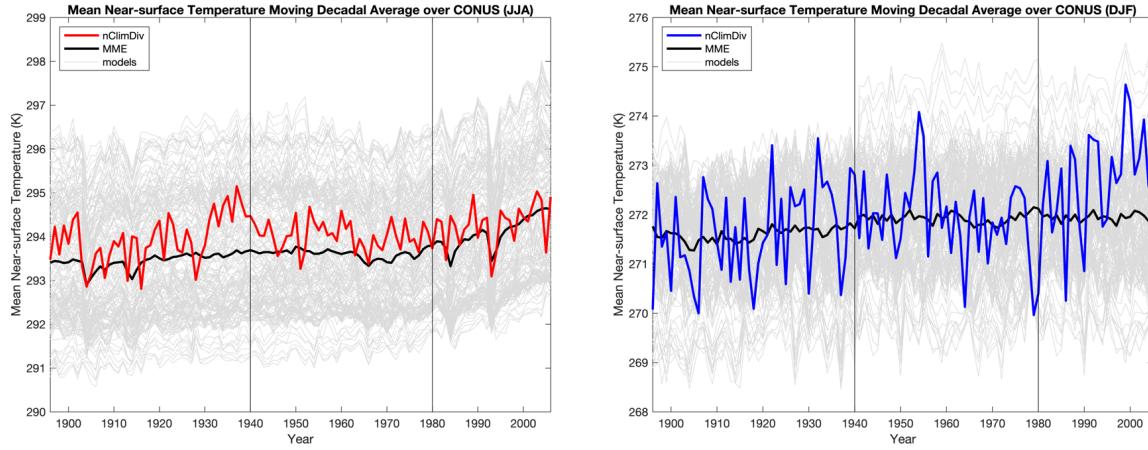
		r8i1p1	
		r9i1p1	
		r10i1p1	
	CNRM-CM5-2	r1i1p1	
		r1i1p1	
		r2i1p1	
		r3i1p1	
Commonwealth Scientific and Industrial Research Organization Queensland Climate Change Center of Excellence (Australia)	CSIRO-Mk3-6-0	r4i1p1	
		r5i1p1	(Gordon et al., 2010)
		r6i1p1	
		r7i1p1	
		r8i1p1	
		r9i1p1	
		r10i1p1	
		r1i1p1	
		r2i1p1	
		r6i1p1	
EC-EARTH Consortium published at Irish Center of High-End Computing (Netherlands/Ireland)	EC-EARTH	r7i1p1	(Hazeleger et al., 2012)
		r8i1p1	
		r9i1p1	
		r11i1p1	
		r12i1p1	
		r13i1p1	
		r14i1p1	
		r1i1p1	
Institute of Atmospheric Physics Chinese Academy of Sciences (China)	FGOALS-g2	r2i1p1	
		r3i1p1	(Li et al., 2013)
		r4i1p1	
		r5i1p1	
The First Institute of Oceanography, SOA (China)	FIO	r1i1p1	
		r2i1p1	(Qiao et al., 2013)
		r3i1p1	
		r1i1p1	
		r2i1p1	
		r3i1p1	
		r4i1p1	
		r5i1p1	
		r6i1p1	
		r7i1p1	
		r8i1p1	
Geophysical Fluid Dynamics Laboratory (USA)		r9i1p1	
		r10i1p1	
		r1i1p1	
		r2i1p1	
		r3i1p1	
		r4i1p1	
		r5i1p1	
		r1i1p1	
		r2i1p1	
		r3i1p1	
		r4i1p1	
		r5i1p1	
		r1i1p1	
		r2i1p1	
		r3i1p1	
		r4i1p1	
		r5i1p1	
		r1i1p1	
		r2i1p1	
		r3i1p1	
		r4i1p1	
		r5i1p1	
NASA/GISS (USA)		r1i1p1	
		r2i1p1	
		r3i1p1	
		r4i1p1	
		r5i1p1	
		r6i1p1	
		r1i1p1	
		r1i1p1	
		r2i1p1	
		r3i1p1	
		r4i1p1	
		r5i1p1	
		r6i1p1	
		r1i1p2	
		r2i1p2	
		r3i1p2	
		r4i1p2	
		r5i1p2	

NASA/GISS (USA)	GISS-E2-R	r6i1p2	(Schmidt et al., 2014)
		r1i1p3	
		r2i1p3	
		r3i1p3	
		r4i1p3	
		r5i1p3	
		r6i1p3	
		r1i1p121	
		r1i1p122	
		r1i1p124	
Met Office Hadley Center (UK)	HadCM3	r1i1p125	(Pope, Gallani, Rowntree, & Stratton, 2000)
		r1i1p126	
		r1i1p127	
		r1i1p128	
		r1i1p2	
		r1i1p1	
		r2i1p1	
		r3i1p1	
		r4i1p1	
		r5i1p1	
National Institute of Meteorological Research Korea Meteorological Administration (South Korea)	HadGEM2-CC	r6i1p1	(Pope, Gallani, Rowntree, & Stratton, 2000)
		r7i1p1	
		r8i1p1	
		r9i1p1	
		r10i1p1	
		r1i1p1	
		r1i1p1	
		r2i1p1	
		r3i1p1	
		r4i1p1	
Russian Academy of Sciences Institute of Numerical Mathematics (Russia)	HadGEM2-ES	r5i1p1	(W. J. Collins et al., 2011)
		r6i1p1	
		r7i1p1	
		r8i1p1	
		r9i1p1	
		r10i1p1	
		r1i1p1	
		r1i1p1	
		r2i1p1	
		r3i1p1	
Institut Pierre Simon Laplace (France)	IPSL-CM5A-LR	r4i1p1	(Dufresne et al., 2013)
		r5i1p1	
		r6i1p1	
		r1i1p1	
		r2i1p1	
		r3i1p1	
		r4i1p1	
		r5i1p1	
		r6i1p1	
		r1i1p1	
Atmosphere and Ocean Research Institute (The University of Tokyo)	IPSL-CM5A-MR	r2i1p1	(Watanabe et al. 2011)
		r3i1p1	
		r1i1p1	
		r2i1p1	
		r3i1p1	
		r1i1p1	
		r2i1p1	
		r3i1p1	
		r1i1p1	
		r2i1p1	
Max Planck Institute for Meteorology (Germany)	MIROC-ESM-CHEM	r3i1p1	(Watanabe et al. 2011)
		r1i1p1	
		r2i1p1	
		r3i1p1	
		r1i1p1	
		r2i1p1	
		r3i1p1	
		r1i1p1	
		r2i1p1	
		r3i1p1	
Met. Res. Inst. (Japan)	MIROC4h	r1i1p1	(Sakamoto et al. 2012)
		r2i1p1	
		r3i1p1	
		r1i1p1	
		r2i1p1	
		r3i1p1	
		r1i1p1	
		r2i1p1	
		r3i1p1	
		r1i1p1	
Max Planck Institute for Meteorology (Germany)	MIROC5	r1i1p1	(Watanabe et al. 2010)
		r2i1p1	
		r3i1p1	
		r4i1p1	
		r5i1p1	
		r1i1p1	
		r2i1p1	
		r3i1p1	
		r1i1p1	
		r2i1p1	
Met. Res. Inst. (Japan)	MPI-ESM-LR	r1i1p1	(Stevens et al., 2013)
		r2i1p1	
		r3i1p1	
		r1i1p1	
		r2i1p1	
		r3i1p1	
		r1i1p1	
		r2i1p1	
		r3i1p1	
		r1i1p1	
Max Planck Institute for Meteorology (Germany)	MPI-ESM-MR	r1i1p1	(Yukimoto et al. 2012)
		r2i1p1	
		r3i1p1	
		r1i1p1	
		r2i1p1	
		r3i1p1	
		r1i1p1	
		r2i1p1	
		r3i1p1	
		r1i1p1	
Met. Res. Inst. (Japan)	MPI-ESM-P	r1i1p1	(Yukimoto et al. 2012)
		r2i1p1	
		r3i1p1	
		r1i1p1	
		r2i1p1	
		r3i1p1	
		r1i1p1	
		r2i1p1	
		r3i1p1	
		r1i1p1	
Max Planck Institute for Meteorology (Germany)	MRI-CGCM3	r1i1p1	(Yukimoto et al. 2012)
		r2i1p1	
		r3i1p1	
		r1i1p1	
		r2i1p1	
		r3i1p1	
		r1i1p1	
		r2i1p1	
		r3i1p1	
		r1i1p1	

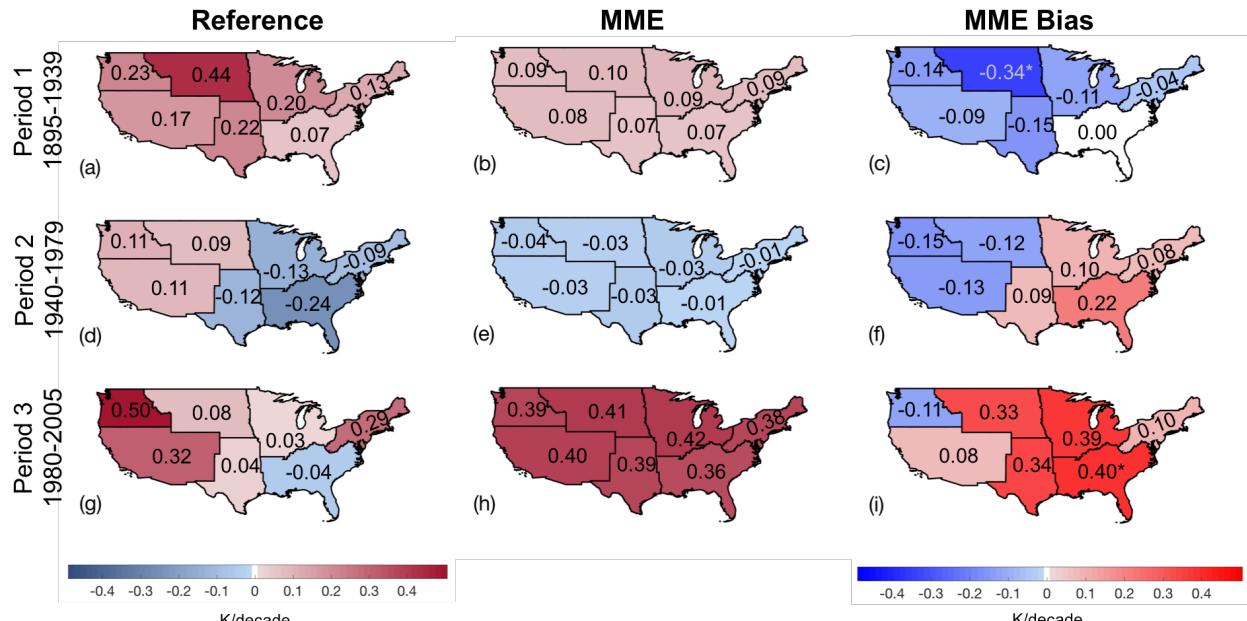
r3i1p1		
	MRI-ESM1	r4i1p2 r5i1p2
Bjerknes Center for Climate Research Norwegian Meteorological Institute (Norway)	NorESM1-M	r1i1p1 r2i1p1 r3i1p1
	NorESM1-ME	r1i1p1
		(Yukimoto et al. 2011)
		(Bentsen et al., 2013)

805

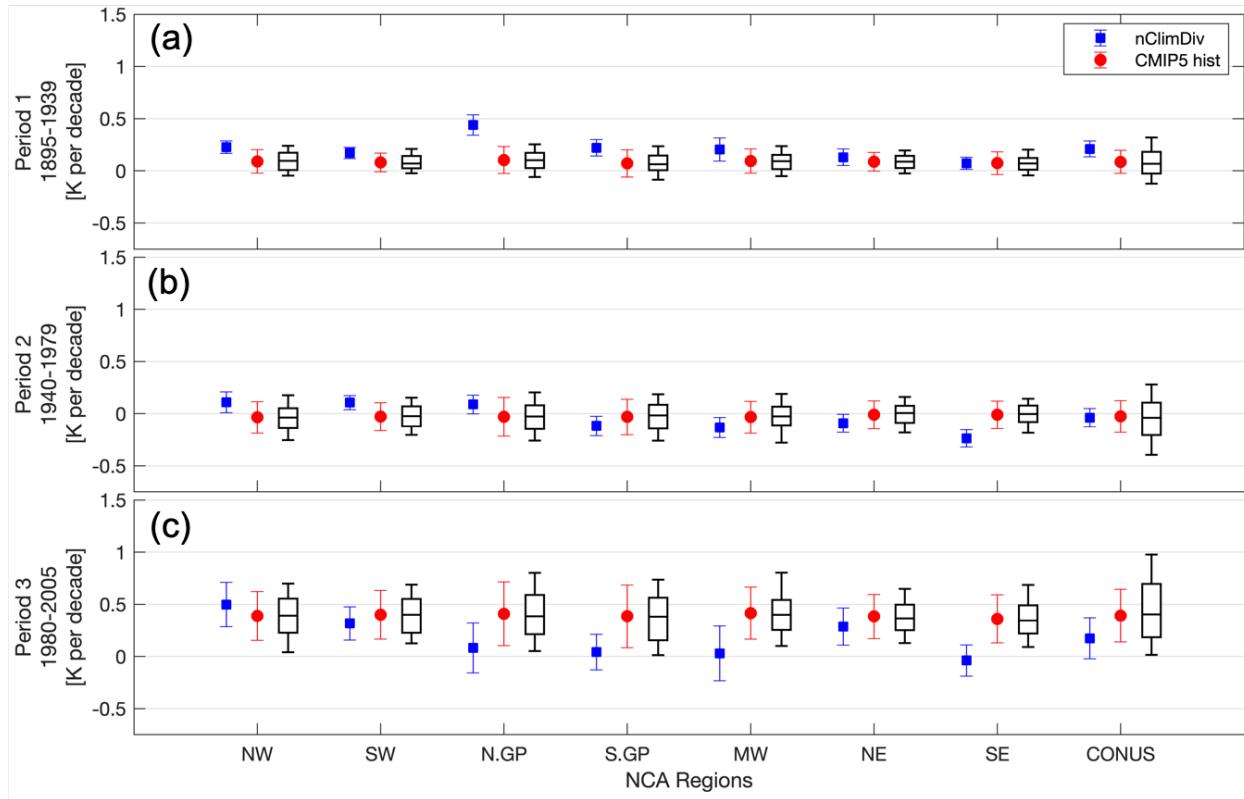
806


807 Figures

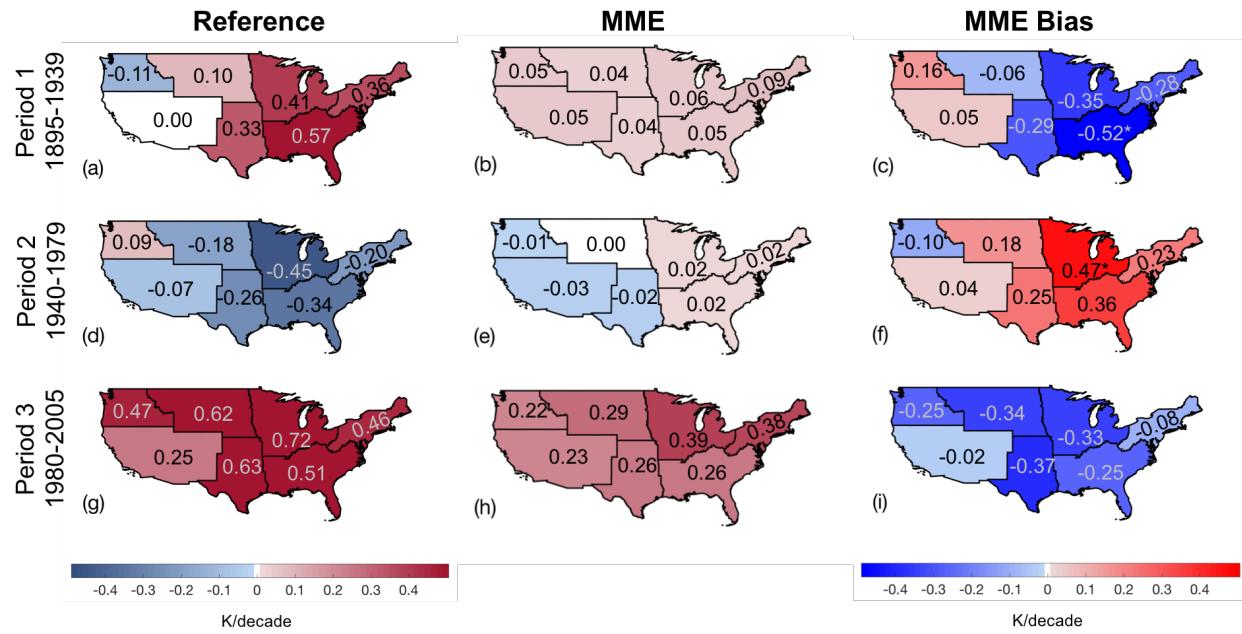
808


809 Figure 1a. Regions of analysis in this study, adapted from Janssen et al. 2014.

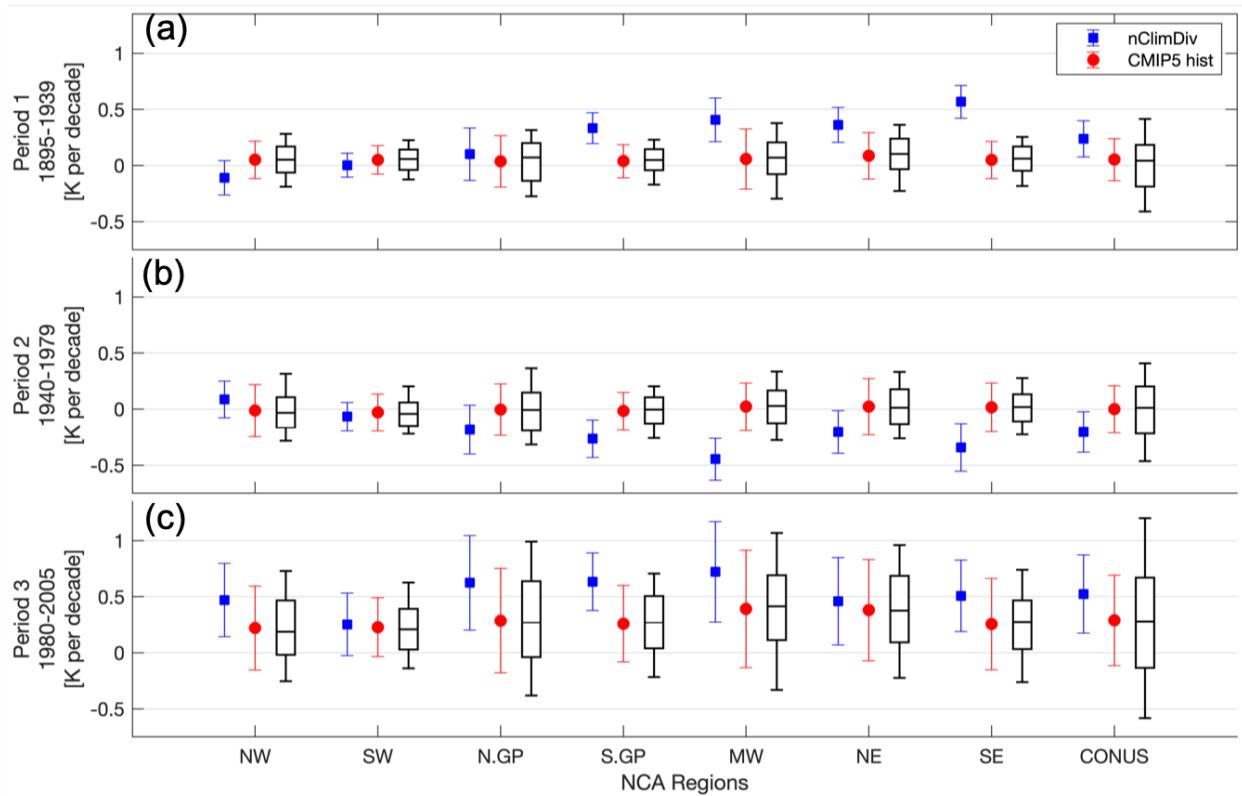
810


811

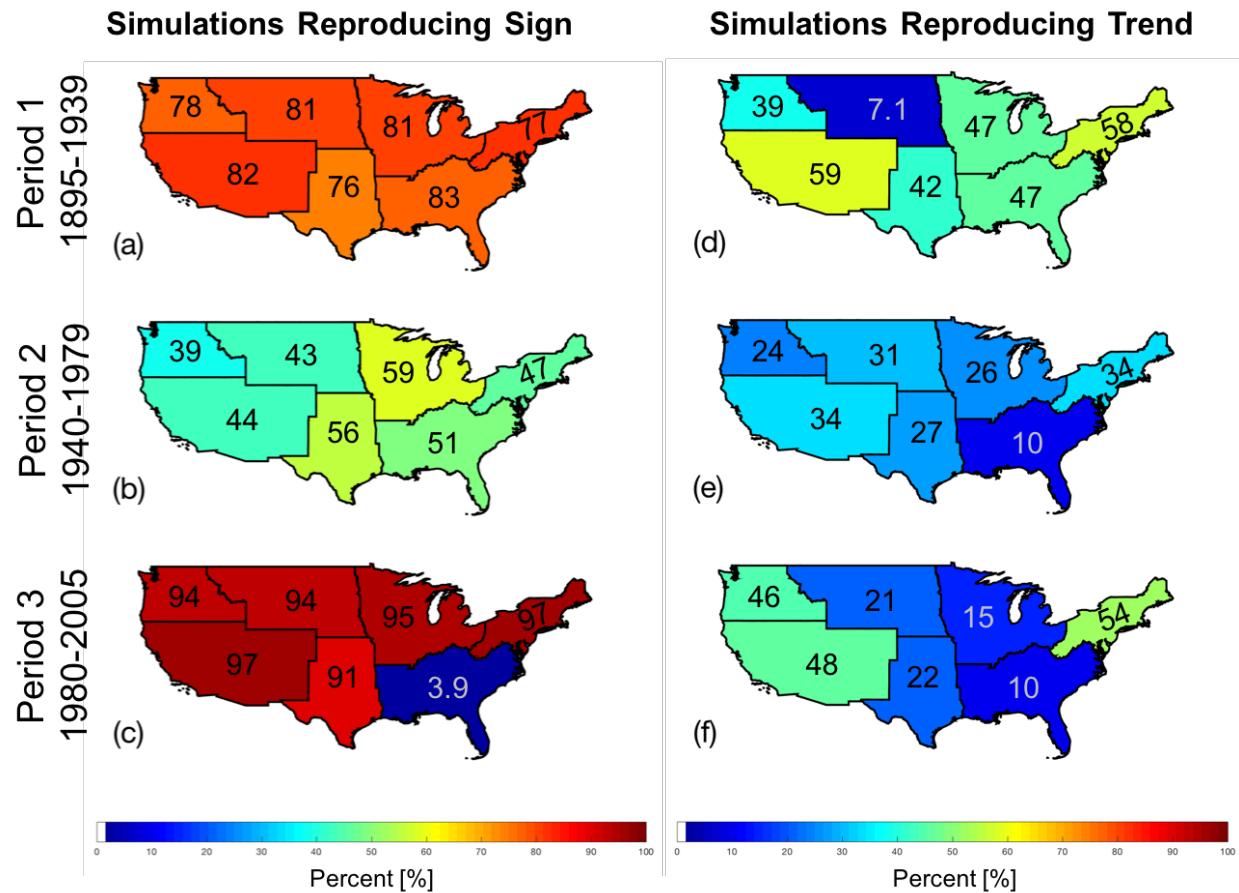
812 Figure 1b. Decadal moving average time series for mean near-surface air temperature of nClimGrid, MME, and all
 813 model ensembles for JJA (left) and DJF (right) from 1895-2005 separated by three distinct time periods (1895-1939,
 814 1940-1979, 1980-2005) by a black vertical line.


815

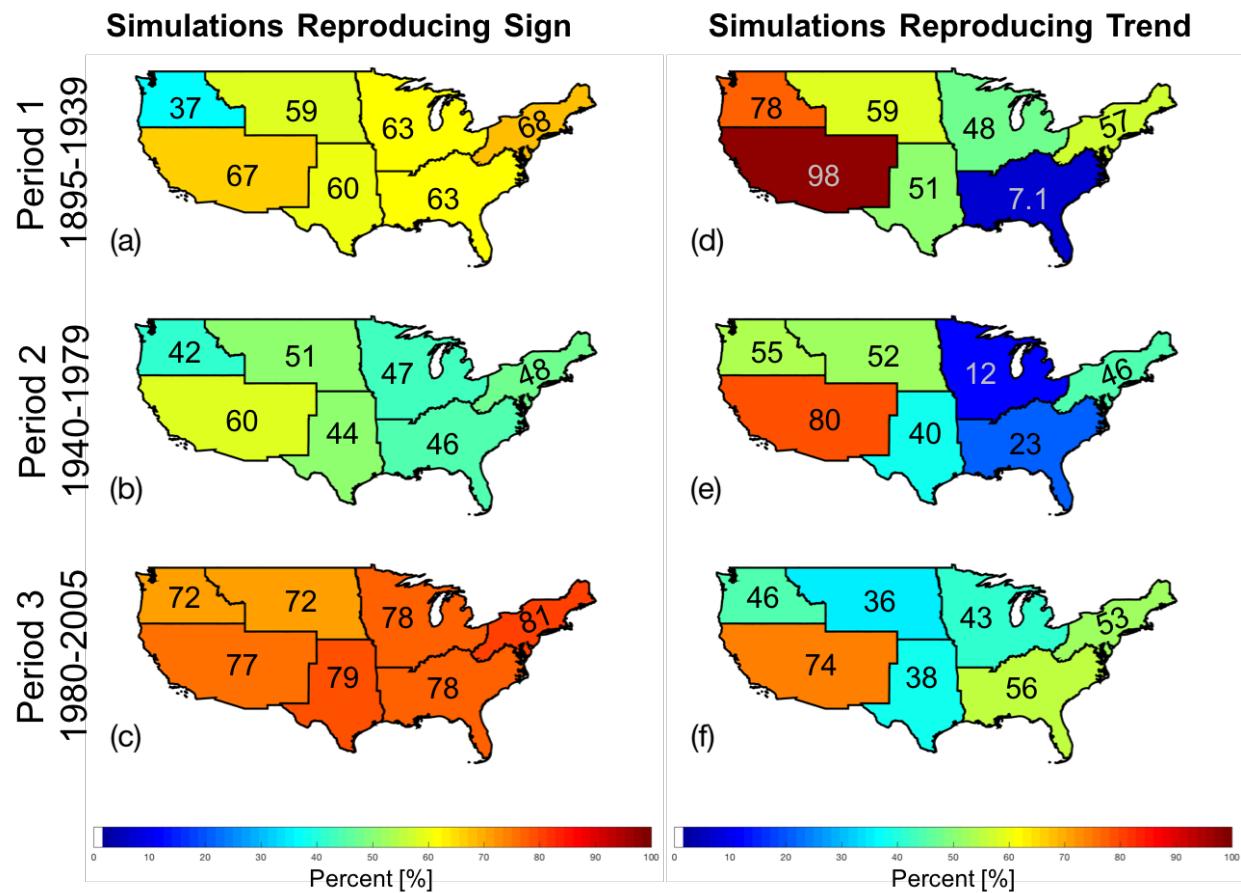
816 Figure 2. JJA mean near-surface air temperature decadal trends for reference (left column), MME (center column),
 817 and bias (right column) for 1895-1939 (top row), 1940-1979 (middle row), and 1980-2005 (bottom) in
 818 K/decade. In the bias column, an asterisk in a region indicates that the difference between the MME and the
 819 observed trends is larger than their errors (See Figure 3).


820

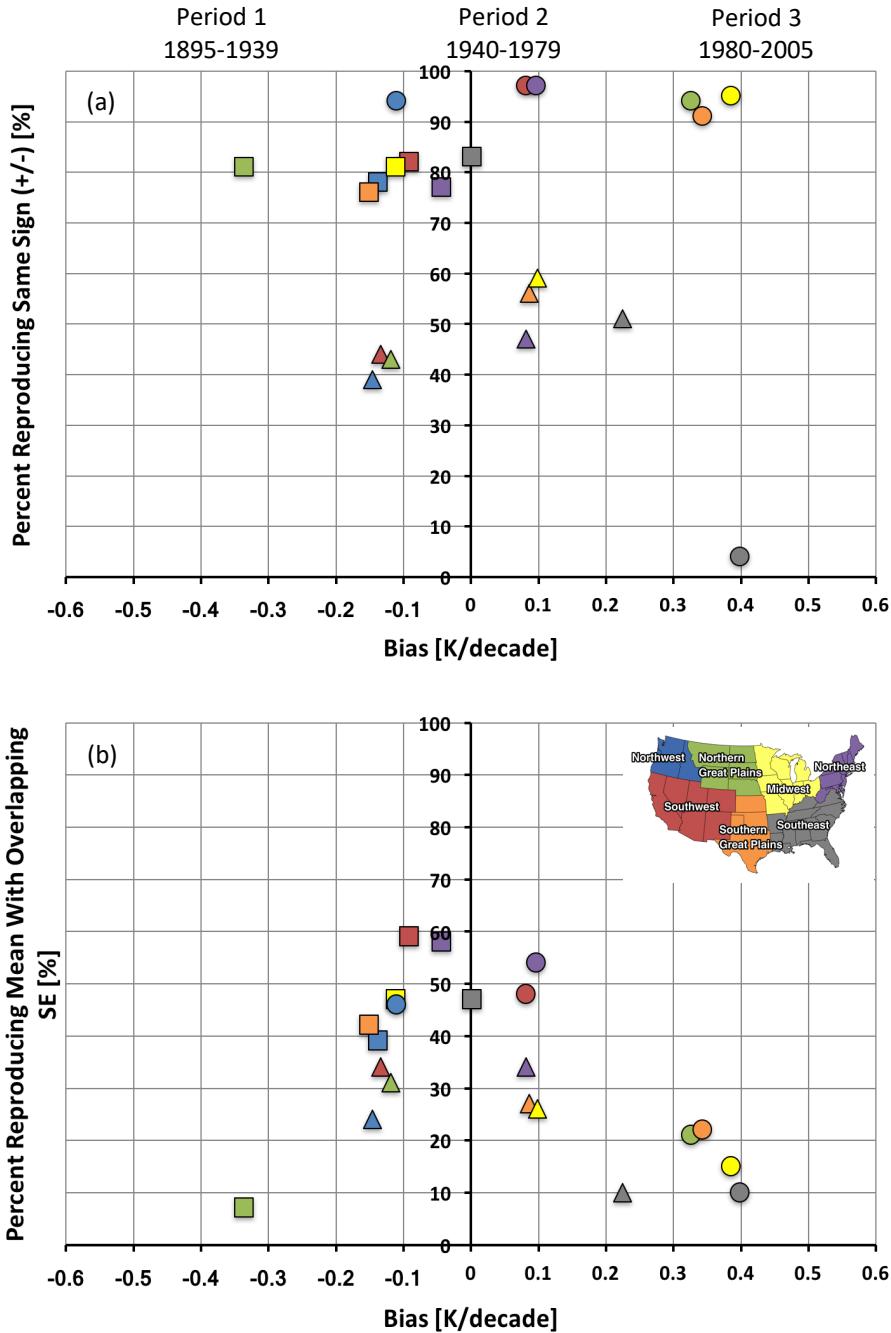
821 Figure 3. JJA mean near-surface air temperature decadal trend and standard error of reference (blue square),
 822 bootstrap multi-model ensemble (red circle) and standard error, and box plot of individual model simulation
 823 decadal mean trend by regions and over CONUS for 1895-1939 (top row), 1940-1979 (middle row), and 1980-
 824 2005 (bottom row) in K/decade. The line in the box represents the median ensemble member trend, the lower
 825 and upper boundary represents the 25th and 75th percentiles while the whiskers are the 5th and 95th percentiles.


826

827 Figure 4. As in Figure 2, but for DJF.

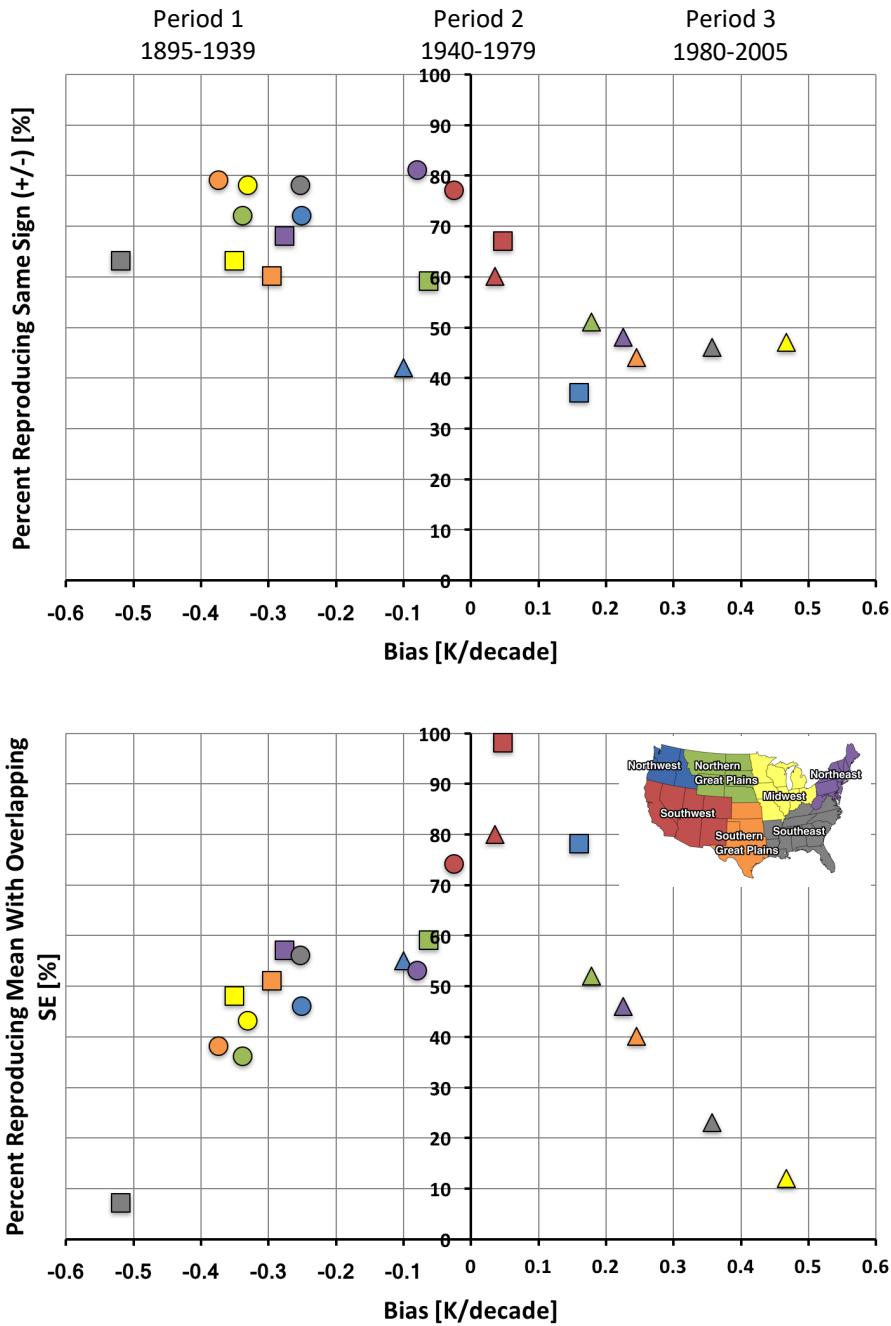

828

829 Figure 5. As in Fig. 3, but for DJF.


830

831 Figure 6. Percentage of JJA CMIP5 models reproducing the same sign (+/-) of mean temperature trends as the
 832 reference (left column), and percentage of JJA CMIP5 models reproducing mean temperature trend values with
 833 overlap of reference error (right column) for 1895-1939 (top row), 1940-1979 (middle row), and 1980-2005
 834 (bottom row).

835


836 Figure 7. As in Fig. 6, but for DJF.

837

838 Figure 8. The top plot (Figure 8a) shows JJA mean near-surface air temperature decadal trend reference and MME
 839 bias [K/decade] (horizontal axis) and percent of CMIP5 models reproducing the same sign (+/-) of mean near-
 840 surface air temperature trends as the reference (vertical axis) for time periods 1895-1939 (square), 1940-1979
 841 (triangle), and 1980-2005 (circle) of NCA-defined regions: Northwest (blue), Southwest (red), Northern Great
 842 Plains (green), Southern Great Plains (orange), Midwest (yellow), Northeast (purple), and Southeast (gray). The
 843 plot on the bottom (Figure 8b) is the same as the top except that the vertical axis is the percent of CMIP 5

844 models reproducing the mean near-surface air temperature decadal trend with overlapping standard error. The
 845 color of the data points correlates to regions represented in Figure 1a.

846
 847 Figure 9. As in Fig. 8, but for DJF.
 848

TABLE 1. CMIP5 analysis parameters

Variable	Time Block	<i>m</i>	Season	<i>N</i>	Variable	Time Block	<i>m</i>	Season	<i>N</i>
tas	1895-1939	45	JJA	184	pr	1895-1939	45	JJA	185
			DJF	184				DJF	185
tas	1940-1979	40	JJA	186	pr	1940-1979	40	JJA	186
			DJF	186				DJF	186
tas	1980-2005	26	JJA	206	pr	1980-2005	26	JJA	206
			DJF	203				DJF	203

850 Note: *m* denotes the number of years while *N* indicates the number of ensemble members

852 TABLE 2. Regions of analysis

Region	States
Northwest	Idaho, Oregon, Washington
Southwest	Arizona, California, Colorado, Nevada, New Mexico, Utah
Northern Great Plains	Montana, Nebraska, North Dakota, South Dakota, Wyoming
Southern Great Plains	Kansas, Oklahoma, Texas
Midwest	Illinois, Indiana, Iowa, Michigan, Minnesota, Missouri, Ohio, Wisconsin
Northeast	Connecticut, Delaware, Maine, Maryland, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, Vermont, West Virginia, District of Columbia
Southeast	Alabama, Arkansas, Florida, Georgia, Kentucky, Louisiana, Mississippi, North Carolina, South Carolina, Tennessee, Virginia

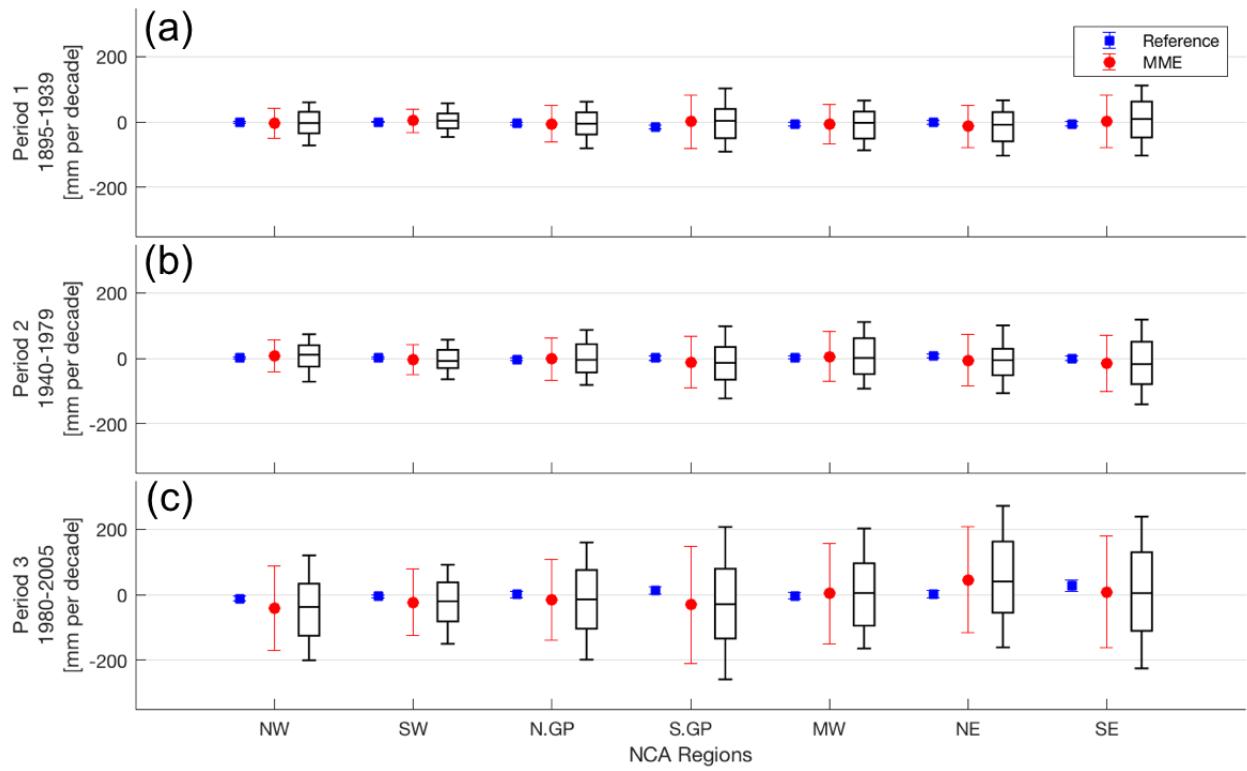
855 TABLE 3. Percentage of JJA ensemble members whose temperature trends are not significantly different from the
856 observed one at the 90% confidence level

Region	Period 1 1895-1939	Period 2 1940-1979	Period 3 1980-2005
Northwest	9	10	30
Southwest	14	8	27
Northern Great Plains	0	11	17
Southern Great Plains	14	8	27
Midwest	17	15	13
Northeast	0	11	17
Southeast	11	8	4
CONUS	1	16	17.5

859 TABLE 4. Percentage of DJF ensemble members whose temperature trends are not significantly different from the
860 observed one at the 90% confidence level

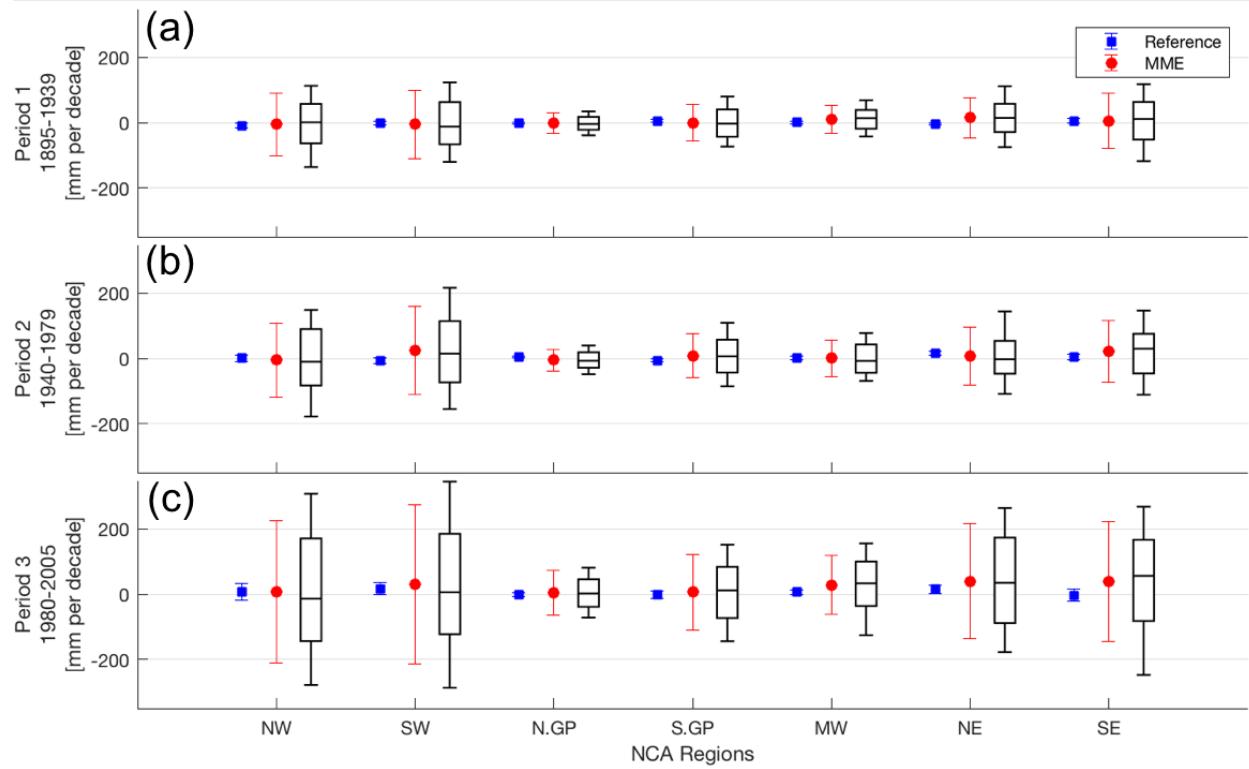
Region	Period 1 1895-1939	Period 2 1940-1979	Period 3 1980-2005
Northwest	13.5	16	25
Southwest	17	16.5	24
Northern Great Plains	35.5	29	22
Southern Great Plains	17	16.5	24
Midwest	4	4	19
Northeast	35.5	29	22
Southeast	0	10	22
CONUS	7	17	26

861

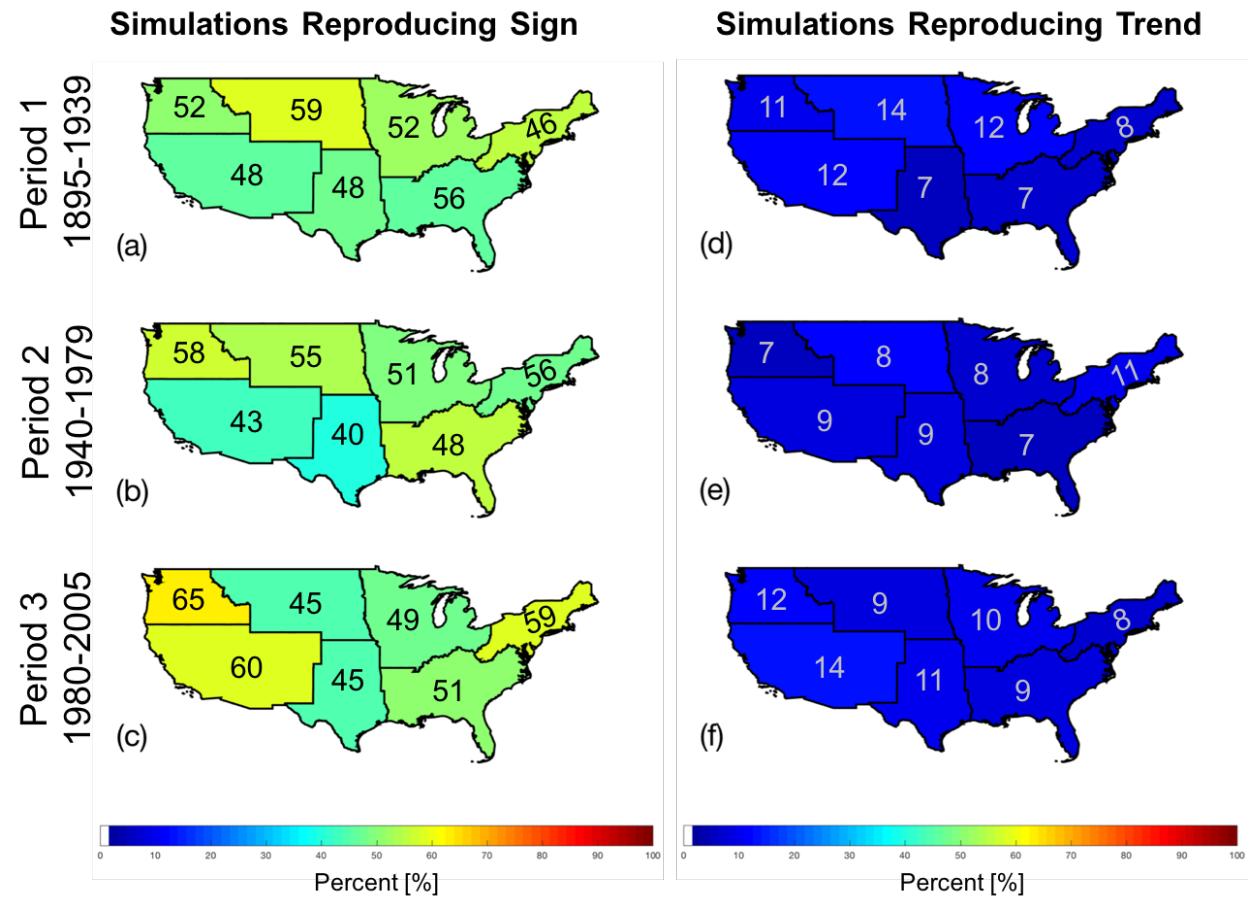

862 Supplementary Material

863 Supplementary Table 1. List of ensemble members that capture the Southeast “warming hole” during Period 2
864 (1940-1979) for JJA and DJF.

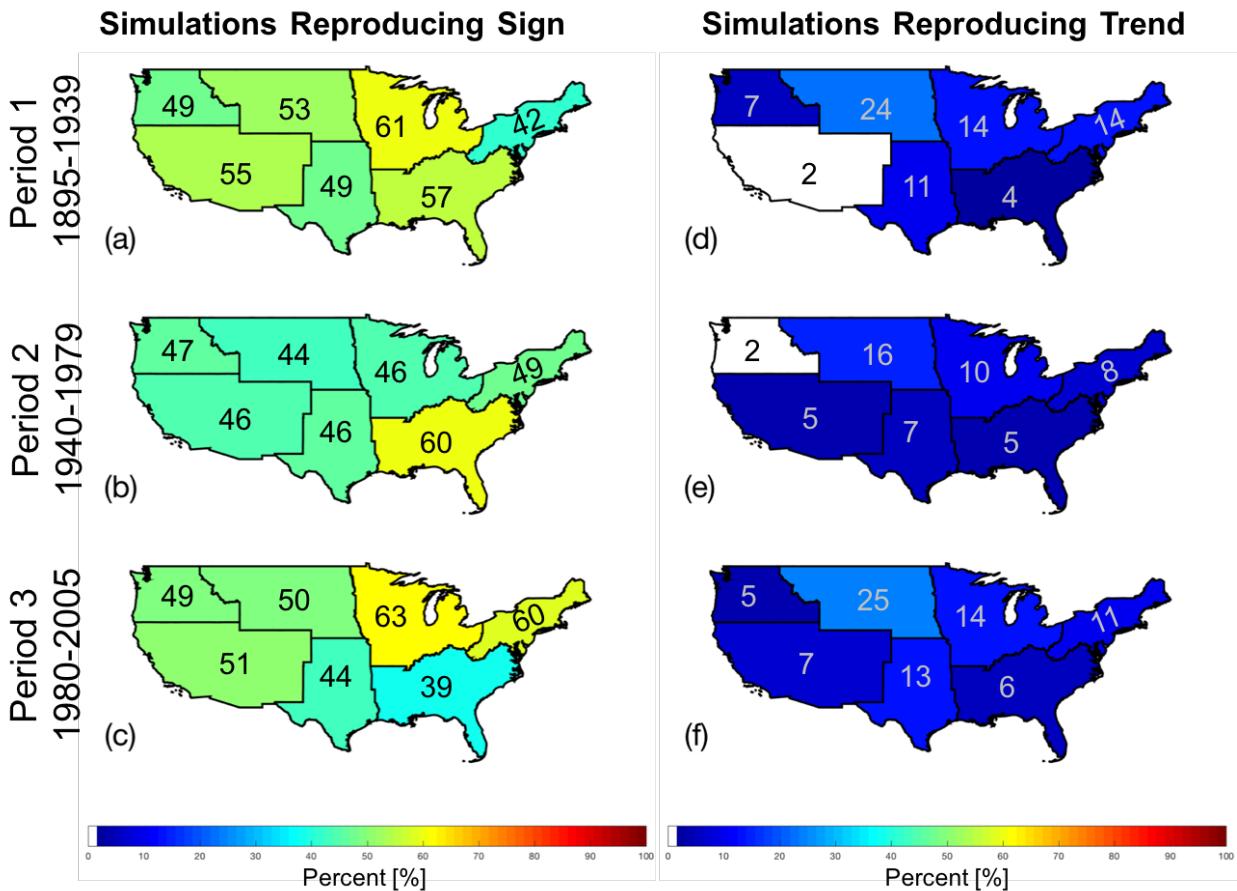
Model	Simulation	JJA	DJF
ACCESS1-0	r2i1p1	✓	✓
ACCESS1-3	r2i1p1	✓	✓
bcc-csm1-1-m	r3i1p1	✓	
CanESM2	r1i1p1		✓
	r3i1p1		✓
CCSM4	r1i1p1		✓
	r5i1p1		✓
CESM1-FASTCHEM	r1i1p1		✓
CMCC-CM	r1i1p1		✓
	r1i1p1		✓
	r2i1p1		✓
CNRM-CM5	r5i1p1		✓
	r9i1p1		✓
	r10i1p1		✓
	r1i1p1		✓
	r2i1p1		✓
CSIRO-Mk3-6-0	r3i1p1	✓	
	r6i1p1		✓
	r8i1p1	✓	✓
FGOALS-g2	r5i1p1	✓	✓
	r2i1p1		✓
GFDL-CM2p1	r7i1p1		✓
	r8i1p1		✓
	r1i1p1		✓
GFDL-CM3	r4i1p1		✓
	r5i1p1		✓
GFDL-ESM2M	r1i1p1		✓
	r1i1p1		✓
GISS-E2-H	r2i1p1		✓
	r5i1p3	✓	✓
	r6i1p3	✓	
	r1i1p1		✓
	r2i1p1		✓
GISS-E2-R	r2i1p3		✓
	r4i1p1		✓
	r4i1p2		✓
	r6i1p1		✓
	r6i1p2	✓	✓
HadCM3	r3i1p1		✓
	r4i1p1		✓
	r1i1p1	✓	✓
HadGEM2-ES	r2i1p1	✓	
	r3i1p1		✓
	r5i1p1	✓	✓
IPSL-CM5A-MR	r1i1p1		✓
	r3i1p1	✓	
MIROC-ESM	r3i1p1		✓
MIROC-ESM-CHEM	r1i1p1	✓	✓
MIROC5	r2i1p1	✓	
	r5i1p1	✓	
MRI-CGCM3	r4i1p2		✓
NorESM1-M	r2i1p1		✓


865

866


867

868 Supplementary Figure 1. JJA mean precipitation decadal trend and standard error of reference (blue square),
 869 bootstrap multi-model ensemble (red circle) and standard error, and box plot of individual model simulation
 870 decadal mean trend by regions for 1895-1939 (top row), 1940-1979 (middle row), and 1980-2005 (bottom)
 871 in K/decade. The line in the box represents the median ensemble member trend, the lower and upper boundary
 872 represents the 25th and 75th percentiles while the whiskers are the 5th and 95th percentiles.



873

874 Supplementary Figure 2. As in Supplementary Figure 1, but for DJF.

Supplementary Figure 3. Percentage of JJA CMIP5 models reproducing the same sign (+/-) of mean precipitation trends as the reference (left column), and percentage of JJA CMIP5 models reproducing mean precipitation trend values with overlap of reference error (right column) for 1895-1939 (top row), 1940-1979 (middle row), and 1980-2005 (bottom row).

880

881 Supplementary Figure 4. As in Supplementary Figure 2, but for DJF.

882